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Abstract

Monthly near-surface temperature anomalies fromersdvgridded datasets (GISTEMP,
Berkeley Earth, MLOST, HadCRUT4, 20th Century Rdgsia) were investigated and
compared with regard to the presence of comporatributable to external climate forcings
(associated with anthropogenic greenhouse gasesglhas solar and volcanic activity) and
to major internal climate variability modes (El MiSouthern Oscillation, North Atlantic
Oscillation, Atlantic Multidecadal Oscillation, FAc Decadal Oscillation and variability
characterized by the Trans-Polar Index). Multigleedr regression was used to separate
components related to individual explanatory vdesabn local monthly temperatures as well
as in their global means, over the 1901-2010 peftbng correlations of temperature and
anthropogenic forcing were confirmed for most & globe, whereas only weaker and mostly
statistically insignificant connections to solartiaity were indicated. Imprints of volcanic
forcing were found to be largely insignificant etlocal temperatures, in contrast to the clear
volcanic signature in their global averages. Aitenwas also paid to the manifestations of
short-term time shifts in the responses to theifigs; and to differences in the spatial
fingerprints detected from individual temperaturatagets: It is shown that although the
resemblance of the response patterns is usualbngstrsome regional contrasts appear.
Noteworthy differences from the other datasets wieund especially for the 20th Century

Reanalysis, particularly for the components attable to anthropogenic forcing over land,
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but also in the response to volcanism and in soinieecteleconnection patterns related to the

internal climate variability modes.

1 Introduction

Temporal variability within the climate system riéssrom a complex interaction of diverse
processes, both exogenous and arising from intesiimlate dynamics. To identify and
guantify the effects of individual climate-formiragents, two complementary approaches are
typically employed (e.g. IPCC, 2013, Ch. 10): nuicedr simulations based on general
circulation models (GCMs) and statistical techngjué/hile the statistical methods do not
offer the physical insight provided by the GCM-ldsenulations, they are potentially able to
capture relations omitted or distorted within GCMse to the need for simplified
representation of the relevant physical procesSesumber of authors have investigated the
presence of relations between climate forcings ame series of climate variables by
statistical means, often involving multivariableyression analysis or related techniques. The
resulting studies typically show a strong link beén temperature and anthropogenic forcing
(e.g. Pasini et al., 2006; Lean and Rind, 2008p8aiese et al., 2010; Rohde et al., 2013b;
Canty et al., 2013; Chylek et al., 2014b), altholigbar change with time is also often used
to approximate the long-term temperature evolugeg. Foster and Rahmstorf, 2011; Gray et
al., 2013; Zhou and Tung, 2013). Imprint of solativaty is usually quite weak in the near-
surface temperature series (e.g. Lockwood, 2014, raferences therein) and the spatial
patterns of eventual response tend to be quite leonfpockwood, 2012; Gray et al., 2013;
Hood et al.,, 2013; Xu and Powell, 2013). Major aic eruptions typically manifest by
temporary cooling in the globally averaged tempegt although its magnitude differs
somewhat among individual temperature datasetedsiw/between ocean and land (Canty et
al., 2013) and the geographic fingerprint of thengerature response is far from trivial
(Stenchikov et al., 2006; Driscoll et al., 2012a%et al., 2013).

Compared to the often pan-planetary reach of therexl forcings, major manifestations of
internal climate variability modes tend to be mdoealized, though sometimes with ample
projection of weaker influences through teleconioest Relatively well understood is the El
Nifo/Southern Oscillation (ENSO) system, dominatimgropical Pacific, but also affecting

various aspects of weather patterns in many regaensss the globe and leaving a distinct
imprint in globally averaged temperature as wel(drenberth et al., 2002). The effect of
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North Atlantic Oscillation (NAO) is prominent pagtilarly in the areas around northern
Atlantic (e.g. Hurrell et al., 2003). Northern Attac is also the primary area of activity of
Atlantic Multidecadal Oscillation (AMO), with potéal imprints noticeable in local
temperatures as well as their global means (e.ag &imd Zhou, 2013; Zhou and Tung, 2013;
Rohde et al., 2013b; Muller et al., 2013; Chylekakt 2014b; van der Werf and Dolman,
2014; Rypdal, 2015). A related (pseudo)oscillattystem manifests in the northern Pacific in
the form of Pacific Decadal Oscillation (PDO: Zhageigal., 1997), although its direct link
with global temperature seems to be less pronouticad AMO’s (e.g. Canty et al., 2013).
Other potentially influential variability modes cée identified in the climate system, though
their exact mechanisms and effects are not alwaymptetely known. Selection and
preparation of explanatory variables representmgjvidual climate-forming factors is a
critical part of statistical attribution analysmpre details on their choice and specific form in
our tests are provided in Sect. 2.1.

Of the descriptors of the climate system, tempeeatelated characteristics are arguably the
most intensely investigated. Over the recent yeagpus research groups have developed
and gradually evolved datasets of near-surface afjlgpidded temperature (including
MLOST: Smith et al., 2008; GISTEMP: Hansen et20]10; HadCRUT4: Morice et al., 2012;
Berkeley Earth: Rohde et al., 2013a, b), which mpyavide more than a century of mid-to-
high resolution data for a substantial portion led globe. In addition to these temperature
analyses, created primarily by interpolation/extlapon techniques, reanalysis data are also
used to approximate past climate. Of particulagredt regarding the longer-term variability
is the 20th Century Reanalysis (20CR: Compo et 2611), currently providing global
gridded data from mid-19th century on. While aledskh datasets approximate the same
historical evolution of the climate system and shanuch of their basic temporal variability
on pan-planetary scale (e.g. Hansen et al., 20d§teF and Rahmstorf, 2011; Compo et al.,
2013; Rohde et al., 2013b), the respective tempexdtelds do differ to some, regionally
dependent, degree. In this paper, we aim to irnyatstiand compare selected aspects of
spatio-temporal variability in several gridded dats of monthly temperature, introduced in
Sect. 2.2, with emphasis on identification of terapgre responses attributable to climate
forcings and major modes of internal climate vatigb

Our methodology of attribution analysis is largélgsed on multiple linear regression, as
detailed in Sect. 3. Basic match of temporal valitglbetween the temperature datasets is
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qguantified through linear correlations, with resudthown in Sect. 4.1. Presence, magnitude
and statistical significance of components attablé to individual explanatory variables in
globally averaged temperatures are investigat&kat. 4.2, including an analysis of potential
time-delayed responses. An analysis of the geogralptesponse patterns is then carried out
in Sect. 4.3, followed by an assessment of locqaktdelayed responses in Sect. 4.4 and
discussion of the results in Sect. 5. Only the &etcomes of our analysis are presented in the
paper itself — additional materials are providedh& Supplement, particularly results derived
for shorter sub-periods of the time series studied.

2 Data
2.1 Explanatory variables

Although many of the statistical attribution stugljgursue a similar goal and share much of
their basic methodology, substantial diversity &xia the selection of the explanatory factors
employed and their specific variants. Here, we us@ght predictors with proven or
reasonably suspected influence on climate on globabntinental scale, representing effects
of various external forcings and climatic oscittais (Fig. 1).

