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Abstract

Monthly near-surface temperature anomalies fromesgvgridded datasets (GISTEMP,
Berkeley Earth, MLOST, HadCRUT4, 20th Century Régsig) were investigated and
compared with regard to the presence of comporagtriibutable to external climate forcings
(anthropogenic greenhouse gases, solar and voleatiigty) and to major internal climate
variability modes (El Nifio/Southern Oscillation, Mlo Atlantic Oscillation, Atlantic
Multidecadal Oscillation, Pacific Decadal Osciltati and variability characterized by the
Trans-Polar Index). Multiple linear regression wesd to separate components related to
individual explanatory variables in local monthigntperatures as well as in their global
means, over the 1901-2010 period. Strong correlsitof temperature and anthropogenic
forcing were confirmed for most of the globe, wlar@nly weaker and mostly statistically
insignificant connections to solar activity weraicated. Imprints of volcanic forcing were
found to be largely insignificant in the local teengtures, in contrast to the clear volcanic
signature in their global averages. Attention wias gaid to the manifestations of short-term
time shifts in the responses to the forcings, amdlifferences in the spatial fingerprints
detected from individual temperature datasetss khown that although the resemblance of
the response patterns is usually strong, some nagicontrasts appear. Noteworthy
differences from the other datasets were foundasipe for the 20th Century Reanalysis,

particularly for the components attributable tormapogenic forcing over land, but also in the
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response to volcanism and in some of the telectimmepatterns related to the internal

variability modes.

1 Introduction

Temporal variability within the climate system risdrom a complex interaction of diverse
processes, both exogenous and arising from intesilate dynamics. To identify and
quantify the effects of individual climate-formiragents, two complementary approaches are
typically employed (e.g. IPCC, 2013, Ch. 10): nuadr simulations based on general
circulation models (GCMs) and statistical techngu@/hile the statistical methods do not
offer the physical insight provided by the GCM-l@dsenulations, they are potentially able to
capture relations omitted or distorted within GCMsie to the need for simplified
representation of the relevant physical procesSesumber of authors have investigated the
presence of relations between climate forcings @mek series of climate variables by
statistical means, often involving multivariablgression analysis or related techniques. The
resulting studies typically show a strong link beémn temperature and anthropogenic forcing
(e.g. Pasini et al., 2006; Lean and Rind, 2008p8walese et al., 2010; Rohde et al., 2013b;
Canty et al., 2013; Chylek et al., 2014b), altholighar change with time is also often used
to approximate the long-term temperature evolutjery. Gray et al., 2013; Foster and
Rahmstorf, 2011; Zhou and Tung, 2013). Imprintaésactivity is usually quite weak in the
near-surface temperature series (e.g. Lockwood?,281d references therein) and the spatial
patterns of eventual response tend to be quite lxn{pockwood, 2012; Gray et al., 2013;
Hood et al.,, 2013; Xu and Powell, 2013). Major aolic eruptions typically manifest by
temporary cooling in the globally averaged tempemt although its magnitude differs
somewhat among individual temperature datasetselisas/between ocean and land (Canty et
al., 2013) and the geographic fingerprint of thengerature response is far from trivial
(Stenchikov et al., 2006; Driscoll et al., 2012a6et al., 2013).

Compared to the often pan-planetary reach of thereal forcings, major manifestations of
internal climate variability modes tend to be mérealized, though sometimes with ample
projection of weaker influences through teleconioest Relatively well understood is the El
Niflo/Southern Oscillation (ENSO) system, dominatimgropical Pacific, but also affecting

various aspects of weather patterns in many regaensss the globe and leaving a distinct

imprint in globally averaged temperature as wel§.(@renberth et al., 2002). The effect of
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North Atlantic Oscillation (NAO) is prominent pastilarly in the areas around northern
Atlantic (e.g. Hurrell et al., 2003). Northern Atlac is also the primary area of activity of
Atlantic Multidecadal Oscillation (AMO), with potéial imprints noticeable in local
temperatures as well as their global means (e.gg Bimd Zhou, 2013; Zhou and Tung, 2013;
Rohde et al., 2013b; Muller et al., 2013; Chylekakt 2014b; van der Werf and Dolman,
2014; Rypdal, 2015). A related (pseudo)oscillakygtem manifests in the northern Pacific in
the form of Pacific Decadal Oscillation (PDO: Zhagigal., 1997), although its direct link
with global temperature seems to be less pronoutiad AMO’s (e.g. Canty et al., 2013).
Other potentially influential variability modes cae identified in the climate system, though
their exact mechanisms and effects are not alwayspletely known. Selection and
preparation of explanatory variables representmgjvidual climate-forming factors is a
critical part of statistical attribution analysmpre details on their choice and specific form in

our tests are provided in Sect. 2.1.

Of the descriptors of the climate system, tempeeatelated characteristics are arguably the
most intensely investigated. Over the recent yeadgpus research groups have developed
and gradually evolved datasets of near-surface agjlapsidded temperature (including
MLOST: Smith et al., 2008; GISTEMP: Hansen et20]10; HadCRUT4: Morice et al., 2012;
Berkeley Earth: Rohde et al., 2013a, b), which mpravide more than a century of mid-to-
high resolution data for a substantial portion loé globe. In addition to these temperature
analyses, created primarily by interpolation/exttapon techniques, reanalysis data are also
used to approximate past climate. Of particulagredgt regarding the longer-term variability
is the 20th Century Reanalysis (20CR: Compo et 2011), currently providing global
gridded data from mid-19 century on. While all these datasets approximate fame
historical evolution of the climate system and shawuch of their basic temporal variability
on pan-planetary scale (e.g. Hansen et al., 20d$teF and Rahmstorf, 2011; Compo et al.,
2013; Rohde et al., 2013b), the respective temperdtelds do differ to some, regionally
dependent, degree. In this paper, we aim to inyestiand compare selected aspects of
spatio-temporal variability in several gridded d&tis of monthly temperature, introduced in
Sect. 2.2, with emphasis on identification of terapg&re responses attributable to climate

forcings and major modes of internal climate vahgb

Our methodology of attribution analysis is largélgsed on multiple linear regression, as

detailed in Sect. 3. Basic match of temporal valitglbetween the temperature datasets is
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quantified through linear correlations, with resushown in Sect. 4.1. Presence, magnitude
and statistical significance of components attabie to individual explanatory variables in
globally averaged temperatures are investigat&kut. 4.2, including an analysis of potential
time-delayed responses. An analysis of the geogralplesponse patterns is then carried out
in Sect. 4.3, followed by an assessment of logakidelayed responses in Sect. 4.4 and
discussion of the results in Sect. 5. Only the t&ietgomes of our analysis are presented in the
paper itself — see the Supplement for additionakensds, particularly for results derived for

shorter sub-periods of the time series studied.

2 Data
2.1 Explanatory variables

Although many of the statistical attribution stugljgursue a similar goal and share much of
their basic methodology, substantial diversity &xis the selection of the explanatory factors
employed and their specific variants. Here, we us&ght predictors with proven or

reasonably suspected influence on climate on globabntinental scale, representing effects

of various external forcings and climatic oscilbas (Fig. 1).

