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Abstract 11 

Monthly near-surface temperature anomalies from several gridded datasets (GISTEMP, 12 

Berkeley Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and 13 

compared with regard to the presence of components attributable to external climate forcings 14 

(anthropogenic greenhouse gases, solar and volcanic activity) and to major internal climate 15 

variability modes (El Niño/Southern Oscillation, North Atlantic Oscillation, Atlantic 16 

Multidecadal Oscillation, Pacific Decadal Oscillation and variability characterized by the 17 

Trans-Polar Index). Multiple linear regression was used to separate components related to 18 

individual explanatory variables in local monthly temperatures as well as in their global 19 

means, over the 1901–2010 period. Strong correlations of temperature and anthropogenic 20 

forcing were confirmed for most of the globe, whereas only weaker and mostly statistically 21 

insignificant connections to solar activity were indicated. Imprints of volcanic forcing were 22 

found to be largely insignificant in the local temperatures, in contrast to the clear volcanic 23 

signature in their global averages. Attention was also paid to the manifestations of short-term 24 

time shifts in the responses to the forcings, and to differences in the spatial fingerprints 25 

detected from individual temperature datasets: It is shown that although the resemblance of 26 

the response patterns is usually strong, some regional contrasts appear. Noteworthy 27 

differences from the other datasets were found especially for the 20th Century Reanalysis, 28 

particularly for the components attributable to anthropogenic forcing over land, but also in the 29 
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response to volcanism and in some of the teleconnection patterns related to the internal 1 

variability modes. 2 

 3 

1 Introduction 4 

Temporal variability within the climate system results from a complex interaction of diverse 5 

processes, both exogenous and arising from internal climate dynamics. To identify and 6 

quantify the effects of individual climate-forming agents, two complementary approaches are 7 

typically employed (e.g. IPCC, 2013, Ch. 10): numerical simulations based on general 8 

circulation models (GCMs) and statistical techniques. While the statistical methods do not 9 

offer the physical insight provided by the GCM-based simulations, they are potentially able to 10 

capture relations omitted or distorted within GCMs due to the need for simplified 11 

representation of the relevant physical processes. A number of authors have investigated the 12 

presence of relations between climate forcings and time series of climate variables by 13 

statistical means, often involving multivariable regression analysis or related techniques. The 14 

resulting studies typically show a strong link between temperature and anthropogenic forcing 15 

(e.g. Pasini et al., 2006; Lean and Rind, 2008; Schönwiese et al., 2010; Rohde et al., 2013b; 16 

Canty et al., 2013; Chylek et al., 2014b), although linear change with time is also often used 17 

to approximate the long-term temperature evolution (e.g. Gray et al., 2013; Foster and 18 

Rahmstorf, 2011; Zhou and Tung, 2013). Imprint of solar activity is usually quite weak in the 19 

near-surface temperature series (e.g. Lockwood, 2012, and references therein) and the spatial 20 

patterns of eventual response tend to be quite complex (Lockwood, 2012; Gray et al., 2013; 21 

Hood et al., 2013; Xu and Powell, 2013). Major volcanic eruptions typically manifest by 22 

temporary cooling in the globally averaged temperature, although its magnitude differs 23 

somewhat among individual temperature datasets as well as between ocean and land (Canty et 24 

al., 2013) and the geographic fingerprint of the temperature response is far from trivial 25 

(Stenchikov et al., 2006; Driscoll et al., 2012; Gray et al., 2013). 26 

Compared to the often pan-planetary reach of the external forcings, major manifestations of 27 

internal climate variability modes tend to be more localized, though sometimes with ample 28 

projection of weaker influences through teleconnections. Relatively well understood is the El 29 

Niño/Southern Oscillation (ENSO) system, dominating in tropical Pacific, but also affecting 30 

various aspects of weather patterns in many regions across the globe and leaving a distinct 31 

imprint in globally averaged temperature as well (e.g. Trenberth et al., 2002). The effect of 32 
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North Atlantic Oscillation (NAO) is prominent particularly in the areas around northern 1 

Atlantic (e.g. Hurrell et al., 2003). Northern Atlantic is also the primary area of activity of 2 

Atlantic Multidecadal Oscillation (AMO), with potential imprints noticeable in local 3 

temperatures as well as their global means (e.g. Tung and Zhou, 2013; Zhou and Tung, 2013; 4 

Rohde et al., 2013b; Muller et al., 2013; Chylek et al., 2014b; van der Werf and Dolman, 5 

2014; Rypdal, 2015). A related (pseudo)oscillatory system manifests in the northern Pacific in 6 

the form of Pacific Decadal Oscillation (PDO: Zhang et al., 1997), although its direct link 7 

with global temperature seems to be less pronounced than AMO’s (e.g. Canty et al., 2013). 8 

Other potentially influential variability modes can be identified in the climate system, though 9 

their exact mechanisms and effects are not always completely known. Selection and 10 

preparation of explanatory variables representing individual climate-forming factors is a 11 

critical part of statistical attribution analysis; more details on their choice and specific form in 12 

our tests are provided in Sect. 2.1. 13 

Of the descriptors of the climate system, temperature-related characteristics are arguably the 14 

most intensely investigated. Over the recent years, various research groups have developed 15 

and gradually evolved datasets of near-surface global gridded temperature (including 16 

MLOST: Smith et al., 2008; GISTEMP: Hansen et al., 2010; HadCRUT4: Morice et al., 2012; 17 

Berkeley Earth: Rohde et al., 2013a, b), which now provide more than a century of mid-to-18 

high resolution data for a substantial portion of the globe. In addition to these temperature 19 

analyses, created primarily by interpolation/extrapolation techniques, reanalysis data are also 20 

used to approximate past climate. Of particular interest regarding the longer-term variability 21 

is the 20th Century Reanalysis (20CR: Compo et al., 2011), currently providing global 22 

gridded data from mid-19th century on. While all these datasets approximate the same 23 

historical evolution of the climate system and share much of their basic temporal variability 24 

on pan-planetary scale (e.g. Hansen et al., 2010; Foster and Rahmstorf, 2011; Compo et al., 25 

2013; Rohde et al., 2013b), the respective temperature fields do differ to some, regionally 26 

dependent, degree. In this paper, we aim to investigate and compare selected aspects of 27 

spatio-temporal variability in several gridded datasets of monthly temperature, introduced in 28 

Sect. 2.2, with emphasis on identification of temperature responses attributable to climate 29 

forcings and major modes of internal climate variability. 30 

Our methodology of attribution analysis is largely based on multiple linear regression, as 31 

detailed in Sect. 3. Basic match of temporal variability between the temperature datasets is 32 
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quantified through linear correlations, with results shown in Sect. 4.1. Presence, magnitude 1 

and statistical significance of components attributable to individual explanatory variables in 2 

globally averaged temperatures are investigated in Sect. 4.2, including an analysis of potential 3 

time-delayed responses. An analysis of the geographical response patterns is then carried out 4 

in Sect. 4.3, followed by an assessment of local time-delayed responses in Sect. 4.4 and 5 

discussion of the results in Sect. 5. Only the key outcomes of our analysis are presented in the 6 

paper itself – see the Supplement for additional materials, particularly for results derived for 7 

shorter sub-periods of the time series studied. 8 

 9 

2 Data  10 

2.1 Explanatory variables 11 

Although many of the statistical attribution studies pursue a similar goal and share much of 12 

their basic methodology, substantial diversity exists in the selection of the explanatory factors 13 

employed and their specific variants. Here, we used eight predictors with proven or 14 

reasonably suspected influence on climate on global or continental scale, representing effects 15 

of various external forcings and climatic oscillations (Fig. 1).  16 

Among the external influences on the climate system, role of the greenhouse gases (GHGs) is 17 

relatively well understood (e.g. IPCC, 2013, Ch. 10). Due to their positive contribution to 18 

radiative forcing, man-made GHGs are believed responsible for much of the near-surface 19 

temperature rise during the later stages of the instrumental period. Anthropogenic influences 20 

to climate do also manifest through formation of various aerosols, including sulfates or black 21 

carbon, or by production of tropospheric ozone, although the uncertainties regarding their 22 

direct and especially indirect impacts are still profound (e.g. Skeie et al., 2011; IPCC, 2013, 23 

