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Dear Dr. Kravitz,

thank you very much for a speedy evaluation of our reply to the reviewers’ comments, and for your
suggestions.

| went again over the individual points mentioned in the reviews, as well as our replies and your
assessment of them, and | made the following modifications (in addition to those in the first
revision):

- | added maps of temperature responses obtained for the GISTEMP dataset with 250 km
smoothing to the Supplement (Fig. S5, with a mention in the Data section of the main text), so
that the readers can see the eventual differences for themselves. Please note, however, that
this dataset is not very suitable for the analysis setting we employed, as there is not enough
data in most gridpoints over our analysis period (1901-2010). This is the primary reason why we
did originally not include these results (or their discussion).

- lincluded an explicit mention of climate feedbacks as something that was not considered in our
analysis, because our regression-based methodology is not particularly suitable for their study
(at least not on its own, and for the type of data we studied). The respective mention (at page
21, lines 9-13 in the attached version with changes tracked) is therefore just brief, as the issue of
feedbacks falls outside the intended focus of the paper.

Regarding the other points of the reviewers, unaddressed directly in the revised version, | apologize
for not stating this clearly in our answer: We only made changes addressing the points we felt
needed an explicit mention/clarification in the manuscript itself (or its supplement). Otherwise, we
only provided explanation in the reply file, to demonstrate that the issue in question is not especially
critical or relevant. | understand how some particular aspects of our study can be of increased
interest to readers who specialize in certain specific problems. However, please note that the nature
of our analysis makes it relatively spread-out: Not only do we consider multiple explanatory variables
(without a preferential interest in just one of them, or a specific pair-wise interaction), but we also
deal with a substantial number of predictands (in contrast to many of the previous works employing
regression-based attribution analysis, we studied hundreds of thousands of temperature series
across the individual gridded datasets). As a result, there are simply too many ways in which the
analysis and its description could be expanded, and it is not possible to address them all.

| hope you will find the manuscript more satisfactory now.
Best regards

Jiti MikSovsky, on behalf of the authors
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Abstract

Monthly near-surface temperature anomalies fromesgvgridded datasets (GISTEMP,
Berkeley Earth, MLOST, HadCRUT4, 20th Century Régsig) were investigated and
compared with regard to the presence of comporagtriibutable to external climate forcings

(anthropogenigyreenhouse gasesolar and volcaniectivity) and to major internal climate

variability modes (El _Nifio/Southern Oscillation, North Atlantic Oscillati, Atlantic
Multidecadal Oscillation, Pacific Decadal Osciltati and variability characterized by the
Trans-Polar Index). Multiple linear regression wesed to separate components related to
individual explanatory variables in local monthigntperatures as well as in their global
means, over the 1901-2010 period. Strong correstof temperature and anthropogenic
forcing were confirmed for most of the globe, wlar@nly weaker and mostly statistically
insignificant connections to solar activity weraicated. Imprints of volcanic forcing were
found to be largely insignificant in the local teengtures, in contrast to the clear volcanic
signature in their global averagési-aAttention was also paid to the manifestations oftsho
term time shifts in the responses to the forciragsl to differences in the spatial fingerprints
detected from individual temperature datasetss khown that although the resemblance of
the response patterns is usually strong, some nagicontrasts appear. Noteworthy
differences from the other datasets were foundasipe for the 20th Century Reanalysis,
particularly for the components attributable tohaapogenicforcing -and-veleanicforeing
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over land, but also ithe response to volcanism andsome of the teleconnection patterns

related to the internal variability modes.

1 Introduction

Temporal variability within the climate system risdrom a complex interaction of diverse
processes, both exogenous and arising from intesilate dynamics. To identify and
quantify the effects of individual climate-formiragents, two complementary approaches are
typically employed (e.g. IPCC, 2013, Ch. 10): nuedr simulations based on general
circulation models (GCMs) and statistical techngu@/hile the statistical methods do not
offer the physical insight provided by the GCM-l@dsanulations, they are potentially able to
capture relations omitted or distorted within GCMsie to the need for simplified
representation of the relevant physical procesSesumber of authors have investigated the
presence of relations between climate forcings @mek series of climate variables by
statistical meansjypicaly—often involving multivariable regression analysis or teth
techniques. The resulting studies typically showst@ng link between temperature and
anthropogenic forcing (e.g. Pasini et al., 200&ri.and Rind, 2008; Schonwiese et al., 2010;
Rohde et al., 2013b; Canty et al., 2013; Chyleklgt2014b), although linedarend change
with timeis also often used to approximate the long-ternptmature evolution (e.g. Gray et
al., 2013; Foster and Rahmstorf, 2011; Zhou andgT@013). Imprint of solar activity is
usually quite weak in the near-surface temperasgges (e.g. Lockwood, 2012, and
references therein) and the spatial patterns oftaak response tend to be quite complex
(Lockwood, 2012; Gray et al., 2013; Hood et al120Xu and Powell, 2013). Major volcanic
eruptions typically manifest by temporary cooling the globally averaged temperature,
although its magnitude differs somewhat among iddi& temperature datasets as well as
between ocean and land (Canty et al., 2013) andebgraphic fingerprint of the temperature

response is far from trivial (Stenchikov et al.p80Driscoll et al., 2012; Gray et al., 2013).

Compared to the often pan-planetary reach of thereal forcings, major manifestations of
internal climate variability modes tend to be mérealized, though sometimes with ample
projection of weaker influences through teleconioest Relatively well understood is the-El
N_Nifo/Southern Oscillation (ENSO) system, dominatimg tropical Pacific, but also
affecting various aspects of weather patterns inymagions across the globe and leaving a

distinct imprint in globally averaged temperatuseveell (e.g. Trenberth et al., 2002). The

2
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effect of North Atlantic Oscillation (NAO) is promént particularly in the areas around
northern Atlantic (e.g. Hurrell et al., 2003). Nwetn Atlantic is also the primary area of
activity of Atlantic Multidecadal Oscillation (AMQ)with potential imprints noticeable in

local temperatures as well as their global meargs {eing and Zhou, 2013; Zhou and Tung,
2013; Rohde et al.,, 2013b; Muller et al., 2013; l€kyet al., 2014b; van der Werf and
Dolman, 2014 Rypdal, 201} A related (pseudo)oscillatory system manifestthe northern

Pacific in the form of Pacific Decadal OscillatigfDO: Zhang et al., 1997), although its

direct link with global temperature seems to be lponounced than AMO’s (e.g. Canty et
al., 2013). Other potentially influential varialbylimodes can be identified in the climate
system, though their exact mechanisms and effa@snat always completely known.
Selection and preparation of explanatory variabégsesenting individual climate-forming
factors is a critical part of statistical attribari analysis; more details on their choice and

specific form in our tests are provided in Sect. 2.