Among the external influences on the climate systefe of the greenhouse gases (GHGS) is
relatively well understood (e.g. IPCC, 2013, Ch).1Due to their positive contribution to
radiative forcing, man-made GHGs are believed nesibte for much of the near-surface
temperature rise during the later stages of theeumsental period. Anthropogenic influences
to climate do also manifest through formation ofimas aerosols, including sulfates or black
carbon, or by production of tropospheric ozonehalgh the uncertainties regarding their
direct and especially indirect impacts are stitbfpund (e.g. Skeie et al., 2011; IPCC, 2013,
Ch. 10). Furthermore, due to the limited lifespdrthe aerosols, their amounts are highly
variable in time and space, unlike the concentnatiaf the relatively long-lived GHGs. From
the perspective of statistical analysis, the ofs&nong temporal correlation of GHGs and
aerosol amounts is also problematic: For instabe, SQ emissions (a precursor of
tropospheric sulfate aerosols) are strongly camedlavith GHG concentrations in some
regions, making it difficult for a regression mapgpito distinguish between their respective
effects. For these reasons, aerosol forcings wardirectly considered here, and global £0
equivalent GHG concentration was used as the sdl@apogenic predictor, in the version
provided by Meinshausen et al. (2011jpttg://www.pik-potsdam.de/~mmalte/rcps/
4
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interpolated onto monthly time resolution. Notetttiee temperature responses obtained with
this GHG-only predictor would be virtually identicéo those derived for total global
anthropogenic forcing, as further discussed in.Fect

Global monthly series of stratospheric aerosol agptdepth provided by NASA GISS at

http://data.giss.nasa.gov/modelforce/straté@ato et al., 1993) was employed as a proxy for

volcanic forcing. The effects of variable solariaty were characterized through monthly
values of solar irradiance, based on the recortgtruby Wang et al. (2005) and obtained

from http://climexp.knmi.nl/data/itsi_wls _mon.ddxtension of the series beyond year 2008

was done by the rescaled SORCE-TIM measurements m fro
http://lasp.colorado.edu/home/sorce/data/tsi-d#&tapp et al., 2005).

In addition to the external forcings tied to exoges factors, temporal variability of the
climate system is also shaped by various intersalllations. Southern Oscillation index

(SOI), provided by CRU ahttp://www.cru.uea.ac.uk/cru/data/sgRopelewski and Jones,

1987), was used to characterize the phase of ENl®Odominant variability mode in the
tropical Pacific. North Atlantic Oscillation (NAO)as represented by its index (NAOI) by
Jones et al. (1997), defined from normalized pmesslifference between Reykjavik and

Gibraltar (CRU: http://www.cru.uea.ac.uk/cru/data/nao/A great deal of attention has

recently been devoted to the effects of Atlanticldecadal Oscillation (AMO), a climatic
mode possibly exhibiting periodicity of about 70ay® (Schlesinger and Ramankutty, 1994)
and typically characterized by indices derived fraprth Atlantic SST (e.g. Enfield et al.,
2001; Canty et al., 2013). Presence of AMO-syndzemhcomponents in temperature series
has been demonstrated at both global (e.g. Cardl,€2013; Rohde et al., 2013b; Zhou and
Tung, 2013; Chylek et al., 2014b) and local (efidtd et al., 2001; Tung and Zhou, 2013;
Chylek et al., 2014a; MikSovsky et al., 2014) ssalalthough discussion still continues
regarding AMO’s exact nature and optimum way ofrgpresentation (Mann et al., 2014;
Zanchettin et al., 2014; Lewis, 2014; Ting et aD14). In this analysis, AMO’s phase has
been characterized through a linearly detrende@xintRMOI) based on the prevalent
definition by Enfield et al. (2001) and downloaded from

http://www.esrl.noaa.gov/psd/data/timeseries/AMRdte that a non-smoothed version of the

index was used, involving both long-term and shetgem SST variability in northern
Atlantic. An AMO and ENSO-related phenomenon in tiogth Pacific area, Pacific Decadal
Oscillation (PDO — Zhang et al., 1997), is typigatharacterized through a series of the first
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principal component of north Pacific SST. Here, #agiant calculated by KNMI Climate
Explorer athttp://climexp.knmi.nl/from ERSST data was employed as predictor, further

referenced as PDOI. Lastly, to explore patterngeaiperature variability in the southern
extra-tropical regions, Trans-Polar index (TPI) wa¢s used as an explanatory variable. The
respective series, calculated as normalized presditference between Hobart (Tasmania)
and Stanley (Falkland Islands), is available from RW  at
http://www.cru.uea.ac.uk/cru/data/tgdones et al., 1999) for the 1895-2006 period.oBdy

the year 2006, sea-level pressure data from the @8nhtury Reanalysis were used to extend

the CRU-supplied series.

Not all of the predictors here can be consideretuaily independent, from neither physical
nor statistical perspectivén Table 1, formal similarity of the series of inalual explanatory
variables is illustrated through values of Pearsorrelation coefficientr, and degree of
collinearity is also quantified by variance inftati factors for each predictor. The positive
correlation between GHG amount and solar irradiafice 0.37 for our version of the
predictors, over the 1901-2010 period) stems fronlarity of the long-term components of
these signals (lower values in the early part ef#80+2010 period, higher towards the end);
their causal link over the time period studied hisrenlikely thoughNoteworthy links can
also be seen for PDO, which is considered to béypdriven by ENSO (Newman et al.,
2003), resulting in anticorrelation of the PDOI a8@®I seriesr(= -0.37). A relation also
exists between PDOI and AMOI — although the corineds weak for synchronous series (
= 0.01), distinct time-delayed correlations exisig( Zhang and Delworth, 2007; Wu et al.,
2011). Correlation between AMOI and solar irradefic= 0.16) and volcanic aerosol optical
depth ¢ =-0.27) may be an indication of possible externatifay of AMO (Knudsen et al.,
2014); similarity between GHG and AMOI seriesH 0.22) may stem from use of linear
detrending in the calculation of AMOI (see Cantyakt 2013, for a broader discussion of the
related matters). Anticorrelation between volcamecosol optical depth and SQI£ -0.17)
results mainly from coincidence of some of the mamcanic events with the El Nifio phases
of ENSO. While the correlations within our set oégictors are mostly mild, there are some

potential implications of this shared variabiliag discussed in Sect. 5.
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2.2 Temperature datasets

Monthly series of near-surface temperature on mijsegular longitude-latitude grid from

four temperature analyses and one reanalysis wated:

GISTEMP of NASA's Goddard Institute for Space Sagli available at
http://data.giss.nasa.gov/gistemidansen et al., 2010). The gridded version of this

dataset (employed here in the version with 1200skmoothing) is provided on a 2x2°
grid, since 1880. Tests were also carried out WiehGISTEMP dataset employing 250
km smoothing. However, due to higher fraction obvailable data in the 250 km
version, and just small difference between theaetspe temperature response patterns,

the results were only included in the Supplemeit. (E5).

Temperature analysis of the Berkeley Earth groupptained from
http://berkeleyearth.org/dat@Rohde et al., 2013a, b). While the dataset isanily
created for land, a variant with coverage of oceaneas by re-interpolated HadSST3

(Kennedy et al., 2011a, b) is also provided. Wedubés combined dataset here; for
brevity, it is referred to as BERK. The data arailable in the spatial resolution of

1x1°, for years from 1850 on.

Merged Land-Ocean Surface Temperature Analysis (BTLO by NOAA, from
http://www.esrl.noaa.gov/psd/data/gridded/data.tir®| (Smith et al., 2008). Defined
on a 5x5° grid, from 1880 on.

HadCRUT4, a combined land (CRUTEM4) and sea (Ha®&$&mperature dataset by
Climatic Research Unit (University of East Angla)d Hadley Centre (UK Met Office)
from http://www.cru.uea.ac.uk/cru/data/temperatiiMorice et al., 2012). Defined on a
5x5° grid, from 1850 on.

