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Abstract. Earth System Model (ESM) simulations exhibit large biases compares to observation-based estimates of the present

ocean CO2 sink. The inter-model spread in projections increases by nearly two-fold by the end of the 21st century, and

therefore contributes significantly to the uncertainty of future climate projections. In this study, the Southern Ocean (SO) is

shown to be one of the hot-spot regions for future uptake of anthropogenic CO2, characterized by both the solubility pump

and biological-mediated carbon drawdown in the Spring and Summer. We show, by analyzing a suite of fully-interactive ESMs5

simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) over the 21st century under the high CO2

RCP8.5 scenario, that the SO is the only region where the atmospheric CO2 uptake rate continues to increase toward the end

of the 21st century. Furthermore, our study discovers a strong inter-model link between the contemporary CO2 uptake in the

Southern Ocean and the projected global cumulated uptake over the 21st century. This strong correlation suggests that models

with low carbon uptake rate in the contemporary SO tend to simulate low uptake rate in the future and vice versa. Nevertheless,10

our analysis also shows that none of the models fully capture the observed bio-physical mechanisms governing the CO2 fluxes

in the SO. The inter-model spread for the contemporary CO2 uptake in the Southern Ocean is attributed to the variations in

the simulated seasonal cycle of surface pCO2. Two groups of model behaviour have been identified. The first one simulates

anomalously strong SO carbon uptake, generally due to both too-strong net primary production and too-low surface pCO2 in

December–January. The second group simulates an opposite CO2 flux seasonal phase, which is driven mainly by the bias in the15

sea surface temperature variability. We show that these biases are persistent throughout the 21st century, which highlight the

urgent need for a sustained and comprehensive biogeochemical monitoring system in the Southern Ocean to better constrain

key processes represented in current model systems.

1 Introduction

Since the industrial revolution, a steady increase in anthropogenic CO2 emissions from fossil fuel burning, cement production20

and land-use change have led to an increase of atmospheric CO2 concentration of about 43% in 2014 relative to its preindustrial

value according to the latest measurements from the Earth System Research Laboratory in Mauna Loa (www.esrl.noaa.gov).

This represents the highest CO2 concentration for at least the last 800,000 years. Increasing atmospheric CO2 is one of the

most important drivers for ongoing, and likely future, climate change, and affects the ocean carbon reservoir. By taking up
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about approximately 26% of the anthropogenic CO2 emissions annually (Le Quéré et al., 2015), the ocean slows down the

growth of the atmospheric CO2 concentration and therefore the rate of climate change. However, the ocean carbon uptake rate

will decrease in the future owing to the lowered buffer capacity of the surface waters and the potential weakening of carbon

transport from the surface to the deep ocean leading to a positive climate feedback (Arora et al., 2013; Heinze et al., 2015).

The oceanic carbon sink is mainly controlled by the physical and the biological pumps which are both affected by the5

changing climate (Volk and Hoffert, 1985). The physical pump depends mainly on two processes: dissolution of CO2 gas

into seawater, and transportation of dissolved inorganic carbon into the deep ocean by mixing and circulation processes.

The biological pump is predominantly governed by the population of marine phytoplankton, which consumes the dissolved

inorganic carbon (DIC) in the seawater to produce organic matter or soft tissues via photosynthesis. Through gravitational

forcing, this organic matter sinks into the ocean interior where it is remineralized back into DIC. The biological pump is also10

affected by the global increase in temperature and by changes in circulation. The solubility of atmospheric CO2 into the ocean’s

surface is expected to be negatively impacted by global warming since the solubility of CO2 gas in seawater decreases with

warmer temperatures (Sarmiento et al., 1998). Additionally, the oceanic circulation that links the low DIC in the ocean surface

to the CO2-rich deep ocean could be altered in the next few decades through weaker upwelling and a slowdown in the Atlantic

Meridional Overturning Circulation (AMOC) (Rahmstorf et al., 2015). Both of these carbon pump processes are represented15

in the latest Earth System Model (ESM) simulations from the CMIP5, which include for the first time a coupling between the

atmosphere-ocean global climate models (AOGCMs, as in previous CMIPs) and the biogeochemical fluxes between the ocean,

atmosphere and terrestrial biosphere reservoirs (Taylor et al., 2012).

It has been shown that the trend in current anthropogenic CO2 emissions closely follows the RCP8.5 scenario (Peters

et al., 2013; Fuss et al., 2014), which is the most pessimistic future scenario with high atmospheric CO2 concentrations20

leading to 8.5Wm−2 additional radiative forcing by 2100. The estimated emissions reached 37.0± 1.3Gt CO2 yr
−1 in 2014

(Friedlingstein et al., 2014), matching the RCP8.5 scenario leading to the highest increase in global mean temperature from

3.2 to 5.4 ◦C at the end of this century relative to 1850–1900. This study focuses on analyzing the fully-interactive ESM

simulations from CMIP5 for the 2001 to 2099 period from the experiments “esmHistorical” and “esmrcp8.5”. We compare

with observational data the 2001–2010 period from the simulations.25

Figure 1 presents the time-series of the global annual CO2 uptake by the ocean computed from 9 different CMIP5 models

(Sect. 2.2) from the year 2001 to 2099, including the observation-based estimate of carbon flux for the period 1998–2011

(Landschützer et al., 2014). In addition to the large present day inter-model spread, the figure also highlights the increase in the

inter-model spread projected into the future. The magnitude of the standard deviation (i.e. of the inter-model variation) increases

by a factor of two from 2001 (±0.3PgCyr−1) to 2099 (±0.6PgCyr−1). During this period, the projected cumulative oceanic30

carbon sink ranges from 340.4 to 488.5Pg C. The 149Pg C difference in the size of the ocean carbon sink translates into

roughly a 70ppm difference in atmospheric CO2 concentration by the end of the 21st century. In order to improve the fidelity

of future projections provided by the climate modeling community, it is necessary to identify and attribute the mechanisms

responsible for the growth in the inter-model spread of ocean CO2 uptake, and to determine methods to constrain this.

Motivated by this growing uncertainties and the need to constrain them, our study focuses on analysing relationships between35
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regional and global uncertainties in ocean carbon uptakes as simulated in CMIP5 models. This is necessary because the strength

and variability of the ocean carbon sinks vary considerably from one region to another, and is attributed to the region-specific

mechanisms. For instance, in the Equatorial Pacific, the long-term trend in CO2 uptake is strongly influenced by the El-Niño

variability (Feely et al., 2006). In other regions, such as the Southern Ocean, the variability is related to the Southern Annular

Mode (e.g., Le Quéré et al., 2007; Landschützer et al., 2015).5

The need to reduce this inter-model spread is imperative to reduce uncertainty in future climate projections and enable policy

makers to make the most informed decisions. The simulated uncertainty in ocean carbon uptake could arise from different

factors. Feedbacks from ocean and terrestrial biospheres on the CO2 concentration are expected but highly uncertain and thus

difficult to predict (Denman et al., 2007). Differences in (i) basin-scale ocean evolution of ocean carbon uptake rates, (ii) timing

and amplitude of physical and biogeochemical processes driving the regional pCO2 seasonal cycle, as well as (iii) responses to10

transient future climate change are among potential contributors to future uncertainty in ocean carbon uptake, and addressing

these points will be the main focus of this study.