Of the descriptors of the climate system, tempeeatelated characteristics are arguably the
most intensely investigated. Over the recent yeadgpus research groups have developed
and gradually evolved datasets ptar-surfaceglobal gridded temperature (including
MLOST: Smith et al., 2008; GISTEMP: Hansen et20]10; HadCRUT4: Morice et al., 2012;
Berkeley Earth: Rohde et al., 2013q, which now provide more than a century of mid-to
high resolutiontemperaturadata for a substantial portion of the globe. Initold to these
temperature analyses, created primarily by intetpmi/extrapolation techniques, reanalysis
data are also used to approximate past climatpa@icular interest regarding the longer-term
variability is the 20th Century Reanalysis (20CRingpo et al., 2011), currently providing
global gridded data from mid-T%entury on. While all these datasets approxintatesame
historical evolution of the climate system and shawuch of their basic temporal variability
on pan-planetary scale (e.g. Hansen et al., 20d$teF and Rahmstorf, 2011; Compo et al.,
2013; Rohde et al., 2013b), the respective tempexdtelds do differ to some, regionally
dependent, degree. In this paper, we aim to inyestiand compare selected aspects of
spatio-temporal variability in several gridded d&tis of monthly temperature, introduced in
Sect. 2.2, with emphasis on identification of terapg&re responses attributable to climate

forcings and major modes of internal climate vahgb

Our methodology of attribution analysis is largélgsed on multiple linear regression, as

detailed in Sect. 3. Basic match of temporal valitglbetween the temperature datasets is
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quantified through linear correlations, with resushown in Sect. 4.1. Presence, magnitude
and statistical significance of components attabie to individual explanatory variables in
globally averaged temperatures are investigat&kut. 4.2, including an analysis of potential
time-delayed responses. An analysis of the geogralplesponse patterns is then carried out
in Sect. 4.3, followed by an assessment of logakidelayed responses in Sect. 4.4 and
discussion of the results in Sect. 5. Only the t&ietgomes of our analysis are presented in the
paper itself — see theeetrenic-sBpplement for additional materials, particularly fesults

derived for shorter sub-periods of the time sestagied.

2 Data
2.1 Explanatory variables

Although many of the statistical attribution stugljgursue a similar goal and share much of
their basic methodology, substantial diversity &xis the selection of the explanatory factors
employed and their specific variants. Here, we uséght predictors with proven or
reasonably suspected influence on climate on glasatontinental scale representing

al

weipal
wrface

gffects ofvarious

external forcings and climatic oscillations (Fig. 1

Among the external influences on the climate systefe of the greenhouse gases (GHGSs) is
relatively well understood (e.g. IPCC, 2013, Ch).1Due to their positive contribution to
radiative forcing, man-made GHGs are believed nesipte for much of the near-surface
temperature rise during the later stages of theeumgental period. Anthropogenic influences
to climate do also manifest through formation ofimas aerosols, including sulfates or black
carbon, or by production of tropospheric ozonehalgh the uncertainties regarding their
direct and especially indirect impacts are stibfpund (e.g. Skeie et al., 2011; IPCC, 2013,
Ch. 10). Furthermore, due to the limited lifespdrthe aerosols, theieffects amountare

highly variable in time and spacenlike the concentrations of the relatively |dingd

GHGs From the perspective of statistical analysis, dften strong temporal correlation of
GHGs and aerosol amounts is also problematic: msiance, the SCemissions (a precursor
of tropospheric sulfate aerosols) are strongly elated with GHG concentrations in some

4
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regions, making it difficult for a regression mappito distinguish between their respective
effects. For these reasons, aerosol forcings wardirectly considered here, and global £0
equivalent GHG concentration was used as the sdl@apogenic predictor, in the version

provided by Meinshausen et al. (2011jpttg://www.pik-potsdam.de/~mmalte/rcps/

interpolated onto monthly time resolutiddote that the temperature responses obtained with

this GHG-only predictor would be virtually identicéo those derived for total global

anthropogenic forcing, as-Pessible-implicationthed-choice-ardurther discussed in Sect. 5.
Global monthly series of stratospheric aerosol agptdepth provided by NASA GISS at

http://data.giss.nasa.gov/modelforce/straté®ato et al., 1993) was employed as a proxy for

volcanic forcing. The effects of variable solariaty were characterized through monthly
values of solar irradiance, based on the recontgtruby Wang et al. (2005) and obtained

from http://climexp.knmi.nl/data/itsi_wls_mon.ddxtension of the series beyond year 2008
was done by the rescaled SORCE-TIM measurements m fro
http://lasp.colorado.edu/home/sorce/data/tsi-d#&tapp et al., 2005).

In addition to the external forcings tied to exoges factors, temporal variability of the
climate system is also shaped by various intersalllations. Southern Oscillation index

(SOI), provided by CRU ahttp://www.cru.uea.ac.uk/cru/data/sgRopelewski and Jones,

1987), was used to characterize the phase of ENl&Odominant variability mode in the
tropical Pacific. North Atlantic Oscillation (NAO)as represented by its index (NAOI) by
Jones et al. (1997), defined from normalized pmesslifference between Reykjavik and

Gibraltar (CRU: http://www.cru.uea.ac.uk/cru/data/nao/A great deal of attention has

recently been devoted to the effects of Atlanticltddecadal Oscillation (AMO), a climatic
mode possibly exhibiting periodicity of about 70ay® (Schlesinger and Ramankutty, 1994)
and typically characterized by indices derived fraprth Atlantic SST (e.g. Enfield et al.,
2001; Canty et al., 2013). Presence of AMO-syndzemhcomponents in temperature series
has been demonstrated at both global (e.g. Cardl,€2013; Rohde et al., 2013b; Zhou and
Tung, 2013; Chylek et al., 2014b) and local (efidtd et al., 2001; Tung and Zhou, 2013;
Chylek et al., 2014a; MikSovsky et al.,, 2014) ssalalthough discussion still continues
regarding AMO’s exact nature and optimum way ofrgpresentation (Mann et al., 2014;
Zanchettin et al., 2014; Lewis, 2014; Ting et aD14). In this analysis, AMO’s phase has
been characterized through a linearly detrende@xintRMOI) based on the prevalent
definition by Enfield et al. (2001) and downloaded from
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http://www.esrl.noaa.gov/psd/data/timeseries/AMRdte that a non-smoothed version of the

index was used, involving both long-term and shetdem SST variability in northern
Atlantic. An AMO and ENSO-related phenomenon in tiogth Pacific area, Pacific Decadal
Oscillation (PDO — Zhang et al., 1997), is typigatharacterized through a series of the first
principal component of north Pacific SST. Here, tagiant calculated by KNMI Climate

Explorer athttp://climexp.knmi.nl/from ERSST data was employed as predictor, further

referenced as PDOI. Lastly, to explore patterndeaiperature variability in the southern
extra-tropical regions, Trans-Polar index (TPI) wa¢s used as an explanatory variable. The
respective series, calculated as normalized presditference between Hobart (Tasmania)
and Stanley (Falkland Islands), is available from RW  at
http://www.cru.uea.ac.uk/cru/data/tgdones et al., 1999) for the 1895-2006 period.oBdy

the year 2006, sea-level pressure data from the @8htury Reanalysis were used to extend

the CRU-supplied series.

Not all of the predictors here can be consideretuaily independent, from neither physical

nor statistical perspectivér Table 1, formal similarity of the series of intlual explanatory

variables is illustrated through values of Pearsorrelation coefficientr, and degree of

collinearity is also quantified by variance inftati factors for each predictor. The positive

correlation between GHG amount and solar irradiafice 0.37 for our version of the

predictors, over the 1901-2010 period) stems fromlarity of the long-term components of

these signals (lower values in the early part ef#8032010 period, higher towards the end);
their causal link over the time period studied hsranlikely though-—Fhis-especially-applies
te-Noteworthy links can also be seen RIDO, which is considered to be partly driven by
ENSO (Newman et al., 2003), resulting in anticatieh of the PDOI and SOI series
(Fooreo oo o e oo = 08370k onere o oL e s e cegp e 100 -
2010-peried. A link-relation alsomanifests existbetween PDOI and AMOI — although the

relation— connectionis weak for synchronous series € 0.01), distinct time-delayed

correlations exist (e.gZhang and Delworth, 200MVu et al., 2011)Correlation between

AMOI and solar irradiance (= 0.16) and volcanic aerosol optical deptk £0.27) may be an

indication of possible external forcing of AMO (Kaeen et al., 2014); similarity between

GHG and AMOI seriesr(= 0.22) may stem from use of linear detrendinthacalculation of
AMOI (see Canty et al., 2013, for a broader disicussof the related matters}—An

aAnticorrelation between volcanic aerosol opticaltdegnd SOI ( = -0.17) results mainly

from coincidence of some of the major volcanic ésemith the El Nifio phases of ENSO.