20th Century Reanalysis (20CR) by NOAA ESRL PSDiawmted in version V2 from
http://www.esrl.noaa.gov/psd/data/20thC_Re@@dmpo et al., 2011). For this study,
monthly means of 2m temperature in T62 Gaussiad grere used (resolution

approximately 1.75° longitude x 2° latitude). Ndi@t, unlike the above analysis-type
datasets, 20CR does not utilize temperature meagsmts from land-based stations and
recreates the temperature characteristics overineots from other types of data

assimilated into the model (pressure measuremenisded as boundary condition (sea

surface temperature). As a reanalysis, 20CR prevedeomplete coverage of the globe
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and data for various pressure levels, in a sulyderie step (although only monthly
averages were analyzed here). Assessment of thditysaf 20CR as a source of data
for study of spatiotemporal variability of tempena is one of the focal points of this

paper.

All four gridded temperature analysis datasets &8P, BERK, MLOST, HadCRUT4;
hereinafter also referred to as observational d&tpsare natively provided as monthly
anomalies, and were analyzed as such. For 20CRetataopes, anomalies were constructed
by subtracting mean annual cycle for the period 139980. In addition to gridded
temperatures, global temperature means (repregesitimer land-only or fully global spatial
averages) were also studied. The respective giabathly series were obtained from the web
pages of the individual research groups, with tteeption of 20CR, for which global average
was calculated as a latitude-adjusted weighted rfream the gridded data for the full globe

or for the area between 60°S and 75°N.

3 Regression analysis setup

Despite the inherently nonlinear and determinifiticehaotic nature of the climate system,
the interaction of external climate forcings in fEeTature signals can often be approximated
quite well by a simple linear superposition (e.gicGama et al., 2013). Even when effects of
internal climatic oscillations are studied in thharhe of multivariable statistical attribution
analysis, nonlinearities are generally not dominaliteit sometimes detectable (e.g. Pasini et
al., 2006; Schonwiese et al., 2010; MikSovsky et2014). Further considering the increased
computational costs and more complicated interpogtafor the nonlinear regression
techniques, only multiple linear regression (MLRgsaapplied here to separate contributions
from individual predictors, subject to a calibratiprocedure minimizing the sum of squared

regression residuals.

Although application of MLR-based mappings is gusteaightforward in itself, potential
challenges await when estimating the statistioghiSitance of the regression coefficients,
particularly due to non-Gaussianity and serial @ations in the data. For construction of the
confidence intervals in Sect. 4.2, bootstrapping wsed. Since the basic form of bootstrap
(resampling data for individual months as fully epéndent cases) does not account for
autocorrelation structures in the data, which cam®oignored in the monthly temperatures

(e.g., lag-1-month autocorrelations in the regmssesiduals ranged between 0.32 and 0.61
8
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for different versions of globally averaged tempar@), moving-block bootstrap was used
(e.g. Fitzenberger, 1998).

In an effort to alleviate the high computationastsoof full bootstrap, an alternative approach
to assessment of statistical significance wasetgbored: Monte Carlo-style tests designed to
estimate thresholds of the regression coefficietagsistent with the null hypothesis of the
absence of regressor-related component(s) in tipegsand. Our experiments have shown
that the effect of autocorrelation structures andbefficient thresholds is approximated quite

well by the predictor-specific expansion factoriJI(aﬁt,Dar)/(1—a|0ar))1’2

, with a, and a;
representing AR(1) autoregressive parameters @ptadictor series and for the series of the
regression residuals, respectively. This factoemdsdes the one occasionally employed in
estimation of statistical significance of corredais between series with AR(1)-type
autocorrelation structure (e.g. Bretherton et 4899); its use allows for a numerically
inexpensive approximation of statistical significanprovided that the structure of the
regression residuals conforms to a AR(1) model. [8vbBuch assumption is not completely
valid for the temperature data (e.g. Foster andrgadrf, 2011), the results obtained proved
to be close to those from moving-block bootstrajph woticeable differences only appearing
in the presence of the strongest residual autdetiors. These predictor-specific inflation
factors (applied to the coefficient significanceesholds derived for predictand data free of
serial correlations) were therefore used for apipnaton of the significance of the regression

coefficients in the tests involving gridded tempera data in Sects. 4.3 and 4.4.

The analysis has been carried out over the 190D-2@tiod, chosen as a compromise
between maximizing the length of the signals stidied limited availability and reliability of
data for the earlier parts of the instrumental gukriAdditional results for the first (1901—
1955) and second (1956-2010) half of the targabgere provided in the Supplement. To
facilitate comparison of the contributions fromiwidual explanatory variables mutually and
to temperature variability itself, outcomes of tlegression analysis are presented in the form
of temperature responses to pre-selected chastatevariations of individual predictors,
illustrated in Fig. 1 and specified in its captidm limit biases due to incompleteness of the
temperature series in some locations/datasets,resljts for predictands with less than 10%

of missing values are shown.

4 Results
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4.1 Inter-dataset correlations

Ideally, all the temperature datasets should folkine same, historical, trajectory of the
climate system. In reality, differences appear agnadividual representatives of the climatic
past, due to variations in the structure of there®wata and specifics of their processing.
While we obviously cannot make a comparison to rfepeembodiment of the past states of
the atmosphere, the existing temperature appro}nmsatan be compared mutually, to assess
which regions/periods exhibit higher degree of mggignaling lower uncertainty due to the
dataset choice), and where stronger contrasts eméhg basic structure of these differences
is illustrated in Figs. 2 and S1 (in the Supplemémtough pair-wise Pearson correlations (
between monthly series of temperature anomalies &tibfferent datasets. Unsurprisingly, vast
majority of locations exhibit positive correlatigrfer any dataset couple, but magnitude of
this link varies substantially among different . Over continents, particularly good
match is indicated for Europe and (especially eastBlorth America, regions with high
density of reliable observations spanning the eniéirget period. On the other hand, in central
Africa, central South America and south-east A#ia, resemblance of temperature series is
weakened. The mismatch is also more noticeable vaméy the first half of the analysis
period (1901-1955) is considered (Fig. S1). The632810 period then shows generally
higher correlations, though it should be noted grasence of stronger long-term trend in the
later 20th century, largely shared by all the datsasind most locations, amplifies the values

of correlations in this sub-period.

The above specified general tendencies in regionakelation patterns also hold for the
relation between the analysis-type datasets andR40@Gttom row in Fig. 2): Relatively good
match of the temperature anomalies in Europe astkeaUS contrasts with more profound
differences in the tropical parts of Africa and ruaf South America. Question remains
whether the disparities detected can be attributednisrepresentation of any specific
source(s) of temperature variability — an issud thdurther investigated in the following

sections.

4.2  Forcing imprints in global mean temperature

Much of the existing research of temperature vditgland its attribution by statistical means
focuses on globally averaged data. Aside from ingithe number of signals to be analyzed

(and thus allowing for more detailed examinatioreath of them), the world-wide averaging

10
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suppresses regional variations and allows factsssaated with global-reaching forcings to
become more reliably detectable. On the other hafigcts contributing responses of
opposite sign in different regions (such as ENS®IAO) may be obscured in pan-planetary
representation. In this section, global and gldaadl temperature signals are investigated for

the presence of the imprints of individual interaatl external forcing factors.

It has been shown on various occasions that respoims climate variables (including
temperature) are not necessarily perfectly syndheonwith the variables representing the
climate forcings, and time-offset relations may ifest (e.g. Canty et al., 2013 and
references therein). In Fig. 3, this is illustrateéd application of MLR mappings with
individual predictors offset bt ranging between —24 and +24 months. Results fraiull
range ofAt are shown for all predictors, to illustrate thetféghat regression analysis may
indicate formal links even in the absence physycaieaningful dependencies (such as the
connections between temperature and volcanic fgréom highly negativeAt). For GHG
concentration, the lack of short-term variabiligsults in near-invariance of the temperature
response. SomAt-related variability is indicated for solar irrad@e influence, though the
dependence seems largely governed by irregulatutitions and no distinct extremum
appears. A delayed response is clearly noticeabtee component associated with volcanic
activity — a distinct, though rather flat, maximwh anticorrelation between about 5 to 10
months is indicated for all the analysis-type deifisIin the case of SOI, the strongest
response occurs for time lags between approximétalyd 6 months. The effect of NAOI, on
the other hand, is generally instantaneous. Theoree of global temperature to AMOI and
PDOI also shows maximum at, or close&b= 0. For TPI, the imprint in global temperature

series is weak regardless of the predictor’s shift.