Among the external influences on the climate systefe of the greenhouse gases (GHGS) is
relatively well understood (e.g. IPCC, 2013, Ch).1Due to their positive contribution to
radiative forcing, man-made GHGs are believed nesite for much of the near-surface
global temperature rise during the later stageshefinstrumental period. Anthropogenic
influences to climate do also manifest through fation of various aerosols, including
sulfates or black carbon, or by production of trgiteric ozone, although the uncertainties
regarding their direct and especially indirect icsaare still profound (e.g. Skeie et al., 2011;
IPCC, 2013, Ch. 10). Furthermore, due to the lichlieespan of the aerosols, their amounts
are highly variable in time and space, unlike tbacentrations of the relatively long-lived
GHGs. From the perspective of statistical analythis, often strong temporal correlation of
the amounts of GHGs and aerosols is also problemaiaking it difficult for a regression
mapping to distinguish between their respectiveatdf. For these reasons, anthropogenic
aerosol forcings were not directly considered heaad global C@equivalent GHG
concentration was used as the sole anthropogeedigbor, in the version provided by

Meinshausen et al. (2011ht{p://www.pik-potsdam.de/~mmalte/rcps/interpolated onto

monthly time resolution. Note that the temperati@gponses obtained with this GHG-only
4
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predictor would be virtually identical to those @ed for total global anthropogenic forcing,
as further discussed in Sect. 5.

Global monthly series of stratospheric aerosolaaptdepth provided by NASA GISS at
http://data.giss.nasa.gov/modelforce/straté®ato et al., 1993) was employed as a proxy for

volcanic forcing. The effects of variable solariaty were characterized through monthly
values of solar irradiance, based on the recortgtruby Wang et al. (2005) and obtained

from http://climexp.knmi.nl/data/itsi_wls_mon.ddExtension of the series beyond year 2008

was done by the rescaled SORCE-TIM measurements m fro
http://lasp.colorado.edu/home/sorce/data/tsi-d#epp et al., 2005).

In addition to the external forcings tied to exoges factors, temporal variability of the
climate system is also shaped by various intersalllations. Southern Oscillation index
(SOI), provided by CRU ahttp://www.cru.uea.ac.uk/cru/data/sgiRopelewski and Jones,

1987), was used to characterize the phase of ENI&Odominant variability mode in the
tropical Pacific. North Atlantic Oscillation (NAO)as represented by its index (NAOI) by
Jones et al. (1997), defined from normalized pmesslifference between Reykjavik and
Gibraltar (CRU: http://www.cru.uea.ac.uk/cru/data/nao/\ great deal of attention has

recently been devoted to the effects of AtlanticltMacadal Oscillation (AMO), a climatic
mode possibly exhibiting periodicity of about 70ay® (Schlesinger and Ramankutty, 1994)
and typically characterized by indices derived fraarth Atlantic SST (e.g. Enfield et al.,
2001; Canty et al., 2013). Presence of AMO-synclzethcomponents in temperature series
has been demonstrated at both global (e.g. Cardl,€2013; Rohde et al., 2013b; Zhou and
Tung, 2013; Chylek et al., 2014b; Rypdal, 2015) adl (e.g. Enfield et al., 2001; Tung and
Zhou, 2013; Chylek et al., 2014a; MikSovsky et aD14) scales, although discussion still
continues regarding AMO’s exact nature and optinwewy of its representation (Mann et al.,
2014; Zanchettin et al., 2014; Lewis, 2014; Knudseal., 2014; Ting et al., 2014). In this
analysis, AMO'’s phase has been characterized threutinearly detrended index (AMOI)
based on the prevalent definition by Enfield et &001) and downloaded from
http://www.esrl.noaa.gov/psd/data/timeseries/ AMR@te that a non-smoothed version of the

index was used, involving both long-term and shetdem SST variability in northern
Atlantic. An AMO and ENSO-related phenomenon in tleeth Pacific area, Pacific Decadal
Oscillation (PDO — Zhang et al., 1997), is typigatharacterized through a series of the first
principal component of north Pacific SST. Here, #lagiant calculated by KNMI Climate
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Explorer athttp://climexp.knmi.nl/from ERSST data was employed as predictor, further

referenced as PDOI. Lastly, to explore patterndeofperature variability in the southern
extra-tropical regions, Trans-Polar index (TPI) \aés used as an explanatory variable. The
respective series, calculated as normalized presdiffierence between Hobart (Tasmania)
and Stanley (Falkland Islands), is available from RWC  at
http://www.cru.uea.ac.uk/cru/data/t§dones et al., 1999) for the 1895-2006 period.oBdy

the year 2006, sea-level pressure data from the @8ntury Reanalysis were used to extend
the CRU-supplied series.

Not all of the predictors here can be consideretuaily independent, from neither physical
nor statistical perspectivin Table 1, formal similarity of the series of imaiual explanatory
variables is illustrated through values of Pearsorrelation coefficientr, and degree of
collinearity is also quantified by variance inftati factor for each predictor. The positive
correlation between GHG amount and solar irradiafice 0.37 for our version of the
predictors, over the 1901-2010 period) stems fromlarity of the long-term components of
these signals (lower values in the early part ef#80%:2010 period, higher towards the end);
their causal link over the time period studied heranlikely thoughNoteworthy links can
also be seen for PDO, which is considered to bdypdriven by ENSO (Newman et al.,
2003), resulting in anticorrelation of the PDOI a®8@I seriesr(= -0.37). A relation also
exists between PDOI and AMOI — although the conaads weak for synchronous serigs (
= 0.01), distinct time-delayed correlations exisig( Zhang and Delworth, 2007; Wu et al.,
2011). Correlation between AMOI and solar irrad&fic= 0.16) and volcanic aerosol optical
depth ¢ =-0.27) may be an indication of possible externatifg of AMO (Knudsen et al.,
2014); similarity between GHG and AMOI serigs< 0.22) may stem from use of linear
detrending in the calculation of AMOI (see Cantyakt 2013, for a broader discussion of the
related matters). Anticorrelation between volcaamcosol optical depth and SO1<£ -0.17)
results mainly from coincidence of some of the magicanic events with the El Niflo phases
of ENSO. While the correlations within our set oégictors are mostly mild, there are some
potential implications of this shared variabiliag discussed in Sect. 5.



w

© 00 N oo o1 b

10
11

12
13
14
15
16
17

18
19
20

21
22
23
24

25
26
27
28
29
30
31

2.2 Temperature datasets

Monthly series of near-surface temperature on mifsegular longitude-latitude grid from

four temperature analyses and one reanalysis viugled:

GISTEMP of NASA's Goddard Institute for Space Sagli available at

http://data.giss.nasa.gov/gistemgHansen et al., 2010). The dataset provides

temperatures since 1880; it was employed hereanvéision on a 2° x 2° grid, with
1200 km smoothing, using ERSSTv3b as the soursea@fsurface temperatures. Tests
were also carried out with the version employin@® ®sn smoothing; however, due to
substantially more limited data coverage, and sistall differences between the
resulting temperature response patterns, the oetedar the 250 km variant are only
provided as an additional material in the Supplaniéigy. S5).

Temperature analysis of the Berkeley Earth groupptained from
http://berkeleyearth.org/dat@gRohde et al., 2013a, b). While the dataset isaniiy

created for land, a variant with coverage of oceaneas by re-interpolated HadSST3
(Kennedy et al., 2011a, b) is also provided. Wedu$gs combined dataset here; for
brevity, it is referred to as BERK. The data araible in the spatial resolution of 1° x
1°, for years from 1850 on.

Merged Land-Ocean Surface Temperature Analysis (BTCO by NOAA, from
http://www.esrl.noaa.gov/psd/data/gridded/data. sl (Smith et al., 2008). Defined

on a 5° x 5° grid, from 1880 on.