6
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is—unlikely-though-While the correlations within our set of predictar® mostly mild, there
are some potential implications of this sharedaklity, as discussed in Sect. 5.

2.2 Temperature datasets

Monthly temperatureseriesof near-surface temperatuoa a (semi)regular longitude-latitude

grid from four temperature analyses and one rearsalyere studied:

GISTEMP of NASA's Goddard Institute for Space Sagli available at
http://data.giss.nasa.gov/gistemidansen et al., 2010). The gridded version of this

dataset (employed here in the version with 1200skmoothing) is provided on a 2x2°
grid, since 1880Tests were also carried out with the GISTEMP_dstamploying 250

km smoothing. However, due to higher fraction ofvmlable data in the 250 km

version, and just small difference between theaetbye temperature response patterns,

the results were only included in the Supplemeitt. (55).

Temperature analysis of the Berkeley Earth groupptained from
http://berkeleyearth.org/dat@gRohde et al., 2013dy). While the dataset is primarily
created for land, a variant with coverage of oceaneas by re-interpolated HadSST3

(Kennedy et al., 20114d) is also provided. We used this combined dathsset; for
brevity, it is referred to as BERK. The data arailable in the spatial resolution of

1x1°, for years from 1850 on.

Merged Land-Ocean Surface Temperature Analysis (BTLO by NOAA, from
http://www.esrl.noaa.gov/psd/data/gridded/data.rtir®| (Smith et al., 2008). Defined
on a 5x5° grid, from 1880 on.

HadCRUT4, a combined land (CRUTEM4) and sea (Ha®&$&mperature dataset by
Climatic Research Unit (University of East Anglaa)d Hadley Centre (UK Met Office)
from http://www.cru.uea.ac.uk/cru/data/temperatijMorice et al., 2012). Defined on a
5x5° grid, from 1850 on.
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. 20th Century Reanalysis (20CR) by NOAA ESRL PSDiawmted in version V2 from
http://www.esrl.noaa.gov/psd/data/20thC_Re@@dmpo et al., 2011). For this study,

monthly means of 2m temperature in T62 Gaussiad grere used (resolution
approximately 1.75° longitude x 2° latitude). Ndi@t, unlike the above analysis-type
datasets, 20CR does not utilize temperature measmts from land-based stations and
recreates the temperature characteristics overineots from other types of data
assimilated into the model (pressure measuremenisded as boundary condition (sea
surface temperature). As a reanalysis, 20CR prevedeomplete coverage of the globe
and data for various pressure levels, in a sulyderie step (although only monthly
data_averagewere analyzed here). Assessment of the usabiliBOGR as a source of
data for study of spatiotemporal variability of fe@nature is one of the focal points of
this paper.

All four gridded temperature analysis datasets &8P, BERK, MLOST, HadCRUT4;
hereinafter also referred to as observational d&tpsare natively provided as monthly
anomalies, and were analyzed as such. For 20CR etatops—data anomalies were
constructed by subtracting mean annual cycle fer pleriod 1951-1980. In addition to
gridded temperatures, globaimperaturaneans (representing either land-only or fully globa
spatial averages) were also studied. The respegiiel monthly series were obtained from
the web pages of the individual research groupt thie exception of 20CR, for which global
average was calculated as a latitude-adjusted vezighean from the gridded data for the full
globe or for the area between 60°S and 75°N.

3 Regression analysis setup

Despite the inherently nonlinear and determinifificehaotic nature of the climate system,
the interaction of external climate forcings in f@mrature signals can often be approximated
quite well by a simple linear superposition (e.gicGama et al., 2013). Even when effects of
internal climatic oscillations are studied in thrarhe of multivariable statistical attribution
analysis, nonlinearities are generally not dominahtdetectable—atallalbeit sometimes
detectablge.g. Pasini et al., 2006; Schénwiese et al., 20MikSovsky et al., 2014). Further

considering the increased computational costs aoke rmomplicated interpretation for the

nonlinear regression techniques, only multipledmeegression (MLR) was applied here to
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separate contributions from individual predictorsybject to a calibration procedure

minimizing the sum of squared regression residuals.

Although application of MLR-based mappings is gusteaightforward in itself, potential
challenges await when estimating the statistioghiStance of the regression coefficients,
particularly due to non-Gaussianity and serial @ations in the data. For construction of the
confidence intervals in Sect. 4.2, bootstrapping wsed. Since the basic form of bootstrap
(resampling data for individual months as fully epeéndent cases) does not account for
autocorrelation structures in the data, which cartmeoignored in the monthly temperatures
(e.g., lag-1-month autocorrelations in the regmssesiduals ranged between 0.32 and 0.61
for different versions of globally averaged tempar@), moving-block bootstrap was used
(e.g. Fitzenberger, 1998).

In an effort to alleviate the high computationastsoof full bootstrap, an alternative approach
to assessment of statistical significance wasetgtored: Monte Carlo-style tests designed to
estimate thresholds of the regression coefficietagsistent with the null hypothesis of the
absence of regressor-related component(s) in tipessand. Our experiments have shown
that the effect of autocorrelation structures anchefficient thresholds is approximated quite

well by the predictor-specific expansion factoriJI(aﬁt,Dar)/(1—a|0ar))1’2

, with a, and a
representing AR(1) autoregressive parameters @ptadictor series and for the series of the
regression residuals, respectively. This factoemdsdes the one occasionally employed in
estimation of statistical significance of corredas between series with AR(1)-type
autocorrelation structure (e.g. Bretherton et 4899); its use allows for a numerically
inexpensive approximation of statistical significanprovided that the structure of the
regression residuals conforms to a AR(1) model. [8vbBuch assumption is not completely
valid for the temperature data (e.g. Foster andmigadrf, 2011), the results obtained proved
to be close to those from moving-block bootstrajph woticeable differences only appearing
in the presence of the strongest residual autdetiors. These predictor-specific inflation
factors (applied to the coefficient significanceetholds derived for predictand data free of
serial correlations) were therefore used for apipnakion of the significance of the regression

coefficients in the tests involving gridded tempera data in Sects. 4.3 and 4.4.

The analysis has been carried out over the 190D-2@tiod, chosen as a compromise
between maximizing the length of the signals stidied limited availability and reliability of

data for the earlier parts of the instrumental gukriAdditional results for the first (1901—
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1955) and second (1956—-2010) half of the targetogeare provided in theslectrenic
supplement. To facilitate comparison of the contiidtmos from individual explanatory
variables mutually and to temperature variabiliseif, outcomes of the regression analysis
are provided- presenteth the form of temperature responses to pre-salecharacteristic
variations of individual predictors, illustrated kig. 1 and specified in its caption. To limit
biases due to incompleteness of the temperatuessersome locations/datasets, only results
for predictands with less than 10% of missing valaee shown.

4 Results
4.1 Inter-dataset correlations

Ideally, all the temperature datasets should folkine same, historical, trajectory of the
climate system. In reality, differences appear agnodividual representatives of the climatic
past, due to variations in the structure of there®wata and specifics of their processing.
While we obviously cannot make a comparison to reepeembodiment of the past states of
the atmosphere, the existing temperature approxnmsatan be compared mutually, to assess
which regions/periods exhibit higher degree of mggignaling lower uncertainty due to the
dataset choice), and where stronger contrasts eméhg basic structure of these differences

is illustrated in Figs. 2 and Sih the Supplementhrough pair-wise Pearson correlations (

between monthly series of temperature anomalies &tibfferent datasets. Unsurprisingly, vast
majority of locations exhibit positive correlatignier any dataset couple, but magnitude of
this link varies substantially among different @w. Over continents, particularly good
match is indicated for Europe and (especially eastBlorth America, regions with high
density of reliable observations spanning the eniéirget period. On the other hand, in central
Africa, central South America and south-east Aiia, resemblance of temperature series is
weakened. The mismatch is also more noticeable vaméyn the first half of the analysis
period (1901-1955) is considered (Fig. S1). The632810 period then shows generally
higher correlations, though it should be noted grasence of stronger long-term trend in the
later 20th century, largely shared by all the detsasnd most locations, amplifies the values

of correlations in this sub-period.

