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Abstract. In order to have a scaling description of the climate system that is not inherently non-

stationary, the rapid shifts between stadials and interstadials during the last glaciation (the Dansgaard-

Oeschger events) cannot be included in the scaling law. The same is true for the shifts between the

glacial and interglacial states in the Quaternary climate. When these events are omitted from a scal-

ing analysis the climate noise is consistent with a 1/f law on time scales from months to 105 years.5

If the shift events are included, the effect is a break in the scaling with an apparent 1/fβ law, with

β > 1, for the low frequencies. No evidence of multifractal intermittency has been found in any of

the temperature records investigated, and the events are not a natural consequence of multifractal

scaling.

1 Introduction10

The temporal variations in Earth’s surface temperature are well described as scaling on an extended

range of time scales. In this parsimonious characterisation, a parameter β describes how the fluctua-

tion levels on the different time scales are related to each other. The β-parameter can be defined via

the scaling of the spectral density function of the signal by the relation

S(f) = 〈|T̃ (f)|2〉 ∼ f−β , (1)15

where T̃ (f) is the Fourier transform of the time record T (t) and 〈. . .〉 denotes an ensemble average.

An alternative is to measure the range of the variability on the longest time scales within a time

window of length ∆t by

T∆t(t) =

∣∣∣∣∣∣ 2

∆t

t+∆t/2∑
i=t

T (t)− 2

∆t

t+∆t∑
i=t+∆t/2

T (t)

∣∣∣∣∣∣ , (2)

and to define β via the following relation (Lovejoy and Schertzer, 2013):20

〈|T∆t(t)|2〉 ∼∆tβ−1 . (3)

In this description, the temperature fluctuations would decrease with scale if β < 1, implying that

the climate fluctuations become less prominent as we consider longer time scales, a picture which
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is somewhat different from the rich long-range variability indicated by proxy reconstructions of past

climate. On the other hand, a value β > 0 would imply that variability increases with scale, a property25

that (if it were valid on a large range of time scales) would lead to levels of temperature variability

inconsistent with reality. It is therefore a natural a priori working hypothesis, that Earth’s typical

temperature fluctuations, the climate noise, is characterised by β ' 1. Such a process is called a 1/f

noise.

The 1/f description of Earth’s temperature is of course an idealised model. The reality is that the30

climate system consists of many components that respond to perturbations on different characteris-

tic time scales, and the temperature signal can be seen as an aggregation of signals with different

time-scale characteristics. Since it is difficult to recognise pronounced time scales in the tempera-

ture records, a scaling description is both convenient and accurate. However, we are aware that the

scaling is not perfect, and that there are structures in the climate system that deviate from the scaling35

law. One example is the El Niño Southern Oscillation (ENSO), which places larger fluctuations on

the times scales of a few years than what can be expected from a scaling model. Other examples are

the Dansgaard-Oeschger (DO) cycles in the Greenland climate during the last glacial period, encom-

passing repeated and rapids shifts between a cold stadial state and a much warmer interstadial state.

The result of this phenomenon is that the glacial climate in Greenland has much larger millennial-40

scale fluctuations than what can expected from a 1/f description. However, as we demonstrate in

this paper, the temperature variations of both the stadial and interstadial climate states fit well with

the 1/f -scaling, telling us that the deviation from 1/f scaling in the glacial climate arise from these

regime shifting events. As we go to even longer time scales, we also observe anomalous fluctuation

levels on time scales from 104 to 105 years that can be identified with the shifting between glacial45

and interglacial conditions.

One could argue that the DO cycles and the glaciation cycles are intrinsic to the climate system

and should not be treated as special events, and their variations should be reflected in a scaling

description of the climate. This idea was forwarded by Lovejoy and Schertzer (1986), elaborated in

many later papers, and expanded to time scales up to almost a Gyr in Lovejoy (2014). Here several50

scaling regimes are proposed, including a “break” in the scaling law with an exponent β ≈ 1.8 on

time scales longer than a century. A scaling model invoking two scaling regimes can account for the

millennial-scale temperature fluctuations that are produced by the DO cycles, which are anomalous

with respect to a 1/f model. However, the estimated scaling exponent will depend on the average

“density” of DO events in the ice-core record used for the estimate, and since the events are not55

uniformly distributed over time, there is no uniquely defined scaling exponent for the last glacial

period. Moreover, the scaling law would not be useful as a climate-noise model to use as a null

hypothesis for determining the significance of particular trends and events, such as the anthropogenic

warming over the last centuries.
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The main message of this paper is that the 1/f noise characterisation of the temporal fluctuations60

in global mean surface temperature is very robust. It is an accurate description for the Holocene

climate, but it is also valid under both stadial and interstadial conditions during glaciations, and

during both glacial and interglacial conditions in the quaternary climate. The 1/f character of the

climate noise provides us with robust estimates of future natural climate variability, even in present

state of global warming. Such an estimate would of course be invalidated by a future regime shift65

(a tipping point) to a warmer climate state provoked by anthropogenic forcing. A future observed

change in the 1/f character of the noise could therefore be taken as an early warning signal for such

a shift.

