Reply to the editorial comment from Michel Crucifix
By Martin Rypdal and Kristoffer Rypdal

The comments of Michel Crucifix is written in blue color and our replies are in
black.

[ received the two reports of the referees.

Peter Ditlevsen advices publication, though observes than "it would have been
useful if some of the points that [he] raised in [his] previous review were
addressed in the revision rather than in the separate response from authors to
reviewer.". Shaun Lovejoy still has extensive comments and argues against your
rejection of multifractality.

The article will no longer be sent to these two reviewers, and I am in principle
willing to lean towards acceptance, but on the other hand I cannot proceed
without further assurances. Let me summarise how I view the situation:

(a) Multi-fractality vs mono-fractality

On the one hand, you show that the tau(q) 'looks' linear; and on the other hand,
Lovejoy says that if you try to fit a higher order polynomial, it will do a little bit
better. This leaves me to wonder to what extent either you, or Lovejoy, actually
perform a proper model selection test between mono-fractality and multi-
fractality. This state of affairs presents two options for resolution:

(1) either your offer a model selection test to the readers (this may require
extensive work)

(2) either you somehow find the argument to say that it looks linear enough to,
at least, give support to the validity of your interpretation. In other words, does it
really matter to have multi- or mono-fractality?

We agree that a model selection test for multifractality would be interesting, and
in fact, such a test will be presented in a forthcoming paper. However, it is not
the linearity of the scaling function should be tested in this case. In fact, if we
look at the insets of Fig. 4, it makes no sense to fit a higher-order polynomial to
the scaling functions. Such a correction would be undetectable in the plot, and it
is obvious that a linear function cannot be rejected by the data. What makes
Lovejoy’s comments on this point even less meaningful is that he does not
question the linearity of the structure functions (in double-logarithmic plots).
The relevant question for these data is not if the scaling function is linear of
concave, but if the structure functions are sufficiently well described by power-
laws that the scaling function has any meaning.

Systematic testing of the scaling of the structure functions is an involved task
and probably not suitable for this journal. However, the second order analysis at



the core of this paper is valid independently of the results of such as test.

(b) definition of tau(q) and of beta

[ believe you should somehow use the opportunity of the paper to clarify the
different definitions. You answered Ditlevsen to his satisfaction but the elements
of answer do not appear in the final version of the manuscript. Lovejoy further
argues about the confusion produced by the coexistence of different definitions
of tau(q).

We have change the use of tau(q) to eta(q). There should no longer exist any
reason for confusion. The normalization of the wavelet transform varies a lot in
the literature, and our convention is just as standard as the one used by Lovejoy
and Schertzer. Actually, it is useful for us to have a convention that does not
return a scaling exponent equal to zero for the second moment analysis when
beta is close to one.

[ would appreciate at least an informal reply to these two aspects (with a
discussion of implications on the manuscript). I reserve at this stage the
possibility of discussing matters with the chief editor and/or to involve a third
reviewer even if we probably all agree that we want to proceed swiftly enough.

Sincerely yours,

Michel Crucifix



Reply to the second report from Shaun Lovejoy
By Martin Rypdal and Kristoffer Rypdal

First paragraph

Our revised paper addresses in full the issue of multifractality and how the
existing literature fails in distinguishing between multifractal processes and non-
Gaussian Levy processes (possibly with long memory introduced throu a
memory kernel). We also demonstrate that the 1/f notion is NOT "archaic” due to
the particular role of the second moment.

Second paragraph

We are not assuming a priori that the bursts (or jumps) are not symptoms of
intermittency. The a priori assumptions is what is done in Lovejoy’s work, where
the modelling framework implicitly assumes the existence of a multifractal
cascade. What we do in the main part of the paper is to acknowledge the
existence of the bursts, without attemting to restrict them to a particular
statistical model. This is reasonble to do, since they are so few that it will be very
difficult to select between different models based on the avaliable burst
statistics. Note for instance, Ditlevsen’s work on the periodicity of DO events.
Most paleoclimatologists acknowledge that there is such a periodicity (which
would be inconsistent with mulifractality), but is seems difficult to reject the null
hypothesis that such a periodicity does not exist.

In the second revision we include material which demonstrates that non-
Gaussian processes, like a jump-diffusion process, will be interpreted as
multifractal if the analysis does not carefully consider how the scaling of the
various moments change from short to long time scales. The trace moment
analysis of Lovejoy and Schertzer assumes the existence of an "outer scale” and
computes curved scaling functions and intermittency parameters for
synthetically generated processes which are known not to be multifractal.

In our paper we analyse both data for which the jumps are excluded as well as
the full time series where they are included. The former turn out to be
monofractal; not because we are "convinced” that they are, but because this is
what the analysis gives. It exhibits a scale break in the structure functions at
millennium scale for the GRIP data. This scale break is the result of the DO jumps
and actually demonstrates the existence of a periodicity in these events. This
scale break signifies that the process is not multifractal, since a multifractal
process exhibits stricty scaling moments. On the other hand, such a scale break is
typical for a non-fractal jump process, as we demonstrate in Figures 5 and 6 in
the second revision. On the other hand, if one adopts the idea that there may be
different multifractal scaling in the two scaling regimes, the results displayed in
the inset of Figure 4k show that the scaling in these two regimes are mono-
scaling, but with different beta-exponents.



Third paragraph

Our paper now in full ackowledges that an "alternative hypothesis” on the DO
events exist. The problem is rather that the reviewer does not realize that all
burstiness (or intermittency) is not multifractal, and that the key to select
between multifractal and other models is to examine whether there is a change
in the scaling of the structure functions from the short time scales where
distributions are leptokurtic to the long time scales, where they are Gaussian. If
such a scale break exists, a bell should ring! The characterisation of our analysis
as "handwaving” is highly inappropriate.

Fourth paragraph

This paragraph contains characterisations without scientific content. Again,
there is no "monofractal restriction,” in our approach, or any "quasi-Gaussian”
assumption. These are just unjustified and empty allegations based on the
misconception that there does not exist non-Gaussian processes that are not
multifractal.

Fifth, enumerated paragraph on notations

Lovejoy and Schertzer have introduced their own standards and notations,
which Lovejoy requires everyone else to adopt. Our concepts and notations are
mainly adopted from the literature on stochastic processes. For those who are
able to read, the definitions should be clear and there should be no source of
confusion. Many of the definitions of Lovejoy are adopted from the turbulence
literature, which we think is unfortunate, because it locks the framework to a
turbulent cascade paradigm. The last sentence in the long, enumerated
paragraph illustrates the core of the issue:

"Unfortunately all that science and statistics can do is to put empirical bounds on
degree of concavity, i.e., on the degree of multifractality.”