The paper is organized as follows: in the next section we describe the observations and models used in this study as well

as the terms and metrics used to investigate the relationships between present-day and future carbon uptake and the regional

boundaries. Section three discusses the results of the analyses. Additional discussions and comparison with previous studies15

are presented in section four. Finally, the study is summarized in section five.

2 Methods

2.1 Observation-based estimates

We used the monthly data set documented by Landschützer et al. (2014) for the 2001–2010 period. It includes the surface ocean

partial pressure of CO2 (pCO2) and the sea-air CO2 flux (fgCO2) gridded into a 1◦ × 1◦ horizontal resolution corresponding20

to 360 by 180 points in longitude and latitude, respectively. The pCO2 data set is originally extrapolated in space and time

from SOCAT (Surface Ocean CO2 Atlas) version 2 (Bakker et al., 2014) by a two-step neural network approach as described

in Landschützer et al. (2013). The sea-air CO2 flux is computed based on this pCO2 field applying a standard bulk formulation

and high-resolution Cross-Calibrated Multi-Platform (CCMP) wind speeds (Atlas et al., 2011). The monthly averaged Sea

Surface Salinity (SSS) was downloaded from the Simple Ocean Data Assimilation (SODA, Carton and Giese, 2008) and has25

been regridded to the pCO2 dataset. The Sea Surface Temperature (SST) is from the National Oceanic and Atmospheric

Administration (NOAA) Optimum Interpolation (OI) sea surface v.2 (Reynolds et al., 2002).

The climatology of Net Primary Production (NPP) used for the seasonal model-data assessment in the Southern Ocean (Sect.

3.2) is documented by Nevison et al. (2015) and is computed over the 1997–2010 period using data derived from the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS). It uses an empirical Chlorophyll (Chl) algorithm for the Southern Hemisphere30

that was tuned to in situ Chl in the Southern Ocean and spatially blended with the standard SeaWiFS OC4 algorithm (Kahru

and Mitchell, 2010).
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2.2 pCO2 decomposition

In order to allow decomposition of pCO2 variability into its physical and biogeochemical components, we estimated the

alkalinity (ALK) and dissolved inorganic carbon (DIC) at the same resolution as the pCO2 data. The alkalinity was computed

from the SST and SSS estimates depending on the region using the Lee et al. (2006) formulation. When temperatures are5

out of range in the selected region, the computation returns a missing value (NaN). The dissolved inorganic carbon (DIC)

was computed using CO2 inorganic carbon chemistry program CO2SYS developed in Matlab (van Heuven et al., 2011)

using the gridded SST, SSS, pCO2 and alkalinity as input parameters. The global average surface silicate and the phosphate

concentrations were used: 10 and 0.75 µmol kg SW−1, respectively. We expect that this choice has a relatively small influence

on our results since a shift of the concentration of silicate and phosphate by 4 and more than 6 times to their original mean10

values would generate only a 0.05 and 0.2% change in the DIC computation. To complete the CO2SYS input, we applied the

dissociation constants K1 and K2 introduced by Mehrbach et al. (1973) and refitted by Dickson and Millero (1987).

Decomposition of the total pCO2 seasonal variability was based on the following equation (Tjiputra et al., 2014):

dpCOtot
2

dt
≈ dpCODIC

2

dt
+

dpCOALK
2

dt
+

dpCOSST
2

dt
+

dpCOSSS
2

dt
(1)

where the pCOtot
2 variation in time (“dpCOtot

2 /dt”) is approximately equal the sum of the four decomposed pCOx
2 variation15

in time, where x is DIC, ALK, SST or SSS. The pCOx
2 terms represent a set of thermodynamic equations that relates to the

inorganic carbon species, taking into account variation in x while the other components are kept at their long-term local average

values. In this way, dpCODIC
2 /dt is an estimate of the temporal variability of local pCO2 field as a result of changing DIC only.

The same estimates were applied for the other three parameters (i.e. ALK, SST, and SSS).

2.3 Model descriptions and post processing20

The nine participating CMIP5 ESMs in alphabetical order, are the (1) Beijing Climate Center BCC-CSM1.1(m), (2) Canadian

Centre for Climate Modeling and Analysis CanESM2, (3) Community Earth System Model CESM1-BGC, (4) Geophysical

Fluid Dynamics Laboratory GFDL-ESM2G, (5) Hadley Global Environment Model 2 HadGEM2-ES, (6) Japan Agency

for Marine-Earth Science and Technology MIROC-ESM, (7) Max Planck Institute for Meteorology MPI-ESM-LR, (8)

Japanese Meteorology Research Institute MRI-ESM1 and (9) Norwegian Climate Centre NorESM1-ME. These models25

have also contributed to the last Intergovernmental Panel on Climate Change Assessment Report (IPCC-AR5). All outputs

were downloaded directly from the Earth System Grid Federation (ESGF, http://esgf.llnl.gov) and we analyzed the fully

interactive CO2 emissions-based “esm” simulations. These “esm” simulations take into account carbon fluxes between the

land-atmosphere and ocean-atmosphere interfaces to prognostically simulate the atmospheric CO2 concentration, thus they

include more realistic spatially varying atmospheric CO2 concentration. The selection of these models is based on the30

availability of all variables necessary to discuss the impact of the pCO2 seasonal cycle on the carbon uptake: fgCO2, pCO2,

SST, SSS, DIC, ALK and NPP. However, the BCC-CSM1.1 and the MIROC-ESM models do not provide some of these

variables (ALK and DIC) and therefore were only analyzed for the contemporary and future uptake relationship (Sect. 3.1). In
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order to compare the global and regional fgCO2 between models presented in Sect. 3.1, fgCO2 outputs were also interpolated

to the observational grid of 360× 180 points. Model outputs from the historical (esmHistorical) experiments were added to

the RCP8.5 (esmrcp8.5) to complete the 2001–2099 period of study. We used the same “r1i1p1” realization from each model.

Tables 1 and 2 summarize the physical and marine biogeochemical components and features of each model.5

The marine primary productivity is one of the key components that governs the carbon cycle in the ocean, impacting the

oceanic pump through alteration of the buffering capacity and the CO2 remaining in the atmosphere. The ocean NPP is

controlled by nutrient availability and other physical factors such as temperature and light. As presented in Table 2, the CMIP5

models use different representations of multiple nutrient limitations, varying from one to five explicit nutrients in CMOC-NPZD

and BEC-TOPAZ2, respectively and from one to three phytoplankton species, NPZD-HAMOCC-CMOC and BEC-TOPAZ2,10

respectively. This highlights the wide range of biogeochemistry complexity, which can also contribute to the inter-model spread

in their respective outputs. We note that the MOM4-L40 uses the OCMIP2 biogeochemistry module, which doesn’t include an

explicit marine ecosystem, therefore in this case the primary production is simulated only as a function of surface phosphate

concentration.