All four analysis-type datasets exhibit high degoésimilarity of the features in the globally
averaged series. On the other hand, some notewdrsitiyctions appear for 20CR. Most
notably, the volcanism response curve is similasimape to the ones characterizing the
observational data, but shifted towards positivieies Furthermore, NAO response peaks at
+1 month instead oAt = 0 and weaker-than-observed connection to GH@Gdgated over
land. These differences can be partly ascribedhto dpecifics of calculation of mean
temperature for the observational datasets, p#atigwariable level of data coverage for the
observed data. However, different spatial respquterns are also likely responsible, as
shown in Sect. 4.3.

11
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To facilitate mutual comparability of the resulég)d also to consider that the physical links
between predictors and temperature should be the $ar all datasets, a unified set of time
shifts was employed for the tests in Sects. 4.24a8dLead time of +1 month was used with
the solar irradiance, as previously done by Leash Rmd (2008) or Canty et al. (2013),
although very similar outcomes would have beeninbthwithAt = 0, too. The time shift was
set to +2 months for SOI, same as in Canty et s&tap, and volcanic forcing was used with
At = +7 months (close to Lean and Rind’s and Cangl.&t shift of +6 months). The rest of
the predictors entered the regression mappingsoutitia time offset, due to just small
difference compared to a setup witht = 0, or absence of a distinct, physically justfie
extremum within the analyzed range of time deldys=ig. 4, the results of the analysis are
shown in the form of temperature responses to tiagacteristic variations of the predictors,
with their 99% confidence intervals generated byimg-block bootstrap. The regression fits

of individual temperature series are also visudlireFig. S4 in the Supplement.

Our analysis suggests the GHG-attributed rise obal temperature to be approximately
0.8°C over the 1901-2010 period, within the rangeally associated with anthropogenic
forcing (IPCC, 2013, Ch. 10). Over land, valuesnassin 1.05 and 1.2°C are typical in the
analysis-type data, and somewhat lower for 20CRitive temperature responses to solar
irradiance increase are indicated in the globaptmatures (equivalent to roughly 0.05°C per
Wm? of solar irradiance), borderline statistically rifecant at @ = 0.01. Global land
temperatures, on the other hand, show no such wgroomponent — a behavior previously
reported by Rohde et al. (2013b) for Berkeley E&atid temperature, whereas the analysis by
Canty et al. (2013) suggested minor temperatueereékated to irradiance increase. Results for
individual sub-periods provide an even more vancture of the irradiance-temperature
relationship (Figs. S2, S3). Small negative respsrege indicated for 1901-1955, possibly
due to higher correlation between the predictomratterizing GHG and solar activity €
0.46), and thus greater potential for misattributiBositive responses then appear for 1956—
2010, when the trend in solar irradiance (as welita correlation to GHG concentration) is
negligible. Warming effect of the increase of sdtaadiance is therefore possible in land-
only temperature averages, too, but weak and obdonhen all 110 years are analyzed. In
any case, imprint of solar irradiance upon globallgraged temperature seems rather minor,

especially compared to the GHG influence.
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The response of global temperature to volcanidrigres clear, statistically significant and of
similar magnitude in all analysis-type datasetsopdof 0.36 to 0.44°C in global land
temperature is indicated for Mt. Pinatubo-sized ngveslightly stronger than the values
reported by Canty et al. (2013). The response rafm@vered to about 0.16 to 0.19°C when
the oceanic areas are included, close to Canty.’strasults. As already shown in Fig. 3,
20CR temperature behaves in a somewhat differesitida, with smaller, statistically
insignificant temperature response. A look at tesults for individual sub-intervals reveals
that this positive bias may be stemming from tHati@ns indicated for the first half of the
20th century (which, however, contains just a vianjted set of volcanic events, with the
strongest of them — Novarupta eruption of 1912 #dextratropical and thus atypical
regarding its world-wide effects). For the 1956-@@kriod, 20CR global volcanic response

is more in line with the behavior of the obsermatibdatasets.

While our results show the well-known tendency taiga higher global temperature
anomalies during the EI Nifio phases of ENSO (ergnBerth et al., 2002), the respective
components tested close to the threshold of statistignificance atr = 0.01. A response of
comparable magnitude was found for NAO, with pawsitilink indicated between all
temperature signals and NAOI, though, again, &erdbw levels of statistical significance in

Mmost cases.

Conforming to several previous studies concernedh wassociation between global
temperature and AMO (e.g. Rohde et al., 2013b; ZrmiTung, 2013; Chylek et al., 2014b)
and using similar (i.e., linearly detrended) vensad its index, our results suggest formally
strong link of detrended mean North Atlantic tengpere and its global counterpart, distinct
for land-based temperatures as well. The quesgarains, however, of how representative

AMOI really is of internal variability in the clinta system, as further discussed in Sect. 5.

The imprint of PDOI in global temperature is quitkear and, for our combination of
predictors, actually about as strong as SO’s. ¢tukh be considered though that SOI and
PDOI series are not independent and, as predictbey, partly compete for the same
variability component in the temperature signalf©iéWincluded alone among the explanatory
variables (i.e., either SOI or PDOI, but not botthle respective responses are generally
strengthened, as is their statistical significan€ensidering that SOI and PDOI are only
partly collinear, and that their spatial responsdtegns do differ (Sect. 4.3), both were
included as formally independent predictors in @aoalysis.

13
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The final predictor considered in our setup, TResinot project much influence upon global
temperature, though the respective component idelane statistically significant for some
of the datasets. Just as in the case of SOI, NA®DDI, the relatively weak global response
can be traced to the presence of mutually oppasitdributions from different regions, as

demonstrated in the next section.

4.3 Forcing imprints in local temperatures

Even clear and strong presence of a componentiagstevith a particular forcing factor in
globally averaged temperature does not automatiaalply its universal relevance on local
scale. Conversely, locally dominant factors maymaginal in global perspective. Here, we
present an overview of geographic patterns of teatpee response to external and internal
forcing, for the set of eight predictors identitalthat in the section 4.2. Only results for the
datasets with mostly complete data coverage in18@1-2010 period (GISTEMP, BERK,
20CR) are shown (Fig. 5); see the Supplement &%g.for the full set of results including
MLOST and HadCRUTA4.

While positive correlation between GHG concentratemd temperature is typical for most
regions of the world, the strength of the comporfermally attributed to greenhouse gases
(or, more generally, to anthropogenic forcing) garsubstantially, and insignificant links or
even anticorrelations appear in some smaller afdast prominently, the oceanic region
south of Greenland, known for a negative tempeeatend since 1901 (e.g. IPCC 2013, Ch.
2), displays high contrast to the rest of the wolRelatively good match between the
analysis-type datasets is found in most regionsvé¥er, notable differences between the
gridded observations and 20CR appear in a few gpbgrally limited locations. Aside from
mild contrasts in some oceanic regions (particuladntral and eastern equatorial Pacific),
distinctly negative temperature responses appear and in the eastern Mediterranean,
central South America and Texas. On the other haadning response over northern China
is overestimated in 20CR. Similar pattern of diparecy between the observed data and
20CR has already been reported and discussed bypd@eimal. (2013) in their analysis of
linear trends in the temperature series for 190182@vith various potential explanations
suggested. Generally, although long-term compong@mtsether expressed by match with
anthropogenic forcing, or by linear trends) in 20@R characterized consistently with the

analysis-type data in many regions, their repred@einess cannot be assumed universally.
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The local temperature responses to solar irradiareearranged in a complex pattern,
encompassing both positive and negative links, @oimdp in a near-neutral contribution to

global land average. Statistically significant @sges are rarely indicated and influence of
solar variability therefore seems largely inconslasat local scale (Figs. 5b, S5b).