The above specified general tendencies in regionalelation patterns also hold for the
relation between the analysis-type datasets andR4@Gttom row in Fig. 2): Relatively good
match of the temperature anomalies in Europe astteaUS contrasts with more profound

10
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differences in the tropical parts of Africa and ruaf South America. Question remains
whether the disparities detected can be attributednisrepresentation of any specific
source(s) of temperature variability — an issud thdurther investigated in the following

sections.

4.2  Forcing imprints in global mean temperature

Much of the existing research of temperature vditgland its attribution by statistical means
focuses on globally averaged data. Aside from ingithe number of signals to be analyzed
(and thus allowing for more detailed examinatioreath of them), the world-wide averaging
suppresses regional variations and allows factsssaated with global-reaching forcings to
become more reliably detectable. On the other hafigcts contributing responses of
opposite sign in different regions (such as ENSOIAD) may be obscured in pan-planetary
representation. In this section, global and gldaadl temperature signals are investigated for

the presence of the imprints of individual interaatl external forcing factors.

It has been shown on various occasions that respoims climate variables (including
temperature) are not necessarily perfectly syncéheonwith the variables representing the
climate forcings, and time-offset relations may ifest (e.g. Canty et al., 2013 and
references therein). In Fig. 3, this is illustrateéd application of MLR mappings with
individual predictors offset bt ranging between —24 and +24 months. Results fraiull
range ofAt are shown for all predictors, to illustrate thetféghat regression analysis may
indicate formal links even in the absence physycaikaningful dependencies (such as the
connections between temperature and volcanic fgréom highly negativeAt). For GHG
concentration, the lack of short-term variabiligsults in near-invariance of the temperature
response. SomaAt-related variability is indicated for solar irrad@e influence, though the
dependence seems largely governed by irregulatutitions and no distinct extremum
appears. A delayed response is clearly noticeabtee component associated with volcanic
activity — a distinct, though rather flat, maximwhanticorrelation between about 53010
months is indicated for all the analysis-type deifmsIin the case of SOI, the strongest
response occurs for time lags between approximétalyd 6 months. The effect of NAOI, on

the other hand, is generally instantaneous. Thaoree of global temperature to AMOI and

11
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PDOI also shows maximum at, or close &i, = 0. For TPI, the imprint in globakd

temperature series is weak regardless of the pgoedichift.

All four analysis-type datasets exhibit high degoésimilarity of the features in the globally
averaged series. On the other hand, some notewdrsitipctions appear for 20CR. Most
notably, the volcanism response curve is similasimape to the ones characterizing the
observed observationdata, but shifted towards positive values. FurtltgenNAO response
peaks at +1 month instead ot = 0 and weaker-than-observed connection to GHG is
indicated over land. These differences can beypasitribed to the specifics of calculation of
mean temperature ferdividual theobservational datasets, particularly variable |efedata
coverage for the observed data. However, diffespattial response patterns are also likely

responsible, as shown in Sect. 4.3.

To facilitate mutual comparability of the resulég)d also to consider that the physical links
between predictors and temperature should be the $ar all datasets, a unified set of time
shifts was employed for the tests in Sects. 4.24a8dLead time of +1 month was used with
the solar irradiance, as previously done by Leash Rmd (2008) or Canty et al. (2013),
although very similar outcomes would have beeninbthwithAt = 0, too. The time shift was
set to +2 months for SOI, same as in Canty et s&tap, and volcanic forcing was used with
At = +7 months (close to Lean and Rind’s and Cangl.&t shift of +6 months). The rest of
the predictors entered the regression mappingsoutitia time offset, due to just small
difference compared to a setup witht = 0, or absence of a distinct, physically justfie
extremum within the analyzed range of time deldys=ig. 4, the results of the analysis are
shown in the form of temperature responses to tiagacteristic variations of the predictors,

with their 99% confidence intervals generated byimg-block bootstrapThe regression fits

of individual temperature series are also visudlireFig. S4 in the Supplement.

Our analysis suggests the GHG-attributed rise obal temperature to be approximately
0.8°C over the 1901-2010 period, within the rangaally associated with anthropogenic
forcing (IPCC, 2013, Ch. 10). Over land, valuesnasin 1.05 and 1.2°C are typical in the
analysis-type data, and somewhat lower for 20CRitive temperature responses to solar
irradiance increase are indicated in the globaptatures (equivalent to roughly 0.05°C per
Wm? of solar irradiance), borderline statistically rifecant at @ = 0.01. Global land
temperatures, on the other hand, show no such wgroomponent — a behavior previously
reported by Rohde et al. (2013b) for Berkeley E&atid temperature, whereas the analysis by
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Canty et al. (2013) suggested minor temperatueereékated to irradiance increase. Results for
individual sub-periods provide an even more vancture of the irradiance-temperature

relationship (Figs. S2, S3). Small negative respsrege indicated for 1901-1955, possibly
due topartial-aliasing-of-long-term-components inhigherrelation betweeithe predictors

characterizing GHG and solar activity= 0.46), and thus greater potential for misattidou

Positive responses then appear for 1956-2010, Wieetrend in solar irradiance (as well as
its correlation to GHG concentration) is negligib¥garming effect of the increase of solar
irradiance is therefore possible in land-only terapgre averages, too, but weak and obscured
when all 110 years are analyzed. In any case, mhmf solar irradiance upon globally

averaged temperature seems rather minor, espectatipared to the GHG influence.

The response of global temperature to volcanidrigres clear, statistically significant and of
similar magnitude in all analysis-type datasetsopdof 0.36 to 0.44°C in global land

temperature is indicated for Mt. Pinatubo-sized névelightly stronger than the values
reported by Canty et al. (2013). The response ratgmvered to about 0.16 to 0.19°C when
the oceanic areas are included, close to Canty.’strasults. As already shown in Fig. 3,
20CR temperature behaves in a somewhat differesttida, with smaller, statistically

insignificant temperature response. A look at theults for individual sub-intervals reveals
that this positive bias may be stemming from tHati@ns indicated for the first half of the

20th century (which, however, contains just a vianjted set of volcanic events, with the
strongest of them — Novarupta eruption of 1912 ideextratropical and thus atypical

regarding its world-wide effects). For the 1956-Q@kriod, 20CR global volcanic response
Is more in line with the behavior of the observasibdatasets.

While our results show the well-known tendency taisa higher global temperature
anomalies during the EIl Nifio phases of ENSO (ergnBerth et al., 2002), the respective
components tested close to the threshold of statistignificance atr = 0.01. A response of
comparable magnitude was found for NAO, with puwsitilink indicated between all
temperature signals and NAOI, though, again, &erdbw levels of statistical significance in

Mmost cases.

Conforming to several previous studies concernedh wassociation between global
temperature and AMO (e.g. Rohde et al., 2013b; ZmaiTung, 2013; Chylek et al., 204
and using similar (i.e., linearly detrended) vensaf its index, our results suggest formally

strong link of detrended mean North Atlantic tengpere and its global counterpart, distinct
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for land-based temperatures as well. The quesgarains, however, of how representative

AMOI really is of internal variability in the climta system, as further discussed in Sect. 5.

The imprint of PDOI in global temperature is quitkear and, for our combination of
predictors, actually about as strong as SO’s. ¢ttukh be considered though that SOI and
PDOI series are not independent and, as predictbey, partly compete for the same
variability component in the temperature signalf©iéWincluded alone among the explanatory
variables (i.e., either SOI or PDOI, but not botthle respective responses are generally
strengthened, as is their statistical significan€ensidering that SOI and PDOI are only
partly collinear, and that their spatial responsdtegns do differ (Sect. 4.3), both were

included as formally independent predictors in @oalysis.