HadCRUT4, a combined land (CRUTEM4) and sea (Ha®}$&mperature dataset by
Climatic Research Unit (University of East Angla)d Hadley Centre (UK Met Office)

from http://www.cru.uea.ac.uk/cru/data/temperatMorice et al., 2012). Defined on a
5° x 5° grid, from 1850 on.

20th Century Reanalysis (20CR) by NOAA ESRL PSDiamied in version V2 from
http://www.esrl.noaa.gov/psd/data/20thC_Ref@@dmpo et al., 2011). For this study,

monthly means of 2m temperature in T62 Gaussiad grere used (resolution
approximately 1.75° longitude x 2° latitude). Nobat, unlike the above analysis-type
datasets, 20CR does not utilize temperature measuits from land-based stations and
recreates the temperature characteristics overineon$ from other types of data
assimilated into the model (pressure measuremenisded as boundary condition (sea
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surface temperature). As a reanalysis, 20CR prevadeomplete coverage of the globe
and data for various pressure levels, in a suly-darle step (although only monthly

averages were analyzed here). Assessment of thditysaf 20CR as a source of data
for study of spatiotemporal variability of tempenad is one of the focal points of this

paper.

All four gridded temperature analysis datasets &8P, BERK, MLOST, HadCRUT4;
hereinafter also referred to as observational eé&thsare natively provided as monthly
anomalies, and were analyzed as such. For 20CRetatopes, anomalies were constructed
by subtracting mean annual cycle for the period 139980. In addition to gridded
temperatures, global temperature means (repregeaitimer land-only or fully global spatial
averages) were also studied. The respective giobathly series were obtained from the web
pages of the individual research groups, with tteeption of 20CR, for which global average
was calculated as a latitude-adjusted weighted rfream the gridded data for the full globe
or for the area between 60°S and 75°N (i.e. exalpdhe poleward-most regions with the

most incomplete temperature coverage by the obsenehdatasets).

3 Regression analysis setup

Despite the inherently nonlinear and determinidiiicehaotic nature of the climate system,
the interaction of external climate forcings in f@rature signals can often be approximated
quite well by a simple linear superposition (e.gio§ama et al., 2013). Even when effects of
internal climatic oscillations are studied in tharhe of multivariable statistical attribution
analysis, nonlinearities are generally not dominalteit sometimes detectable (e.g. Pasini et
al., 2006; Schonwiese et al., 2010; MikSovsky et2dl14). Further considering the increased
computational costs and more complicated interpogtafor the nonlinear regression
techniques, only multiple linear regression (MLRasaapplied here to separate contributions
from individual predictors, subject to a calibratiprocedure minimizing the sum of squared

regression residuals.

Although application of MLR-based mappings is gusteaightforward in itself, potential

challenges await when estimating the statistiogtiicance of the regression coefficients,

particularly due to non-Gaussianity and serial €ations in the data. For construction of the

confidence intervals in Sect. 4.2, bootstrapping weed. Since the basic form of bootstrap

(resampling data for individual months as fully epeéndent cases) does not account for
8
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autocorrelation structures in the data, which cafmoignored in the monthly temperatures

(e.g., lag-1-month autocorrelations in the regressesiduals ranged between 0.32 and 0.61
for different versions of globally averaged tempera), moving-block bootstrap was used

(e.g. Fitzenberger, 1998).

In an effort to alleviate the high computationastsoof full bootstrap, an alternative approach
to assessment of statistical significance wasatpiored: Monte Carlo-style tests designed to
estimate thresholds of the regression coefficiecagsistent with the null hypothesis of the

absence of regressor-related component(s) in tpessand. Our experiments have shown
that the effect of autocorrelation structures andbefficient thresholds is approximated quite

well by the predictor-specific expansion factord +§pa,)/(1-asa))"?

, with a, and a,
representing AR(1) autoregressive parameters @ptadictor series and for the series of the
regression residuals, respectively. This factoemddes the one occasionally employed in
estimation of statistical significance of corredas between series with AR(1)-type
autocorrelation structure (e.g. Bretherton et 4999); its use allows for a numerically
inexpensive approximation of statistical significanprovided that the structure of the
regression residuals conforms to a AR(1) model. [§vbuch assumption is not completely
valid for the temperature data (e.g. Foster andrgédrf, 2011), the results obtained proved
to be close to those from moving-block bootstraph woticeable differences only appearing
in the presence of the strongest residual autdetiors. These predictor-specific inflation
factors (applied to the coefficient significanceedholds derived for predictand data free of
serial correlations) were therefore used for apipnakon of the significance of the regression
coefficients in the tests involving gridded tempera data in Sects. 4.3 and 4.4.

The analysis has been carried out over the 190D-2@tiod, chosen as a compromise
between maximizing the length of the signals stii@died limited availability and reliability of
data for the earlier parts of the instrumental geeriAdditional results for the first (1901—
1955) and second (1956-2010) half of the targab@eare provided in the Supplement. To
facilitate comparison of the contributions from ividual explanatory variables mutually and
to temperature variability itself, outcomes of tlkgression analysis are presented in the form
of temperature responses to pre-selected chasdatevariations of individual predictors,
illustrated in Fig. 1 and specified in its captidm limit biases due to incompleteness of the
temperature series in some locations/datasets,reslyts for predictands with less than 10%

of missing values are shown.
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4 Results
4.1 Inter-dataset correlations

Ideally, all the temperature datasets should folline same, historical, trajectory of the
climate system. In reality, differences appear agnodividual representatives of the climatic
past, due to variations in the structure of thers®wata and specifics of their processing.
While we obviously cannot make a comparison to réepe embodiment of the past states of
the atmosphere, the existing temperature approkingtan be compared mutually, to assess
which regions/periods exhibit higher degree of mggignaling lower uncertainty due to the
dataset choice), and where stronger contrasts emé&hg basic structure of these differences
is illustrated in Figs. 2 and S1 (in the Supplemémtough pair-wise Pearson correlations (
between monthly series of temperature anomalies &tifferent datasets. Unsurprisingly, vast
majority of locations exhibit positive correlatignfer any dataset couple, but magnitude of
this link varies substantially among different . Over continents, particularly good
match is indicated for Europe and (especially eaktBlorth America, regions with high
density of reliable observations spanning the ertirget period. On the other hand, in central
Africa, central South America and south-east Atia, resemblance of temperature series is
weakened. The mismatch is also more noticeable vamiy the first half of the analysis
period (1901-1955) is considered (Fig. S1). The632510 period then shows generally
higher correlations, though it should be noted gnasence of stronger long-term trend in the
later 20th century, largely shared by all the datsind most locations, amplifies the values
of correlations in this sub-period.

The above specified general tendencies in regicoalelation patterns also hold for the
relation between the analysis-type datasets andRZ0Gttom row in Fig. 2): Relatively good
match of the temperature anomalies in Europe astkeaUS contrasts with more profound
differences in the tropical parts of Africa and muaf South America. Question remains
whether the disparities detected can be attributednisrepresentation of any specific
source(s) of temperature variability — an issud thdurther investigated in the following

sections.

4.2 Forcing imprints in global mean temperature

10
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Much of the existing research of temperature vdigland its attribution by statistical means
focuses on globally averaged data. Aside from ingithe number of signals to be analyzed
(and thus allowing for more detailed examinatioreath of them), the world-wide averaging
suppresses regional variations and allows factsseaated with global-reaching forcings to
become more reliably detectable. On the other hafficts contributing responses of
opposite sign in different regions (such as ENS@QIADO) may be obscured in pan-planetary
representation. In this section, global and gld&adl temperature signals are investigated for
the presence of the imprints of individual interaadl external forcing factors.