Nonetheless, sign and magnitude of the links apfmebe similar across individual datasets,
including 20CR. From the results for the oceaneaar it is revealed that main contributions
to the borderline significant link between globalmiperature and irradiance come from
southern extratropical areas and northern Pacliie response patterns shown by Lean
(2010), Zhou and Tung (2010) or Gray et al. (20d8)differ somewhat from our results;

however, direct comparison is problematic due stimittions between time periods analyzed
as well detection methodology employed. The outsifoe the 1901-1955 and 1956-2010
sub-periods (Fig. S6) suggest some degree of gyabilthe response patterns, though with
enough differences to explain the mismatch in douations to globally averaged land

temperature (Sect. 4.2). Overall, our analysis icmsf that solar activity does not leave a

strong, unambiguous imprint in lower troposphesimperature.

While the cooling effect of volcanic forcing wa®atly apparent in global mean temperature,
its local influence is less ubiquitous (Figs. 5&¢cB Regions with negative response do
slightly prevail in the observational datasets, fpogitive contributions are detected in several
areas, too. Only few locations show statisticaligndicant response of either sign. The
pattern revealed bears basic resemblance to the sireevn by Lean and Rind (2008) and
Lean (2010), with post-eruption cooling indicated North America and warming over
northern AsiaSome differences emerge, however, emphasizingath&tsity of the forcing
response patterns to the analysis details suclpexsfis choice of the predictor(s) or time
period considered. In the 20CR, positive resporaes more numerous and stronger in
magnitude, pushing the global mean volcanism-aitiedb signal towards positive values and
statistical non-significance. This tendency is cedible especially during the first half of the
analysis period (Fig. S6), although it should bédaagain that the relative lack of global-

reaching volcanic events renders the results rathegrtain for the 1901-1955 period.

The canonical pattern of temperature response iassdcwith SO/ENSO activity (e.qg.
Trenberth et al., 2002; Lean and Rind, 2008; Gtagl.e 2013) also emerged in our analysis,
including the teleconnections extending beyondttbpical Pacific region (Figs. 5d, S5d).

While some minor differences exist among individuktasets, the resemblance of the
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respective patterns is high; some minor excepteamesfound for 20CR over land, such as
weaker projection of SOI influence over easternicafr The effect of North Atlantic
Oscillation, too, is shown very clearly for its qary area of activity encompassing much of
Eurasia and North America (Figs. 5e, S5e). 20CR dabw a generally good match with the
gridded observations, though minor differences gmesuch as weakened teleconnections to

easternmost Asia or altered links to southern Afric

Unlike the multipolar geographical responses assediwith SO and NAO, the regression
coefficients between AMOI and local temperature@eglominantly positive worldwide, and
significant connections extend across the globgs(Fbf, S5f). This largely unidirectional
link, previously pointed out through correlationaéysis by Muller et al. (2013), results in
much stronger AMO-correlated component in globaigerature. On the other hand, it also
raises a question of what exactly the relation betwtemperatures worldwide and those in
northern Atlantic is (beyond the obvious fact tihdlantic SST is one of the components
averaged into global temperature, and thus not teielp independent). While many of the
recent studies employed the (linearly detrended)QAMdex in the role of an independent
explanatory variable, arguments have been madas®rnof different forms of the index (see
Canty et al., 2013 and the references therein)uestipning the nature of AMO itself (e.qg.
Booth et al., 2012; Mann et al., 2014). In our gsigl focused rather on formal connections
in the data studied and mutual (in)consistencyasfous datasets, the issue of exact physical
nature and stability of AMO is not central. The mmp of AMOI is similar across individual

datasets; noticeable differences appear espeowadiycentral and eastern Eurasia.

PDO'’s influence pattern shows both positive andatieg connections, strongest in the
Pacific area (e.g. Deser et al., 2010), but witmeaignificant teleconnections extending to
more distant regions as well (including Africa otaBdinavia). PDO’s representation by
20CR s relatively close to that in the analysigetydata; differences appear especially over

parts of Africa (Figs. 5g, S50).

The relation between temperature and TPl manifeséssemi-regular pattern of alternating
positive and negative sectors over the southerar@acand nearby continents, though only in
the segments near South America and Australia eodiations test as statistically significant
(Figs. 5h, S5h). The 20CR-based response resemhigl@bservational pattern in shape, but is

generally stronger magnitude-wise.
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4.4 Delayed responses in local temperatures

The homogeneously timed predictors employed in.Se8tdo provide a robust basis for an
assessment of the superposition of their effectgdabally averaged temperature, but overlook
the possibility of geographically dependent delalys.reveal the characteristic patterns of
locally specific asynchronous responses to theaggbry variables, regression analysis of
local temperature was also carried out with indraildpredictors shifted in time iyt ranging
between —24 and +24 months. Figures 6 and 7 summendre outcomes by displaying the
strongest local temperature response detectedy aldh the correspondinft. Note that the
statistical significance thresholds have been tafed to account for the fact that the
strongest response within the —24 to +24 monthge@used. As a result, they are generally
higher (i.e., a stronger response is required tddmmed significant at the given significance
level) than in the setup with fixefit in Sect. 4.3. Only the three datasets with leassimg
values — GISTEMP, BERK and 20CR — were analyzetisicase.

For the GHG amount, the results exhibit little s@wisy within our time window, and the
magnitude of temperature responses is virtuallytidal to theAt = 0 setup, due to the
absence of short-term variations in the predicserses. Likewise, the strongest responses to
solar forcing are quite similar to the ones for pine-set delay of 1 month (Fig. 5b), while the
maximum seems to be rather randomly positioneduadnly reflecting the stochastic
components in the time series. For volcanism, evigm the variable time delay option, still
only a handful of gridpoints show significant respe and the pattern of time delays
associated with maximum-strength components doeshaov any distinct regularity.

The spatiotemporal variability of temperature regmto ENSO phase is well known (e.g.
Trenberth et al., 2002) and reflected in our ressak well: the occurrence of the strongest
temperature response leads SOI by a few monthiseireastern equatorial Pacific, whereas
largely concurrent variability is indicated for viesh Pacific. In the Indian Ocean, strongest
temperature response lags by a few months behinda8® delay of 6 to 8 months is

indicated around south-east Asia as well as inheont Australia. 20CR reproduces these
patterns quite well over the oceans, but noticediflerences appear for teleconnections over
land, most notably in less consistently expressgdd lto Africa and southern part of South

America.

The strongest statistically significant temperat@sponses to NAO are instantaneous in most

areas, or delayed by 1 month (mostly over norti#gtantic). The pattern detected from the
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observational datasets is reproduced quite weRGER, with the most notable exception
again being the breakdown of transcontinental t#leection over eastern Asia and
appearance of a link to southern Africa. The redsorhe temporal shift of NAO-attributed
signal in 20CR global temperature (Fig. 3) therefodoes not seem to be the
misrepresentation of timing of the local temperattgsponses. Rather, it can be traced to the
perturbed balance between the opposite-in-signoressgs from different regions (note
especially the overly negative contribution frontthern Africa). Though these deviations are
relatively small, they vary for differenAt, enough to alter the relatively weak globally

averaged signal and bring forth a spurious delaglobal response.