The final predictor considered in our setup, TRksInot project much influence upon global
temperature, though the respective component idelane statistically significant for some
of the datasets. Just as in the case of SOI, NA®DDI, the relatively weak global response
can be traced to the presence of mutually oppasitgributions from different regions, as

demonstrated in the next section.

4.3 Forcing imprints in local temperatures

Even clear and strong presence of a componentiassibaevith a particular forcing factor in
globally averaged temperature does not automatigalply its universal relevance on local
scale. Conversely, locally dominant factors maynterginalzed en—glebal-sealein _global
perspectiveHere, we present an overview of geographic patef temperature response to
external and internal forcing, for the set of eightdictors identical to that in the section 4.2.
Only results for the datasets with mostly compldé¢a coverage in the 1901-2010 period
(GISTEMP, BERK, 20CR) are shown (Fig. 5); see ¢Bepplement (FigS4S}) for the full
set of results including MLOST and HadCRUTA4.

While positive correlation between GHG concentratamd temperature is typical for most
regions of the world, the strength of the comporfennally attributed to greenhouse gases
(or, more generally, to anthropogenic forcing) garsubstantially, and insignificant links or
even anticorrelations appear in some smaller afdast prominently, the oceanic region

south of Greenland, known faemperature—decrease—during—the—20th—eenturya imegat
temperature trend since 19(H.g. IPCC 2013, Ch. 2), displays high contragh®&rest of the
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world. Relatively good match between the analygietdatasets is found in most regions.
However, notable differences between the griddesknfations and 20CR appear in a few
geographically limited locations. Aside from mildontrasts in some oceanic regions
(particularly central and eastern equatorial Pexifilistinctly negative temperature responses
appear over land in the eastern Mediterraneantaie3ryuth America and Texas. On the other
hand, warming response over northern China is stiarated in 20CR. Similar pattern of
discrepancy between the observed data and 20CRldeasly been reported and discussed by
Compo et al. (2013) in their analysis of lineanttg in the temperature series for 1901-2010,
with various potential explanations suggested. @Galye although long-term components
(whether expressed by match with anthropogenidrigroor by linear trends) in 20CR are
characterized consistently with the analysis-typatad in many regions, their

representativeness cannot be assumed universally.

The local temperature responses to solar irradiareearranged in a complex pattern,
encompassing both positive and negative links, @oimdp in a near-neutral contribution to
global land average. Statistically significant @sges are rarely indicated and influence of
solar variability therefore seems largely inconslasat local scale (Figs. 5&4bS5h.
Nonetheless, sign and magnitude of the links apfmebe similar across individual datasets,
including 20CR. From the results for the oceaneaar it is revealed that main contributions
to the borderline significant link between globalmiperature and irradiance come from
southern extratropical areas and northern Pacliie response patterns shown by Lean
(2010), Zhou and Tung (2010) or Gray et al. (20d8)differ somewhat from our results;
however, direct comparison is problematic due stimittions between time periods analyzed
as well detection methodology employed. The outsifoe the 1901-1955 and 1956-2010
sub-periods (FigS5S6 suggest some degree of stability of the resppatterns, though with
enough differences to explain the mismatch in douations to globally averaged land
temperature (Sect. 4.2). Overall, our analysis icmsf that solar activity does not leave a

strong, unambiguous imprint in lower troposphesimperature.

While the cooling effect of volcanic forcing wa®atly apparent in global mean temperature,
its local influence is less ubiquitous (Figs. SeleS5). Regions with negative response do
slightly prevail in the observational datasets, jpogitive contributions are detected in several
areas, too. Only few locations show statisticalilgndicant response of either sign. The
pattern revealed bears basic resemblance to the sireevn by Lean and Rind (2008) and
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Lean (2010), with post-eruption cooling indicated North America and warming over
northern AsiaSome differences emerge, however, emphasizingath&tsity of the forcing
response patterns to the analysis details suclpexsfis choice of the predictor(s) or time
period considered. In the 20CR, positive resporaes more numerous and stronger in
magnitude, pushing the global mean volcanism-aiieidb signal towards positive values and
statistical non-significance. This tendency is cedible especially during the first half of the
analysis period (Figs5S6, although it should be noted again that the iseddack of global-

reaching volcanic events renders the results rathegrtain for the 1901-1955 period.

The canonical pattern of temperature response iassdcwith SO/ENSO activity (e.g.
Trenberth et al., 2002; Lean and Rind, 2008; Gtagl.e 2013) also emerged in our analysis,
including the teleconnections extending beyondithgical Pacific region (Figs. 5&4dS50.
While some minor differences exist among individuktasets, the resemblance of the
respective patterns is high; some minor exceptemesfound for 20CR over land, such as
weaker projection of SOI influence over easternicafr The effect of North Atlantic
Oscillation, too, is shown very clearly for its qary area of activity encompassing much of
Eurasia and North America (Figs. 54eS5k 20CR data show a generally good match with
the gridded observations, though minor differereragrge, such as weakened teleconnections

to easternmost Asia or altered links to southemcAf

Unlike the multipolar geographical responses assediwith SO and NAO, the regression
coefficients between AMOI and local temperature@eglominantly positive worldwide, and
significant connections extend across the globgs(Ff,S41S5). This largely unidirectional
link, previously pointed out through correlationaéysis by Muller et al. (2013), results in
much stronger AMO-correlated component in globaigerature. On the other hand, it also
raises a question of what exactly the relation betwtemperatures worldwide and those in
northern Atlantic is (beyond the obvious fact tihdlantic SST is one of the components
averaged into global temperature, and thus not teielp independent). While many of the
recent studies employed the (linearly detrended)QAMdex in the role of an independent
explanatory variable, arguments have been madas®rnof different forms of the index (see
Canty et al., 2013 and the references therein)uestipning the nature of AMO itself (e.qg.
Booth et al., 2012; Mann et al., 2014). In our gsigl focused rather on formal connections
in the data studied and mutual (in)consistencyasious datasets, the issue of exact physical
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nature and stability of AMO is not central. The mmp of AMOI is similar across individual

datasets; noticeable differences appear espeonadiycentral and eastern Eurasia.

PDO'’s influence pattern shows both positive andatieg connections, strongest in the
Pacific area (e.g. Deser et al., 2010), but witmeignificant teleconnections extending to
more distant regions as well (including Africa otaBdinavia). PDO’s representation by

20CR is relatively close to that in the analysisetydata; differences appear especially over
parts of Africa (Figs. 5¢549S5(.

The relation between temperature and TPl manifestéssemi-regular pattern of alternating
positive and negative sectors over the southerar@cand nearby continents, though only in
the segments near South America and Australia @odlations test as statistically significant
(Figs. 5h,S4hS5). The 20CR-based response resembles the obsealapattern in shape,

but is generally stronger magnitude-wise.

4.4 Delayed responses in local temperatures

The homogeneously timed predictors employed in.Se8tdo provide a robust basis for an
assessment of the superposition of their effectgabally averaged temperature, but overlook
the possibility of geographically dependent delalys.reveal the characteristic patterns of
locally specific asynchronous responses to theaagtbry variables, regression analysis of
local temperature was also carried out with indraildpredictors shifted in time iyt ranging
between —24 and +24 months. Figures 6 and 7 summendre outcomes by displaying the
strongest local temperature response detectedy aldh the correspondinft. Note that the
statistical significance thresholds have been tafed to account for the fact that the
strongest response within the —24 to +24 monthgeréused. As a result, they are generally
higher (i.e., a stronger response is required tddmmed significant at the given significance
level) than in the setup with fixeflt in Sect. 4.3. Only the three datasets with leassimg
values — GISTEMP, BERK and 20CR — were analyzetisicase.