We agree that it is important to put bounds (error bars), but these cannot be set
just by the data in a single time series. One has to test a mulifractal statistical
model against alternative models. If the structure functions and scaling functions
computed from the data are within the bounds computed from ensembles of
realisations of an alternative model, there is no empirical reason to prefer the
multifractal model. According to Lovejoy there is multifractality everywhere, just
in different degree. Locked to this paradigm, multifractality becomes an empty
and uninteresting concept. What can multifractality explain if everything is
multifractal?

Lovejoy also writes:

“...the entire section 2.4 falls down precisely because it is based on the
unsubstantiated claim that an empirical set of points can be proven to be exactly
linear, i.e. that one can reject the hypothesis that on the contrary that they lie on
a concave curve.”



If we were to follow this thinking, then we should reject a monofractal model on
the grounds that a multifractal model cannot be rejected. This would be an
inappropriate procedure for model selection, since a generalized model would
always be preferred to a simpler one. Another problem with this statement is
that it refers to the scaling function, which is not actually defined unless the
double-logarithmic plots of the structure functions are linear. To even have a
meaningful use of the term multifractal, one must therefore argue for the
linearity of these curves. Lovejoy suggests that we should accept the linearity of
the structure functions (in double-logarithmic plots) but reject the linearity of
the scaling function. From the results presented in Fig. 4 we think this is very,
very unreasonable. The improvement of a higher-order polynomial fit to the
scaling functions in the insets will be undetectable in the plots, while lack of
linearity of the structure functions is obvious.

The last paragraph; Section 2.4: the empirical analyses

The first part of this paragraph blames our results on "our modified structure
functions.” Our structure functions are essentially the same as those used by
Lovejoy, with the only difference that adds a slope q/2 to each structure function
in the log-log plot. We haven’t used the trace moment analysis of Schertzer and
Lovejoy, because it conceals the scaling on the long time scales and imposes an
extra constraint on the computation of the scaling function. This constraint is
that all straight-line fits to the trace moments are required to converge in the
same point corresponding to a hypothesized outer scale. It is not our method
(which is quite standard in the stochastic processes literature) that is "too blunt
to detect multifractality.” It is the constraints imposed by the assumption that
the process can be modeled as a multifractal that in many cases causes spurious
detection of multifractality!

The last sentence states that a zoom-in on our Figure 4 will show that the results
are fully compatible previous multifractal claims, and the reviewer cleverly
draws a red frame around the actual figure. But unfortunately he does not reveal
to us the great secret that is revealed by the magnifying glass. It is of course
comforting that he will do so in a pedagogical way to his students, but it is not a
very helpful and respectful way of practicing peer review.
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Abstract. In order to have a scaling description of the climate system that is not inherently non-
stationary, the rapid shifts between stadials and interstadials during the last glaciation (the Dansgaard-
Oeschger events) cannot be included in the scaling law. The same is true for the shifts between the
glacial and interglacial states in the quaternary climate. When these events are omitted from a scaling
analysis the climate noise is consistent with a 1/f law on time scales from months to 10° years. If
the records analysed include the shift events, the effect is to create a break the scaling from a 1/ f
lawtoal/f # law, with 1 < 8 < 2. No evidence of multifractal intermittency has been found in any
of the temperature records investigated, and the events are not a natural consequence of multifractal

scaling.

1 Introduction

The temporal variations in Earth’s surface temperature are well described as scaling on an extended
range of time scales. In this parsimonious characterisation, a parameter 5 describes how the fluctua-
tion levels on the different time scales are related to each other. The -parameter can be defined via

the scaling of the spectral density function of the signal by the relation

S =TI ~ 177, (1

where T(f) is the Fourier transform of the time record 7'() and (...) denotes an ensemble average.
An alternative is to measure the range of the variability on the longest time scales within a time

window of length At by

9 t+At/2 9 t+At
Ta()=|5; D T —%; ()], o)
i=t i=t+At/2

and to define 3 via the following relation (?):
(ITac()?) ~ AtPL. 3)

In this description, the temperature fluctuations would decrease with scale if 5 < 1, implying that

the climate fluctuations become less prominent as we consider longer time scales, a picture which
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is somewhat different from the rich long-range variability indicated by proxy reconstructions of past
climate. On the other hand, a value 8 > 0 would imply that variability increases with scale, a property
that (if it were valid on a large range of time scales) would lead to levels of temperature variability
inconsistent with reality. It is therefore a natural a priori working hypothesis, that Earth’s typical
temperature fluctuations, the climate noise, is characterised by 5 ~ 1. Such a process is called a 1/ f
noise.

The 1/ f description of Earth’s temperature is of course an idealised model. The reality is that the
climate system consists of many components that respond to perturbations on different characteris-
tic time scales, and the temperature signal can be seen as an aggregation of signals with different
time-scale characteristics. Since it is difficult to recognise pronounced time scales in the tempera-
ture records, a scaling description is both convenient and accurate. However, we are aware that the
scaling is not perfect, and that there are structures in the climate system that deviate from the scaling
law. One example is the El Nifio Southern Oscillation (ENSO), which places larger fluctuations on
the times scales of a few years than what can be expected from a scaling model. Other examples are
the Dansgaard-Oeschger (DO) cycles in the Greenland climate during the last glacial period, encom-
passing repeated and rapids shifts between a cold stadial state and a much warmer interstadial state.
The result of this phenomenon is that the glacial climate in Greenland has much larger millennial-
scale fluctuations than what can expected from a 1/f description. However, as we demonstrate in
this paper, the temperature variations of both the stadial and interstadial climate states fit well with
the 1/ f-scaling, telling us that the deviation from 1/ f scaling in the glacial climate arise from these
regime shifting events. As we go to even longer time scales, we also observe anomalous fluctuation
levels on time scales from 10% to 10° years that can be identified with the shifting between glacial
and interglacial conditions.