There is a distinct connection between the AMO xnaed local temperature in many regions
of the world even without a time shift (Fig. 5fytithe timing of the maximum strength of
this association varies distinctly within our *24omths testing range. Concurrence is
indicated in much of northern Atlantic, delay oft@5 months in the northern part of the
Indian Ocean and adjacent land, and around 4 tendlths in a large portion of western
equatorial Pacific. On the other hand, in the eastnd northern part of the Pacific,
temperatures at —12 to —6 months show the stromgestiation with AMOI, whereas delays
between -5 to —1 month are typical in much of Caraad northern US. Over oceans, 20CR
maintains the observation-based pattern with onhomdifferences. More distinctions appear
over land, especially in southern Asia. Similar debr is also indicated for PDO: Quite
realistic representation of the delayed responses aceans and areas adjacent to northern
Pacific by 20CR breaks down somewhat for more renfemid areas (most notably Africa),

though some of the teleconnections seem maintajoie well (Scandinavia).

Finally, in the case of TPI, the results indicabmaurrence of the oscillations or delay of 1
month for most locations with a statistically sifggant response. The pattern is reproduced
quite well by 20CR, though magnitude of the tempegvariations is somewhat exaggerated

again.

5 Discussion and conclusions

The primary objective of our analysis was twofdhistly, we aimed to provide a unified
outlook into the local temperature responses aatamtiwith activity of multiple climate-

forming agents, exogenous and endogenous, and dlyetlvey combine in pan-planetary
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temperature signals. While various past studiesadly dealt with a similar kind of statistical
attribution analysis, their scope was typically mméwcused, phenomenon- or region-wise, but
also regarding the temperature data source. Owndeobjective therefore consisted in
assessing the robustness of the attribution asalgsults among several commonly employed
representations of monthly temperature throughbet20th and early 21st century. To this
end, four observational temperature datasets ardre@analysis were studied through linear
regression, extracting components synchronized teithporal variability of eight predictors

representing external climate forcings and intevaaiability modes.

The basic correlation analysis in Sect. 4.1 revkdhe general geographical patterns of
temperature (mis)match among different observatiatzasets. Unsurprisingly, the best
agreement was found for regions with the best @merby measurements (most notably
Europe and eastern North America, where the Pearsoelations of monthly temperature
anomalies typically exceeded 0.9), leaving reldyiViétle room for uncertainty in the gridded
data. Regions with sparser observations, such taesiars of Africa or South America,
exhibited more disparity, provided that griddedadatere available at all for the given
location. Of even greater interest was the resemsbl®detween analysis-type datasets and the
20th Century Reanalysis (20CR): Since 20CR does direictly utilize the temperature
measurements over land, greater deviations froalityemay be expected, especially for the
continental areas. While the correlation analysieed indicated somewhat loosened relation
to the analysis-type data, the match was stilleggibod in most regions, with the poorest
agreement again found in Africa and South Ameridajor differences between the
temperature anomaly series were seldom observedooeans (the most notable exception
being the higher latitudes of the southern hemisgh&ince all the datasets (including 20CR)
employ sea surface temperature as inputs, tempesadwe tied more closely to the historical
trajectory of the climate system and eventual @stér can be largely ascribed to differences

among individual SST representations (assesseeéltail thy Yasunaka and Hanawa, 2011).

While the correlation analysis pointed out the dasitterns of differences between individual
datasets, the question remains how much these féeet the outcomes of the attribution
analysis. Match among the GHG-attributed tempegatbhanges was generally strong in most
locations, but certain smaller regions were hiditeg in 20CR where this trend-like
component diverged substantially from the analyygi® data. These local discrepancies,

previously pointed out by Compo et al. (2013), adsonewhat decrease magnitude of the

19



© 00 N O O A W N P

W W W W NN N DN NN DD DD DNMNDNDMDNP P PP PP
Ww N P O ©O 0O N OO O A W NP O O 0 N o 00 D W N L O

GHG-attributed component in the global land tempeeafor 20CR. Furthermore, when
drawing conclusions from the results presented,assential to consider the limitations of the
statistical approach to the attribution analysisrstFof all, even formally statistically
significant connections are not a proof of phyd$ycateaningful relations, as the regression
analysis only seeks formal similarities among theetseries, unable to verify causality of the
links. For the attribution of the temperature trertd GHGs, this is particularly critical.
Although the significance level is generally higit the GHG-related regression coefficients,
it would be such for any explanatory signal of $amistructure (including a plain linear
trend). While it is physically justified to asso@athe increase in GHGs with warming
tendencies, there are other potential anthropogenaing factors sharing similar temporal
evolution, yet intentionally omitted in our analysiSpecifically, various man-generated
aerosols can contribute to local warming (e.g. lolearbon) or cooling (e.g. sulfate aerosols)
(e.g. Skeie et al., 2011). In many areas, the teahpoogression of aerosol-related predictors
closely mimics that of GHG concentration (for imsta, the Pearson correlation between
GHG concentration and regional S@missions is over 0.5 in most of the world ancmft
exceeds 0.9 locally, based on the,®fata by Smith et al., 2011). Our GHG-based predict
should therefore be considered an approximate &@mplified) characterization of the
anthropogenic forcing in general, rather than efeghouse gasses alone. Note also that very
similar values of temperature response would haen lobtained for a predictor representing
total global anthropogenic forcing rather than GH&ene, due to very high temporal
correlation of the respective series (exceedin@ @er our analysis period when using the
forcing data by Meinshausen et al., 2011) and dubéd fact that the responses are scaled by
the end-to-end increase in the predictor serieg.hgaturally, this near-invariance in the
given statistical setup should not be interprete@guivalence of the respective forcings in a
physical sense. A more accurate view of the issuddcperhaps be gained by an analysis
employing local-specific descriptors of anthropageactivity, but the challenges attached
(such as high collinearity of the anthropogenidp®rs, limiting the ability of the regression
mappings to distinguish among their effects) makshdask less suitable for approaching by
purely statistical means. General circulation medehy represent a more suitable tool for
capturing the related links, even though the assediuncertainties are still substantial (e.g.
IPCC, 2013, Ch. 9). This also applies to the evalnaof other complex aspects of the
climate system dynamics, such as effects of long-tenemory or climatic feedbacks,

intentionally omitted in our simplified regressibased analytical frame.
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Of the natural forcings, the imprints of solar aityi seem to be represented in quite a similar
manner by all the datasets studied, including 2003#. component attributed to variations of
solar irradiance (involving both the 11-year cyatel longer-term variability) was quite weak,
in most individual regions as well as in globallyeeaged temperature. These results are
largely consistent with previous assessments ofrtipacts of solar activity on temperature
(e.g. Lockwood, 2012; Gray et al., 2013). Stille tpatial patterns of solar influence exhibit
some degree of temporal stability, suggesting évan though the fingerprints detected do
largely not test as statistically significant, theye not just an artifact of stochastic

components in the temperature series.

An interesting contrast between the results fobglly averaged temperature series and for
their local counterparts was found in the casehef affects of volcanic activity. The well-
known near-surface cooling following major volcamiaptions was clear in all versions of
globally averaged observed temperature, but a mratbmplex pattern emerged from the
gridded temperature data. Post-eruption warming imdcated in several regions. There
might be dynamical reasons for such behavior (®tgnchikov et al., 2006; Driscoll et al.,
2012), but the structures detected were quite amobig; exhibiting both poor temporal
stability and low statistical significance (an urtaety partly ascribable to distinctiveness of
individual volcanic events and their relativelydfrperiods of effect within the time frame of
our analysis). Furthermore, aliasing of volcanid &NSO activity (with major late-20th
century eruptions coinciding with El Nifio phase€£dfSO) also needs to be considered when
attributing the volcanic activity, as well as thespibility of its influence on the AMO phase
(Knudsen et al., 2014). Interpretational pitfalisde, there was a strong agreement between
the observational datasets in their representatfaime volcanism-attributed spatial pattern.
20CR data showed tendency toward more positive ¢esitgre anomalies in several regions,

resulting also in a more neutral response to vadcain the globally averaged 20CR data.