Ch. 10). Furthermore, due to the limited lifespan of the aerosols, their amounts are highly 24 

variable in time and space, unlike the concentrations of the relatively long-lived GHGs. From 25 

the perspective of statistical analysis, the often strong temporal correlation of GHGs and 26 

aerosol amounts is also problematic: For instance, the SO2 emissions (a precursor of 27 

tropospheric sulfate aerosols) are strongly correlated with GHG concentrations in some 28 

regions, making it difficult for a regression mapping to distinguish between their respective 29 

effects. For these reasons, aerosol forcings were not directly considered here, and global CO2-30 

equivalent GHG concentration was used as the sole anthropogenic predictor, in the version 31 

provided by Meinshausen et al. (2011) (http://www.pik-potsdam.de/~mmalte/rcps/), 32 
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interpolated onto monthly time resolution. Note that the temperature responses obtained with 1 

this GHG-only predictor would be virtually identical to those derived for total global 2 

anthropogenic forcing, as further discussed in Sect. 5.  3 

Global monthly series of stratospheric aerosol optical depth provided by NASA GISS at 4 

http://data.giss.nasa.gov/modelforce/strataer/ (Sato et al., 1993) was employed as a proxy for 5 

volcanic forcing. The effects of variable solar activity were characterized through monthly 6 

values of solar irradiance, based on the reconstruction by Wang et al. (2005) and obtained 7 

from http://climexp.knmi.nl/data/itsi_wls_mon.dat. Extension of the series beyond year 2008 8 

was done by the rescaled SORCE-TIM measurements from 9 

http://lasp.colorado.edu/home/sorce/data/tsi-data/ (Kopp et al., 2005).   10 

In addition to the external forcings tied to exogenous factors, temporal variability of the 11 

climate system is also shaped by various internal oscillations. Southern Oscillation index 12 

(SOI), provided by CRU at http://www.cru.uea.ac.uk/cru/data/soi/ (Ropelewski and Jones, 13 

1987), was used to characterize the phase of ENSO, the dominant variability mode in the 14 

tropical Pacific. North Atlantic Oscillation (NAO) was represented by its index (NAOI) by 15 

Jones et al. (1997), defined from normalized pressure difference between Reykjavik and 16 

Gibraltar (CRU: http://www.cru.uea.ac.uk/cru/data/nao/). A great deal of attention has 17 

recently been devoted to the effects of Atlantic Multidecadal Oscillation (AMO), a climatic 18 

mode possibly exhibiting periodicity of about 70 years (Schlesinger and Ramankutty, 1994) 19 

and typically characterized by indices derived from north Atlantic SST (e.g. Enfield et al., 20 

2001; Canty et al., 2013). Presence of AMO-synchronized components in temperature series 21 

has been demonstrated at both global (e.g. Canty et al., 2013; Rohde et al., 2013b; Zhou and 22 

Tung, 2013; Chylek et al., 2014b) and local (e.g. Enfield et al., 2001; Tung and Zhou, 2013; 23 

Chylek et al., 2014a; Mikšovský et al., 2014) scales, although discussion still continues 24 

regarding AMO’s exact nature and optimum way of its representation (Mann et al., 2014; 25 

Zanchettin et al., 2014; Lewis, 2014; Ting et al., 2014). In this analysis, AMO’s phase has 26 

been characterized through a linearly detrended index (AMOI) based on the prevalent 27 

definition by Enfield et al. (2001) and downloaded from 28 

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Note that a non-smoothed version of the 29 

index was used, involving both long-term and shorter-term SST variability in northern 30 

Atlantic. An AMO and ENSO-related phenomenon in the north Pacific area, Pacific Decadal 31 

Oscillation (PDO – Zhang et al., 1997), is typically characterized through a series of the first 32 
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principal component of north Pacific SST. Here, the variant calculated by KNMI Climate 1 

Explorer at http://climexp.knmi.nl/ from ERSST data was employed as predictor, further 2 

referenced as PDOI. Lastly, to explore patterns of temperature variability in the southern 3 

extra-tropical regions, Trans-Polar index (TPI) was also used as an explanatory variable. The 4 

respective series, calculated as normalized pressure difference between Hobart (Tasmania) 5 

and Stanley (Falkland Islands), is available from CRU at 6 

http://www.cru.uea.ac.uk/cru/data/tpi/ (Jones et al., 1999) for the 1895–2006 period. Beyond 7 

the year 2006, sea-level pressure data from the 20th Century Reanalysis were used to extend 8 

the CRU-supplied series. 9 

Not all of the predictors here can be considered mutually independent, from neither physical 10 

nor statistical perspective. In Table 1, formal similarity of the series of individual explanatory 11 

variables is illustrated through values of Pearson correlation coefficient r, and degree of 12 

collinearity is also quantified by variance inflation factors for each predictor. The positive 13 

correlation between GHG amount and solar irradiance (r = 0.37 for our version of the 14 

predictors, over the 1901-2010 period) stems from similarity of the long-term components of 15 

these signals (lower values in the early part of the 1901–2010 period, higher towards the end); 16 

their causal link over the time period studied here is unlikely though. Noteworthy links can 17 

also be seen for PDO, which is considered to be partly driven by ENSO (Newman et al., 18 

2003), resulting in anticorrelation of the PDOI and SOI series (r = –0.37). A relation also 19 

exists between PDOI and AMOI – although the connection is weak for synchronous series (r 20 

= 0.01), distinct time-delayed correlations exist (e.g. Zhang and Delworth, 2007; Wu et al., 21 

2011). Correlation between AMOI and solar irradiance (r = 0.16) and volcanic aerosol optical 22 

depth (r = –0.27) may be an indication of possible external forcing of AMO (Knudsen et al., 23 

2014); similarity between GHG and AMOI series (r = 0.22) may stem from use of linear 24 

detrending in the calculation of AMOI (see Canty et al., 2013, for a broader discussion of the 25 

related matters). Anticorrelation between volcanic aerosol optical depth and SOI (r = –0.17) 26 

results mainly from coincidence of some of the major volcanic events with the El Niño phases 27 

of ENSO. While the correlations within our set of predictors are mostly mild, there are some 28 

potential implications of this shared variability, as discussed in Sect. 5. 29 

 30 
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2.2 Temperature datasets 1 

Monthly series of near-surface temperature on a (semi)regular longitude-latitude grid from 2 

four temperature analyses and one reanalysis were studied: 3 

• GISTEMP of NASA’s Goddard Institute for Space Studies, available at 4 

http://data.giss.nasa.gov/gistemp/ (Hansen et al., 2010). The gridded version of this 5 

dataset (employed here in the version with 1200 km smoothing) is provided on a 2x2° 6 

grid, since 1880. Tests were also carried out with the GISTEMP dataset employing 250 7 

km smoothing. However, due to higher fraction of unavailable data in the 250 km 8 

version, and just small difference between the respective temperature response patterns, 9 

the results were only included in the Supplement (Fig. S5).   10 

• Temperature analysis of the Berkeley Earth group, obtained from 11 

http://berkeleyearth.org/data (Rohde et al., 2013a, b). While the dataset is primarily 12 

created for land, a variant with coverage of oceanic areas by re-interpolated HadSST3 13 

(Kennedy et al., 2011a, b) is also provided. We used this combined dataset here; for 14 

brevity, it is referred to as BERK. The data are available in the spatial resolution of 15 

1x1°, for years from 1850 on. 16 

• Merged Land-Ocean Surface Temperature Analysis (MLOST) by NOAA, from 17 

http://www.esrl.noaa.gov/psd/data/gridded/data.mlost.html (Smith et al., 2008). Defined 18 

on a 5x5° grid, from 1880 on. 19 

• HadCRUT4, a combined land (CRUTEM4) and sea (HadSST3) temperature dataset by 20 

Climatic Research Unit (University of East Anglia) and Hadley Centre (UK Met Office) 21 

from http://www.cru.uea.ac.uk/cru/data/temperature/ (Morice et al., 2012). Defined on a 22 