2.4 Uptake efficiency15

In Sect. 3.2 we compute for each model (at the original model resolution) the “uptake efficiency” (uptakeyeff) of carbon in the

ocean, where “y” represents the different basin regions as defined in Sect. 2.6 as well as the global (glb) and other ocean region

excluding the SO (eSO). The uptakeeff measures the efficiency of a specific water mass in taking up carbon for a given change

in atmospheric pCO2. A high uptakeeff value represents a good capacity of the ocean to contain DIC for a certain change in

atmospheric pCO2 and vice versa. This term is computed as follow:20

uptakeyeff =
∂[CTy]

∂[pCOy
2]

=
DICy

pCOy
2RFy (2)

The “DICy” and “pCOy
2” in Eq. (2) represent the respective area-weighted mean surface concentration of DIC and pCOy

2

within the domain y. “RFy” is the regional mean Revelle Factor (Revelle and Suess, 1957), also known as the inverse of the

ocean’s buffering capacity for atmospheric CO2 uptake, i.e., to convert CO2,aq into different carbon species (carbonate and

bicarbonate) within domain y. Water masses with a lower Revelle Factor are more efficient at taking up anthropogenic carbon25

(Sabine et al., 2004). The increase of atmospheric CO2 has pushed the surface CO2,aq concentration to a higher level, resulting

in an increase of the Revelle Factor (Zeebe and Wolf–Gladrow, 2001) and thus a decrease of ocean’s buffering capacity. This

mechanism represents a positive climate feedback, which reduces the uptake rate of atmospheric CO2 in the future (Wallace,

2001). The DIC and pCO2 fields were taken directly from the model outputs whereas the RF were computed with CO2SYS.

2.5 Inter-model correlation

In order to assess qualitatively the existence of any patterns or consistencies between the simulated CO2 uptakes among the

different models, two metrics of inter-model correlation coefficients have been computed: Ry
mean and Ry

cum. A high correlation

coefficient indicates a strong relationship between the contemporary and the projected inter-model spread. Moreover,
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a statistically significant positive correlation coefficient denotes that models that project weak uptake on the contemporary5

period tend to project weak future uptake, and vice versa. The two correlation coefficients were computed as follows:

Ry
mean = CorrCoef

[
1

10

2010∑
t=2001

fgCOy
2(t) ,

1

10

2099∑
t=2090

fgCOglb
2 (t)

]
(3)

Ry
cum = CorrCoeff

[
1

10

2010∑
t=2001

fgCOy
2(t) ,

2099∑
t=2001

fgCOglb
2 (t)

]
(4)

“Ry
mean” represents the inter-model correlation coefficient between contemporary annual mean CO2 uptake in the different “y”

regions and global uptake rate in the last decade of the 21st century (i.e. 2090–2099). Then, “Ry
cum” represents the inter-model10

correlation coefficient between the contemporary annual mean uptake rate and the cumulative global carbon uptake over the

2001–2099 period.

2.6 Regional boundaries

Regional characteristics of anthropogenic carbon uptake can be assessed through division of the global ocean into 8 basin-

scale regions. The regional distribution is defined according to the low-, mid- and high-latitudes, motivated by the large-scale15

difference in carbon uptake mechanisms occurring in these regions (e.g., Mikaloff Fletcher et al., 2007). The regions are:

Southern Ocean (SO, 45–70◦ S), mid-latitude Southern Ocean (mSO, 15–45◦ S), Tropical Pacific (TPa, 15◦ N–15◦ S), Tropical

Atlantic (TAt, 15◦ N–15◦ S), Indian Ocean (Ind, > 15◦ S), North Pacific (NPa, 15–60◦ N), North Atlantic (NAt, 15–60◦ N), and

Arctic Ocean (Arc, > 60◦ N). Computation for the analysis pertaining to the relationships between contemporary and future

CO2 uptake (Sect. 3.1) are made at the resolution of the observational data.20

We note that the selection of the 45◦ S as a boundary between the mid- and high-latitude SO, could pose issues since the SO

region has a sophisticate dynamics and, dependent on the models, the 45◦ S latitude could cut into regions of dominant carbon

sources or sinks. To address this issue, we also perform additional analysis where we use a dynamic boundary separating

the mid- and high-latitude Southern Ocean applying a surface density of 26.5 kg m−3. For instance, Séférian et al. (2012)

apply this density line to separate the Subtropical Mode Water (TMW, region of weak increase in future CO2 uptake) and the25

Subantarctic Model Water (MW, region of strong increase in future CO2 uptake).

3 Results

3.1 Inter-model contemporary and future CO2 uptake relationships

The relationship between contemporary and future global CO2 uptake (“Rglb
mean”) as simulated by the CMIP5 models is shown

in the Fig. 2a and the relationships relating to “Rglb
cum” is shown in Fig. 2b. Figure 2a shows that the models have positive

correlation but weak linear relationships between the present and future CO2 uptake rate. However, the linear relationships

become more pronounced for cumulative carbon sinks (Fig. 2b), as shown by Rglb
cum value of 0.77. This is also consistent with

Fig. 1, which shows that the inter-model spread in CO2 uptake evolves in a relatively similar manner into the future.5
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Next, for each region defined in Sect. 2.6 (as depicted in Fig. 3a), we computed the inter-model correlation coefficient metrics

following Eqs. (3) and (4). The SO region yields the highest correlation coefficient as depicted in Fig. 3 with RSO
cum = 0.65 and

RSO
mean = 0.76, in blue- and red-bars, respectively. Other regions remain weakly correlated with a correlation coefficient close

to zero or under 0.40 for both correlation fields (TPa, TAt, Ind, NPa, NAt and Arc regions). Only the mSO region reveals

a quite strong negative correlation coefficient with RmSO
mean =−0.55. Nevertheless, in all regions except the SO, the correlation10

coefficients are statistically insignificant at 90 % confidence level, while SO shows a statistically significance over 99%. For

the remainder of the analysis we therefore combined the 7 regions with insignificant correlation coefficient into one new region:

global ocean excluding SO (eSO).

Globally, for the annual oceanic CO2 uptake during the 2001–2010 period, all models except the NorESM1-ME are

well within the range of the observation-derived estimate from Landschützer et al. (2014) of about 1.99± 0.50PgCyr−1.15

The two highest uptake estimates are simulated by the BCC-CSM1.1(m) and NorESM1-ME models (2.47± 0.15 and

2.63± 0.07PgCyr−1, respectively) and the lowest uptake estimates come from the MPI-ESM-LR and MRI-ESM1 models

(1.88± 0.10 and 1.78± 0.13PgCyr−1, respectively).

Figure 4 depicts the inter-model relationships in the SO and eSO domains for RSO
mean, ReSO

mean, RSO
cum and ReSO

cum. In SO,

four models (BCC-CSM1.1, NorESM1-ME, MPI-ESM-LR and CESM1-BGC) overestimate the carbon uptake flux from the20

atmosphere to the ocean when compared with two independent observational-based estimates of about 0.15± 0.12PgCyr−1

(Landschützer et al., 2014) and 0.27± 0.13PgCyr−1 (Lenton et al., 2013), the latter is derived from Takahashi et al.

(2009) datasets. The highest estimates being simulated by the BCC-CSM1 and NorESM1-ME models at 1.03± 0.09 and

0.64±0.11PgCyr−1, respectively. Two models (CanESM2 and MRI-ESM1) underestimate the flux, with the lowest estimate

is simulated by the CanESM2 model, which is also the only model to simulate the Southern Ocean as a source of carbon to the25

atmosphere at about −0.64±0.09PgCyr−1 (Fig. 4a). Three other models (GFDL-ESM2G, MIROC-ESM and HadGEM2-ES)

projects CO2 uptake within the two observational-based estimates.