It has been shown on various occasions that respoims climate variables (including
temperature) are not necessarily perfectly synabednwith the variables representing the
climate forcings, and time-offset relations may ifest (e.g. Canty et al., 2013 and
references therein). In Fig. 3, this is illustrated application of MLR mappings with
individual predictors offset b&t ranging between —24 and +24 months. Results freniull
range ofAt are shown for all predictors, to illustrate thetféhat regression analysis may
indicate formal links even in the absence physycaileaningful dependencies (such as the
connections between temperature and volcanic fgréam highly negativeAt). For GHG
concentration, the lack of short-term variabiligsults in near-invariance of the temperature
response. SomaAt-related variability is indicated for solar irrad@e influence, though the
dependence seems largely governed by irregulatuitions and no distinct extremum
appears. A delayed response is clearly noticeablee component associated with volcanic
activity — a distinct, though rather flat, maximwh anticorrelation between about 5 to 10
months is indicated for all the analysis-type detsisin the case of SOI, the strongest
response occurs for time lags between approximétalyd 6 months. The effect of NAOI, on
the other hand, is generally instantaneous. Theoree of global temperature to AMOI and
PDOI also shows maximum at, or close&b= 0. For TPI, the imprint in global temperature

series is weak regardless of the predictor’s shift.

All four analysis-type datasets exhibit high degoésimilarity of the features in the globally
averaged series. On the other hand, some notewdistinctions appear for 20CR. Most
notably, the volcanism response curve is similaishape to the ones characterizing the
observational data, but shifted towards positivieies Furthermore, NAO response peaks at
+1 month instead oAt = 0 and weaker-than-observed connection to GHi@diEated over

land. These differences can be partly ascribedhto dpecifics of calculation of mean

11
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temperature for the observational datasets, pétlgwariable level of data coverage for the
observed data. However, different spatial respqaéerns are also likely responsible, as

shown in Sect. 4.3.

To facilitate mutual comparability of the resulgs)d also to consider that the physical links
between predictors and temperature should be the $ar all datasets, a unified set of time
shifts was employed for the tests in Sects. 4.24a8dLead time of +1 month was used with
the solar irradiance, as previously done by Leath Rmd (2008) or Canty et al. (2013),
although very similar outcomes would have beeninbthwithAt = 0, too. The time shift was
set to +2 months for SOI, same as in Canty et s&tap, and volcanic forcing was used with
At = +7 months (close to Lean and Rind’s and Cantl.& shift of +6 months). The rest of
the predictors entered the regression mappingsoutitla time offset, due to just small
difference compared to a setup witht = 0, or absence of a distinct, physically justifie
extremum within the analyzed range of time deldwys-ig. 4, the results of the analysis are
shown in the form of temperature responses to hlaeacteristic variations of the predictors,
with their 99% confidence intervals generated byimg-block bootstrap. The regression fits
of individual temperature series are also visudlireFig. S4 in the Supplement.

Our analysis suggests the GHG-attributed rise abal temperature to be approximately
0.8°C over the 1901-2010 period, within the rangeally associated with anthropogenic
forcing (IPCC, 2013, Ch. 10). Over land, valuesaestn 1.05 and 1.2°C are typical in the
analysis-type data, and somewhat lower for 20CRitive temperature responses to solar
irradiance increase are indicated in the globaptsatures (equivalent to roughly 0.05°C per
Wm? of solar irradiance), borderline statistically rificant at = 0.01. Global land
temperatures, on the other hand, show no such wgroumponent — a behavior previously
reported by Rohde et al. (2013b) for Berkeley Etatid temperature, whereas the analysis by
Canty et al. (2013) suggested minor temperatueerekted to irradiance increase. Results for
individual sub-periods provide an even more vagécture of the irradiance-temperature
relationship (Figs. S2, S3). Small negative respsrere indicated for 1901-1955, possibly
due to higher correlation between the predictoeratterizing GHG and solar activity €
0.46), and thus greater potential for misattributiBositive responses then appear for 1956—
2010, when the trend in solar irradiance (as welits correlation to GHG concentration) is
negligible. Warming effect of the increase of safaadiance is therefore possible in land-
only temperature averages, too, but weak and obdonhen all 110 years are analyzed. In
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any case, imprint of solar irradiance upon globalgraged temperature seems rather minor,

especially compared to the GHG influence.

The response of global temperature to volcanicrigrés clear, statistically significant and of
similar magnitude in all analysis-type datasetopdiof 0.36 to 0.44°C in global land

temperature is indicated for Mt. Pinatubo-sized ngveslightly stronger than the values
reported by Canty et al. (2013). The response rafpavered to about 0.16 to 0.19°C when
the oceanic areas are included, close to Canty.’strasults. As already shown in Fig. 3,
20CR temperature behaves in a somewhat differestida, with smaller, statistically

insignificant temperature response. A look at tbsults for individual sub-intervals reveals
that this positive bias may be stemming from tHetiens indicated for the first half of the

20th century (which, however, contains just a vianjted set of volcanic events, with the

strongest of them — Novarupta eruption of 1912 #dextratropical and thus atypical

regarding its world-wide effects). For the 1956-@@kriod, 20CR global volcanic response
is more in line with the behavior of the observasibdatasets.

While our results show the well-known tendency tmsa higher global temperature
anomalies during the EIl Nifio phases of ENSO (ergnfderth et al., 2002), the respective
components tested close to the threshold of statigtignificance atr = 0.01. A response of
comparable magnitude was found for NAO, with pesitilink indicated between all
temperature signals and NAOI, though, again, dterabw levels of statistical significance in

most cases.

Conforming to several previous studies concernedh wassociation between global
temperature and AMO (e.g. Rohde et al., 2013b; ZmuTung, 2013; Chylek et al., 2014b)
and using similar (i.e., linearly detrended) vensaf its index, our results suggest formally
strong link of detrended mean North Atlantic tengpere and its global counterpart, distinct
for land-based temperatures as well. The quesgamins, however, of how representative
AMOI really is of internal variability in the climta system, as further discussed in Sect. 5.

The imprint of PDOI in global temperature is qutiar and, for our combination of
predictors, actually about as strong as SO’s. ¢ukh be considered though that SOI and
PDOI series are not independent and, as predicthey, partly compete for the same
variability component in the temperature signalf©iéwincluded alone among the explanatory
variables (i.e., either SOl or PDOI, but not botti)e respective responses are generally
strengthened, as is their statistical significan€ensidering that SOI and PDOI are only
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partly collinear and that their temperature respgetterns do differ in many regions (Sect.
4.3), both were included as formally independestmtors in our analysis.

The final predictor considered in our setup, TRBesInot project much influence upon global
temperature, though the respective component deblore statistically significant for some

of the datasets. Just as in the case of SOI, NA®IDOI, the relatively weak global response
can be traced to the presence of mutually oppasitéributions from different regions, as

demonstrated in the next section.

4.3 Forcing imprints in local temperatures

Even clear and strong presence of a componentiagstaevith a particular forcing factor in
globally averaged temperature does not automatidaaibly its universal relevance on local
scale. Conversely, locally dominant factors mayragginal in global perspective. Here, we
present an overview of geographic patterns of teatpee response to external and internal
forcing, for the set of eight predictors identitalthat in the section 4.2. Only results for the
datasets with mostly complete data coverage inl8@®l—-2010 period (GISTEMP, BERK,
20CR) are shown (Fig. 5); see the Supplement &%g.for the full set of results including
MLOST and HadCRUTA4.