For the GHG amount, the results exhibit little s@wisy within our time window, and the
magnitude of temperature responses is virtuallytidal to theAt = 0 setup, due to the
absence of short-term variations in the predicserses. Likewise, the strongest responses to
solar forcing are quite similar to the ones for pine-set delay of 1 month (Figb5b, while

the maximum seems to be rather randomly positioaegiiably reflecting the stochastic
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components in the time series. For volcanism, evigm the variable time delay option, still
only a handful of gridpoints show significant respe and the pattern of time delays
associated with maximum-strength components doeshaov any distinct regularity.

The spatiotemporal variability of temperature regmto ENSO phase is well known (e.g.
Trenberth et al.,, 2002) and reflected in our rssak well: the occurrence of the strongest
temperature response leads SOI by a few monthiseireastern equatorial Pacific, whereas
largely concurrent variability is indicated for viesn Pacific. In the Indian Ocean, strongest
temperature response lags by a few months behinda8® delay of 6 to 8 months is

indicated around south-east Asia as well as inheont Australia. 20CR reproduces these
patterns quite well over the oceans, but noticediflerences appear for teleconnections over
land, most notably in less consistently expresgdd Ito Africa and southern part of South

America.

The strongest statistically significant temperat@sponses to NAO are instantaneous in most
areas, or delayed by 1 month (mostly over norti#gtantic). The pattern detected from the
observational datasets is reproduced quite weR4@R, with the most notable exception
again being the breakdown of transcontinental teleection over eastern Asia and
appearance of a link to southern Africa. The redsoithe temporal shift of NAO-attributed
signal in 20CR global temperature (Fig. 3) therefodoes not seem to be the
misrepresentation of timing of the local temperattgsponses. Rather, it can be traced to the
perturbed balance between the opposite-in-signoresgs from different regions (note
especially the overly negative contribution fronrthern Africa). Though these deviations are
relatively weaksmall they vary for differeniAt, enough to alter the relatively weak globally

averaged signal and bring forth a spurious delaglobal response.

There is a distinct connection between the AMO xnaed local temperature in many regions
of the world even without a time shift (Fig. 5fytithe timing of the maximum strength of
this association varies distinctly within our *24omths testing range. Concurrence is
indicated in much of northern Atlantic, delay oft@5 months in the northern part of the
Indian Ocean and adjacent land, and around 4 tedoths in a large portion of western
equatorial Pacific. On the other hand, in the eastnd northern part of the Pacific,
temperatures at —12 to —6 months show the stromagsstiation with AMOI, whereas delays
between -5 to —1 month are typical in much of Caraad northern US. Over oceans, 20CR

maintains the observation-based pattern with onhondifferences. More distinctions appear
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over land, especially in southern Asia. Similar debr is also indicated for PDO: Quite
realistic representation of the delayed responses aceans and areas adjacent to northern
Pacific by 20CR breaks down somewhat for more renfemid areas (most notably Africa),

though some of the teleconnections seem maintajoie well (Scandinavia).

Finally, in the case of TPI, the results indicabmaurrence of the oscillations or delay of 1
month for most locations with a statistically sifggant response. The pattern is reproduced
quite well by 20CR, though magnitude of the temperavariations is somewhat exaggerated

again.

5 Discussion and conclusions

The primary objective of our analysis was twofdhistly, we aimed to provide a unified
outlook into the local temperature responses aatamtiwith activity of multiple climate-
forming agents, exogenous and endogenous, and dlyetlvey combine in pan-planetary
temperature signals. While various past studiesadly dealt with a similar kind of statistical
attribution analysis, their scope was typically mméycused, phenomenon- or region-wise, but
also regarding the temperature data source. Owndeobjective therefore consisted in
assessing the robustness of the attribution asalgsults among several commonly employed
representations of monthly temperature throughbet20th and early 21st century. To this
end, four observational temperature datasets ardre@analysis were studied through linear
regression, extracting components synchronized teitiporal variability of eight predictors

representing external climate forcings and intevaaiability modes.

The basic correlation analysis in Sect. 4.1 revkdhe general geographical patterns of
temperature (mis)match among different observatiatzasets. Unsurprisingly, the best
agreement was found for regions with the best @merby measurements (most notably
Europe and eastern North America, where the Pearsoelations of monthly temperature
anomalies typically exceeded 0.9), leaving reldyiViétle room for uncertainty in the gridded
data. Regions with sparser observations, such taesiars of Africa or South America,
exhibited more disparity, provided that griddedadatere available at all for the given
location. Of even greater interest was the resemsbl®detween analysis-type datasets and the
20th Century Reanalysis (20CR): Since 20CR does dmetctly utilize the temperature
measurements over land, greater deviations froalityémay be expected, especially for the
continental areas. While the correlation analysékeed indicated somewhat loosened relation
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to the analysis-type data, the match was stilleggibod in most regions, with the poorest
agreement again found in Africa and South Ameridajor differences between the
temperature anomaly series were seldom observedooeans (the most notable exception
being the higher latitudes of the southern hemisgh&ince all the datasets (including 20CR)
employ sea surface temperature as inputs, tempesadwe tied more closely to the historical
trajectory of the climate system and eventual @stér can be largely ascribed to differences
among individual SST representations (assesseeltail thy Yasunaka and Hanawa, 2011).

While the correlation analysis pointed out the dasitterns of differences between individual
datasets, the question remains how much these féegt the outcomes of the attribution
analysis. Match among the GHG-attributed tempeeathanges was generally strong in most
locations, but certain smaller regions were hiditeg in 20CR where this trend-like
component diverged substantially from the analygi® data. These local discrepancies,
previously pointed out by Compo et al. (2013), adsmnewhat decrease magnitude of the
GHG-attributed component in the global land tempeeafor 20CR. Furthermore, when
drawing conclusions from the results presented,assential to consider the limitations of the
statistical approach to the attribution analysisrstFof all, even formally statistically
significant connections are not a proof of phyd$ycateaningful relations, as the regression
analysis only seeks formal similarities among theetseries, unable to verify causality of the
links. For the attribution of the temperature trertd GHGs, this is particularly critical.
Although the significance level is generally higit the GHG-related regression coefficients,
it would be such for any explanatory signal of $amistructure (including a plain linear
trend). While it is physically justified to assoathe increase in GHGs with warming
tendencies, there are other potential anthropogenaing factors sharing similar temporal
evolution, yet intentionally omitted in our analysiSpecifically, various man-generated
aerosols can contribute to local warming (e.g. bolearbon) or cooling (e.g. sulfate aerosols)
(e.g. Skeie et al., 2011). In many areas, the teahpoogression of aerosol-related predictors
closely mimics that of GHG concentration (for imsta, the Pearson correlation between
GHG concentration and regional $@missions is over 0.5 in most of the world ancmft
exceeds 0.9 locally, based on the,®fata by Smith et al., 2011). Our GHG-based predict
should therefore be considered an approximate @@mgplified) characterization of the
anthropogenic forcing in general, rather than efeghouse gasses alohmte also that very

similar values of temperature response would haen wbtained for a predictor representing

total global anthropogenic forcing rather than GH&ene, due to very high temporal
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correlation of the respective series (exceedin® @¥er our analysis period when using the

forcing data by Meinshausen et al., 2011) and dube fact that the responses are scaled by

the end-to-end increase in the predictor series.hdaturally, this near-invariance in the

given statistical setup should not be interprete@guivalence of the respective forcings in a

physical senseA more accurate view of the issue could perhapgdeed by an analysis

employing local-specific descriptors of anthropageactivity, but the challenges attached
(espeetally such dsigh collinearity of the anthropogenic predictdisiiting the ability of the
regression mappings to distinguish among theircefjemake such task less suitable for

approaching by purely statistical meaeneral circulation models may represent a more

suitable tool for capturing the related links, evkRaugh the associated uncertainties are still

substantial (e.q. IPCC, 2013, Ch. 9). This alsoliepgo the evaluation of other complex

aspects of the climate system dynamics, such astefbf long-term memory or climatic

feedbacks, intentionally omitted in our simplifiexhression-based analytical frame.