Figure 4a and c illustrates the strong inter-model linear relationships between the contemporary CO2 uptake rate in the SO

and the projected future uptake rate (Fig. 4a) and cumulated carbon uptake over the 21st century (Fig. 4c). In the last decade

of the 21st century, the CMIP5 models project ocean carbon uptake rate ranges from 4.30 to 5.92PgCyr−1. The cumulative30

oceanic CO2 uptake during the 21st century is projected to be between 340.4 and 488.5Pg C.

Figure 4 also demonstrates the peculiarity of the Southern Ocean as compared to the rest of the world’s ocean (eSO),

where the contemporary CO2 uptake rate in the latter has a relative strong negative correlation with ReSO
mean =−0.52 and

ReSO
cum =−0.24. To investigate the robustness of this correlation coefficient with time we computed Ry

cum for all of the original

eight regional basins as well as for the eSO for all 10 year windows between 2001 and 2099 (shown in Fig. 4e). The SO region

is shown to have a consistently strong positive correlation coefficient across time with RSO
cum values of 0.69±0.04. Other regions

have more pronounced temporal variations, particularly the North Atlantic (NAt) which goes from a negative correlation in

early 21st century (−0.39) to a positive correlation after 2020 which increases to 0.59. However, it remains to be statistically

insignificant at 90% of confidence level.5
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As stated in subsection 2.6, we also computed the correlation coefficient metrics for the SO region using a dynamic boundary

(instead of a fixed 45◦S latitude) along the surface water with density of 26.5 kg m−3. Figure 5c illustrates the model-dependent

dynamic boundaries as simulated for August 2005. Figure 5a and b show that the linear inter-model relationships remain strong

(correlation coefficient of at least 0.76) when the dynamic boundary is used, suggesting that the inter-model relationships in

the SO is relatively robust.10

3.2 Carbon uptake evolution in the Southern Ocean

In this section, we examine why the SO has the highest RSO
mean and RSO

cum relative to the other regions. Only seven out of the nine

models previously used to establish the correlations are used; the BCC-CSM1 and MIROC-ESM models are excluded because

they do not provide the monthly ALK and DIC fields needed for the “uptakeeff” analysis. The remaining models are CanESM2,

CESM1-BGC, GFDL-ESM2G, HadGEM2-ES, MPI-ESM-LR, MRI-ESM1 and NorESM1-ME. Figure 6 shows the time series15

anomalies (relative to year 2001) of CO2 uptake, net primary production (NPP) and uptake efficiency (uptakeeff), in SO and

eSO as simulated by the CMIP5 models.

There is a general increase in CO2 uptake for both SO and eSO, as would be expected from the increasing atmospheric

CO2 concentrations under the RCP8.5 scenario. However, in SO (except for the CESM1-BGC model) the simulated uptake

rates steadily increase towards the end of the 21st century, and the multi-model mean increases to 1.2± 0.3PgCyr−1 higher20

than the present day (Fig. 6a). The CESM1-BGC model simulates stabilization of CO2 uptake during the last two decades

of the 21st century. In the other regions (Fig. 6b), the multi model mean reaches a saturation point of 1.9± 0.4PgCyr−1, in

the 2070s before the uptake strengths go down to 1.5± 0.4PgCyr−1 in 2100. This “peak and decline” pattern is consistently

shown in all models analyzed here.

The unique SO region benefits indeed from the strong link between deep and surface ocean through the southern upwelling25

(Sallée et al., 2013a). Earlier studies analyzing the previous generation of ESMs also demonstrated that this region will be an

important sink of future atmospheric CO2 although the efficiency of the sink may decrease (Roy et al., 2011). The increasing

CO2 sink in the SO was shown to be associated with a reduction in the fractional ice coverage which alleviates the light

limitation on photosynthesis and increases of surface ocean temperature, both of which would increase the phytoplankton

growing season.30

A global mean decrease of NPP by about −3.12± 3.54PgCyr−1 is projected by the CMIP5 models, predominantly

attributed to the increase in surface temperature leading to stronger stratification and hence reducing the nutrient supply to

the surface ocean through vertical mixing (Bopp et al., 2013). The large differences between the structure of the ecosystem

models of the CMIP5 models no doubt contributes to the large inter-model uncertainty. For example, the GFDL-ESM2G and

MRI-ESM1 models simulate global annual NPP estimates which differ by more than a factor of two at 66.7 and 25.9PgCyr−1,

respectively (not shown), and are outside of the multi-model standard deviation for the NPP estimates. The MRI-ESM1 model

considers only one nutrient limitation and simulates only one type of phytoplankton while the GFDL-ESM2G model uses

a more sophisticated ecosystem module with five types of nutrients and three classes of phytoplankton (Table 2). However,

this alone is insufficient to determine the reason why the GFDL-ESM2G NPP is so strong. On the other hand, the MPI-ESM-5
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LR NPP is in the low end of the inter-model range. Inter-model variations in the physical and biogeochemical interaction

important for the surface primary productivity, such as irradiance and upwelling, should be analyzed further to seek to address

this question. This, however, is beyond the scope of the present study.

Figure 6c–d show the NPP anomalies relative to 2001 in the SO and eSO regions through the 21st century, highlighting that

surface primary production in SO is either stable or weakly increasing by roughly 0.5±0.3PgCyr−1 at the end of this century10

while it is clearly decreasing in the other regions (by −2.6± 0.1PgCyr−1). This is consistent with findings by Laufkötter

et al. (2015), who show that the NPP increase in the SO is predominantly attributed to the weakening temperature limitation

for phytoplankton growth projected in the future. They also indicate that, despite the inter-model agreement in long-term trend,

the regional inter-model variation is substantial.

In SO, steady biological production may also be responsible for maintaining low pCO2 in the Summer and keeping a higher15

buffer capacity than in the other regions (Hauck and Völker, 2015). The two last panels of Fig. 6 show the anomaly of uptakeeff

(Sect 2.4 for definition) which is expected to decrease as the Revelle Factor increases under future high ambient atmospheric

CO2 concentrations (Heinze et al., 2015). Nevertheless, the decreasing trend is weaker in the SO than the eSO region, at

−0.28±0.01 vs. −0.37±0.02 µmol kg−1 ppm−1 respectively by year 2099. Indeed, for the same change in pCO2 and roughly

the same Revelle Factor change, the SO experiences a smaller change in DIC (not shown), indicating a unique process occurring20

in the high latitude SO. Deep winter mixing at polar regions is very efficient in transporting the anthropogenic carbon from

surface to depth, resulting in an increase of uptake efficiency (Marinov et al., 2007). Moreover, the increase in the meridional

temperature gradient from the tropic to the high latitudes projected in the future could lead to an enhancement of the Antarctic

Circumpolar Current via a stronger wind stress at the surface (Gillett and Fyfe, 2013). As a result, this could translate to

enhancement in intermediate water formation and more efficient transport of anthropogenic carbon from the surface into depth.25

The steady increase in carbon uptake in the SO region could be the reason for the strong correlation of this region with

future global sinks (Sect. 3.1 and Fig. 4a). We therefore focus on analyzing the mechanism for ocean uptake in the SO region

as simulated by the different models in the next subsections.