One could argue that the DO cycles and the glaciation cycles are intrinsic to the climate system and
should not be treated as special events, and their variations should be reflected in a scaling description
of the climate. This idea was forwarded by ?, elaborated in many later papers, and expanded to time
scales up to almost a Gyr in ?. Here several scaling regimes are proposed, including a “break” in the
scaling law with an exponent /3 = 1.8 on time scales longer than a century. A scaling model invoking
two scaling regimes can account for the millennial-scale temperature fluctuations that are produced
by the DO cycles, which are anomalous with respect to a 1/ f model. However, the estimated scaling
exponent will depend on the average “density” of DO events in the ice-core record used for the
estimate, and since the events are not uniformly distributed over time, there is no uniquely defined
scaling exponent for the last glacial period. Moreover, the scaling law would not be useful as a
climate-noise model to use as a null hypothesis for determining the significance of particular trends
and events, such as the anthropogenic warming over the last centuries.

The main message of this paper is that the 1/ f noise characterisation of the temporal fluctuations

in global mean surface temperature is very robust. It is an accurate description for the Holocene
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climate, but it is also valid under both stadial and interstadial conditions during glaciations, and
during both glacial and interglacial conditions in the quaternary climate. The 1/f character of the
climate noise provides us with robust estimates of future natural climate variability, even in present
state of global warming. Such an estimate would of course be invalidated by a future regime shift
(a tipping point) to a warmer climate state provoked by anthropogenic forcing. A future observed
change in the 1/ f character of the noise could therefore be taken as an early warning signal for such

a shift.

2 Data, methods and results

The analysis in this work is based on four data sets for temperature fluctations: the HadCRUT4
monthly global mean surface temperature (?) in the period 1880-2011 CE (Common Era), the
Moberg Northern Hemisphere reconstruction for annual mean temperatures in the years 1-1978 CE
(?), as well as temperature reconstructions from the North Greenland Ice Core Project (NGRIP) (?)
and the European Project for Ice Coring in Antarctica (EPICA) (?). For the NGRIP ice core we have
used 20-yr means of §'30 going back 60 kyr. For the EPICA ice core we have temperature recon-
structions going back over 300 kyr, but the data is sampled at uneven time intervals and the time
between subsequent data points becomes very large as we go back more than 200 kyr. In addition
we have used annual data for radiative forcing in the time period 1880-2011 CE (?) to remove the

anthropogenic component in HadCRUT4 data. Plots of all four data records are shown in Fig. 1.
2.1 Global versus local scaling

On the face of it, it is difficult to discern scaling laws for the climate noise on time scales longer than
millennia, since we do not have high-resolution global (or hemispheric) temperature reconstructions
for time periods longer than two kyr. The ice core data available only allow us to reconstruct tem-
peratures locally in Greenland and Antartica, and we know from the instrumental record that local
and regional continental temperatures scale differently from the global mean surface temperatures
on time scales shorter than millennial. The differences we find are that local temperature scaling
exponents §; are smaller than global temperature exponents 3,, and that the ocean temperatures
scale with higher exponents than land temperatures. Since there are strong spatial correlations in the
climate system, it is possible that all local temperatures are scaling with a lower exponent than the
global. In (?) this phenomenon is illustrated in an explicit stochastic spatio-temporal model. In this
model, which is fitted to observational instrumental data, we find the relationship 3, = 2/3;. This
relationship is derived under the highly inaccurate assumption that all local temperatures scale with
the same exponent, but it is still a useful approximation in the following, where we will argue that
we can use local and regional temperature records to discern the scaling of the global mean sur-

face temperature on time scales of 10 kyr and longer. We do this by showing that the assumption
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that 3,/6; > 1 is valid on very long times scales leads to the impossible result that the variance of
global averages becomes larger than the mean variance of local averages. Thus we conclude that (;
converges to 3, on sufficiently long time scale, and we estimate an upper limit for that time scale.
Let us denote by o, and oy the standard deviations of the global surface temperature and a local
temperature respectively, on a monthly time scale. From Eq. (??) it follows that the ratio between

the variances for the global and local temperatures at time scale At is

g\ 2 At\Ba—hi
=G ()
o] T
where 7 = 1 month. Unless we expect global temperatures to have larger variations than the local
temperature at time scale At (the global temperature can not have a larger standard deviation than

the average standard deviation of the local temperatures) we must have p > 1, or equivalently,
At < T(ﬂ)Z/(ﬁg—ﬁz) '
Oy

On the time scale of months, the fluctuation levels of local continental temperatures is about two
orders of magnitude larger than the fluctuation level for the global mean temperature. If we also use
By =1 and §; = 1/2 we obtain the condition At < 10° months ~ 10 kyr, i.e., on time scales longer
than 10 kyr the ratio 84//3; can no longer be larger than unity. A similar estimate can be obtained
from the NGRIP ice core data. In the Holocene the 20-yr resolution temperature reconstructions from
Greenland has a standard deviation which is about five times greater than the 20-yr moving average
of the Moberg reconstruction for the Northern hemisphere. Applying the same argument restricts
the time scale for which Greenland scaling exponent is smaller than the global scaling exponent to

approximately 10 kyr.
Based on the reasoning above, we expect scaling of the ice core data to be similar to the global
scaling on sufficiently long time scales. In the remainder of this paper we demonstrate that the scaling
in the ice core data on time scales up to hundreds of kyr is similar to the 1/ f scaling we observe in

global temperature up to a few millennia. This suggests that the 1/ f scaling on very long time scales

in ice core data is a reflection of the scaling in global temperatures on these scales.
2.2 Methods for estimation of scaling

We use two methods to analyse the scaling of temperature records. The first is a simple periodogram
estimation of the spectral power density S(f). This estimator can also be applied to data with uneven
time sampling using the Lomb-Scargle method (?). The other method is to take the wavelet transform

of the temperature data:

walt) = = [0 (5 ) i @

and construct the mean square of the wavelet coefficients; the wavelet variance. This is a standard

technique for estimating the scaling exponent ( (?), and it is known that

(IWae(t)]?) ~ ALP. (5)
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‘We choose to use the so-called Haar wavelet

1 tel0,1/2)
Yt)=4-1 tel1/2,1),

0 otherwise

and the integral in Eq. (??) is computed as a sum. With this wavelet we have the relation
Wae(t) =Tar(t)V AL, (6)

between the wavelet transform and the Haar fluctuation of Eq. (??). The power spectral density
and the wavelet variance are equivalent representations of the second order statistics of the time
record, one in frequency domain and the other in time domain, and Eqgs. (??) and (??) show that
they are characterised by the same exponent 3 if there is scaling of the second moment. By the
Wiener-Khinchin theorem, these second-order moments are also equivalent to the autocorrelation
function. Hence, scaling in the second-order statistics plays a special rdle, irrespective of the scaling
or non-scaling of other moments.