5x5° grid, from 1850 on. 23 

• 20th Century Reanalysis (20CR) by NOAA ESRL PSD, obtained in version V2 from 24 

http://www.esrl.noaa.gov/psd/data/20thC_Rean/ (Compo et al., 2011). For this study, 25 

monthly means of 2m temperature in T62 Gaussian grid were used (resolution 26 

approximately 1.75° longitude x 2° latitude). Note that, unlike the above analysis-type 27 

datasets, 20CR does not utilize temperature measurements from land-based stations and 28 

recreates the temperature characteristics over continents from other types of data 29 

assimilated into the model (pressure measurements) or used as boundary condition (sea 30 

surface temperature). As a reanalysis, 20CR provides a complete coverage of the globe 31 



 8

and data for various pressure levels, in a sub-daily time step (although only monthly 1 

averages were analyzed here). Assessment of the usability of 20CR as a source of data 2 

for study of spatiotemporal variability of temperature is one of the focal points of this 3 

paper.  4 

All four gridded temperature analysis datasets (GISTEMP, BERK, MLOST, HadCRUT4; 5 

hereinafter also referred to as observational datasets) are natively provided as monthly 6 

anomalies, and were analyzed as such. For 20CR temperatures, anomalies were constructed 7 

by subtracting mean annual cycle for the period 1951–1980. In addition to gridded 8 

temperatures, global temperature means (representing either land-only or fully global spatial 9 

averages) were also studied. The respective global monthly series were obtained from the web 10 

pages of the individual research groups, with the exception of 20CR, for which global average 11 

was calculated as a latitude-adjusted weighted mean from the gridded data for the full globe 12 

or for the area between 60°S and 75°N.   13 

 14 

3 Regression analysis setup 15 

Despite the inherently nonlinear and deterministically chaotic nature of the climate system, 16 

the interaction of external climate forcings in temperature signals can often be approximated 17 

quite well by a simple linear superposition (e.g. Shiogama et al., 2013). Even when effects of 18 

internal climatic oscillations are studied in the frame of multivariable statistical attribution 19 

analysis, nonlinearities are generally not dominant, albeit sometimes detectable (e.g. Pasini et 20 

al., 2006; Schönwiese et al., 2010; Mikšovský et al., 2014). Further considering the increased 21 

computational costs and more complicated interpretation for the nonlinear regression 22 

techniques, only multiple linear regression (MLR) was applied here to separate contributions 23 

from individual predictors, subject to a calibration procedure minimizing the sum of squared 24 

regression residuals.  25 

Although application of MLR-based mappings is quite straightforward in itself, potential 26 

challenges await when estimating the statistical significance of the regression coefficients, 27 

particularly due to non-Gaussianity and serial correlations in the data. For construction of the 28 

confidence intervals in Sect. 4.2, bootstrapping was used. Since the basic form of bootstrap 29 

(resampling data for individual months as fully independent cases) does not account for 30 

autocorrelation structures in the data, which cannot be ignored in the monthly temperatures 31 

(e.g., lag-1-month autocorrelations in the regression residuals ranged between 0.32 and 0.61 32 
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for different versions of globally averaged temperature), moving-block bootstrap was used 1 

(e.g. Fitzenberger, 1998). 2 

In an effort to alleviate the high computational costs of full bootstrap, an alternative approach 3 

to assessment of statistical significance was also explored: Monte Carlo-style tests designed to 4 

estimate thresholds of the regression coefficients, consistent with the null hypothesis of the 5 

absence of regressor-related component(s) in the regressand. Our experiments have shown 6 

that the effect of autocorrelation structures on the coefficient thresholds is approximated quite 7 

well by the predictor-specific expansion factors ((1 + apar)/(1 – apar))
1/2, with ap and ar 8 

representing AR(1) autoregressive parameters for the predictor series and for the series of the 9 

regression residuals, respectively. This factor resembles the one occasionally employed in 10 

estimation of statistical significance of correlations between series with AR(1)-type 11 

autocorrelation structure (e.g. Bretherton et al., 1999); its use allows for a numerically 12 

inexpensive approximation of statistical significance provided that the structure of the 13 

regression residuals conforms to a AR(1) model. While such assumption is not completely 14 

valid for the temperature data (e.g. Foster and Rahmstorf, 2011), the results obtained proved 15 

to be close to those from moving-block bootstrap, with noticeable differences only appearing 16 

in the presence of the strongest residual autocorrelations. These predictor-specific inflation 17 

factors (applied to the coefficient significance thresholds derived for predictand data free of 18 

serial correlations) were therefore used for approximation of the significance of the regression 19 

coefficients in the tests involving gridded temperature data in Sects. 4.3 and 4.4. 20 

The analysis has been carried out over the 1901–2010 period, chosen as a compromise 21 

between maximizing the length of the signals studied and limited availability and reliability of 22 

data for the earlier parts of the instrumental period. Additional results for the first (1901–23 

1955) and second (1956–2010) half of the target period are provided in the Supplement. To 24 

facilitate comparison of the contributions from individual explanatory variables mutually and 25 

to temperature variability itself, outcomes of the regression analysis are presented in the form 26 

of temperature responses to pre-selected characteristic variations of individual predictors, 27 

illustrated in Fig. 1 and specified in its caption. To limit biases due to incompleteness of the 28 

temperature series in some locations/datasets, only results for predictands with less than 10% 29 

of missing values are shown. 30 

 31 

4 Results 32 
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4.1 Inter-dataset correlations 1 

Ideally, all the temperature datasets should follow the same, historical, trajectory of the 2 

climate system. In reality, differences appear among individual representatives of the climatic 3 

past, due to variations in the structure of the source data and specifics of their processing. 4 

While we obviously cannot make a comparison to a perfect embodiment of the past states of 5 

the atmosphere, the existing temperature approximations can be compared mutually, to assess 6 

which regions/periods exhibit higher degree of match (signaling lower uncertainty due to the 7 

dataset choice), and where stronger contrasts emerge. The basic structure of these differences 8 

is illustrated in Figs. 2 and S1 (in the Supplement) through pair-wise Pearson correlations (r) 9 

between monthly series of temperature anomalies from different datasets. Unsurprisingly, vast 10 

majority of locations exhibit positive correlations, for any dataset couple, but magnitude of 11 

this link varies substantially among different regions. Over continents, particularly good 12 

match is indicated for Europe and (especially eastern) North America, regions with high 13 

density of reliable observations spanning the entire target period. On the other hand, in central 14 

Africa, central South America and south-east Asia, the resemblance of temperature series is 15 

weakened. The mismatch is also more noticeable when only the first half of the analysis 16 

period (1901–1955) is considered (Fig. S1). The 1956–2010 period then shows generally 17 

higher correlations, though it should be noted that presence of stronger long-term trend in the 18 

later 20th century, largely shared by all the datasets and most locations, amplifies the values 19 

of correlations in this sub-period.  20 

The above specified general tendencies in regional correlation patterns also hold for the 21 

relation between the analysis-type datasets and 20CR (bottom row in Fig. 2): Relatively good 22 

match of the temperature anomalies in Europe and eastern US contrasts with more profound 23 

differences in the tropical parts of Africa and much of South America. Question remains 24 

whether the disparities detected can be attributed to misrepresentation of any specific 25 

source(s) of temperature variability – an issue that is further investigated in the following 26 

sections.   27 

 28 

4.2 Forcing imprints in global mean temperature  29 

Much of the existing research of temperature variability and its attribution by statistical means 30 

focuses on globally averaged data. Aside from limiting the number of signals to be analyzed 31 

(and thus allowing for more detailed examination of each of them), the world-wide averaging 32 
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suppresses regional variations and allows factors associated with global-reaching forcings to 1 

become more reliably detectable. On the other hand, effects contributing responses of 2 

opposite sign in different regions (such as ENSO or NAO) may be obscured in pan-planetary 3 

representation. In this section, global and global land temperature signals are investigated for 4 

the presence of the imprints of individual internal and external forcing factors. 5 