Of the natural forcings, the imprints of solar ity seem to be represented in quite a similar
manner by all the datasets studied, including 2003#. component attributed to variations of
solar irradiance (involving both the 11-year cyatal longer-term variability) was quite weak,
in most individual regions as well as in globallyeeaged temperature. These results are
largely consistent with previous assessments ofripacts of solar activity on temperature
(e.g. Lockwood, 2012; Gray et al., 2013). Stille tpatial patterns of solar influence exhibit
some degree of temporal stability, suggesting évan though the fingerprints detected do
largely not test as statistically significant, theye not just an artifact of stochastic

components in the temperature series.

An interesting contrast between the results fobglly averaged temperature series and for
their local counterparts was found in the casehef affects of volcanic activity. The well-
known near-surface cooling following major volcamiaptions was clear in all versions of
globally averaged observed temperature, but a mratbmplex pattern emerged from the
gridded temperature data. Post-eruption warming imdcated in several regions. There
might be dynamical reasons for such behavior (®tgnchikov et al., 2006; Driscoll et al.,
2012), but the structures detected were quite amobig; exhibiting both poor temporal
stability and low statistical significance (an urtaety partly ascribable to distinctiveness of
individual volcanic events and their relativelydfrperiods of effect within the time frame of

our analysis). Furthermore, aliasing of volcanid &NSO activity (with major late-20th
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century eruptions coinciding with ENifio phases of ENSO) also needs to be considered

when attributing the volcanic activitys well as the possibility of its influence o tAMO

phase (Knudsen et al., 2014interpretational pitfalls aside, there was argjragreement

between the observational datasets in their reptaen of the volcanism-attributed spatial
pattern. 20CR data showed tendency toward mordiymsemperature anomalies in several
regions, resulting also in a more neutral respoas®Icanism in the globally averaged 20CR
data.

The temperature variability patterns related todlmate oscillations considered (SO, NAO,
AMO, PDO, TPI) were generally captured similarly ingividual datasets. This also applies
to 20CR for the most part, though there seem tedoee break-downs in the representation of
trans-continental and trans-oceanic teleconneciionise reanalysis data, most noticeable in
the influence of NAO over eastern Asia, AMO overthern parts of Eurasia or weakened
links to SO and PDO in parts of Africa. One migpésulate that this distinction is rooted in
the specific behavior of th&CM-type-component-of-theeanalysis engine, distorting the
complex structure of atmospheric bridges propagatime teleconnections. However, an
unrealistic representation of the long-distancekdinby the 20CR cannot be blamed
automatically: Note that the differences detectedgenerally more prominent in the first half
of the analysis period, and less striking (thouth rsoticeable) during the later half-period
(Fig. S5S§. The reanalysis may thus simply struggle to r@eréhe observed patterns in
regions where the assimilable data are rare amdiwelly unreliable, just as the procedures
generating the analysis-type gridded data are Iedigith increased errors when faced with
lack of reliable inputs. Neither of these data searcan thus be consideraedtomatically
superior and increased attention to the effectiatd uncertainty is needed when investigating
climate variability in regions and periods with ited observations. Keeping these limitations
and specifics in mind, the 20th Century Reanalystems to provide a satisfactory
approximation of the past temperatures during tbin 2nd early 21st century, aticus a
suitable tool for studies concerned with validifycbmate simulations.

Potential pitfalls related to the attribution ofmgerature changes to trend-like predictors were
already discussed above, but even interpretatioth@fcomponents associated with faster
variable explanatory factors needs to be done wdthtion. Some of the internal climate
oscillatory modes are interconnected, and thepeaetsve indices partly collinear. Variability

assigned to a certain predictor does therefore@ed to originate from the respective forcing
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factor alone — for instance, the relationship betw8O/ENSO and PDO implies that effects
of the variability modes in the Pacific area canbetentirely separated, on neither physical
nor statistical level. The issue of interdependpradictors is not limited to pair-wise
relationships: It has been shown that various tdiiya modes in the climate system are
intertwined in quite complex networks, with nonialv time-delayed relations among
oscillations in different regions (e.g. Wyatt et &012). Intricacy of such structures becomes
even more apparent when generalized links areestudinrestricted to just the conventional
variability modes (e.g. Hlinka et al., 2013, 2014,

Caution is also needed when interpreting the ougsoof the tests of statistical significance.
The AR(1) model of residual autocorrelations, asstilere when assessing significance of
predictors’ connections to the gridded temperatupesvides basic approximation of the
short-term persistence. Often, such approach seaffisient, especially over land where the
residual autocorrelations generally rapidly apphoaero. In other cases (particularly for
tropical oceans and global averages encompassinganmc areas), longer-term
autocorrelations of various shapes appear in tegluals. Their presence is indicative of
unaccounted-for components in the data, long-terremary and/or presence of
inhomogeneities, potentially infesting temperatamalyses and reanalyses alike (e.g. Cowtan
and Way, 2014; Ferguson and Villarini, 2014). TatHar assess the validity of our
significance tests, bootstrap-based estimates atisttal significance for the gridded
temperature data were also implemented, usingiablassized moving block, reflecting the
magnitude of residual autocorrelation (Politis altiite, 2004; Bravo and Godfrey, 2012).
Little difference in the regression outcomes wamtbcompared to the other test designs in
this paper. Artifacts of annual cycle were als@oftound in the residuals, traceable (at least
in part) to non-stationary representation of thasseal variations (Foster and Rahmstorf,
2011). A treatment by inclusion of components appnating the 12-month periodicity
among the predictors was attempted, but resultedoirmajor changes to the regression
coefficients or their significance.

Another important aspect shaping the outcomes efréigression mappings is the choice of
the explanatory variables. Most of the predictgopli@d here exist in alternative variants,
differing in their definition or method of (re)cangction. A sizable discussion could be
devoted to the specifics of each of them. Whiledicknot study this issue in such a depth,

partial experiments were carried out to assessdégree of variability of the analysis
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outcomes if alternative predictors were used. Fisbustness of the imprints of volcanic
forcing was assessed, with GISS aerosol opticathdépato et al., 1993) substituted with
Crowley and Unterman’s (2013) data. The resultitinge to the global temperature
response and the corresponding spatial fingerppirt¢ed to be minor, generally smaller than
uncertainties associated with the regression aefiis themselves. Use of hemisphere-
specific volcanic aerosol amounts instead of tlgbobal representation also induced just
minor changes to the respective response patterns.