The wavelet variance method can be adapted to the case of unevenly sampled data using the
method described in ?. In the present work, we obtain very similar results using the periodogram
and the wavelet variance estimators. Claims have been made that higher-order statistics in the form
of a multifractal characterisation is an essential part of the statistical description of these data (e.g.,
?, Chapter 11). For this reason we include a brief analysis of higher moments of the data in Sect. 2.4,

and discuss their significance in Sect. 2.5.
2.3 Results of second-order analysis

In Fig. ?? we show the wavelet fluctuation (|[W (¢, At)|?) estimated for two different segments of
the NGRIP data. Both time series have the same number of data points and both represent time
intervals of 8500 years. The differences between the two time series is that one contains DO cycles,
whereas the other does not. The estimated wavelet fluctuations and the spectral density scale very
differently for the two time series, and this motivates us to separate stadial and interstadial conditions
when we analyse the scaling in NGRIP data. This separation is shown in Fig. ??(a), where the red
curve represents the 5'80 concentration in interstadial periods and the blue curve represents the
5'80 concentration in stadial periods. We have followed ? in defining the dates for the onsets of
the interstadials and we have defined the start dates for the stadial periods to be just after the rapid
temperature decrease that typically follows the slow cooling in the interstadial periods. In Fig. ??
we show the spectral density function and the wavelet scaling function for the stadial data (red
diamonds) and the interstadial periods (purple triangles), which both display an approximate 1/ f
scaling, but where the fluctuation variance in the stadial data is larger than in the interstadial data.

These results are different from what is obtained when considering the NGRIP data (during the last



155

160

165

170

175

180

185

glaciation) as a single time series (shown as blue diamonds). If we were to define a single scaling
exponent for the whole time series, then we would obtain an estimate 5 ~ 1.4.

Fig. ?? shows that the scaling of the stadial and interstadial NGRIP data are similar to the scaling
of global temperatures on shorter time scales during the Holocene. We have included an analysis
of the instrumental temperature record both with (green triangles) and without the anthropogenic
component (green disks). The anthropogenic component can be removed by subtracting the response
to the anthropogenic forcing in a simple linear response model of the type considered in (?). We have
also included an analysis of the Moberg Northern Hemisphere reconstruction (black squares), and
we observe that the composite scaling wavelet variance function and the composite spectral density
function obtained by combining the instrumental data with the Moberg reconstruction, is consistent
with a 1/f model on time scales from months to centuries. Since the NGRIP data also shows 1/ f
scaling, and since we believe that the scaling of the NGRIP data is a reflection of global scaling on
time scales longer than a millennium, it is illustrative to adjust the fluctuation levels of the NGRIP
data so that its Holocene part has a standard deviation close to that of the standard deviation of
the 20-year means of the Moberg reconstruction in the same time period. This means that we use
the adjusted NGRIP data as a proxy for global temperature on millennial scales. The effect of this
adjustment is only a vertical shift of the wavelet scaling function and the spectral density functions
in the double-logarithmic plots, so that it becomes easier to compare the scaling of the NGRIP data
with the Moberg reconstruction and the instrumental data. We do not apply any adjustments of the
fluctuation levels of the stadial and interstadial periods relative to each other. The same adjustment
is applied to the EPICA data, and here we also consider the scaling of the glacials and interglacials
separately as shown in Fig. ??(b). The scaling estimated from the EPICA data for glacial periods
(black crosses in Fig. ??) follows closely the scaling of the NGRIP data analysed as a single time
series (blue diamonds). This shows that the glacial climates have similar characteristics in Greenland
and in Antartica. Careful examination of the figure shows that the fluctuations grow slightly faster
with the scale At in the NGRIP time series than for the glacial periods of the EPICA time series.
This is expected since the regime shifting events in Antartica associated with the DO cycles are much
less pronounced than in Greenland (?). In the EPICA data we cannot estimate a scaling exponent
for the dynamics in periods without regime shifts, but our results for the EPICA data are consistent
with a description of the climate as a 1/ climate noise plus regime shifts. If we analyse the EPICA
data without omitting the interglacials, then the fluctuations increase even faster with the scale At
(orange stars in Fig. ??). This effect is completely analogous to the effect of shifting between the

stadial and interstadial conditions during glaciations.
2.4 A note on multifractal processes

The exponent (3 is well-defined as long as the power spectral density function S(f) is a power law

in f, or equivalently if the wavelet variance {|W (t,At)|?) is a power law in At. As mentioned
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in Sect. 2.3; if well-defined, the /3 exponent is related to the temporal correlations in the signal
via simple formulas. In fact, for a (zero-mean) stationary process 7'(¢) with —1 < 8 < 1 we have
(T(HT(t+At)) ~ (B+1)3At°~1 and for (a zero-mean) process with stationary increments and
1< <3 we have (AT(t)AT(t+ At)) ~ (8 —1)(8 —2)AtP~3, where AT(t) is the increment
process of T'(t) (?). Thus, the results presented so far in this paper do not rely on any assumptions of
self-similar or multifractal scaling. It is only assumed that the second-order moments (|W (¢, At)|?)
are well approximated by power-laws over an extended range of time scales.

A more complete scaling analysis can be performed if one imposes the more restrictive assumption
that the wavelet-based structure functions (|W (¢, At)|?) are power-laws in At, not only for ¢ = 2,
but for an interval of g-values. The time record can be classified as multifractal only if this is true. It

is then possible to define a scaling function 1(q) via the relation
((Wae()|) ~ At7D. ©)

? defines a scaling function £(At) from the moment (|Ta;(¢)|?). From Eq. (2?) we observe that their
scaling function is related to ours by n(q) = £(q) + q/2.

By Egs. (??) and (??) we observe that (2) = . If T'(¢) is self-similar (or if 7'(¢) is the increment
process of a self-similar process in the case 8 < 1) we have 7(¢q) = 8¢/2, but in general, the 7(q)
may be concave (it bends down). Processes that exhibit power-law structure functions and strictly
concave scaling functions can be characterised as multifractal intermittent. A monofractal is a special
case of the multifractal class. For a monofractal (monoscaling) process, the scaling function is linear
ingq.