It has been shown on various occasions that responses in climate variables (including 6 

temperature) are not necessarily perfectly synchronized with the variables representing the 7 

climate forcings, and time-offset relations may manifest (e.g. Canty et al., 2013 and 8 

references therein). In Fig. 3, this is illustrated via application of MLR mappings with 9 

individual predictors offset by ∆t ranging between –24 and +24 months. Results from the full 10 

range of ∆t are shown for all predictors, to illustrate the fact that regression analysis may 11 

indicate formal links even in the absence physically meaningful dependencies (such as the 12 

connections between temperature and volcanic forcing for highly negative ∆t). For GHG 13 

concentration, the lack of short-term variability results in near-invariance of the temperature 14 

response. Some ∆t-related variability is indicated for solar irradiance influence, though the 15 

dependence seems largely governed by irregular fluctuations and no distinct extremum 16 

appears. A delayed response is clearly noticeable in the component associated with volcanic 17 

activity – a distinct, though rather flat, maximum of anticorrelation between about 5 to 10 18 

months is indicated for all the analysis-type datasets. In the case of SOI, the strongest 19 

response occurs for time lags between approximately 0 and 6 months. The effect of NAOI, on 20 

the other hand, is generally instantaneous. The response of global temperature to AMOI and 21 

PDOI also shows maximum at, or close to, ∆t = 0. For TPI, the imprint in global temperature 22 

series is weak regardless of the predictor’s shift.  23 

All four analysis-type datasets exhibit high degree of similarity of the features in the globally 24 

averaged series. On the other hand, some noteworthy distinctions appear for 20CR. Most 25 

notably, the volcanism response curve is similar in shape to the ones characterizing the 26 

observational data, but shifted towards positive values. Furthermore, NAO response peaks at 27 

+1 month instead of ∆t = 0 and weaker-than-observed connection to GHG is indicated over 28 

land. These differences can be partly ascribed to the specifics of calculation of mean 29 

temperature for the observational datasets, particularly variable level of data coverage for the 30 

observed data. However, different spatial response patterns are also likely responsible, as 31 

shown in Sect. 4.3.  32 
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To facilitate mutual comparability of the results, and also to consider that the physical links 1 

between predictors and temperature should be the same for all datasets, a unified set of time 2 

shifts was employed for the tests in Sects. 4.2 and 4.3. Lead time of +1 month was used with 3 

the solar irradiance, as previously done by Lean and Rind (2008) or Canty et al. (2013), 4 

although very similar outcomes would have been obtained with ∆t = 0, too. The time shift was 5 

set to +2 months for SOI, same as in Canty et al.’s setup, and volcanic forcing was used with 6 

∆t = +7 months (close to Lean and Rind’s and Canty et al.’s shift of +6 months). The rest of 7 

the predictors entered the regression mappings without a time offset, due to just small 8 

difference compared to a setup with  ∆t = 0, or absence of a distinct, physically justified 9 

extremum within the analyzed range of time delays. In Fig. 4, the results of the analysis are 10 

shown in the form of temperature responses to the characteristic variations of the predictors, 11 

with their 99% confidence intervals generated by moving-block bootstrap. The regression fits 12 

of individual temperature series are also visualized in Fig. S4 in the Supplement. 13 

Our analysis suggests the GHG-attributed rise in global temperature to be approximately 14 

0.8°C over the 1901–2010 period, within the range usually associated with anthropogenic 15 

forcing (IPCC, 2013, Ch. 10). Over land, values between 1.05 and 1.2°C are typical in the 16 

analysis-type data, and somewhat lower for 20CR. Positive temperature responses to solar 17 

irradiance increase are indicated in the global temperatures (equivalent to roughly 0.05°C per 18 

Wm-2 of solar irradiance), borderline statistically significant at α = 0.01. Global land 19 

temperatures, on the other hand, show no such warming component – a behavior previously 20 

reported by Rohde et al. (2013b) for Berkeley Earth land temperature, whereas the analysis by 21 

Canty et al. (2013) suggested minor temperature rise related to irradiance increase. Results for 22 

individual sub-periods provide an even more varied picture of the irradiance-temperature 23 

relationship (Figs. S2, S3). Small negative responses are indicated for 1901–1955, possibly 24 

due to higher correlation between the predictors characterizing GHG and solar activity (r = 25 

0.46), and thus greater potential for misattribution. Positive responses then appear for 1956–26 

2010, when the trend in solar irradiance (as well as its correlation to GHG concentration) is 27 

negligible. Warming effect of the increase of solar irradiance is therefore possible in land-28 

only temperature averages, too, but weak and obscured when all 110 years are analyzed. In 29 

any case, imprint of solar irradiance upon globally averaged temperature seems rather minor, 30 

especially compared to the GHG influence.    31 
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The response of global temperature to volcanic forcing is clear, statistically significant and of 1 

similar magnitude in all analysis-type datasets: drop of 0.36 to 0.44°C in global land 2 

temperature is indicated for Mt. Pinatubo-sized event, slightly stronger than the values 3 

reported by Canty et al. (2013). The response range is lowered to about 0.16 to 0.19°C when 4 

the oceanic areas are included, close to Canty et al.’s results. As already shown in Fig. 3, 5 

20CR temperature behaves in a somewhat different fashion, with smaller, statistically 6 

insignificant temperature response. A look at the results for individual sub-intervals reveals 7 

that this positive bias may be stemming from the relations indicated for the first half of the 8 

20th century (which, however, contains just a very limited set of volcanic events, with the 9 

strongest of them – Novarupta eruption of 1912 – being extratropical and thus atypical 10 

regarding its world-wide effects). For the 1956–2010 period, 20CR global volcanic response 11 

is more in line with the behavior of the observational datasets.  12 

While our results show the well-known tendency towards higher global temperature 13 

anomalies during the El Niño phases of ENSO (e.g. Trenberth et al., 2002), the respective 14 

components tested close to the threshold of statistical significance at α = 0.01. A response of 15 

comparable magnitude was found for NAO, with positive link indicated between all 16 

temperature signals and NAOI, though, again, at rather low levels of statistical significance in 17 

most cases. 18 

Conforming to several previous studies concerned with association between global 19 

temperature and AMO (e.g. Rohde et al., 2013b; Zhou and Tung, 2013; Chylek et al., 2014b) 20 

and using similar (i.e., linearly detrended) version of its index, our results suggest formally 21 

strong link of detrended mean North Atlantic temperature and its global counterpart, distinct 22 

for land-based temperatures as well. The question remains, however, of how representative 23 

AMOI really is of internal variability in the climate system, as further discussed in Sect. 5.  24 

The imprint of PDOI in global temperature is quite clear and, for our combination of 25 

predictors, actually about as strong as SO’s. It should be considered though that SOI and 26 

PDOI series are not independent and, as predictors, they partly compete for the same 27 

variability component in the temperature signals. When included alone among the explanatory 28 

variables (i.e., either SOI or PDOI, but not both), the respective responses are generally 29 

strengthened, as is their statistical significance. Considering that SOI and PDOI are only 30 

partly collinear, and that their spatial response patterns do differ (Sect. 4.3), both were 31 

included as formally independent predictors in our analysis.  32 
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The final predictor considered in our setup, TPI, does not project much influence upon global 1 

temperature, though the respective component is borderline statistically significant for some 2 

of the datasets. Just as in the case of SOI, NAOI or PDOI, the relatively weak global response 3 

can be traced to the presence of mutually opposite contributions from different regions, as 4 

demonstrated in the next section. 5 

 6 

4.3 Forcing imprints in local temperatures 7 

Even clear and strong presence of a component associated with a particular forcing factor in 8 

globally averaged temperature does not automatically imply its universal relevance on local 9 

scale. Conversely, locally dominant factors may be marginal in global perspective. Here, we 10 

present an overview of geographic patterns of temperature response to external and internal 11 

forcing, for the set of eight predictors identical to that in the section 4.2. Only results for the 12 

datasets with mostly complete data coverage in the 1901–2010 period (GISTEMP, BERK, 13 

20CR) are shown (Fig. 5); see the Supplement (Fig. S5) for the full set of results including 14 