While positive correlation between GHG concentratéand temperature is typical for most
regions of the world, the strength of the comporfenmally attributed to greenhouse gases
(or, more generally, to anthropogenic forcing) ®arsubstantially, and insignificant links or
even anticorrelations appear in some smaller afdast prominently, the oceanic region
south of Greenland, known for a negative tempeestiiegnd since 1901 (e.g. IPCC 2013, Ch.
2), displays high contrast to the rest of the womelatively good match between the
analysis-type datasets is found in most regionsvé¥er, notable differences between the
gridded observations and 20CR appear in a few g@bgrally limited locations. Aside from
mild contrasts in some oceanic regions (particyladntral and eastern equatorial Pacific),
distinctly negative temperature responses appear land in the eastern Mediterranean,
central South America and Texas. On the other haadning response over northern China
is overestimated in 20CR. Similar pattern of diparecy between the observed data and
20CR has already been reported and discussed bypdetnal. (2013) in their analysis of
linear trends in the temperature series for 19016820vith various potential explanations
suggested. Generally, although long-term componémtether expressed by match with
14
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anthropogenic forcing, or by linear trends) in 20@R characterized consistently with the
analysis-type data in many regions, their repregémeiness cannot be assumed universally.

The local temperature responses to solar irradiareearranged in a complex pattern,
encompassing both positive and negative links, @oimdp in a near-neutral contribution to

global land average. Statistically significant @sges are rarely indicated and influence of
solar variability therefore seems largely inconslasat local scale (Figs. 5b, S5b).

Nonetheless, sign and magnitude of the links apfmele similar across individual datasets,
including 20CR. From the results for the ocean&aar it is revealed that main contributions
to the borderline significant link between globaimperature and irradiance come from
southern extratropical areas and northern Pacifie response patterns shown by Lean
(2010), Zhou and Tung (2010) or Gray et al. (20d8)differ somewhat from our results;

however, direct comparison is problematic due sbistions between time periods analyzed
as well detection methodology employed. The outcsofoe the 1901-1955 and 1956—-2010
sub-periods (Fig. S6) suggest some degree of kyabilthe response patterns, though with
enough differences to explain the mismatch in doumtions to globally averaged land

temperature (Sect. 4.2). Overall, our analysis icmsf that solar activity does not leave a

strong, unambiguous imprint in lower tropospheeimperature.

While the cooling effect of volcanic forcing wa®aftly apparent in global mean temperature,
its local influence is less ubiquitous (Figs. 5&cH Regions with negative response do
slightly prevail in the observational datasets, fositive contributions are detected in several
areas, too. Only few locations show statisticallyngicant response of either sign. The
pattern revealed bears basic resemblance to the sihmevn by Lean and Rind (2008) and
Lean (2010), with post-eruption cooling indicated North America and warming over
northern AsiaSome differences emerge, however, emphasizingath&its/ity of the forcing
response patterns to the analysis details suclpexdfis choice of the predictor(s) or time
period considered. In the 20CR, positive resporees more numerous and stronger in
magnitude, pushing the global mean volcanism-attieth signal towards positive values and
statistical non-significance. This tendency is cedble especially during the first half of the
analysis period (Fig. S6), although it should béedoagain that the relative lack of global-
reaching volcanic events renders the results rathezrtain for the 1901-1955 period.

The canonical pattern of temperature response @assdcwith SO/ENSO activity (e.qg.
Trenberth et al., 2002; Lean and Rind, 2008; Gtagl.e 2013) also emerged in our analysis,
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including the teleconnections extending beyondttheical Pacific region (Figs. 5d, S5d).
While some minor differences exist among individatasets, the resemblance of the
respective patterns is high; some minor exceptamesfound for 20CR over land, such as
weaker projection of SOI influence over easternio&fr The effect of North Atlantic
Oscillation, too, is shown very clearly for its mary area of activity encompassing much of
Eurasia and North America (Figs. 5e, S5e). 20CR davw a generally good match with the
gridded observations, though minor differences gmesuch as weakened teleconnections to
easternmost Asia or altered links to southern Afric

Unlike the multipolar geographical responses assediwith SO and NAO, the regression
coefficients between AMOI and local temperature@ezlominantly positive worldwide, and
significant connections extend across the globgs(Fbf, S5f). This largely unidirectional
link, previously pointed out through correlationaérsis by Muller et al. (2013), results in
much stronger AMO-correlated component in globatgerature. On the other hand, it also
raises a question of what exactly the relation betwtemperatures worldwide and those in
northern Atlantic is (beyond the obvious fact thdlantic SST is one of the components
averaged into global temperature, and thus not tielp independent). While many of the
recent studies employed the (linearly detrended)QAMdex in the role of an independent
explanatory variable, arguments have been madaes®mnof different forms of the index (see
Canty et al., 2013 and the references therein)uestipning the nature of AMO itself (e.g.
Booth et al., 2012; Mann et al., 2014). In our gsigl focused rather on formal connections
in the data studied and mutual (in)consistencyasious datasets, the issue of exact physical
nature and stability of AMO is not central. The nnp of AMOI is similar across individual

datasets; noticeable differences appear espeoislycentral and eastern Eurasia.

PDO’s influence pattern shows both positive andatigg connections, strongest in the

Pacific area (e.g. Deser et al., 2010), but withheignificant teleconnections extending to

more distant regions as well (including Africa ocaBdinavia). PDO’s representation by

20CR s relatively close to that in the analysigeydata; differences appear especially over
parts of Africa (Figs. 5g, S5g).

The relation between temperature and TPl manifeséssemi-regular pattern of alternating
positive and negative sectors over the southerar@gcand nearby continents, though only in

the segments near South America and Australia eodiations test as statistically significant
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(Figs. 5h, S5h). The 20CR-based response resethigledservational pattern in shape, but is

generally stronger magnitude-wise.

4.4 Delayed responses in local temperatures

The homogeneously timed predictors employed in.Se8tdo provide a robust basis for an
assessment of the superposition of their effectgabally averaged temperature, but overlook
the possibility of geographically dependent delays.reveal the characteristic patterns of
locally specific asynchronous responses to theagmgtbry variables, regression analysis of
local temperature was also carried out with indradpredictors shifted in time @\t ranging
between —24 and +24 months. Figures 6 and 7 sumentre outcomes by displaying the
strongest local temperature response detectedy alih the correspondinft. Note that the
statistical significance thresholds have been datied to account for the fact that the
strongest response within the —24 to +24 monthga@used. As a result, they are generally
higher (i.e., a stronger response is required tddeemed significant at the given significance
level) than in the setup with fixeft in Sect. 4.3. Only the three datasets with leassing
values — GISTEMP, BERK and 20CR — were analyzdfigcase.

For the GHG amount, the results exhibit little sy within our time window, and the
magnitude of temperature responses is virtuallytidal to theAt = O setup, due to the
absence of short-term variations in the predicserges. Likewise, the strongest responses to
solar forcing are quite similar to the ones for pine-set delay of 1 month (Fig. 5b), while the
maximum seems to be rather randomly positioneduadnly reflecting the stochastic
components in the time series. For volcanism, ewvigm the variable time delay option, still
only a handful of gridpoints show significant reape and the pattern of time delays
associated with maximum-strength components doeshwav any distinct regularity.