3.3 Inter-model division in the Southern Ocean carbon uptake

Figure 4a–b show that the CMIP5 models exhibit diverse contemporary carbon uptake sinks in SO, from an outgassing of30

−0.64± 0.09PgCyr−1 (CanESM2) to an uptake of 1.03± 0.09PgCyr−1 (BCC-CSM1.1). To investigate the mechanisms

driving the inter-model heterogeneity, we compute the carbon uptake at a seasonal time-scale, and compare to estimates derived

from observations (Landschützer et al., 2014).

We divided the seven CMIP5 models into two groups. The first group (hereafter referred as “G1”) represents those that

simulate anomalously stronger annual CO2 uptake rate in the SO as compared to the observational-based estimates and consists

of the CESM1-BGC, HadGEM2-ES, MPI-ESM-LR, and NorESM1-ME models. The second group (hereafter referred as “G2”)

comprises models that simulate anomalously weaker CO2 uptake, consisting of the CanESM2, GFDL-ESM2G and MRI-ESM1

models. Figure 7 shows the inter-model mean and spread of these two groups in their projections of the seasonal cycle of carbon5

fluxes, NPP and anomalies of SST for both the contemporary (2001–2010) and future (2090–2099) periods.
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Figure 7 illustrates that the G1 models have nearly the opposite seasonal cycle as the G2 models. The G1 models (Fig. 7a,

red lines) simulate a strong mean ocean CO2 uptake in December–January of about 0.30molCm−2 month−1, which in the

same direction as, but more than four times stronger in magnitude than, that estimated from the observation-based estimate

of 0.07molCm−2 month−1. This overestimation corresponds to the period of the highest NPP, where the G1 models mean10

simulate an NPP maximum of more than three times stronger than the observations: 35 compared to 11 gCm−2 month−1,

respectively (Fig. 7c, black and red lines). Moreover, the SST anomaly during this two-month periods has a negligible effect on

the CO2 flux; there is no significant change in carbon flux occurring when the SST anomaly increases from +0.3 to +1.5 ◦C

(Fig. 7e, red line). This highlights that the biological activity in G1 models is the primary driver for the CO2 flux seasonal cycle

in SO during high-productivity season, while the impact of the seasonal temperature on the surface pCO2 appears to play only15

a secondary role (Takahashi et al., 2002).

In contrast to the G1, G2 models (Fig. 7, blue lines) simulate strong outgassing during the summertime with a negative CO2

flux of nearly −0.10molCm−2 month−1. This is in disagreement to the observation-based estimates and is predominantly

driven by the SST changes. The magnitude of the SST anomaly from the G2 models is two times stronger than the observations,

whereas the NPP cycle is similar in amplitude. The rapid warming and cooling of SST simulated in the G2 models during the20

Spring and Fall seasons lead to a higher and lower surface pCO2, respectively. As a result, the G2 models simulate strong CO2

uptake during the Fall season, which also implicates the solubility pump as a primary driver.

During the austral Winter, in August, observation-based estimates show a maximum of outgassing, roughly

−0.03molCm−2 month−1 (Fig. 7a, black line). G1 models simulate the same mechanism at this period but the maximum

of outgassing is reached earlier in May–June instead of August. Concurrently, G1 models simulate a minimum of NPP at this25

time, pushing up the pCO2 at the surface. Thus, the SO turns into a source of CO2 for the atmosphere despite the SST anomaly

of about −0.6◦C which would tend to push in the opposite direction. The same shift appears for G2 models but for an opposite

CO2 flux seasonal cycle, with a maximum of uptake in May of nearly 0.10molCm−2 month−1. The NPP is twice as strong

in May–June for the G2 models than for the G1 models at 1.5 vs. 0.6 gCm−2 month−1, respectively. This, in addition to

a stronger magnitude of SST anomaly, leads to a CO2 uptake in April–June being projected by the G2 models as depicted in30

Fig. 7a (blue line).

Figure 8 illustrates the mean spatial variation in CO2 uptake for each season from Landschützer et al. (2014) and as simulated

by the G1 and G2 models during the contemporary period. In the G1 models, the too-strong seasonal cycle as compared to the

observation-based estimates occurs throughout most parts of the SO, especially during October–December and January–March

with considerably stronger carbon sinks found in south of the circumpolar current. Between 50 and 60◦ S, the outgassing in35

G1 models is noticeably stronger during April–June and July–September. In the G2 models, the largest source of bias during

October–December and January–March when compared to the Landschützer et al. (2014) estimates is found in the Atlantic

and Indian sectors of the SO where the models simulate a relatively uniformly strong outgassing.

Future period simulations (Fig. 7, right panels) show that the seasonal phase in the carbon flux will be relatively similar,

but the amplitude will grow considerably as compared, to the current seasonality. The distinctions in NPP and SST seasonal5

cycle between G1 and G2 models are also maintained. Therefore, the bias in the present day seasonal phase of CO2 fluxes
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is projected to persist toward the end of the 21st century. We note that there is a one month shift of simulated SST anomaly

seasonal cycle where maximum of SST anomaly appears in March instead of February.

3.4 Drivers for the Southern Ocean carbon uptake

Following Eq. (1) in the methods section, we decomposed the pCO2 seasonal cycle anomalies into four drivers: DIC, ALK,10

SST and SSS for both the contemporary and future periods (shown in Fig. 9). The SSS-induced variations are not shown

because the magnitude is negligible relative to the other variables. As with the previous subsection, we focused our analysis

for the two contrasting model groups (G1 and G2). The amplitude of pCO2 from the G1 (Fig. 9a, red line) overestimates the

Landschützer et al. (2014) estimations. Nevertheless, it fits closer with later measurements from Merlivat et al. (2015), though

they estimated the sea-air carbon flux only from a section of the Southern Ocean where pCO2 anomalies amplitude can reach15

roughly 120 µatm. In both groups as well as the observation-based estimates, the SST- and ALK-induced pCO2 anomalies are

generally in phase with each other and the opposite with the DIC-induced variability.

The DIC-induced pCO2 anomaly from the G1 models simulates a minimum in January instead of March, a two-month

shift as compared to the values derived from Landschützer et al. (2014). The G1 models, which simulate anomalously strong

SO carbon uptake, generally simulate too-low surface pCO2 during December–January (an anomaly of −40 µatm; Fig. 9a,20

red line) due to the too-strong NPP (Fig. 7c, red line). The driving parameter seems indeed to be the DIC at the water

surface (−38 to −64 µatm of anomalies in December–January, respectively). Thus DIC consumption by the phytoplankton

via photosynthesis confirms the importance of biological activity for carbon uptake in this group of models during this high-

productivity period. The G2 models project nearly the same amplitude as that derived from observations, but depicts an opposite

phase for carbon uptake. Figure 9 shows that G2 models simulate anomalously too-strong surface pCO2 during December–25

January, of roughly 7 to 12 µatm, respectively (Fig. 9c, blue line). There, the driving parameters are the SST and alkalinity

with anomalies of about 38 and 19 µatm in January, respectively. Indeed, these two components tend to push up the pCO2 at

the surface in the Summer season (December–March) and present also a one-month shift as compared to the values derived

from observations (Fig. 9c, gray squares and circles).