The temperature variability patterns related todlmate oscillations considered (SO, NAO,
AMO, PDO, TPI) were generally captured similarly ingdividual datasets. This also applies
to 20CR for the most part, though there seem tednee break-downs in the representation of
trans-continental and trans-oceanic teleconneciionise reanalysis data, most noticeable in
the influence of NAO over eastern Asia, AMO overthern parts of Eurasia or weakened
links to SO and PDO in parts of Africa. One mighésulate that this distinction is rooted in

the specific behavior of the reanalysis engingpdisig the complex structure of atmospheric
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bridges propagating the teleconnections. Howevenraealistic representation of the long-
distance links by the 20CR cannot be blamed auioailgt Note that the differences detected
are generally more prominent in the first half lné analysis period, and less striking (though
still noticeable) during the later half-period (F&6). The reanalysis may thus simply struggle
to recreate the observed patterns in regions wtherassimilable data are rare and relatively
unreliable, just as the procedures generating nhéysis-type gridded data are burdened with
increased errors when faced with lack of reliabjeuts. Neither of these data sources can thus
be considered automatically superior and increastedtion to the effects of data uncertainty
is needed when investigating climate variability iegions and periods with limited
observations. Keeping these limitations and speiin mind, the 20th Century Reanalysis
seems to provide a satisfactory approximation efghst temperatures during the 20th and
early 21st century, and thus a suitable tool fodigts concerned with validity of climate

simulations.

Potential pitfalls related to the attribution ofreerature changes to trend-like predictors were
already discussed above, but even interpretatioth@fcomponents associated with faster
variable explanatory factors needs to be done wélition. Some of the internal climate
oscillatory modes are interconnected, and thepeetve indices partly collinear. Variability
assigned to a certain predictor does therefore@ed to originate from the respective forcing
factor alone — for instance, the relationship betw8O/ENSO and PDO implies that effects
of the variability modes in the Pacific area canbetentirely separated, on neither physical
nor statistical level. The issue of interdependpredictors is not limited to pair-wise
relationships: It has been shown that various tditya modes in the climate system are
intertwined in quite complex networks, with nonialv time-delayed relations among
oscillations in different regions (e.g. Wyatt et &012). Intricacy of such structures becomes
even more apparent when generalized links areestudinrestricted to just the conventional
variability modes (e.g. Hlinka et al., 2013, 201Hhp,

Caution is also needed when interpreting the ouésoaf the tests of statistical significance.
The AR(1) model of residual autocorrelations, asstithere when assessing significance of
predictors’ connections to the gridded temperatupeevides basic approximation of the
short-term persistence. Often, such approach seaffisient, especially over land where the
residual autocorrelations generally rapidly apphoaero. In other cases (particularly for

tropical oceans and global averages encompassinganmc areas), longer-term
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autocorrelations of various shapes appear in teeluals. Their presence is indicative of
unaccounted-for components in the data, long-terremary and/or presence of
inhomogeneities, potentially infesting temperatamalyses and reanalyses alike (e.g. Cowtan
and Way, 2014; Ferguson and Villarini, 2014). TatHar assess the validity of our
significance tests, bootstrap-based estimates atistital significance for the gridded
temperature data were also implemented, usingiablassized moving block, reflecting the
magnitude of residual autocorrelation (Politis aitiite, 2004; Bravo and Godfrey, 2012).
Little difference in the regression outcomes wamtbcompared to the other test designs in
this paper. Artifacts of annual cycle were als@®oftound in the residuals, traceable (at least
in part) to non-stationary representation of thasseal variations (Foster and Rahmstorf,
2011). A treatment by inclusion of components appnating the 12-month periodicity
among the predictors was attempted, but resultedoimmajor changes to the regression

coefficients or their significance.

Another important aspect shaping the outcomes efréigression mappings is the choice of
the explanatory variables. Most of the predictgopli@d here exist in alternative variants,
differing in their definition or method of (re)cansction. A sizable discussion could be
devoted to the specifics of each of them. Whiledige not study this issue in such a depth,
partial experiments were carried out to assessddgree of variability of the analysis

outcomes if alternative predictors were used. Fnsbustness of the imprints of volcanic
forcing was assessed, with GISS aerosol opticathdépato et al., 1993) substituted with
Crowley and Unterman’s (2013) data. The resultitginge to the global temperature
response and the corresponding spatial fingerpormaged to be minor, generally smaller than
uncertainties associated with the regression aefiis themselves. Use of hemisphere-
specific volcanic aerosol amounts instead of tlgbibal representation also induced just

minor changes to the respective response patterns.

Of the multiple definitions of the indices charamg the climatic oscillations studied, we
prioritized the forms not directly involving tempguare itself, to avoid explicit contribution of
the temperature signal to the explanatory varialdlas was not a problem for NAO and TPI,
as their descriptors are derived from the baricradtaristics. In the case of ENSO, the
pressure-based SOI was preferred over the SST-d&D indices or multivariate ENSO
index. On the other hand, the usual forms of AM@d DOI are calculated from areal SSTs,

and thus likely interrelated with the temperatuignals. For PDOI, which exhibits

23



© 00 N O O o W N P

W W W W NN N DN NN DD DD DNMNDNDMDN P P PP PP PP
Ww N P O ©O 0N OO O A W NP O O 0 N O O M W N L O

comparatively weaker correlation with globally eaged temperatures (at least partly due to
the fact that PDOI is, by its definition, detrendey global sea-surface temperature), this
iIssue seems less serious. However, it is still hvantle to see how much the outcomes
change from employing another version of the indgsge of the PDO index from JISAO

(http://research.jisao.washington.edu/pdo/PDO.[ptessulted in generally weaker PDO

imprint in global temperature (though still largekgthin the confidence intervals shown in
Fig. 4), but nonetheless very similar spatial resgopattern (with the relatively strongest
distinction being somewhat stronger negative limkranorthern China). In the case of AMO,
the issue of predictor selection and interpretatbrits effects is more critical. Our AMO
index of choice (linearly detrended, as per thevgent definition by Enfield et al., 2001)
seems to be formally associated with rather st@orgponent in global temperature, as well
as in local temperatures in various regions actiesgylobe. While this may indeed suggest
existence of trans-planetary teleconnections inaglVAMO-related variability, there is a
danger in overly formalistic interpretation of tpatterns detected. Firstly, several definitions
of AMO index exist, embodying different views ofetiphenomenon (see, e.g., Canty et al.,
2013). Use of a differently defined AMOI affects gn#ude of the temperature response
detected, and potentially also strength of comptsngad to other predictors, including the
volcanic activity or the long-term trends (Cantyatt, 2013; van der Werf and Dolman,
2014). Some of our tests were therefore repeated¥tOI series based on detrending the
north Atlantic SST by global anthropogenic forcipgpposed by Canty et al. (2013) to limit
the aliasing of anthropogenic long-term temperatiead and AMOI. Little impact on the
outcomes of the attribution analysis resulted fremeh change. Greater differences would
likely arise from application of AMOI detrended byean sea surface temperature (Trenberth
and Shea, 2006) or global mean temperature (vaenBtitgh et al., 2009), although it has
been argued that such method of detrending rempassof the target signal (Canty et al.,
2013). Secondly, the associations revealed do mettty provide a conclusion to the still
disputed question of the existence and stabilitABIO as natural oscillatory phenomenon.
The AMOI-related patterns have exhibited relativeipng resemblance between the first and
second half of the analysis period, especially dher oceanic areas. This suggests a fair
degree of stability of the relations between ndttlantic SST and local temperature in more
distant areas, but does not confirm stationaritARfO as such. It should also be considered
that the 55-year-long subperiods do encompasghessone cycle of the approximately 70-