If Fig. ?? we present a crude multifractal analysis of the data sets considered in this paper using
g-values in the range from 0.1 to 4. For the Holocene we find linear scaling functions for both the
instrumental record and the Moberg Northern Hemisphere reconstruction, and in the NGRIP data
we find linear scaling functions for the stadial periods and the interstadial periods when these are
analysed separately, although, as we have already seen, there is a deviation from the 1/f scaling in
the stadial periods for time scales shorter than about 200 yrs. If the NGRIP record is analysed with
both stadial and interstadial stages included, then it is not clear how to define the scaling function
since the shifts between the two types of stages causes a “break” in the power-law scaling of the
wavelet-based structure functions. If we define 7)(¢) using the time scales shorter than 2 kyr we
obtain a linear scaling function corresponding to 5 = 1.14, and if we use the time scales longer than
4 kyr we obtain a linear scaling function corresponding to 5 = 1.78. In neither case do we obtain
a strictly concave scaling function. A linear scaling function is also obtained if we disregard the
“break” in the scaling and fit power laws using all the available time scales. In this case the scaling
function corresponds to 8 = 1.26. For the periods of the EPICA record that corresponds to ice ages,
we find wavelet-based structure functions that are closer to power-laws than what is observed in the

NGRIP record. This is expected since the abrupt transitions between cold and warm periods is much
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less pronounced in Antartica than in Greenland. The scaling function for the ice-age periods in the
EPICA data is linear and corresponds to § = 1.18.

The results discussed above show that from this analysis there is no evidence of multifractal
intermittency in the temperature records analysed in this paper. This is not very surprising and could
be suspected by direct inspection of the data record. The trained observer would use the fact that if
n(q) is strictly concave, then the kurtosis of Wa¢(t),

(IWae(®)*) o AT -2n(2)

(IWar(t)[?)? ’
is decreasing as a power-law function of At, and is therefore leptokurtic! on the shorter time scales
At. Multifractal intermittency in addition implies that the amplitudes of the random fluctuations are
clustered in time, on all time scales, as observed in intermittent turbulence or financial time series
(see e.g., 7). These are not prominent features in the time series analysed in this paper. For the
NGRIP data, the §'80 ratio slightly deviates from a normal distribution as a result of the DO events,
but this is not well described by a multifractal model since that would require the wavelet-based
structure functions to be power-laws in At. In fact, what we show in this paper is that the effect of
DO events is to break the scaling, rather than to produce multifractal scaling.

Admittedly this multifractal analysis is a crude first-order characterisation. Our crude analysis
suggests that the records analysed are most reasonably modeled as monofractal. However, to es-
tablish this with confidence we need to perform statistical hypothesis testing. The strategy for such
testing must consist of two elements. First, we have to test whether we can reject the hypothesis that
the observed records are realisations of a multifractal (with monofractal as a special case) stochastic
process. If this hypothesis can be rejected, there is no point in discussing whether the process is
multifractal or monofractal. If we cannot reject the multifractal hypothesis, we must test if we can
reject that this multifractal is a monofractal. The outcome of these tests depends on the lengths of the
observed records, since rejection of the various null hypotheses depends on the statistical uncertainty
associated with realisations of the null models. Monte Carlo simulations of these null models is the
simplest tool to establish these uncertainties. In a forthcoming paper we will perform this rigorous
testing of the multifractal hypothesis for the data analysed in the present paper, in addition to a wide
selection of forcing data and climate model data. The results presented here should therefore be

taken as preliminary.
2.5 A note on non-fractal processes that scale in the second moment

In this paper we have focused on scaling in second-order statistics, or more precisely, on modeling
the temperature records as stochastic processes that exhibit scaling of the second moment, but not

necessarily of other moments. Reviewer Shaun Lovejoy strongly opposes this approach. He con-

'A distrubution is leptokurtic if it has high kurtosis compared with a normal distribution. This means that the probability

density function has a high central peak and fatter tails.



260

265

270

275

280

285

290

siders it as a return to old quasi-Gaussian ideas that disregards the developments of multifractal
formalism and multiplicative cascades, and in his last referee comment he raises doubts about the
existence of processes that exhibit scaling in the second moment, but not in other moments. Here
we will not only demonstrate the existence of such processes, but explain that the serious fallacy
of Lovejoy’s approach is that he fails to distinguish between multifractal noises and non-Gaussian
noises that cannot be modeled within the multiplicative cascade paradigm. Examples of the latter
is the large class of Lévy noises. In less technical terms, the issue is that a multifractal noise may
consist of uncorrelated random variables (e.g., their signs may be uncorrelated), but they will never
be independent (e.g., their squares will be correlated). A Lévy noise, on the other hand, consists
of independent random variables, which implies that all powers of the variables will be uncorre-
lated. Empirical multifractal analysis methods typically fail to distinguish between these different
classes of processes because they implicitly assume a multifractal model. Often, the distinction is
not easy to make, because a non-Gaussian Lévy noise may have a bursty (intermittent) appearance,
and analysis must be designed to separate multifractal clustering (correlation in higer powers) from
intermittency of non-Gaussian independent variables. Long-range memory in the process does not
make the distinction less relevant. Such processes may easily be produced from those discussed
above by convolving the zero-memory processes with a memory response kernel.

From a physical viewpoint, it is very important to distinguish between these two classes of stochas-
tic processes. The multifractal processes are based on a turbulent cascade paradigm and the dynam-
ical description is fundamentally nonlinear. The Lévy noises, and their long-memory cousins, may
arise from non-Gaussian, independent fluctuations on the short time scales, e.g., jumps with ran-
domly distributed waiting times.

We distinguish between a Lévy noise T'(t) and a Lévy process X (t). The latter is a continuous-
time stochastic process with stationary, identical and independently distributed (i.i.d.) increments,
i.e., for any 7 the increments X (¢ +7) — X () have a well defined distribution which is independent
of t. The discrete-time process 7'(t) = X (t+1) — X (¢), where t is the set of nonnegative integers, is
a Lévy noise. Theoretical results on the fluctuation statistics on varying time scales of Lévy noises
are most conveniently obtained by means of the standard structure functions of the underlying Lévy

process (rather than the wavelet structure function defined in Sect. 2.4), i.e., we define

Sq(At) = (|X (¢ +At) = X (1)) ®)
For a process which belongs to the multifractal class we have

Sy(At) ~ AS@D )

where the scaling function ((q) is related to 1(q) for the wavelet moments and £(g) for the Haar
fluctuation by ((q) =n(q) +q/2 =£&(q) + q. In Appendix A we show that for a Lévy process the

following relations hold for the second and fourth moments;