The spatiotemporal variability of temperature resg@to ENSO phase is well known (e.g.
Trenberth et al.,, 2002) and reflected in our raesak well: the occurrence of the strongest
temperature response leads SOI by a few monthseireastern equatorial Pacific, whereas
largely concurrent variability is indicated for vwesn Pacific. In the Indian Ocean, strongest
temperature response lags by a few months behinda8® delay of 6 to 8 months is

indicated around south-east Asia as well as inheont Australia. 20CR reproduces these

patterns quite well over the oceans, but noticediflerences appear for teleconnections over
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land, most notably in less consistently expressdd lto Africa and southern part of South

America.

The strongest statistically significant temperat@sponses to NAO are instantaneous in most
areas, or delayed by 1 month (mostly over nortiAgfantic). The pattern detected from the
observational datasets is reproduced quite we2GER, with the most notable exception
again being the breakdown of transcontinental ¢eleection over eastern Asia and
appearance of a link to southern Africa. The redeoithe temporal shift of NAO-attributed
signal in 20CR global temperature (Fig. 3) therefodoes not seem to be the
misrepresentation of timing of the local temperatrgsponses. Rather, it can be traced to the
perturbed balance between the opposite-in-signorsgs from different regions (note
especially the overly negative contribution fromthern Africa). Though these deviations are
relatively small, they vary for differenht, enough to alter the relatively weak globally

averaged signal and bring forth a spurious delagtdbal response.

There is a distinct connection between the AMO xnded local temperature in many regions
of the world even without a time shift (Fig. 5ftbthe timing of the maximum strength of
this association varies distinctly within our *24omths testing range. Concurrence is
indicated in much of northern Atlantic, delay ot®5 months in the northern part of the
Indian Ocean and adjacent land, and around 4 tendths in a large portion of western
equatorial Pacific. On the other hand, in the easend northern part of the Pacific,
temperatures at —12 to —6 months show the stromgestiation with AMOI, whereas delays
between -5 to —1 month are typical in much of Caraad northern US. Over oceans, 20CR
maintains the observation-based pattern with onhondifferences. More distinctions appear
over land, especially in southern Asia. Similar debr is also indicated for PDO: Quite
realistic representation of the delayed responses oceans and areas adjacent to northern
Pacific by 20CR breaks down somewhat for more rentend areas (most notably Africa),

though some of the teleconnections seem maintajoite well (Scandinavia).

Finally, in the case of TPI, the results indicabeaurrence of the oscillations or delay of 1
month for most locations with a statistically sigpant response. The pattern is reproduced
quite well by 20CR, though magnitude of the tempervariations is somewhat exaggerated
again.
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5 Discussion and conclusions

The primary objective of our analysis was twofdkistly, we aimed to provide a unified
outlook into the local temperature responses aasamtiwith activity of multiple climate-
forming agents, exogenous and endogenous, and dlyethey combine in pan-planetary
temperature signals. While various past studiesadly dealt with a similar kind of statistical
attribution analysis, their scope was typically emfscused, phenomenon- or region-wise, but
also regarding the temperature data source. Owndeobjective therefore consisted in
assessing the robustness of the attribution asalgsults among several commonly employed
representations of monthly temperature throughbet20th and early 21st century. To this
end, four observational temperature datasets andr@analysis were studied through linear
regression, extracting components synchronized teitfiporal variability of eight predictors
representing external climate forcings and intewaaiability modes.

The basic correlation analysis in Sect. 4.1 revkdle general geographical patterns of
temperature (mis)match among different observati@@asets. Unsurprisingly, the best
agreement was found for regions with the best @gerby measurements (most notably
Europe and eastern North America, where the Pearsoelations of monthly temperature
anomalies typically exceeded 0.9), leaving reldyiVigtle room for uncertainty in the gridded
data. Regions with sparser observations, such tasiors of Africa or South America,
exhibited more disparity, provided that gridded adatere available at all for the given
location. Of even greater interest was the resemsbl&detween analysis-type datasets and the
20th Century Reanalysis (20CR): Since 20CR does diefctly utilize the temperature
measurements over land, greater deviations froalityemay be expected, especially for the
continental areas. While the correlation analyséieed indicated somewhat loosened relation
to the analysis-type data, the match was stilleggibod in most regions, with the poorest
agreement again found in Africa and South Ameribajor differences between the
temperature anomaly series were seldom observedomeans (the most notable exception
being the higher latitudes of the southern hemisgh&ince all the datasets (including 20CR)
employ sea surface temperature as inputs, tempesate tied more closely to the historical
trajectory of the climate system and eventual @ster can be largely ascribed to differences
among individual SST representations (assesseeétail hy Yasunaka and Hanawa, 2011).

While the correlation analysis pointed out the basitterns of differences between individual
datasets, the guestion remains how much these féarst ghe outcomes of the attribution
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analysis. Match among the GHG-attributed tempeeathanges was generally strong in most
locations, but certain smaller regions were hiditegl in 20CR where this trend-like
component diverged substantially from the analijyg® data. These local discrepancies,
previously pointed out by Compo et al. (2013), ademmewhat decrease magnitude of the
GHG-attributed component in the global land tempeea for 20CR. Furthermore, when
drawing conclusions from the results presented,assential to consider the limitations of the
statistical approach to the attribution analysigstFof all, even formally statistically
significant connections are not a proof of phydjcateaningful relations, as the regression
analysis only seeks formal similarities among theetseries, unable to verify causality of the
links. For the attribution of the temperature trerntd GHGs, this is particularly critical.
Although the significance level is generally higir the GHG-related regression coefficients,
it would be such for any explanatory signal of $amistructure (including a plain linear
trend). While it is physically justified to assoiathe increase in GHGs with warming
tendencies, there are other potential anthropogenang factors sharing similar temporal
evolution, yet intentionally omitted in our analysiSpecifically, various man-generated
aerosols can contribute to local warming (e.g. loleerbon) or cooling (e.g. sulfate aerosols)
(e.g. Skeie et al., 2011). In many areas, the teahpoogression of aerosol-related predictors
closely mimics that of GHG concentration (for imste, the Pearson correlation between
GHG concentration and regional S@&missions is over 0.5 in most of the world ancmoft
exceeds 0.9 locally, based on the,S$fata by Smith et al., 2011). Our GHG-based predict
should therefore be considered an approximate @mgplified) characterization of the
anthropogenic forcing in general, rather than @egihouse gasses alone. Note also that very
similar values of temperature response would haen lobtained for a predictor representing
total global anthropogenic forcing rather than GH&sne, due to very high temporal
correlation of the respective series (exceedin® @er our analysis period when using the
forcing data by Meinshausen et al., 2011) and dukd fact that the responses are scaled by
the end-to-end increase in the predictor serieg.hdaturally, this near-invariance in the
given statistical setup should not be interprete@guivalence of the respective forcings in a
physical sense. A more accurate view of the issuddcperhaps be gained by an analysis
employing local-specific descriptors of anthropageactivity, but the challenges attached
(such as high collinearity of the anthropogeniadm®®rs, limiting the ability of the regression
mappings to distinguish among their effects) makehgask less suitable for approaching by
purely statistical means. General circulation medahy represent a more suitable tool for
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capturing the related links, even though the assediuncertainties are still substantial (e.g.
IPCC, 2013, Ch. 9). This also applies to the evanaof other complex aspects of the
climate system dynamics, such as effects of long-tenemory or climatic feedbacks,
intentionally omitted in our simplified regressibased analytical frame.