MLOST and HadCRUT4. 15 

While positive correlation between GHG concentration and temperature is typical for most 16 

regions of the world, the strength of the component formally attributed to greenhouse gases 17 

(or, more generally, to anthropogenic forcing) varies substantially, and insignificant links or 18 

even anticorrelations appear in some smaller areas. Most prominently, the oceanic region 19 

south of Greenland, known for a negative temperature trend since 1901 (e.g. IPCC 2013, Ch. 20 

2), displays high contrast to the rest of the world. Relatively good match between the 21 

analysis-type datasets is found in most regions. However, notable differences between the 22 

gridded observations and 20CR appear in a few geographically limited locations. Aside from 23 

mild contrasts in some oceanic regions (particularly central and eastern equatorial Pacific), 24 

distinctly negative temperature responses appear over land in the eastern Mediterranean, 25 

central South America and Texas. On the other hand, warming response over northern China 26 

is overestimated in 20CR. Similar pattern of discrepancy between the observed data and 27 

20CR has already been reported and discussed by Compo et al. (2013) in their analysis of 28 

linear trends in the temperature series for 1901–2010, with various potential explanations 29 

suggested. Generally, although long-term components (whether expressed by match with 30 

anthropogenic forcing, or by linear trends) in 20CR are characterized consistently with the 31 

analysis-type data in many regions, their representativeness cannot be assumed universally.    32 
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The local temperature responses to solar irradiance are arranged in a complex pattern, 1 

encompassing both positive and negative links, combining in a near-neutral contribution to 2 

global land average. Statistically significant responses are rarely indicated and influence of 3 

solar variability therefore seems largely inconclusive at local scale (Figs. 5b, S5b). 4 

Nonetheless, sign and magnitude of the links appear to be similar across individual datasets, 5 

including 20CR. From the results for the oceanic areas, it is revealed that main contributions 6 

to the borderline significant link between global temperature and irradiance come from 7 

southern extratropical areas and northern Pacific. The response patterns shown by Lean 8 

(2010), Zhou and Tung (2010) or Gray et al. (2013) do differ somewhat from our results; 9 

however, direct comparison is problematic due to distinctions between time periods analyzed 10 

as well detection methodology employed. The outcomes for the 1901–1955 and 1956–2010 11 

sub-periods (Fig. S6) suggest some degree of stability of the response patterns, though with 12 

enough differences to explain the mismatch in contributions to globally averaged land 13 

temperature (Sect. 4.2). Overall, our analysis confirms that solar activity does not leave a 14 

strong, unambiguous imprint in lower tropospheric temperature. 15 

While the cooling effect of volcanic forcing was clearly apparent in global mean temperature, 16 

its local influence is less ubiquitous (Figs. 5c, S5c). Regions with negative response do 17 

slightly prevail in the observational datasets, but positive contributions are detected in several 18 

areas, too. Only few locations show statistically significant response of either sign. The 19 

pattern revealed bears basic resemblance to the ones shown by Lean and Rind (2008) and 20 

Lean (2010), with post-eruption cooling indicated in North America and warming over 21 

northern Asia. Some differences emerge, however, emphasizing the sensitivity of the forcing 22 

response patterns to the analysis details such as specific choice of the predictor(s) or time 23 

period considered. In the 20CR, positive responses are more numerous and stronger in 24 

magnitude, pushing the global mean volcanism-attributed signal towards positive values and 25 

statistical non-significance. This tendency is noticeable especially during the first half of the 26 

analysis period (Fig. S6), although it should be noted again that the relative lack of global-27 

reaching volcanic events renders the results rather uncertain for the 1901–1955 period.   28 

The canonical pattern of temperature response associated with SO/ENSO activity (e.g. 29 

Trenberth et al., 2002; Lean and Rind, 2008; Gray et al., 2013) also emerged in our analysis, 30 

including the teleconnections extending beyond the tropical Pacific region (Figs. 5d, S5d). 31 

While some minor differences exist among individual datasets, the resemblance of the 32 
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respective patterns is high; some minor exceptions are found for 20CR over land, such as 1 

weaker projection of SOI influence over eastern Africa. The effect of North Atlantic 2 

Oscillation, too, is shown very clearly for its primary area of activity encompassing much of 3 

Eurasia and North America (Figs. 5e, S5e). 20CR data show a generally good match with the 4 

gridded observations, though minor differences emerge, such as weakened teleconnections to 5 

easternmost Asia or altered links to southern Africa.  6 

Unlike the multipolar geographical responses associated with SO and NAO, the regression 7 

coefficients between AMOI and local temperature are predominantly positive worldwide, and 8 

significant connections extend across the globe (Figs. 5f, S5f). This largely unidirectional 9 

link, previously pointed out through correlation analysis by Muller et al. (2013), results in 10 

much stronger AMO-correlated component in global temperature. On the other hand, it also 11 

raises a question of what exactly the relation between temperatures worldwide and those in 12 

northern Atlantic is (beyond the obvious fact that Atlantic SST is one of the components 13 

averaged into global temperature, and thus not completely independent). While many of the 14 

recent studies employed the (linearly detrended) AMO index in the role of an independent 15 

explanatory variable, arguments have been made for use of different forms of the index (see 16 

Canty et al., 2013 and the references therein) or questioning the nature of AMO itself (e.g. 17 

Booth et al., 2012; Mann et al., 2014). In our analysis, focused rather on formal connections 18 

in the data studied and mutual (in)consistency of various datasets, the issue of exact physical 19 

nature and stability of AMO is not central. The imprint of AMOI is similar across individual 20 

datasets; noticeable differences appear especially over central and eastern Eurasia. 21 

PDO’s influence pattern shows both positive and negative connections, strongest in the 22 

Pacific area (e.g. Deser et al., 2010), but with some significant teleconnections extending to 23 

more distant regions as well (including Africa or Scandinavia). PDO’s representation by 24 

20CR is relatively close to that in the analysis-type data; differences appear especially over 25 

parts of Africa (Figs. 5g, S5g).  26 

The relation between temperature and TPI manifests in a semi-regular pattern of alternating 27 

positive and negative sectors over the southern oceans and nearby continents, though only in 28 

the segments near South America and Australia do the relations test as statistically significant 29 

(Figs. 5h, S5h). The 20CR-based response resembles the observational pattern in shape, but is 30 

generally stronger magnitude-wise.  31 

 32 
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4.4 Delayed responses in local temperatures 1 

The homogeneously timed predictors employed in Sect. 4.3 do provide a robust basis for an 2 

assessment of the superposition of their effects in globally averaged temperature, but overlook 3 

the possibility of geographically dependent delays. To reveal the characteristic patterns of 4 

locally specific asynchronous responses to the explanatory variables, regression analysis of 5 

local temperature was also carried out with individual predictors shifted in time by ∆t ranging 6 

between –24 and +24 months. Figures 6 and 7 summarize the outcomes by displaying the 7 

strongest local temperature response detected, along with the corresponding ∆t. Note that the 8 

statistical significance thresholds have been calculated to account for the fact that the 9 

strongest response within the –24 to +24 months range is used. As a result, they are generally 10 

higher (i.e., a stronger response is required to be deemed significant at the given significance 11 

level) than in the setup with fixed ∆t in Sect. 4.3. Only the three datasets with least missing 12 

values – GISTEMP, BERK and 20CR – were analyzed in this case. 13 

For the GHG amount, the results exhibit little sensitivity within our time window, and the 14 

magnitude of temperature responses is virtually identical to the ∆t = 0 setup, due to the 15 

absence of short-term variations in the predictors series. Likewise, the strongest responses to 16 

solar forcing are quite similar to the ones for the pre-set delay of 1 month (Fig. 5b), while the 17 

maximum seems to be rather randomly positioned, arguably reflecting the stochastic 18 

components in the time series. For volcanism, even with the variable time delay option, still 19 

only a handful of gridpoints show significant response and the pattern of time delays 20 

associated with maximum-strength components does not show any distinct regularity.  21 

The spatiotemporal variability of temperature response to ENSO phase is well known (e.g. 22 