The future simulations accentuate even more the pCO2 seasonal cycles for the G1 models (Fig. 9b, red line). The amplitude30

of this seasonal cycle approximately doubles in 2090–2099 relative to 2001–2010 (i.e., the standard deviation increases from

24.5 to 50.3 µatm), mostly due to the DIC-induced variability (Fig. 9b, red triangles). The amplitudes of the SST-induced and

ALK-induced variability are projected to double as well, however, their combined magnitude is still weaker than DIC-induced

variability. The G2 models maintain roughly the same amplitude of pCO2 total through the 21st century (Fig. 9d, blue line),

though the pCO2-induced components increase also by a factor of two. Nevertheless, the DIC-induced seasonal cycle of the

G2 models, conversely to the G1, is about the same order of magnitude as the SST-induced seasonal cycle, thus balancing the5

change in the pCO2.
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4 Discussions

The ocean plays an instrumental role in buffering the increasing atmospheric CO2 concentration and the ongoing climate

change. In this study, for the first time, we evaluate the relationships between present day regional ocean carbon sinks with

future cumulative carbon sinks over the 21st century under the high CO2 RCP8.5 scenario as simulated by a suite of fully-10

interactive CMIP5 ESMs. The SO is found to be a good predictor for future global carbon uptake. We therefore examined

the representation of oceanic carbon uptake and its future evolution in the SO. Specifically, we assess the model capability to

simulate the observed seasonal pCO2 cycle for the present day period.

With respect to the annual mean CO2 uptake in the Southern Ocean, Jiang et al. (2014) evaluate a set of CMIP5 models

but from different simulations, i.e., with prescribed atmospheric CO2 concentrations, and over a slightly smaller domain (56–15

62◦ S). Despite these differences, our present findings are very much comparable to the prior study, with the CanESM2 and

GFDL-ESM2G models simulating net outgassing and close to neutral CO2 fluxes. On the contrary, the HadGEM2-ES and

MPI-ESM-LR were shown to have relatively stronger carbon sinks, especially during austral summer. For the 2001–2010

period, only one model (MRI-ESM1, ∼ 362 µatm) simulates a mean surface pCO2 in the SO that is lower than the observed

∼ 364 µatm; the majority of models simulate a stronger mean carbon sink than the observational estimate. This indicates the20

need to consider the seasonal cycle when evaluating carbon uptake projections in the SO.

Jiang et al. (2014) also examine the CMIP5 models simulated pCO2 seasonal cycle in the Drake Passage as compared to

shipboard measurements. They show that the pCO2 seasonal cycle in this confined domain is representative of the broader

circumpolar region. Our analysis using Landschützer et al. (2014) data further indicates that pCO2 seasonal cycle in the SO

region is reasonably homogeneous in phase, with the maximum pCO2 in austral Winter (August) and minimum in Summer25

(January), as illustrated in Figs. 7 and 9. We show that most models simulate larger seasonal pCO2 amplitude than the

observation-based estimates. Despite overestimating the mean carbon sinks, both HadGEM2-ES and MPI-ESM-LR reproduce

the seasonal phase of the data. The MPI-ESM-LR simulates too-strong biological-mediated carbon uptake in the early Spring

period, consistent with the anomalously strong late Winter mixing (August–September) (Jiang et al., 2014; Sallée et al., 2013b),

which upwells the required nutrients to fuel biological production. The GFDL-ESM2G, one of the two models that simulate30

carbon sinks closest to the data-based estimate, simulates the opposite pCO2 seasonal phase, which largely attributed by the

bias in absolute values and amplitude of SST seasonal cycle. None of the CMIP5 models analyzed here are able to reproduce

the observed seasonal cycle and annual mean carbon sinks within the uncertainty range in the SO. This highlights the difficulty

in simulating the correct variability in hydrography and biogeochemistry in this region.

Based on the linear inter-model relationship presented in this study, the GFDL-ESM2G, MIROC-ESM, and HadGEM2-ES

models simulate contemporary CO2 fluxes in the SO closest to the observational-based estimate (see for example Fig. 5a), and

therefore are likely to have more credibility in their future projections. Nevertheless, from our seasonal cycle analysis it is not

clear if these models simulate the observed mechanisms governing the CO2 fluxes. According to Landschützer et al. (2015),

the non-thermal component of the pCO2 variation is an important driver for the long-term CO2 fluxes in the SO. Figure 105

shows the seasonal anomaly of non-thermal CO2 seasonal cycle in the SO from models and observation-based estimate. The
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CanESM2 and GFDL-ESM2G simulate comparable amplitude and seasonal phase with the observation-based estimate, but

the former model has anomalously high surface pCO2 (i.e., it simulates a net source of CO2 to the atmosphere in the SO).

Taking this as an additional constrain, our analysis suggests that the GFDL-ESM2G performs best in capturing the observed

CO2 fluxes in the Southern Ocean.10

In their model study applying an ad hoc parameterization of wind stirring, Rodgers et al. (2014) demonstrate that changes

in wind stirring has large impact on the mean carbon uptake and seasonal cycle phasing in the SO (south of 45◦ S). They show

that resultant changes in seasonal onset of stratification influences both entrainment and the biological pump. Furthermore,

Sallée et al. (2013b) identify the annual mean freshwater flux as the primary source of error for the SO mixed layer depth in

CMIP5 models. This uncertainty arises from the lack of accurate estimates of buoyancy fluxes from observations in the region.15

In the SO, the CO2 flux and its evolution in response to climate change also depend critically on the spatial and temporal

variation of convection processes Sallée et al. (e.g., 2012). Due to the coarse spatial resolution in CMIP5 models, convection

processes along the continental margin that form the AABW (Antarctic Bottom Water) are not well reproduced (Heuzé et al.,

2013). Similarly, Bernardello et al. (2014) suggests that the anthropogenic CO2 uptake in the Weddell Sea is closely linked to

the size and timing of deep-water convection. It remains to be investigated how these uncertainties contribute to the inter-model20

spread of the projected CO2 uptake in the SO shown here, especially with the next round of CMIP6, which includes models

with higher resolution

According to the analysis preformed in this study, improving the representation of amplitude and seasonal phase of

contemporary surface pCO2 in SO has the potential to reduce the uncertainty of the future ocean carbon uptake in CMIP5

models. Bias in amplitude is identified to be associated with the magnitude of primary production in the Spring–Summer25

seasons, whereas bias in the the seasonal phase is attributed by poor representation of SST seasonal cycle. Seasonally varying

surface primary production data along with relevant biogeochemical and ecosystem state variables (e.g., nutrients and oxygen)

would help constrain process parameterization in the model. In order to improve the SST simulation, improvements in

representation of physical processes across the air-sea interface and between mixed layer and ocean interior suported with

high quality observation would be needed.30

Despite a steady increase in surface pCO2 observations in the SO region over recent decades, it remains markedly

undersampled, both spatially and temporally. Presently, there are only a very few locations where the full annual cycle of

observations are available (Bakker et al., 2014). The SO region also has the largest differences in the net CO2 fluxes as estimated

from different methods involving observations and models (Landschützer et al., 2014). Recently, Resplandy et al. (2014) find

that DIC-induced small spatial-scale pCO2 structures existing in the SO are non-negligible. Such small-scale processes are35

generally missing in the coarse resolution CMIP5 models and sparse observations. In addition, the strong interannual variations

in the air-sea CO2 fluxes identified in this region (e.g., Landschützer et al., 2015; Lovenduski et al., 2015) could also contribute

to the discrepancies in the observed and model simulated pCO2 seasonality presented in this study (see also Hauck et al., 2013).