Of the natural forcings, the imprints of solar wityi seem to be represented in quite a similar
manner by all the datasets studied, including 200. component attributed to variations of
solar irradiance (involving both the 11-year cyatel longer-term variability) was quite weak,
in most individual regions as well as in globallyesaged temperature. These results are
largely consistent with previous assessments ofrtipacts of solar activity on temperature
(e.g. Lockwood, 2012; Gray et al., 2013). Stilk patial patterns of solar influence exhibit
some degree of temporal stability, suggesting &van though the fingerprints detected do
largely not test as statistically significant, theye not just an artifact of stochastic

components in the temperature series.

An interesting contrast between the results fobglly averaged temperature series and for
their local counterparts was found in the casehefédffects of volcanic activity. The well-
known near-surface cooling following major volcaeiuptions was clear in all versions of
globally averaged observed temperature, but a matbmplex pattern emerged from the
gridded temperature data. Post-eruption warming wdiated in several regions. There
might be dynamical reasons for such behavior (®tgnchikov et al., 2006; Driscoll et al.,
2012), but the structures detected were quite amolig; exhibiting both poor temporal
stability and low statistical significance (an urtaeety partly ascribable to distinctiveness of
individual volcanic events and their relativelydirperiods of effect within the time frame of
our analysis). Furthermore, aliasing of volcanid &NSO activity (with major late-20th
century eruptions coinciding with El Nifio phase€£dfSO) also needs to be considered when
attributing the volcanic activity, as well as thespibility of its influence on the AMO phase
(Knudsen et al., 2014). Interpretational pitfalisde, there was a strong agreement between
the observational datasets in their representatfaie volcanism-attributed spatial pattern.
20CR data showed tendency toward more positive-@uogition temperature anomalies in
several regions, resulting also in a more neutespbonse to volcanism in the globally
averaged 20CR data (largely due to the anomalosgonse of 20CR-based global land

temperature during the first half of our analyssiqd).
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The temperature variability patterns related todimate oscillations considered (SO, NAO,
AMO, PDO, TPI) were generally captured similarly ingividual datasets. This also applies
to 20CR for the most part, though there seem tsoloee break-downs in the representation of
trans-continental and trans-oceanic teleconnectiomise reanalysis data, most noticeable in
the influence of NAO over eastern Asia, AMO overthern parts of Eurasia or weakened
links to SO and PDO in parts of Africa. One mighesulate that this distinction is rooted in
the specific behavior of the reanalysis engingpdisig the complex mechanisms propagating
the teleconnections. However, an unrealistic reprigion of the long-distance links by the
20CR cannot be blamed automatically: Note thatdifferences detected are generally more
prominent in the first half of the analysis peri@hd less striking (though still noticeable)
during the later half-period (Fig. S6). The reasaymay thus simply struggle to recreate the
observed patterns in regions where the assimilddle are rare and relatively unreliable, just
as the procedures generating the analysis-typdagtidata are burdened with increased errors
when faced with lack of reliable inputs. Neithertbése data sources can thus be considered
consistently superior and increased attention éceffects of data uncertainty is needed when
investigating climate variability in regions andripés with sparse observations. Keeping
these limitations and specifics in mind, the 20tnry Reanalysis seems to provide a
satisfactory approximation of the past temperatui@sng the 20th and early 21st century,

and thus a suitable tool for studies concerned vatiity of climate simulations.

Potential pitfalls related to the attribution ofrigerature changes to trend-like predictors were
already discussed above, but even interpretatioth@fcomponents associated with faster
variable explanatory factors needs to be done wadtlition. Some of the internal climate
oscillatory modes are interconnected, and thepeaesve indices partly collinear. Variability
assigned to a certain predictor does thereforee@ed to originate from the respective forcing
factor alone — for instance, the relationship betw8O/ENSO and PDO implies that effects
of the variability modes in the Pacific area canbetentirely separated, on neither physical
nor statistical level. The issue of interdependprgdictors is not limited to pair-wise
relationships: It has been shown that various fétia modes in the climate system are
intertwined in quite complex networks, with noniailv time-delayed relations among
oscillations in different regions (e.g. Wyatt et 2012). Intricacy of such structures becomes
even more apparent when generalized links areestudnrestricted to just the conventional
variability modes (e.g. Hlinka et al., 2013, 2014,
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Caution is also needed when interpreting the ouésoai the tests of statistical significance.
The AR(1) model of residual autocorrelations, asstilhere when assessing significance of
predictors’ connections to the gridded temperaiupgevides basic approximation of the
short-term persistence. Often, such approach seeaffisient, especially over land where the
residual autocorrelations generally rapidly apphoaero. In other cases (particularly for
tropical oceans and global averages encompassinganmc areas), longer-term
autocorrelations of various shapes appear in th&luals. Their presence is indicative of
unaccounted-for components in the data, long-terremany and/or presence of
inhomogeneities, potentially infesting temperatamalyses and reanalyses alike (e.g. Cowtan
and Way, 2014; Ferguson and Villarini, 2014). TatHar assess the validity of our
significance tests, bootstrap-based estimates afistital significance for the gridded
temperature data were also implemented, usingiablassized moving block, reflecting the
magnitude of residual autocorrelation (Politis altlite, 2004; Bravo and Godfrey, 2012).
Little difference in the regression outcomes wastbcompared to the other test designs in
this paper. Artifacts of annual cycle were als@®offound in the residuals, traceable (at least
in part) to non-stationary representation of thasseal variations (Foster and Rahmstorf,
2011). A treatment by inclusion of components appnating the 12-month periodicity
among the predictors was attempted, but resultedoimmajor changes to the regression
coefficients or their significance.

Another important aspect shaping the outcomes efréigression mappings is the choice of
the explanatory variables. Most of the predictqopli@d here exist in alternative variants,
differing in their definition or method of (re)cdnsction. A sizable discussion could be
devoted to the specifics of each of them. Whiledicknot study this issue in such a depth,
partial experiments were carried out to assessddgwree of variability of the analysis

outcomes if alternative predictors were used. Fisbustness of the imprints of volcanic
forcing was assessed, with GISS aerosol opticathdépato et al., 1993) substituted with

Crowley and Unterman’s (2013) data. The resultifinge to the global temperature
response and the corresponding spatial fingerpprraged to be minor, generally smaller than
uncertainties associated with the regression aeffis themselves. Use of hemisphere-
specific volcanic aerosol amounts instead of tlggabal representation also induced just

minor changes to the respective response patterns.
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Of the multiple definitions of the indices charaa@mg the climatic oscillations studied, we
prioritized the forms not directly involving temgeure itself, to avoid explicit contribution of
the temperature signal to the explanatory variadles was not a problem for NAO and TPI,
as their descriptors are derived from the baricrattaristics. In the case of ENSO, the
pressure-based SOI was preferred over the SST-d&@ indices or multivariate ENSO
index. On the other hand, the usual forms of AM@d DOI are calculated from areal SSTSs,
and thus likely interrelated with the temperatuignals. For PDOI, which exhibits
comparatively weaker correlation with globally eaged temperatures (at least partly due to
the fact that PDOI is, by its definition, detrendey global sea-surface temperature), this
issue seems less serious. However, it is still kwanile to see how much the outcomes
change from employing another version of the inddge of the PDO index from JISAO
(http://research.jisao.washington.edu/pdo/PDO.[atessulted in generally weaker PDO