Trenberth et al., 2002) and reflected in our results as well: the occurrence of the strongest 23 

temperature response leads SOI by a few months in the eastern equatorial Pacific, whereas 24 

largely concurrent variability is indicated for western Pacific. In the Indian Ocean, strongest 25 

temperature response lags by a few months behind SOI and delay of 6 to 8 months is 26 

indicated around south-east Asia as well as in northern Australia. 20CR reproduces these 27 

patterns quite well over the oceans, but noticeable differences appear for teleconnections over 28 

land, most notably in less consistently expressed links to Africa and southern part of South 29 

America.  30 

The strongest statistically significant temperature responses to NAO are instantaneous in most 31 

areas, or delayed by 1 month (mostly over northern Atlantic). The pattern detected from the 32 
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observational datasets is reproduced quite well in 20CR, with the most notable exception 1 

again being the breakdown of transcontinental teleconnection over eastern Asia and 2 

appearance of a link to southern Africa. The reason for the temporal shift of NAO-attributed 3 

signal in 20CR global temperature (Fig. 3) therefore does not seem to be the 4 

misrepresentation of timing of the local temperature responses. Rather, it can be traced to the 5 

perturbed balance between the opposite-in-sign responses from different regions (note 6 

especially the overly negative contribution from northern Africa). Though these deviations are 7 

relatively small, they vary for different ∆t, enough to alter the relatively weak globally 8 

averaged signal and bring forth a spurious delay in global response. 9 

There is a distinct connection between the AMO index and local temperature in many regions 10 

of the world even without a time shift (Fig. 5f), but the timing of the maximum strength of 11 

this association varies distinctly within our ±24 months testing range. Concurrence is 12 

indicated in much of northern Atlantic, delay of 2 to 5 months in the northern part of the 13 

Indian Ocean and adjacent land, and around 4 to 10 months in a large portion of western 14 

equatorial Pacific. On the other hand, in the eastern and northern part of the Pacific, 15 

temperatures at –12 to –6 months show the strongest association with AMOI, whereas delays 16 

between –5 to –1 month are typical in much of Canada and northern US. Over oceans, 20CR 17 

maintains the observation-based pattern with only minor differences. More distinctions appear 18 

over land, especially in southern Asia. Similar behavior is also indicated for PDO: Quite 19 

realistic representation of the delayed responses over oceans and areas adjacent to northern 20 

Pacific by 20CR breaks down somewhat for more remote land areas (most notably Africa), 21 

though some of the teleconnections seem maintained quite well (Scandinavia).   22 

Finally, in the case of TPI, the results indicate concurrence of the oscillations or delay of 1 23 

month for most locations with a statistically significant response. The pattern is reproduced 24 

quite well by 20CR, though magnitude of the temperature variations is somewhat exaggerated 25 

again. 26 

 27 

5 Discussion and conclusions 28 

The primary objective of our analysis was twofold. Firstly, we aimed to provide a unified 29 

outlook into the local temperature responses associated with activity of multiple climate-30 

forming agents, exogenous and endogenous, and the way they combine in pan-planetary 31 
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temperature signals. While various past studies already dealt with a similar kind of statistical 1 

attribution analysis, their scope was typically more focused, phenomenon- or region-wise, but 2 

also regarding the temperature data source. Our second objective therefore consisted in 3 

assessing the robustness of the attribution analysis results among several commonly employed 4 

representations of monthly temperature throughout the 20th and early 21st century. To this 5 

end, four observational temperature datasets and one reanalysis were studied through linear 6 

regression, extracting components synchronized with temporal variability of eight predictors 7 

representing external climate forcings and internal variability modes.  8 

The basic correlation analysis in Sect. 4.1 revealed the general geographical patterns of 9 

temperature (mis)match among different observational datasets. Unsurprisingly, the best 10 

agreement was found for regions with the best coverage by measurements (most notably 11 

Europe and eastern North America, where the Pearson correlations of monthly temperature 12 

anomalies typically exceeded 0.9), leaving relatively little room for uncertainty in the gridded 13 

data. Regions with sparser observations, such as interiors of Africa or South America, 14 

exhibited more disparity, provided that gridded data were available at all for the given 15 

location. Of even greater interest was the resemblance between analysis-type datasets and the 16 

20th Century Reanalysis (20CR): Since 20CR does not directly utilize the temperature 17 

measurements over land, greater deviations from ‘reality’ may be expected, especially for the 18 

continental areas. While the correlation analysis indeed indicated somewhat loosened relation 19 

to the analysis-type data, the match was still quite good in most regions, with the poorest 20 

agreement again found in Africa and South America. Major differences between the 21 

temperature anomaly series were seldom observed over oceans (the most notable exception 22 

being the higher latitudes of the southern hemisphere). Since all the datasets (including 20CR) 23 

employ sea surface temperature as inputs, temperatures are tied more closely to the historical 24 

trajectory of the climate system and eventual contrasts can be largely ascribed to differences 25 

among individual SST representations (assessed in detail by Yasunaka and Hanawa, 2011). 26 

While the correlation analysis pointed out the basic patterns of differences between individual 27 

datasets, the question remains how much these can affect the outcomes of the attribution 28 

analysis. Match among the GHG-attributed temperature changes was generally strong in most 29 

locations, but certain smaller regions were highlighted in 20CR where this trend-like 30 

component diverged substantially from the analysis-type data. These local discrepancies, 31 

previously pointed out by Compo et al. (2013), also somewhat decrease magnitude of the 32 
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GHG-attributed component in the global land temperature for 20CR. Furthermore, when 1 

drawing conclusions from the results presented, it is essential to consider the limitations of the 2 

statistical approach to the attribution analysis. First of all, even formally statistically 3 

significant connections are not a proof of physically meaningful relations, as the regression 4 

analysis only seeks formal similarities among the time series, unable to verify causality of the 5 

links. For the attribution of the temperature trends to GHGs, this is particularly critical. 6 

Although the significance level is generally high for the GHG-related regression coefficients, 7 

it would be such for any explanatory signal of similar structure (including a plain linear 8 

trend). While it is physically justified to associate the increase in GHGs with warming 9 

tendencies, there are other potential anthropogenic forcing factors sharing similar temporal 10 

evolution, yet intentionally omitted in our analysis. Specifically, various man-generated 11 

aerosols can contribute to local warming (e.g. black carbon) or cooling (e.g. sulfate aerosols) 12 

(e.g. Skeie et al., 2011). In many areas, the temporal progression of aerosol-related predictors 13 

closely mimics that of GHG concentration (for instance, the Pearson correlation between 14 

GHG concentration and regional SO2 emissions is over 0.5 in most of the world and often 15 

exceeds 0.9 locally, based on the SO2 data by Smith et al., 2011). Our GHG-based predictor 16 

should therefore be considered an approximate (and simplified) characterization of the 17 

anthropogenic forcing in general, rather than of greenhouse gasses alone. Note also that very 18 

similar values of temperature response would have been obtained for a predictor representing 19 

total global anthropogenic forcing rather than GHGs alone, due to very high temporal 20 

correlation of the respective series (exceeding 0.99 over our analysis period when using the 21 

forcing data by Meinshausen et al., 2011) and due to the fact that the responses are scaled by 22 

the end-to-end increase in the predictor series here. Naturally, this near-invariance in the 23 

given statistical setup should not be interpreted as equivalence of the respective forcings in a 24 

physical sense. A more accurate view of the issue could perhaps be gained by an analysis 25 

employing local-specific descriptors of anthropogenic activity, but the challenges attached 26 

(such as high collinearity of the anthropogenic predictors, limiting the ability of the regression 27 

mappings to distinguish among their effects) make such task less suitable for approaching by 28 

purely statistical means. General circulation models may represent a more suitable tool for 29 

capturing the related links, even though the associated uncertainties are still substantial (e.g. 30 

IPCC, 2013, Ch. 9). This also applies to the evaluation of other complex aspects of the 31 

climate system dynamics, such as effects of long-term memory or climatic feedbacks, 32 

intentionally omitted in our simplified regression-based analytical frame.   33 
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Of the natural forcings, the imprints of solar activity seem to be represented in quite a similar 1 

manner by all the datasets studied, including 20CR. The component attributed to variations of 2 

solar irradiance (involving both the 11-year cycle and longer-term variability) was quite weak, 3 

in most individual regions as well as in globally averaged temperature. These results are 4 

largely consistent with previous assessments of the impacts of solar activity on temperature 5 