Beyond surface processes, uncertainties in the the subsurface circulation patterns could also contribute to the surface

biases simulated in the SO. Here, regions critical for biological production and carbon uptake are associated with mode and5

intermediate water formation locations (Sarmiento et al., 2004; Sallée et al., 2012). Despite that the simulated net uptake rates
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of atmospheric CO2 in the SO are mostly overestimated compared to the values derived from observations (as shown in this

study), Frölicher et al. (2015) show that the CMIP5 models underestimate the anthropogenic carbon storage in the Southern

Ocean. This indicates either a shortcoming in the simulated large scale overturning circulation or a too-strong sink of non-

anthropogenic carbon simulated here. Therefore, a better constrain of the former mechanism should be prioritized in order to10

improve the projection of long-term evolution of air-sea CO2 uptake.

New US-led initiatives that aim to enhance our understanding of the Southern Ocean processes are emerging, for

instance, the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM, http://soccom.princeton.edu). The

biogeochemical Argo floats planned to be deployed will provide novel measurements that will help tease out how the changing

physical processes influence the biogeochemistry dynamics, and vice versa. The EXport Processes in the Ocean from RemoTe15

Sensing (EXPORT, http://cce.nasa.gov/cce/ocean.htm) campaign, which studies the export and fate of ocean NPP using remote

sensing observations, will also provide better constrain for ecosystem processes parameterization in the model. In addition,

multi-models intercomparison involving observational data such as this study is useful to elucidate the complex interplay

among physical and biogeochemical processes, which ultimately would reduce uncertainties in climate projections.

5 Conclusions20

The latest generation ESMs project ocean carbon uptake with considerable uncertainty, and this uncertainty is projected to grow

twofold by the end of the 21st century under high future CO2 emissions scenario. In this study, the evaluation of the CMIP5

ESMs was focused on assessing the ability of the models to project the future CO2 fluxes between ocean and atmosphere by

looking at the correlation coefficient of each region with the global future ocean CO2 uptake.

We found that the highest inter-model correlation is in the Southern Ocean (SO) region (RSO
mean = 0.76, RSO

cum = 0.65),25

meaning that most models agree with the evolution of their CO2 uptake behaviour through the 21st century. The majority

of models simulate a steady increase in CO2 sink rate due to a weaker decrease in buffer capacity and to a relatively stable

NPP throughout the 21st century. We show that models that take up anomalously low CO2 in the SO today would project

low cumulative CO2 uptake throughout the 21st century and vice versa. This suggests that the carbon uptake in the SO can

be used to constrain future global uptake uncertainty. We highlighted that in other regions, the models simulate a decrease of30

CO2 uptake during the second half of this century but with large inter-model spread in the timing of the decreasing trend, thus

affecting the multi-model correlation in these areas.

We have identified a strong bias in the amplitude of carbon uptake simulated by the CMIP5 models for the period 2001–

2010 in the Southern Ocean, ranging from a source to the atmosphere to a sink almost three times more powerful than has

been observed (1.03± 0.09 vs. 0.27± 0.13PgCyr−1, Lenton et al., 2013). Inter-model spread in the SO carbon sink arises

from variations in the surface pCO2 seasonality, which is attributed by the bias in the simulated timing and amplitude of

primary production and SST. By analyzing the differences in the simulated pCO2 seasonalities, we classified two groups

of models according to two different behaviours. Models that simulate anomalously strong 2001–2010 CO2 uptake in SO5

(Fig. 7a, red color) reproduce the observed pCO2 seasonal cycle but its amplitude is 2.5 times stronger than the observation-
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based estimates. This is because of the strong surface DIC variations, which pushes down the pCO2 by simulating too-strong

biological production. The effect on the projected simulations is an increase of CO2 uptake due to the weaker decrease in

seawater CO2 buffering capacity. Other models that simulate anomalously low 2001–2010 CO2 uptake in SO (Fig. 7a, blue

color) simulate comparable seasonal pCO2 amplitude with that estimated from the observations but in the opposite direction.10

This is due to the bias in the SST seasonal cycle with stronger amplitude which tend to push up the pCO2 in January–March,

therefore simulating the SO as evolving towards a source of carbon for the atmosphere.

These biases in time and magnitude show the difficulty in simulating the observed marine ecosystem and the biogeochemical

processes that contribute and govern the ocean surface pCO2. Consequently, simulating the right contemporary seasonal cycles

of biological processes NPP and SST in the Southern Ocean would allow to constrain the bias in term of future oceanic carbon15

flux.

Seasonal timing and amplitude in pCO2 are shown to be critical in order to accurately simulate the present and future

CO2 uptake and therefore accurate monitoring of these biogeochemical processes in the SO is critical in order to constrain

the assessment of the contemporary and future ocean carbon sink, and subsequently the uncertainty in future climate change.

However, the Southern Ocean remains one of the most poorly sampled ocean regions with respect to biogeochemistry. The20

observational data analysed here were generated through extrapolations of the limited direct measurements, which could add an

extra uncertainty into the analysis. This emphasizes the urgent need for a sustained and comprehensive observational campaign

in this region, which is emerging as the key region to better constrain the evolution of future ocean carbon sinks.
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Figure 1. Time-series of annual ocean carbon uptake as simulated by nine ESMs for the 2001–2100 period. Thick grey lines indicates the

multi-model mean, shaded areas represent ± one standard deviation of the inter-model variations. The observation-based estimate (black

circle) is from Landschützer et al. (2014).
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Figure 2. Global annual contemporary carbon uptake rate vs. (a) global future 2090–2099 carbon uptake and (b) cumulative global carbon

uptake over 2001–2099. The straight grey lines show the best fit linear regression across all models.
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Table 1. Description of the models analyzed in this study, indicating ocean model resolutions (levels on the vertical, horizontal resolution in

degrees), the thickness of the surface layer and the marine biogeochemical components included in the ESM.

Model Ocean 1st layer Marine biogeochemical References

(level, zonal, meridional) thickness [m] components

BCC-CSM1.1(m) 40 lev, 0.3–1, 1◦ 10 MOM4–L40 Wu et al. (2013)

CanESM2 40 lev, 1.41, 0.94◦ 10 CMOC Arora et al. (2013)

CESM1–BGC 60 lev, 1.25, 0.27–0.54◦ 10 BEC Gent et al. (2011)

Lindsay et al. (2014)

GFDL–ESM2G 63 lev, 0.3–1◦ 2 TOPAZ2 Dunne et al. (2013)

HadGEM2–ES 40 lev, 0.3–1◦ 10 Diat–HadOCC Collins et al. (2011)

Palmer and Totterdell (2001)

MIROC–ESM 44 lev, 1.4, 0.5–1.7◦ 2.5 NPZD Watanabe et al. (2011)

Oschlies (2001)

MPI–ESM–LR 40 lev, 1.5◦ 10 HAMOCC5.2 Giorgetta et al. (2013)

Ilyina et al. (2013)

MRI–ESM1 51 lev, 0.5–1◦ 4 NPZD Yukimoto et al. (2012)

NorESM1–ME 53 lev, 1.125◦ 10 HAMOCC5.1 Assmann et al. (2010)

Tjiputra et al. (2013)

Table 2. Main characteristics of the marine biogeochemical components of the 9 ESMs used in this study: list of nutrients limiting the

phytoplankton growth and the number of explicitly represented phytoplankton and zooplankton groups.