year-long supposed main cycle of AMO, and thatréiations detected are in large part due
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to synchronization of shorter-term variability invVMOl and temperature. Finally, attribution
of temperature components to AMOI may also be paspurious due to aliasing with
explanatory factors omitted in our analysis setlp.particular, changes in amounts of
anthropogenic aerosols have been suggested assa t@mutemperature variations in the
northern Atlantic (Booth et al., 2012), though theisponsibility for the bulk of multidecadal
variability has been consequently disputed (Zharag.e2013). Possible forcing of AMO by
combined natural forcings (volcanic and solar) &s® been shown (Knudsen et al., 2014),
while Ting et al. (2014) suggested AMO to be a pradbf natural multidecadal variability
and anthropogenic forcing. Altogether, the questdnAMO’s nature and degree of its

influence, both global and local, remains still ope

Finally, it should be accentuated once again tatgsue of attribution of climate variability
cannot be completely resolved by statistical apgroalone. Statistical solutions to this
multifaceted problem therefore need to be constlatengside the GCM-based simulations,
conceptually more universal than purely statistiepproaches, yet still only partially
successful in completely reproducing the obsereedlfes of the climate system (IPCC 2013,
Ch. 9). Our results here hope to contribute to reutefforts in this field: By showing the
character and variability of temperature componémsally attributable to various forcings
across several datasets, their robustness (orti@ckof) was illustrated, providing a picture
of the respective fingerprints, as well as suppaitlelines for the use of the respective data

in validation of the climate models.
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GHG Solar Volc. SOl NAOI AMOI PDOI TPI

GHG 0.37 0.10 -0.07 -0.08 0.22 0.07 0.06
Solar 0.37 0.01 -0.01 0.02 0.16 0.05 -0.01
Volc. 0.11 -0.02 -0.17 0.08 -0.27 0.15 -0.01
SOl -0.08 -0.01 -0.12 -0.01 0.00 -0.37 -0.02
NAOI -0.08 0.02 0.06 0.00 -0.15 -0.04 -0.04
AMOI 0.22 0.16 -0.30 -0.07 -0.15 0.01 0.00
PDOI 0.07 0.05 0.19 -0.39 -0.04 0.01 0.00
TPI 0.06 -0.01 0.00 0.00 -0.04 0.00 0.00

VIF 1.26 1.18 1.19 1.20 1.04 1.22 1.22 1.00

© 00 N OO O &~ WODN

Table 1. Pearson correlation coefficient betweeies®f individual predictors (Fig. 1) in the
1901-2010 period. The upper-right segment of thé&rixnaontains values for the original
concurrent series, the lower-left segment valuesheir time-shifted versions (as specified in
Fig. 4's caption). The bottom-most row shows valokthe variance inflation factor (VIF) for
individual time-shifted predictors, calculated a§13R?), where R? is the coefficient of
determination obtained from regression of the giegplanatory variable on the rest of the
predictors. See Table S1 in the Supplement foretations over the sub-periods 1901-1955

[ERN
o

[EEN
=

and 1956-2010.

34



© 00 N O O A W N P

£F 480 > E 1368 5
9 a,
22 4
58 440 %,? 1367
2= 400 o e E
S . ¢ E 1366
3¢ ] £
c‘;w 320 § = 1365 4
S [
O o 280 v T r T v T v T v T v w1364 v T v T v T v T v T v
1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
= ¢ 016 6
2% I3 d
8 & 042 4 ) aJd
T - 2 4
55 %08 3 o
82 004 v
28 NS <]
0-00 ¥ T T T T T 4+ T T T T T T T T T T T
1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
8 0.8
e) f)
_ 4 ~ 04
o
2 0 4 | S 00 |
z
4+ < 94
8 T T T T T T 0.8

0.0 4
4.0 4

PDOI
A b o N
[ |
%‘-
TPI
> @
o o
1
1

T T T T T T T 8.0 T T T
1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000

Figure 1. Time series of the explanatory varial@egployed in the attribution analysis. Bars
to the right of individual panels illustrate theegselected characteristic variations of the
predictors, used for calculation of the temperattggponses: increase of g€quivalent
GHG concentration between 1901 and 2010 (+141 pprojease of solar irradiance by 1
Wm? Mt. Pinatubo-sized volcanic eruption (aerosolicatdepth +0.15); increase of SOlI,
NAOI, AMOI, PDOI and TPI by four times the standattdviation of the respective time

series. Thicker, darker lines represent 13-monthingoaverage of the series.
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Figure 2. Pair-wise Pearson correlation coeffidgebetween local monthly temperature
anomaly series from different datasets for the 32010 period. See Fig. S1 in the
Supplement for correlations during the 1901-1955 ¥366—2010 sub-periods.
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Figure 3. Temperature responses (°C) to charatteviriations of the explanatory variables
(specified in Fig. 1), obtained by multiple linel@gression carried out with one predictor

shifted in time byAt, while keeping the others At = 0.
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Figure 4. Regression-estimated responses (°Cobfagl(blue) or global land (green) monthly
temperature anomalies to pre-selected charactenstiiations of individual explanatory

variables (specified in Fig. 1). Time shift of +lonth (predictor leading temperature) was
applied for solar irradiance, +7 months for volcaaérosol amount, +2 months for SOI. The
boxes illustrate the 99% confidence intervals, wWaked by moving-block bootstrap (12-

month block size). The 20CR-based results are sHomthe series averaged over the 60°S to
75°N area. Obtained for the 1901-2010 period; sgs. 52 and S3 in the Supplement for
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results over the 1901-1955 and 1956-2010 sub-periéty. S4 for visualization of

individual temperature series and their regresb@ased fits.
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Figure 5. Geographic patterns of regression-estichabntributions to local temperature (°C)
from pre-selected characteristic changes of thdaespory variables (specified in Fig. 1).
Time shift of +1 month (predictor leading temperajuwas applied for solar irradiance, +7
months for volcanic aerosol amount, +2 months fOi.SAreas with response statistically
significant at the 99% level are highlighted bydhatg. See Fig. S5 for results including the
MLOST and HadCRUT4 datasets and Fig. S6 for resws the 1901-1955 and 1956—-2010
sub-periods.

39



o O~ W N P

GISTEMP BERK 20th Century Reanalysis

=

Solar activity

&
2

o

e
Volc. activity

L L L L s y A
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150°E

Delay: [ N DN DN D e N N .
(month)  [-24,-19] [18,-15] [-14,11] [-10,8] [-7,-6] [-54] 3 2 E1 0 +1 +2 43 [+4,45] [+6,47] [+8,+10] [+11,+14] [+15,+18] [+19,+24]

Figure 6. Geographic distribution of the prediadifiset timeAt for which the strongest local
temperature response was detected, within the *8dthmrange. Positive values dft
correspond to setups with predictor leading tentpega only grid points with response
statistically significant at the 99% level are simoBee Fig. 7 for the corresponding values of

the temperature response.
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Figure 7. Geographic distribution of the strongestperature response (°C) to individual
explanatory variables within the 24 month rangethe# temporal offset of the predictor.
Areas with the response statistically significartha 99% level are highlighted by hatching.
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