(e.g. Lockwood, 2012; Gray et al., 2013). Still, the spatial patterns of solar influence exhibit 6 

some degree of temporal stability, suggesting that even though the fingerprints detected do 7 

largely not test as statistically significant, they are not just an artifact of stochastic 8 

components in the temperature series.   9 

An interesting contrast between the results for globally averaged temperature series and for 10 

their local counterparts was found in the case of the effects of volcanic activity. The well-11 

known near-surface cooling following major volcanic eruptions was clear in all versions of 12 

globally averaged observed temperature, but a rather complex pattern emerged from the 13 

gridded temperature data. Post-eruption warming was indicated in several regions. There 14 

might be dynamical reasons for such behavior (e.g. Stenchikov et al., 2006; Driscoll et al., 15 

2012), but the structures detected were quite ambiguous, exhibiting both poor temporal 16 

stability and low statistical significance (an uncertainty partly ascribable to distinctiveness of 17 

individual volcanic events and their relatively brief periods of effect within the time frame of 18 

our analysis). Furthermore, aliasing of volcanic and ENSO activity (with major late-20th 19 

century eruptions coinciding with El Niño phases of ENSO) also needs to be considered when 20 

attributing the volcanic activity, as well as the possibility of its influence on the AMO phase 21 

(Knudsen et al., 2014). Interpretational pitfalls aside, there was a strong agreement between 22 

the observational datasets in their representation of the volcanism-attributed spatial pattern. 23 

20CR data showed tendency toward more positive temperature anomalies in several regions, 24 

resulting also in a more neutral response to volcanism in the globally averaged 20CR data.  25 

The temperature variability patterns related to the climate oscillations considered (SO, NAO, 26 

AMO, PDO, TPI) were generally captured similarly by individual datasets. This also applies 27 

to 20CR for the most part, though there seem to be some break-downs in the representation of 28 

trans-continental and trans-oceanic teleconnections in the reanalysis data, most noticeable in 29 

the influence of NAO over eastern Asia, AMO over northern parts of Eurasia or weakened 30 

links to SO and PDO in parts of Africa. One might speculate that this distinction is rooted in 31 

the specific behavior of the reanalysis engine, distorting the complex structure of atmospheric 32 
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bridges propagating the teleconnections. However, an unrealistic representation of the long-1 

distance links by the 20CR cannot be blamed automatically: Note that the differences detected 2 

are generally more prominent in the first half of the analysis period, and less striking (though 3 

still noticeable) during the later half-period (Fig. S6). The reanalysis may thus simply struggle 4 

to recreate the observed patterns in regions where the assimilable data are rare and relatively 5 

unreliable, just as the procedures generating the analysis-type gridded data are burdened with 6 

increased errors when faced with lack of reliable inputs. Neither of these data sources can thus 7 

be considered automatically superior and increased attention to the effects of data uncertainty 8 

is needed when investigating climate variability in regions and periods with limited 9 

observations. Keeping these limitations and specifics in mind, the 20th Century Reanalysis 10 

seems to provide a satisfactory approximation of the past temperatures during the 20th and 11 

early 21st century, and thus a suitable tool for studies concerned with validity of climate 12 

simulations.  13 

Potential pitfalls related to the attribution of temperature changes to trend-like predictors were 14 

already discussed above, but even interpretation of the components associated with faster 15 

variable explanatory factors needs to be done with caution. Some of the internal climate 16 

oscillatory modes are interconnected, and their respective indices partly collinear. Variability 17 

assigned to a certain predictor does therefore not need to originate from the respective forcing 18 

factor alone – for instance, the relationship between SO/ENSO and PDO implies that effects 19 

of the variability modes in the Pacific area cannot be entirely separated, on neither physical 20 

nor statistical level. The issue of interdependent predictors is not limited to pair-wise 21 

relationships: It has been shown that various variability modes in the climate system are 22 

intertwined in quite complex networks, with nontrivial time-delayed relations among 23 

oscillations in different regions (e.g. Wyatt et al., 2012). Intricacy of such structures becomes 24 

even more apparent when generalized links are studied, unrestricted to just the conventional 25 

variability modes (e.g. Hlinka et al., 2013, 2014a, b). 26 

Caution is also needed when interpreting the outcomes of the tests of statistical significance. 27 

The AR(1) model of residual autocorrelations, assumed here when assessing significance of 28 

predictors’ connections to the gridded temperatures, provides basic approximation of the 29 

short-term persistence. Often, such approach seems sufficient, especially over land where the 30 

residual autocorrelations generally rapidly approach zero. In other cases (particularly for 31 

tropical oceans and global averages encompassing oceanic areas), longer-term 32 
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autocorrelations of various shapes appear in the residuals. Their presence is indicative of 1 

unaccounted-for components in the data, long-term memory and/or presence of 2 

inhomogeneities, potentially infesting temperature analyses and reanalyses alike (e.g. Cowtan 3 

and Way, 2014; Ferguson and Villarini, 2014). To further assess the validity of our 4 

significance tests, bootstrap-based estimates of statistical significance for the gridded 5 

temperature data were also implemented, using a variable-sized moving block, reflecting the 6 

magnitude of residual autocorrelation (Politis and White, 2004; Bravo and Godfrey, 2012). 7 

Little difference in the regression outcomes was found compared to the other test designs in 8 

this paper. Artifacts of annual cycle were also often found in the residuals, traceable (at least 9 

in part) to non-stationary representation of the seasonal variations (Foster and Rahmstorf, 10 

2011). A treatment by inclusion of components approximating the 12-month periodicity 11 

among the predictors was attempted, but resulted in no major changes to the regression 12 

coefficients or their significance. 13 

Another important aspect shaping the outcomes of the regression mappings is the choice of 14 

the explanatory variables. Most of the predictors applied here exist in alternative variants, 15 

differing in their definition or method of (re)construction. A sizable discussion could be 16 

devoted to the specifics of each of them. While we did not study this issue in such a depth, 17 

partial experiments were carried out to assess the degree of variability of the analysis 18 

outcomes if alternative predictors were used. First, robustness of the imprints of volcanic 19 

forcing was assessed, with GISS aerosol optical depth (Sato et al., 1993) substituted with 20 

Crowley and Unterman’s (2013) data. The resulting change to the global temperature 21 

response and the corresponding spatial fingerprints proved to be minor, generally smaller than 22 

uncertainties associated with the regression coefficients themselves. Use of hemisphere-23 

specific volcanic aerosol amounts instead of their global representation also induced just 24 

minor changes to the respective response patterns.  25 

Of the multiple definitions of the indices characterizing the climatic oscillations studied, we 26 

prioritized the forms not directly involving temperature itself, to avoid explicit contribution of 27 

the temperature signal to the explanatory variables. This was not a problem for NAO and TPI, 28 

as their descriptors are derived from the baric characteristics. In the case of ENSO, the 29 

pressure-based SOI was preferred over the SST-based NINO indices or multivariate ENSO 30 

index. On the other hand, the usual forms of AMOI and PDOI are calculated from areal SSTs, 31 

and thus likely interrelated with the temperature signals. For PDOI, which exhibits 32 
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comparatively weaker correlation with globally averaged temperatures (at least partly due to 1 

the fact that PDOI is, by its definition, detrended by global sea-surface temperature), this 2 

issue seems less serious. However, it is still worthwhile to see how much the outcomes 3 

change from employing another version of the index. Use of the PDO index from JISAO 4 

(http://research.jisao.washington.edu/pdo/PDO.latest) resulted in generally weaker PDO 5 

imprint in global temperature (though still largely within the confidence intervals shown in 6 