Of the multiple definitions of the indices charatimg the climatic oscillations studied, we
prioritized the forms not directly involving tempéuare itself, to avoid explicit contribution of
the temperature signal to the explanatory variallbs was not a problem for NAO and TPI,
as their descriptors are derived from the baricrattaristics. In the case of ENSO, the
pressure-based SOI was preferred over the SST-INI®&D indices or multivariate ENSO
index. On the other hand, the usual forms of AM@d DOI are calculated from areal SSTs,
and thus likely interrelated with the temperatuignals. For PDOI, which exhibits
comparatively weaker correlation with globally eaged temperatures (at least partly due to
the fact that PDOI is, by its definition, detrendey global sea-surface temperature), this
issue seems less serious. However, it is still hvanile to see how much the outcomes
change from employing another version of the inddge of the PDO index from JISAO
(http://research.jisao.washington.edu/pdo/PDO.[ptestulted inshghtly—generally weaker

PDO imprint in global temperature (though dtligelywithin the confidence intervals shown
in Fig. 4),and but nonetheless—almost-unechangedvery sirspatial response pattern (with

the relatively strongest distinction being somewhkabnger negative link over northern
China). In the case of AMO, the issue of predistglection and interpretation of its effects is
more critical. Our AMO index of choice (linearlytdended, as per the prevalent definition by
Enfield et al., 2001) seems to be formally assediatith rather strong component in global
temperature, as well as in local temperatures rowa regions across the globe. While this
may indeed suggest existence of trans-planetascdrehections involving AMO-related

variability, there is a danger in overly formalistinterpretation of the patterns detected.
Firstly, several definitions of AMO index exist, bodying different views of the

phenomenon (see, e.g., Canty et al.,, 2013). Usa dffferently defined AMOI affects

magnitude of the temperature response detectedp@edtially also strength of components
tied to other predictors, including the volcanicity or the long-term trends (Canty et al.,
2013; van der Werf and Dolman, 2014). Some of eststwere therefore repeated for AMOI
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series based on detrending the north Atlantic SE§ldbal anthropogenic forcing, proposed
by Canty et al. (2013) to limit the aliasing of lapogenic long-term temperature trend and
AMOI. Little impact on the outcomes of the attrilaut analysis resulted from such change.
Greater differences would likely arise from appiica of AMOI detrended by mean sea
surface temperature (Trenberth and Shea, 2008pbalgnean temperature (van Oldenborgh
et al., 2009), although it has been argued thdt suethod of detrending removes part of the
target signal (Canty et al., 2013). Secondly, gsoaiations revealed do not directly provide a
conclusion to the still disputed question of thesence and stability of AMO as natural
oscillatory phenomenon. The AMOI-related patternsven exhibited relatively strong
resemblance between the first and second half efatmalysis period, especially over the
oceanic areas. This suggests a fair degree oflistalfi the relations between north Atlantic
SST and local temperature in more distant aredsjdms not confirm stationarity of AMO as
such. It should also be considered that the 55-Hgemy subperiods do encompass less than
one cycle of the approximately 70-year-long supdos®in cycle of AMO, and that the
relations detected are in large part due to symshation of shorter-term variability in AMOI
and temperature. Finally, attribution of temperatcomponents to AMOI may also be partly
spurious due to aliasing with explanatory factamstted in our analysis setup. In particular,
changes in amounts of anthropogenic aerosols hese fuggested as a cause for temperature
variations in the northern Atlantic (Booth et &012), though their responsibility for the bulk
of multidecadal variability has been consequenigpuated (Zhang et al., 2013possible

forcing of AMO by combined natural forcings (voléamand solar) has also been shown

(Knudsen et al., 2014), while Ting et al. (2014ycested AMO to be a product of natural

multidecadal variability and anthropogenic forciAdtogether, the question of AMO'’s nature

and degree of its influence, both global and loeahains still open.

Finally, it should be accentuated once again tmatissue of attribution of climate variability
cannot be completely resolved by statistical apgroalone. Statistical solutions to this
multifaceted problenthereforeneed to be considered alongside the GCM-based aiions,
conceptually more universal than purely statistiegproaches, yet still only partially
successful in completely reproducing the obsereatuies of the climate system (IPCC 2013,
Ch. 9). Our results here hope to contribute to reutefforts in this field: By showing the
character and variability of temperature componém®ally attributable to various forcings

across several datasets, their robustness (orti&ckof) was illustrated, providing a picture
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of the respective fingerprints, as well as suppgaitlelines for the use of the respective data

in validationef-therelated-aspeetd the climate models.
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Solar  Volc. sol NAOI AMOI  PDOI TPI
GHG 0.37 0.10 -0.07 -0.08 0.22 0.07 0.06
Solar i 0.01 -0.01 0.02 0.16 0.05 -0.01
Volc. -0.02 i -0.17 0.08 -0.27 0.15 -0.01
sol -0.01 -0.12 i -0.01 0.00 -0.37 -0.02
NAOI 0.02 0.06 0.00 i -0.15 -0.04 -0.04
AMOI 0.16 -0.30 -0.07 -0.15 i 0.01 0.00
PDOI 0.05 0.19 -0.39 -0.04 0.01 i 0.00
TPI -0.01 0.00 0.00 -0.04 0.00 0.00 i
VIF 1.18 1.19 1.20 1.04 1.22 1.22 1.00
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fggTable 1. Pearson correlation coefficient betwseres of individual predictors (Fig. 1) in

the 1901-2010 period. The upper-right segment @itlatrix contains values for the original

concurrent series, the lower-left segment valueshfeir time-shifted versions (as specified in

Fig. 4's caption). The bottom-most row shows valofethe variance inflation factor (VIF) for

individual time-shifted predictors, calculated ak1R?), where R? is the coefficient of

determination obtained from regression of the giegplanatory variable on the rest of the

predictors. See Table S1 in the Supplement foretations over the sub-periods 1901-1955
and 1956-2010.
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Figure 1. Time series of the explanatory varial@egployed in the attribution analysis. Bars
to the right of individual panels illustrate theegselected characteristic variations of the
predictors, used for calculation of the temperattggponses: increase of g€quivalent
GHG concentration between 1901 and 2010 (+141 pprojease of solar irradiance by 1
Wm? Mt. Pinatubo-sized volcanic eruption (aerosolicatdepth +0.15); increase of SOlI,
NAOI, AMOI, PDOI and TPI by four times the standattdviation of the respective time

series. Thicker, darker lines represent 13-monthingoaverage of the series.
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Figure 2. Pair-wise Pearson correlation coeffidgebetween local monthly temperature
anomaly series from different datasets for the 2010 period. See Fig. S1 in thiectronic
supplement for correlations during the 1901-1955 Hpteb—2010 sub-periods.
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Figure 3. Temperature responses (°C) to charatteviriations of the explanatory variables
(specified in Fig. 1), obtained by multiple line@gression carried out with one predictor
shifted in time byAt, while keeping the others At = O.
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Figure 4. Regression-estimated responses (°Cobfagl(blue) or global land (green) monthly
temperature anomalies to pre-selected charactenstiiations of individual explanatory
variables (specified in Fig. 1). Time shift of +lonth (predictor leading temperature) was
applied for solar irradiance, +7 months for volcaaérosol amount, +2 months for SOI. The
boxes illustrate the 99% confidence intervals, wWaked by moving-block bootstrap (12-
month block size). The 20CR-based results are sHomthe series averaged over the 60°S to
75°N area. Obtained for the 1901-2010 period; sgs. 52 and S3 in thelectrenic
supplement for results over the 1901-1955 and 19B83-2sub-periodsFig. S4 for

visualization of individual temperature series &émeir regression-based fits..
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Figure 5. Geographic patterns of regression-estichabntributions to local temperature (°C)
from pre-selected characteristic changes of thdaespory variables (specified in Fig. 1).
Time shift of +1 month (predictor leading temperajuwas applied for solar irradiance, +7
months for volcanic aerosol amount, +2 months fOi.SAreas with response statistically
significant at the 99% level are highlighted bydmatg. See FigS4- S5for results including
the MLOST and HadCRUT4 datasets and FE§- S6for results over the 1901-1955 and
1956-2010 sub-periods.
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Figure 6. Geographic distribution of the prediadifiset timeAt for which the strongest local
temperature response was detected, within the *8dthmrange. Positive values dft
correspond to setups with predictor leading tentpega only grid points with response
statistically significant at the 99% level are simoBee Fig. 7 for the corresponding values of

the temperature response.
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Figure 7. Geographic distribution of the strongestperature response (°C) to individual
explanatory variables within the 24 month rangethe# temporal offset of the predictor.
Areas with the response statistically significartha 99% level are highlighted by hatching.
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