Sa(At) = (Y?) At, (10)
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Si(At) =3(Y?)? At2+(ékurt[Y] —1)At|, (11

where Y = X (1) and kurt[Y] = (Y'4) /(Y2)? is the kurtosis (flatness) of Y. For a Gaussian process
kurt[Y] = 3, and hence Sy(At) oc At?. In this case S,(At) oc At?/2, X(t) is a Wiener process,
and 7'(t) is a Gaussian white noise. For a non-Gaussian Lévy noise, Eq. (??) provides the key
to distinguish it from multifractal noise. For At ~ kurt[Y]/3 — 1 there is a break in the scaling of
S4(At). In fact, for At < kurt[Y]/3 — 1 moments higher than ¢ =2 will scale more or less like
At' (ie., ¢(q) — 1 for large q), while for At > kurt/3 — 1 they will scale like At%/2. The latter
corresponds to the scaling of a Gaussian white noise, which is quite obvious, since the random
variables are independent and the central limit theorem implies that the fluctuations are Gaussian on
the long time scales. On the other hand, on the short time scales when the fluctuations are still non-
Gaussian, the scaling function (g) bends over to become flat for large ¢, which is just the behavior
we find for multifractals. Hence, by leaving out the scales At > kurt[Y]/3 — 1 from the analysis we
will be led to the conclusion that the non-Gaussian Lévy process is multifractal. The trace-moment
analysis employed by Shaun Lovejoy (??) is designed to conceal the scaling behavior on these
scales and is not suitable as a model selection test to distinguish multifractals from non-Gaussian
Lévy noises or their long-memory derivatives.

In Fig. 5 we present analysis of a synthetic jump-diffusion process, which belongs to the class
of Lévy noises. The details of this process is explained in Appendix B. The second-order structure
function is a power law (a straight-line in the log-log plot), but the other structure functions are not.
If a scaling function is produced by fitting a straight line to the structure functions on the long time
scales, and computing the slopes, we find the scaling function of a white Gaussian noise (the red
line in Fig. 5d). If the same is done on the short time scales, the scaling function has the concave
appearance of a multifractal (the blue curve). In Fig. 6, we show the same for a jump-diffusion
process with memory, produced by convolving the Lévy noise with a memory kernel. Hence, the
distinction between multifractals and other non-Gaussian processes is not limited to processes of

independent random variables.

3 Discussion and concluding remarks

Accurate characterization of the climate noise is essential for the detection and evaluation of anthro-
pogenic climate change. For instance, when we apply standard statistical methods for estimating the
significance of a temperature trend, the result depends crucially on the so-called error model, i.e.,
the model for the climate noise that is used as a null hypothesis. There is strong evidence that the
temperature fluctuations are better described by scaling models than by so-called red-noise mod-
els (or AR(1)-type models). However, simply characterising the climate noise as scaling does not

specify an error model. The exponent in the scaling law (the 8 parameter) must also be determined,

10
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and it is usually determined from the same signal as we are testing for trends. If we do that without
detrending we risk to estimate a too high (3 for the error model, which yields a trend test with weak
statistical power, i.e., we may fail to detect a trend even if it his present. It is possible to improve the
statistical power in a logically consistent way by detrending prior to estimating 3, but the approach
is often (incorrectly) criticized for being circular, since [ should be estimated under the assumption
that the error model (null hypothesis) is true. However, since de-trending only has a small effect if
the null hypothesis is true, de-trending is valid under both the null hypothesis and the alternative
hypothesis.

Another approach, which is the motivation for this paper, is to characterise the scaling of the
climate noise from pre-industrial temperature records. If we are to use the scaling exponent estimated
from pre-industrial records to demonstrate the anomalous climate event associated anthropogenic
influence, we must be confident that the temperature scaling does not change significantly over
time. We must also be confident that the scaling is robust, in the sense that it is not too sensitive to
moderate changes in the climate state. The results presented in this paper suggest that, unless the
climate system experiences dramatic regime shifting events, we can be confident that the natural
fluctuations in global surface temperature is approximated by 1/ f-type scaling on a large range of
time scales. This result makes it easy to determine, on any time scale, if the observed increase in
global mean surface temperature is inconsistent with the natural variability, and by how much.

The 1/f scaling described here is the same scaling observed in numerous publications by Shaun
Lovejoy and Daniel Schertzer, e.g., 2??. The important difference in our interpretations is that they
believe this scaling is limited to the scale range from a few months to a century (the “macroweather
regime"). Our analysis suggests that this scaling is an expression of Nature’s internal “humming" in
Quaternary surface temperature variability on all scales up to hundreds of kyr. A natural conclusion
drawn from this interpretation is that description of the observed deviations from this scaling caused
by DO events and glacial/interglacial transitions should be sought in dynamical-stochastic models

rather than in general scaling laws (2?).

Appendix A: Lévy processes

Let X (t) be a random walk process with stationary and independent increments. This means that
the random variables X (t + 1) — X (¢) are independent and all have the same distribution. If we
normalise so that X (0) =0 we can write X (¢t+1) — X(¢) 4 X (1), where 2 denotes equality in
distribution for random variables. A random walk of this type is called a Lévy process (see ? for
a review), and for it to be well-defined in continuous time one must assume that X (1) belongs to
the class of infinitely divisible random variables. This is a technical requirement that ensures that

an increment X (¢t + At) — X (¢) has a well-defined distribution for arbitrary small At. Since a Lévy

11
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process has stationary and independent increments, it is uniquely defined by the (infinitely divisible)
distribution of X (1). In the following we denote Y = X (1).
The characteristic function of the random variable Y is defined as the ¢y (u) = (¢™Y). If Y has a

probability density function py-, then

Py (u) = / e™py (y)dy

is the Fourier transform of py. When working with Lévy processes it is common to define the
function v (u) via the relation ¢y (u) = e¥(*), and 1 (u) is usually called the Lévy exponent. Note
that since ¢y (0) = 1 we have 1/(0) = 0. Since )(u) defines the random variable Y it also determines
the Lévy process uniquely. If ¢ is an integer the value of X (¢) is a random variable that can be written

as a sum of lag-1 increments:

X(t) = (X(1) = X(0)) + (X (2) = X(1)) +-+ (X(8) = X (t 1),

This is a sum of ¢ independent copies of the random variable Y, and therefore the characteristic

function of X (¢) is
Ox ) (u) = (™) =V

In general there is a simple relation between the n’th moment of a random variable and the n’th
derivative of its characteristic function evaluated in u = 0. Using this relation we can express the
moments of X (¢) via the formula (?),

ot(w)

u=0

X@" ="

This implies that (X (¢)) = —it)’(0)t, so if we assume that the process does not have a linear drift,

then we must have ¢’(0) = 0. The second moment is computed the same way:

(X)) =~

oz etw(u) _ tQth(O)'l/)/(O)z +t€tw(0)'¢)//(0) _ _1/}//(0)t _ <Y2>t
u

u=0

Since increments are stationary we have the following result for the second order structure function:
2
Sa(Al) = <|X(t+At) —X(t)‘ > — (X(AH)?) = (Y2) At.