Fig. 4), but nonetheless very similar spatial response pattern (with the relatively strongest 7 

distinction being somewhat stronger negative link over northern China). In the case of AMO, 8 

the issue of predictor selection and interpretation of its effects is more critical. Our AMO 9 

index of choice (linearly detrended, as per the prevalent definition by Enfield et al., 2001) 10 

seems to be formally associated with rather strong component in global temperature, as well 11 

as in local temperatures in various regions across the globe. While this may indeed suggest 12 

existence of trans-planetary teleconnections involving AMO-related variability, there is a 13 

danger in overly formalistic interpretation of the patterns detected. Firstly, several definitions 14 

of AMO index exist, embodying different views of the phenomenon (see, e.g., Canty et al., 15 

2013). Use of a differently defined AMOI affects magnitude of the temperature response 16 

detected, and potentially also strength of components tied to other predictors, including the 17 

volcanic activity or the long-term trends (Canty et al., 2013; van der Werf and Dolman, 18 

2014). Some of our tests were therefore repeated for AMOI series based on detrending the 19 

north Atlantic SST by global anthropogenic forcing, proposed by Canty et al. (2013) to limit 20 

the aliasing of anthropogenic long-term temperature trend and AMOI. Little impact on the 21 

outcomes of the attribution analysis resulted from such change. Greater differences would 22 

likely arise from application of AMOI detrended by mean sea surface temperature (Trenberth 23 

and Shea, 2006) or global mean temperature (van Oldenborgh et al., 2009), although it has 24 

been argued that such method of detrending removes part of the target signal (Canty et al., 25 

2013). Secondly, the associations revealed do not directly provide a conclusion to the still 26 

disputed question of the existence and stability of AMO as natural oscillatory phenomenon. 27 

The AMOI-related patterns have exhibited relatively strong resemblance between the first and 28 

second half of the analysis period, especially over the oceanic areas. This suggests a fair 29 

degree of stability of the relations between north Atlantic SST and local temperature in more 30 

distant areas, but does not confirm stationarity of AMO as such. It should also be considered 31 

that the 55-year-long subperiods do encompass less than one cycle of the approximately 70-32 

year-long supposed main cycle of AMO, and that the relations detected are in large part due 33 
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to synchronization of shorter-term variability in AMOI and temperature. Finally, attribution 1 

of temperature components to AMOI may also be partly spurious due to aliasing with 2 

explanatory factors omitted in our analysis setup. In particular, changes in amounts of 3 

anthropogenic aerosols have been suggested as a cause for temperature variations in the 4 

northern Atlantic (Booth et al., 2012), though their responsibility for the bulk of multidecadal 5 

variability has been consequently disputed (Zhang et al., 2013). Possible forcing of AMO by 6 

combined natural forcings (volcanic and solar) has also been shown (Knudsen et al., 2014), 7 

while Ting et al. (2014) suggested AMO to be a product of natural multidecadal variability 8 

and anthropogenic forcing. Altogether, the question of AMO’s nature and degree of its 9 

influence, both global and local, remains still open.  10 

Finally, it should be accentuated once again that the issue of attribution of climate variability 11 

cannot be completely resolved by statistical approach alone. Statistical solutions to this 12 

multifaceted problem therefore need to be considered alongside the GCM-based simulations, 13 

conceptually more universal than purely statistical approaches, yet still only partially 14 

successful in completely reproducing the observed features of the climate system (IPCC 2013, 15 

Ch. 9). Our results here hope to contribute to future efforts in this field: By showing the 16 

character and variability of temperature components formally attributable to various forcings 17 

across several datasets, their robustness (or lack thereof) was illustrated, providing a picture 18 

of the respective fingerprints, as well as support guidelines for the use of the respective data 19 

in validation of the climate models. 20 
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  GHG Solar Volc. SOI NAOI AMOI PDOI TPI 

GHG   0.37 0.10 -0.07 -0.08 0.22 0.07 0.06 

Solar 0.37   0.01 -0.01 0.02 0.16 0.05 -0.01 

Volc. 0.11 -0.02   -0.17 0.08 -0.27 0.15 -0.01 

SOI -0.08 -0.01 -0.12   -0.01 0.00 -0.37 -0.02 

NAOI -0.08 0.02 0.06 0.00   -0.15 -0.04 -0.04 

AMOI 0.22 0.16 -0.30 -0.07 -0.15   0.01 0.00 

PDOI 0.07 0.05 0.19 -0.39 -0.04 0.01   0.00 

TPI 0.06 -0.01 0.00 0.00 -0.04 0.00 0.00   

VIF 1.26 1.18 1.19 1.20 1.04 1.22 1.22 1.00 

 2 

Table 1. Pearson correlation coefficient between series of individual predictors (Fig. 1) in the 3 

1901–2010 period. The upper-right segment of the matrix contains values for the original 4 

concurrent series, the lower-left segment values for their time-shifted versions (as specified in 5 

Fig. 4’s caption). The bottom-most row shows values of the variance inflation factor (VIF) for 6 

individual time-shifted predictors, calculated as 1/(1-R2), where R2 is the coefficient of 7 

determination obtained from regression of the given explanatory variable on the rest of the 8 

predictors. See Table S1 in the Supplement for correlations over the sub-periods 1901-1955 9 

and 1956-2010. 10 

11 
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 1 

Figure 1. Time series of the explanatory variables employed in the attribution analysis. Bars 2 

to the right of individual panels illustrate the pre-selected characteristic variations of the 3 

predictors, used for calculation of the temperature responses: increase of CO2-equivalent 4 

GHG concentration between 1901 and 2010 (+141 ppm); increase of solar irradiance by 1 5 

Wm-2; Mt. Pinatubo-sized volcanic eruption (aerosol optical depth +0.15); increase of SOI, 6 

NAOI, AMOI, PDOI and TPI by four times the standard deviation of the respective time 7 

series. Thicker, darker lines represent 13-month moving average of the series.  8 

9 
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 1 

Figure 2. Pair-wise Pearson correlation coefficients between local monthly temperature 2 

anomaly series from different datasets for the 1901–2010 period. See Fig. S1 in the 3 

Supplement for correlations during the 1901–1955 and 1956–2010 sub-periods. 4 

5 
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 1 

Figure 3. Temperature responses (°C) to characteristic variations of the explanatory variables 2 

(specified in Fig. 1), obtained by multiple linear regression carried out with one predictor 3 

shifted in time by ∆t, while keeping the others at ∆t = 0. 4 

5 
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 1 

Figure 4. Regression-estimated responses (°C) of global (blue) or global land (green) monthly 2 

temperature anomalies to pre-selected characteristic variations of individual explanatory 3 

variables (specified in Fig. 1). Time shift of +1 month (predictor leading temperature) was 4 

applied for solar irradiance, +7 months for volcanic aerosol amount, +2 months for SOI. The 5 

boxes illustrate the 99% confidence intervals, calculated by moving-block bootstrap (12-6 

month block size). The 20CR-based results are shown for the series averaged over the 60°S to 7 

75°N area. Obtained for the 1901–2010 period; see Figs. S2 and S3 in the Supplement for 8 

results over the 1901–1955 and 1956–2010 sub-periods; Fig. S4 for visualization of 9 

individual temperature series and their regression-based fits. 10 
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 1 

Figure 5. Geographic patterns of regression-estimated contributions to local temperature (°C) 2 

from pre-selected characteristic changes of the explanatory variables (specified in Fig. 1). 3 

Time shift of +1 month (predictor leading temperature) was applied for solar irradiance, +7 4 

months for volcanic aerosol amount, +2 months for SOI. Areas with response statistically 5 

significant at the 99% level are highlighted by hatching. See Fig. S5 for results including the 6 

MLOST and HadCRUT4 datasets and Fig. S6 for results over the 1901–1955 and 1956–2010 7 

sub-periods. 8 
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 1 

Figure 6. Geographic distribution of the predictor offset time ∆t for which the strongest local 2 

temperature response was detected, within the ±24 month range. Positive values of ∆t 3 

correspond to setups with predictor leading temperature; only grid points with response 4 

statistically significant at the 99% level are shown. See Fig. 7 for the corresponding values of 5 

the temperature response. 6 
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 1 

Figure 7. Geographic distribution of the strongest temperature response (°C) to individual 2 

explanatory variables within the ±24 month range of the temporal offset of the predictor. 3 

Areas with the response statistically significant at the 99% level are highlighted by hatching. 4 