Model Nutrients Phytoplankton Zooplankton

BEC 5(NO3, NH4, PO4, SiO4, Fe) 3(diatoms, nanophyto–, diazotrophs) 1

CMOC NO3 1 1

Diat–HadOCC 4(NO3, NH4, SiO4, Fe) 2(diatoms, non–diatoms) 1

HAMOCC5.1 4(NO3, PO4, SiO4, Fe) 1 1

HAMOCC5.2 3(PO4, NO3, Fe) 1 1

MOM4–L40 PO4 – –

NPZD NO3 1 1

TOPAZ2 5(NO3, NH4, PO4,SiO4, Fe) 3(diatoms, other eukaryotes, diazotrophs) 1
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Figure 3. (a) The eight regional ocean basins adopted in this study, defined according to different ocean basins and latitudinal lines of 70,

45, 15◦ S, 15, and 60◦ N, and (b) correlation coefficient between regional contemporary CO2 uptake rate with (red-bars) future uptake rate

in the 2090s and (blue-bars) cumulative carbon uptake in the 21st century. The numbers over the x-axis on panel (b) represent the area of

each region (in 108 km2 unit).

23



BCC−CSM1.1

CanESM2

CESM1−BGC

GFDL−ESM2G
HadGEM2−ES

MIROC−ESM

MPI−ESM−LR

MRI−ESM1

NorESM1−ME

R
SO

cum
=0.65

Contemporary uptake in SO [Pg C yr
−1

]

C
u
m

u
la

ti
v
e
 (

2
0
0
1
−

9
9
) 

g
lo

b
a
l 
u
p
ta

k
e
 [
P

g
 C

]

(c) Contemporary SO vs cumulative uptake

−1 −0.5 0 0.5 1 1.5
300

350

400

450

500

550

BCC−CSM1.1

CanESM2

CESM1−BGC

GFDL−ESM2G
HadGEM2−ES

MIROC−ESM
MPI−ESM−LR

MRI−ESM1

NorESM1−ME

R
SO

mean
=0.76

Contemporary uptake in SO [Pg C yr
−1

]

F
u
tu

re
 2

0
9
0
s
 g

lo
b
a
l 
u
p
ta

k
e
 [
P

g
 C

 y
r−

1
] (a) Contemporary SO vs future uptake

−1 −0.5 0 0.5 1 1.5
4

4.5

5

5.5

6

6.5

2010 2020 2030 2040 2050 2060 2070 2080 2090
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Center of 10−year window

R
c
u
m

re
g

(e) Moving corr. coeff. (10−yr window) between regional CO
2
 uptake vs cum. (2001−99) global uptake

 

 

SO mSO TPa TAt Ind NPa NAt Arc

1 1.5 2 2.5 3
300

350

400

450

500

550

BCC−CSM1.1

CanESM2

CESM1−BGC

GFDL−ESM2G

HadGEM2−ES

MIROC−ESM

MPI−ESM−LR

MRI−ESM1

NorESM1−ME

R
eSO

cum
=−0.24

Contemporary uptake excluding SO [Pg C yr
−1

]

C
u
m

u
la

ti
v
e
 (

2
0
0
1
−

9
9
) 

g
lo

b
a
l 
u
p
ta

k
e
 [
P

g
 C

]

(d) Contemporary outside SO vs cumulative uptake

1 1.5 2 2.5 3
4

4.5

5

5.5

6

6.5

BCC−CSM1.1

CanESM2

CESM1−BGC

GFDL−ESM2G

HadGEM2−ES

MIROC−ESM
MPI−ESM−LR

MRI−ESM1

NorESM1−ME

R
eSO

mean
=−0.52

Contemporary uptake excluding SO [Pg C yr
−1

]

F
u
tu

re
 2

0
9
0
s
 g

lo
b
a
l 
u
p
ta

k
e
 [
P

g
 C

 y
r−

1
] (b) Contemporary outside SO vs future uptake

Figure 4. Annual contemporary carbon uptake rate vs. global uptake rate projected in the last decade of the 21st century by CMIP5 models

in the (a) high-latitude Southern Ocean (SO) and (b) other ocean regions excluding the Southern Ocean (eSO). Annual contemporary carbon

uptake rate vs. cumulative 21st century carbon uptake projected by CMIP5 models in the (c) SO and (d) eSO. (e) Time-series of correlation

coefficient computed in a similar way as that in Fig. 3b (blue-bars) for every decade between 2001 and 2099. The straight grey lines in panels

(a–d) show the best fit linear regression across all models. Vertical shades on panels (a, c) depict observation-based estimates (Landschützer

et al., 2014).
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Figure 5. Annual contemporary carbon uptake vs. global uptake rate projected in the last decade of the 21st century by CMIP5 models. Here

the SO is defined using dynamic boundary separated by the surface water density of 26.5 kg m−3. Panels (a) and (b) show the contemporary

SO carbon uptake on the x-axes in Pg C yr−1 and mol C m−2 yr−1 units, respectively. Panel (c) illustrates the 26.5 kg m−3 density lines that

separate the MW from the TMW for the month of August 2005 as simulated by the different models (same color convention as in panels a

and b).
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Figure 6. Time-series of anomalies (relative to year 2001) of annual mean (a) carbon uptake, (c) net primary production, and (e) carbon

uptake efficiency in the Southern Ocean. Panels on the right (b, d, f) also show the same fields as the panels on the left but for ocean region

outside of SO. Thick grey lines represent the inter-model mean, with grey shadings represent ±1 standard deviation of inter-model variations.
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Figure 7. Seasonal cycle of: (a–b) Carbon flux, (c–d) NPP anomalies, and (e–f) SST anomalies, for the Southern Ocean region simulated by

CMIP5 models for the 2001–2010 (left panels) and 2090–2099 (right panels) decades. The red (blue) shadings represents the range of G1

(G2) models that simulate anomalously strong (weak) carbon uptake (see also text on Sect. 3.3). The coloured lines represent the mean of

the respective model groups, black lines represent observational estimate adopted from Landschützer et al. (2014) for CO2 uptake and SST

anomaly, and the NPP anomaly were taken from SeaWiFS data as described in Nevison et al. (2015).
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Figure 8. Contemporary (2001–2010) seasonal mean of air-sea CO2 fluxes from (first-column) observations-based estimates of Landschützer

et al. (2014), (second-column) G1 models, and (third-column) G2 models. Each row panels depict values for different seasons (JFM, AMJ,

JAS, and OND).
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Figure 9. Anomalies of decomposed pCO2 components in the Southern Ocean for the 2001–2010 (left panels) and future 2090–2099 (right

panels) periods: (a, b) overestimating models; (c, d) underestimating models. Values shown are from multi-model mean. The gray lines and

markers are estimates derived from observations according to Landschützer et al. (2014).
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Figure 10. Anomalies of non-thermal pCO2 seasonal cycle, (pCODIC+ALK
2 ) as simulated by seven ESMs for the 2001–2010 period. The

gray dashed line indicates the observation-based estimate of pCODIC+ALK
2 seasonal cycle. The numbers within the parentheses represent

the amplitude for each model as well as for the observation-based estimate.
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