imprint in global temperature (though still largetythin the confidence intervals shown in
Fig. 4), but nonetheless very similar spatial resgopattern (with the relatively strongest
distinction being somewhat stronger negative limkranorthern China). In the case of AMO,
the issue of predictor selection and interpretatbrits effects is more critical. Our AMO
index of choice (linearly detrended, as per thevglent definition by Enfield et al., 2001)
seems to be formally associated with rather st@omgponent in global temperature, as well
as in local temperatures in various regions actiesglobe. While this may indeed suggest
existence of trans-planetary teleconnections inagiVAMO-related variability, there is a
danger in overly formalistic interpretation of tpatterns detected. Firstly, several definitions
of AMO index exist, embodying different views oftlphenomenon (see, e.g., Canty et al.,
2013). Use of a differently defined AMOI affects gn#ude of the temperature response
detected, and potentially also strength of comptsngead to other predictors, including the
volcanic activity or the long-term trends (Cantyatt, 2013; van der Werf and Dolman,
2014). Some of our tests were therefore repeated MOl series based on detrending the
north Atlantic SST by global anthropogenic forcipgpposed by Canty et al. (2013) to limit
the aliasing of anthropogenic long-term temperatoead and AMOI. Little impact on the
outcomes of the attribution analysis resulted freuh change. Greater differences would
likely arise from application of AMOI detrended bhean sea surface temperature (Trenberth
and Shea, 2006) or global mean temperature (vaandtirgh et al., 2009), although it has
been argued that such method of detrending rempassof the target signal (Canty et al.,
2013). Secondly, the associations revealed do ettty provide a conclusion to the still
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disputed question of the existence and stabilitABIO as natural oscillatory phenomenon.
The AMOI-related patterns have exhibited relativelpng resemblance between the first and
second half of the analysis period, especially aher oceanic areas. This suggests a fair
degree of stability of the relations between nditlantic SST and local temperature in more
distant areas, but does not confirm stationaritAlliO as such. It should also be considered
that the 55-year-long subperiods do encompasghessone cycle of the approximately 70-
year-long supposed main cycle of AMO, and thatrdlations detected are in large part due
to synchronization of shorter-term variability inVMOI and temperature. Finally, attribution
of temperature components to AMOI may also be papurious due to aliasing with other
predictors, or with explanatory factors omittecbur analysis setup. In particular, changes in
amounts of anthropogenic aerosols have been s@gigasta cause for temperature variations
in the northern Atlantic (Booth et al., 2012), thyputheir responsibility for the bulk of
multidecadal variability has been consequently ulisg (Zhang et al., 2013). Possible forcing
of AMO by combined natural forcings (volcanic aradas) has also been shown (Knudsen et
al., 2014), while Ting et al. (2014) suggested AMObe a product of natural multidecadal
variability and anthropogenic forcing. Altogethére question of AMO’s nature and degree

of its influence remains still open.

Finally, it should be accentuated once again thatigsue of attribution of climate variability

cannot be completely resolved by statistical apgnoalone. Statistical solutions to this

multifaceted problem therefore need to be constlatengside the GCM-based simulations,
conceptually more universal than purely statistaggbroaches, yet still only partly successful
in completely reproducing the observed featurethefclimate system (IPCC 2013, Ch. 9).
Our results here hope to contribute to future ésfor this field: By showing the character and
variability of temperature components formally iatitable to various forcings across several
datasets, their robustness (or lack thereof) viastiated, providing a picture of the respective
fingerprints, as well as support guidelines fordilse of the respective data in validation of the

climate models.
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GHG Solar Volc. SOl NAOI AMOI PDOI TPI

GHG 0.37 0.10 -0.07 -0.08 0.22 0.07 0.06
Solar 0.37 0.01 -0.01 0.02 0.16 0.05 -0.01
Volc. 0.11 -0.02 -0.17 0.08 -0.27 0.15 -0.01
Sol -0.08 -0.01 -0.12 -0.01 0.00 -0.37 -0.02
NAOI -0.08 0.02 0.06 0.00 -0.15 -0.04 -0.04
AMOI 0.22 0.16 -0.30 -0.07 -0.15 0.01 0.00
PDOI 0.07 0.05 0.19 -0.39 -0.04 0.01 0.00
TPI 0.06 -0.01 0.00 0.00 -0.04 0.00 0.00

VIF 1.26 1.18 1.19 1.20 1.04 1.22 1.22 1.00

© 00 N oo o b~ W

Table 1. Pearson correlation coefficient betweeres®f individual predictors (Fig. 1) in the
1901-2010 period. The upper-right segment of thé&rixnaontains values for the original
concurrent series, the lower-left segment valueshieir time-shifted versions (as specified in
Fig. 4’s caption). The bottom-most row shows valoethe variance inflation factor (VIF) for
individual time-shifted predictors, calculated a§11R?), where R? is the coefficient of
determination obtained from regression of the gie&planatory variable on the rest of the
predictors. See Table S1 in the Supplement foretations over the sub-periods 1901-1955

10
11

and 1956-2010.
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Figure 1. Time series of the explanatory varialeleployed in the attribution analysis. Bars
to the right of individual panels illustrate theepselected characteristic variations of the
predictors, used for calculation of the temperattggponses: increase of &€quivalent
GHG concentration between 1901 and 2010 (+141 ppmjease of solar irradiance by 1
Wm?; Mt. Pinatubo-sized volcanic eruption (aerosolicgtdepth +0.15); increase of SO,
NAOI, AMOI, PDOI and TPI by four times the standaddviation of the respective time

series. Thicker, darker lines represent 13-monthimgoaverage of the series.
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Figure 2. Pair-wise Pearson correlation coeffigebetween local monthly temperature
anomaly series from different datasets for the 32010 period. See Fig. S1 in the
Supplement for correlations during the 1901-1955 ¥#366—2010 sub-periods.
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Figure 3. Temperature responses (°C) to charatevsriations of the explanatory variables
(specified in Fig. 1), obtained by multiple lineagression carried out with one predictor
shifted in time byAt, while keeping the others At = 0.
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Figure 4. Regression-estimated responses (°Cobat(blue) or global land (green) monthly
temperature anomalies to pre-selected charactenstiiations of individual explanatory
variables (specified in Fig. 1). Time shift of +lonth (predictor leading temperature) was
applied for solar irradiance, +7 months for volcaaerosol amount, +2 months for SOI. The
boxes illustrate the 99% confidence intervals, wWaled by moving-block bootstrap (12-
month block size). The 20CR-based results are sHomthe series averaged over the 60°S to
75°N area. Obtained for the 1901-2010 period; sge. 52 and S3 in the Supplement for
results over the 1901-1955 and 1956-2010 sub-periédy. S4 for visualization of
individual temperature series and their regresbased fits.
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Figure 5. Geographic patterns of regression-eséichadntributions to local temperature (°C)
from pre-selected characteristic changes of thdaegpory variables (specified in Fig. 1).
Time shift of +1 month (predictor leading temperajuwas applied for solar irradiance, +7
months for volcanic aerosol amount, +2 months foi.SAreas with response statistically
significant at the 99% level are highlighted bydhmatg. See Fig. S5 for results derived from
the MLOST and HadCRUT4 datasets as well as fromT&GNSP data with 250 km
smoothing; Fig. S6 for results over the 1901-19%b ¥956—2010 sub-periods.
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Figure 6. Geographic distribution of the prediabdiset timeAt for which the strongest local
temperature response was detected, within the *@dthmrange. Positive values dit
correspond to setups with predictor leading tenipeea only grid points with response
statistically significant at the 99% level are simow8ee Fig. 7 for the corresponding values of

the temperature response.
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Figure 7. Geographic distribution of the strongeshperature response (°C) to individual
explanatory variables within the £24 month rangethef temporal offset of the predictor.

Areas with the response statistically significartha 99% level are highlighted by hatching.
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