This is an important result, because it shows that the second structure function of any Lévy processes
scales linearly with the time scale At. It is also interesting to compute the fourth structure function
S, (At), because for a self-similar process with Sy (At) oc At one must have Sy(At) o< At2. For a
Lévy process X (t) with zero drift we have
YR N
Sy(At) = (X(A)* (= — “
(A0 = (XA'(= o] e
At4eAtw(0)1/Jl(0)4 + 6At3€Atw(0)’l//(0)2’l//’(0) + 3At28Atw(O)w//(O)2
+ 4APP (0)eA Oy (0) + Aty (0)eA O

39" (0)° A8 + 9 (0)At,
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and since ¢ (0) = —(Y'2) and ¢y (0) = (Y'*) — 3(Y'2)2, we can write
Su(At) =3(Y2)2AL + ((Y*) — 3(Y?)?)At.

The ratio between the second and first terms in the above equation is

(Y4 —3(Y?)?  kurt[Y]—3
3(Y2)2At  3At

(AT)

and hence we can conclude that Sy(At) ~ At? for At > kurt[Y] — 3 and Sy (At) ~ At for At <

kurt[Y] — 3.

Appendix B: A Poisson jump process

A Poisson jump process is defined via the Lévy exponent

P(u) = A/(em —1)dP;(z),

where Pjy(x) is the distribution function for the jumps and A is the rate for the occurrence of jumps.

For simplicity we can imagine a process where we have positive jumps of fixed size x:

dP;(x) = d(a — )
and

Y(u) = )\(eim“r —1).

Hence the probability density function for X (¢) becomes
pxy(z) = E et gy = S e~z AT =) gy
X® 2T 27
—\t —At °
o € —duz _the T+ o € —iux 1 uTL\N
= 5 /e e du = o /e nzzom(t)\e )" du
eiAt S 1 n iunT —iux
= - ;}E(Az‘) /e te du
e 1
e M E:O a()\t)"(S(x —nay)
There is a drift -
- 1 n
(X(t)) = /xPX(t)(z)d:z: =ze MYy "=\,
n=0

and

1
(\X(t)—)\t|q>:/\m—/\ﬂqPX(t)(x)d:r:e*’\t g —'()\t)"\nx+—)\t|".
n!
n=0
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Appendix C: Lévy processes convolved with memory kernels

Let X (¢) be a Lévy prosess and for 3 € (1,3), define a fractional Lévy process by

0 t

() = / ((t—s)§—1—(—5)%—1)dX(s)+/(t—s) “14X (s)
R 0
= [ (t-9T = (9F ) ixe) = [ Kat.s)ax(),
where

_1 B

Ks(t.s)=(t—)F "~ (~9)7 = (t—5) 370t )~ (~5) 7' O(~s).
Note that

Kpg(at,as) = (at — as)g_l(a(at —as) — (fas)g_le(fas) = ag_lK(t,s),

and since (dX (t)dX (s)) o< 6(t — s)dt we have

(Z(t)?) = //Kﬁ s)Kpg(t,s") E[dX (s)dX (s /Kﬁ ds.

— 00 — 00

This implies that

(Z(at)?) = / Kg(at,s)?ds = /Kﬁ(at,as)zads:aﬁ_lE[Z(t)Z],

— 00 — 00

ie. (Z(A)?) = (Z(1)2) AP,

Acknowledgements. This paper was supported by the the Norwegian Research Council (KLIMAFORSK pro-

gramme) under grant no. 229754.

14



430

435

440

445

450

455

460

465

References

Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen,
H. B., Dahl-Jensen, D., Fischer, H., Fliickiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grgnvold, K.,
Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl,
S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H.,
Popp, T., Rasmussen, S. O., Raynaud, D., Réthlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H.,
Siggard-Andersen, M. L., Steffensen, J. P., Stocker, T., Sveinbjornsdottir, A. E., Svensson, A., Takata, M.,
Tison, J. L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J. W. C.: High-resolution record of
Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147-151, 2004.

Appelbaum. D.: Lévy processes - from probability to finance and quantum groups, Notices of the American
Mathematica Society, 51(11), 13361347, 2004.

Augustin, L., Barbante, C., Barnes, P. R. F., Marc Barnola, J., Bigler, M., Castellano, E., Cattani, O., Chappellaz,
J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Fliickiger, J., Hansson,
M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov,
V.Y, Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R.,
Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F,, Peel, D. A., Petit, J.-R., Raynaud, D., Ritz, C., Ruth,
U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Peder Steffensen, J., Stenni, B., Stocker, T. F.,
Tabacco, I. E., Udisti, R., van de Wal, R. S. W., van den Broeke, M., Weiss, J., Wilhelms, F., Winther, J.-G.,
Wolff, E. W., and Zucchelli, M.: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623-628, 2004.

Bouchaud, J.-P. and Muzy, J.-F.: Financial Time Series: From Batchelier’s Random Walks to Multifractal Cas-
cades, in The Kolmogorov Legacy in Physics, Lecture Notes in Physics, 636, 229-246, Springer-Verlag,
Berlin Heidelberg, 2003.

Braun, H., Ditlevsen, P., Kurths, J., and Mudelsee, M.: A two?parameter stochastic process for Dansgaard?
Oeschger events, Paleoceanography, 26, PA3214, 2005, doi:10.1029/2011PA002140.

Gardiner, C. W.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Fourth Edition. Chapter
2, Springer, 2009.

Hansen, J.: Earth’s Energy Imbalance: Confirmation and Implications, Science, 308, 1431-1435, 2005.

Lomb, N. R.: Least-squares frequency analysis of unequally spaced data, Astrophys Space Sci, 39, 447-462,
1976.

Lovejoy, S. and Schertzer, D.: Scale invariance in climatological temperatures and the local spectral plateau,
Annales Geopysicae, 4,B, 401-410, 1986.

Lovejoy, S., D Schertzer, and D. Varon: Do GCMs predict the climate ... or macroweather?, Eart Syst. Dynam.,
4,439-454, 2013.

Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and Multifractal Cascades, Cambridge
University Press, New York, NY, 2013.

Lovejoy, S.: A voyage through scales, a missing quadrillion and why the climate is not what you expect, Clim
Dyn, 44, 3187-3210, 2014.

Malamud, B. D. and Turcotte, D. L.: Self-affine time series: I. Generation and analyses, Adv. Geophys, 40,
1-90, 1999.

15



470

475

480

485

WALIS Divide Project Members: Precise interpolar phasing of abrupt climate change during the last ice age,
Nature, 520, 661-665, 2015.

Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W.: Highly variable Northern
Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613-617,
2005.

Morice, C. P, Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional
temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys.
Res., 117, D08 101, 2012.

Rypdal, K., Rypdal, M., and Fredriksen, H.-B.: Spatiotemporal Long-Range Persistence in Earth’s Temperature
Field: Analysis of Stochastic-Diffusive Energy Balance Models, J. Climate, 28, 8379-8395, 2015.

Rypdal, M. and Rypdal, K.: Long-Memory Effects in Linear Response Models of Earth’s Temperature and
Implications for Future Global Warming, J. Climate, 27, 5240-5258, 2014.

Rypdal, M. and Rypdal, K.: Is there long-range memory in solar activity on timescales shorter than the sunspot
period?, J. Geophys. Res., 117, A04103, 2012.

Rypdal, M.: Early-Warning Signals for the onsets of Greenland Interstadials and the Younger Dryas-Preborial
transition, J. Climate, in press , 2014, doi:10.1175/JCLI-D-15-0828.1.

Schertzer, D., and Lovejoy, S.: Physical Modeling and Analysis of Rain and Clouds by Anisotropic Scaling
Multiplicative Processes, J. Geophys. Res, 92, 9693-9714,1987.

Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J.,
Muscheler, R., Parrenin, F., Rasmussen, S. O., Rothlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther,
B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47-57, 2008.

16



-36 NGRIP ice core

(a)

60 000 50 000 40 000 30 000 20 000
yr BP

EPICA ice core

(b)

180 000 140 000 100 000 60 000 20 000
yr BP
05 Moberg Northern Hemisphere reconstruction(c)
§ 0.0
~-05
-1.0
0 500 1000 1500 2000
yr CE
05 HadCRUT4 GMST with no anthropogenic component @
gf_} 0.0
~ -05
-1.0
1880 1900 1920 1940 1960 1980 2000
yr BP

Figure 1. (a): The §'®0 concentration in the NGRIP ice core dating back to 60 kyr before present (BP). Here
present means AD 2000 (= 2000 CE). The data is given as 20-year mean values. The time series is split into
stadial (blue) and interstadial (red) periods. (b): The temperature reconstruction from the EPICA ice core.
The shown time series is sampled with a time resolution of roughly 200 years. The temperature curve in the
glacial periods is given in a blue color. (c): The Moberg reconstruction for the mean surface temperature in
the Northern Hemisphere. The data is given with annual resolution. (d): The HadCRUT4 monthly global mean

surface temperature where the anthropogenic component has been removed using a linear-response model.
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Figure 2. (a): The 620 concentration in the NGRIP ice core. The data is given as 20-yr mean values. Two
different parts of the the times series is shown. The blue curve represents the 6180 concentration in a time
period starting approximately 50 kyr before present (BP) and has a duration of approximately 8500 years. As
in Fig. 22, present means AD 2000 (= 2000 CE). The black curve represents the 80 concentration in a long
stadial period that started about 22 kyrs BP and has a duration of approximately 8500 years. (b): The wavelet
scaling functions estimated from the two parts of the NGRIP data set. The blue points are the estimates from
the part of the NGRIP ice core that is shown as a blue curve in (a), and which contains DO cycles. The black
points are the estimates from the the part of the NGRIP ice core that is shown as a black curve in (a), and which

does not contain any DO cycles.
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Figure 3. (a): For each time series considered in this paper we show double-logarithmic plots of the wavelet
fluctuation {|W (¢, At)|?) as a function of the time scale At. The green triangles and the green circles represent
the the HadCRUT4 monthly global mean surface temperatures with and without the anthropogenic component
respectively. The black circles is the analysis of the Moberg Northern Hemisphere reconstruction. The analysis
of the 20-yr mean NGRIP data is shown as the blue diamonds, the purple triangles and the red diamonds. The
blue diamonds show the results of the analysis of the entire dataset dating back to 60 kyrs BP. The red diamonds
are the results of the analysis preformed on the stadial periods only, and the purple triangles are the results of
the analysis of the interstadial periods only. The results for the EPICA ice core data are shown as the orange
stars and the black crosses. The orange stars are obtained by analysis of the entire data set dating back 200 kyrs,
and the black crosses are obtained by only analysing the two most recent glaciations. The two solid lines have
slopes S =1 and 5 = 1.8. (b): As in (a), but instead of the wavelet fluctuation function we show the spectral

density function S(f). The two solid lines have slopes —( with 5 =1 and 8 = 1.8.
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Figure 4. (a): The estimated wavelet-based structure functions (|WW (¢,At)|?) for the HadCRUT4 monthly

global mean surface temperature where the anthropogenic component has been removed using a linear-response

model. The lines show the fitted power-law functions chtT("). The g-values are ¢ = 0.1,1.0,1.5,...,4.0. (b)

The scaling function 7(g) obtained from the fitted power-laws in (a). The line is a linear fit to the estimated

scaling function, and the slope of this line is 3/2 with = 0.88. (c-d): As (a) and (b) but in this case for the

Moberg Northern Hemisphere reconstruction. (g-f):
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Figure 5. (a): The increments of a jump-diffusion process shown in (b). This is a non-Gaussian independent
noise process. (b): A realisation of a jump-diffusion process, and the cumulative sum of the signal in (a). This
process is the sum of a Brownian motion and a Poisson jump process as described in Appendix B. The jump
distribution is Gaussian with a standard deviation that is ten times greater than the standard deviation of the
increments of the Brownian motion. (c): Sq(At for ¢ = 1,2, 3 for the jump-diffusion process as computed from
a large ensemble of realisations of the process. (d): Scaling function ¢(g) estimated from structure functions
like those in (c). The red line is estimated by computing the slope of the structure-function curves on the longest
time scale (At = 500). The blue curve is estimated from the slopes at the shortest time scale ((At = 1). The
black curve by estimating the slope of the straight line drawn between the end points of the structure-function

curves.
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Figure 6. As Fig. 5, but for a a jump-diffusion process with memory as described in Appendix C. The parameter

value 8 = 0.4 is used.
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