2 Data, methods and results

The analysis in this work is based on four data sets for temperature fluctations: the HadCRUT470

monthly global mean surface temperature (Morice et al., 2012) in the period 1880-2011 CE (Com-

mon Era), the Moberg Northern Hemisphere reconstruction for annual mean temperatures in the

years 1-1978 CE (Moberg et al., 2005), as well as temperature reconstructions from the North Green-

land Ice Core Project (NGRIP) (Andersen et al., 2004) and the European Project for Ice Coring in

Antarctica (EPICA) (Augustin et al., 2004). For the NGRIP ice core we have used 20-yr means of75

δ18O going back 60 kyr. For the EPICA ice core we have temperature reconstructions going back

over 300 kyr, but the data is sampled at uneven time intervals and the time between subsequent data

points becomes very large as we go back more than 200 kyr. In addition we have used annual data

for radiative forcing in the time period 1880-2011 CE (Hansen, 2005) to remove the anthropogenic

component in HadCRUT4 data. Plots of all four data records are shown in Fig. 1.80

2.1 Global versus local scaling

On the face of it, it is difficult to discern scaling laws for the climate noise on time scales longer than

millennia, since we do not have high-resolution global (or hemispheric) temperature reconstructions

for time periods longer than two kyr. The ice core data available only allow us to reconstruct temper-

atures locally in Greenland and Antartica, and we know from the instrumental record that local and85

regional continental temperatures scale differently from the global mean surface temperatures on

time scales shorter than millennial. The differences we find are that local temperature scaling expo-

nents βl are smaller than global temperature exponents βg , and that the ocean temperatures scale with

higher exponents than land temperatures. Since there are strong spatial correlations in the climate

system, it is possible that all local temperatures are scaling with a lower exponent than the global. In90

(Rypdal et al., 2015) this phenomenon is illustrated in an explicit stochastic spatio-temporal model.

In this model, which is fitted to observational instrumental data, we find the relationship βg = 2βl.

This relationship is derived under the highly inaccurate assumption that all local temperatures scale
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with the same exponent, but it is still a useful approximation in the following, where we will argue

that we can use local and regional temperature records to discern the scaling of the global mean95

surface temperature on time scales of 10 kyr and longer. We do this by showing that the assumption

that βg/βl > 1 is valid on very long times scales leads to the impossible result that the variance of

global averages becomes larger than the mean variance of local averages. Thus we conclude that βl

converges to βg on sufficiently long time scale, and we estimate an upper limit for that time scale.

Let us denote by σg and σl the standard deviations of the global surface temperature and a local

temperature respectively, on a monthly time scale. From Eq. (3) it follows that the ratio between the

variances for the global and local temperatures at time scale ∆t is

ρ=
(σg
σl

)2(∆t

τ

)βg−βl
,

where τ = 1 month. Unless we expect global temperatures to have larger variations than the local

temperature at time scale ∆t (the global temperature can not have a larger standard deviation than

the average standard deviation of the local temperatures) we must have ρ > 1, or equivalently,

∆t < τ
( σl
σg

)2/(βg−βl)
.

On the time scale of months, the fluctuation levels of local continental temperatures is about two100

orders of magnitude larger than the fluctuation level for the global mean temperature. If we also use

βg = 1 and βl = 1/2 we obtain the condition ∆t < 105 months∼ 10 kyr, i.e., on time scales longer

than 10 kyr the ratio βg/βl can no longer be larger than unity. A similar estimate can be obtained

from the NGRIP ice core data. In the Holocene the 20-yr resolution temperature reconstructions from

Greenland has a standard deviation which is about five times greater than the 20-yr moving average105

of the Moberg reconstruction for the Northern hemisphere. Applying the same argument restricts

the time scale for which Greenland scaling exponent is smaller than the global scaling exponent to

approximately 10 kyr.

Based on the reasoning above, we expect scaling of the ice core data to be similar to the global

scaling on sufficiently long time scales. In the remainder of this paper we demonstrate that the scaling110

in the ice core data on time scales up to hundreds of kyr is similar to the 1/f scaling we observe in

global temperature up to a few millennia. This suggests that the 1/f scaling on very long time scales

in ice core data is a reflection of the scaling in global temperatures on these scales.

2.2 Methods for estimation of scaling

We use two methods to analyse the scaling of temperature records. The first is a simple periodogram115

estimation of the spectral power density S(f). This estimator can also be applied to data with un-

even time sampling using the Lomb-Scargle method (Lomb, 1976). The other method is to take the

wavelet transform of the temperature data:

W∆t(t) =
1√
∆t

∫
T (t′)ψ

( t− t′
∆t

)
dt′ (4)
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and construct the mean square of the wavelet coefficients; the wavelet variance. This is a standard120

technique for estimating the scaling exponent β (Malamud and Turcotte, 1999), and it is known that

〈|W∆t(t)|2〉 ∼∆tβ . (5)

We choose to use the so-called Haar wavelet

ψ(t) =


1 t ∈ [0,1/2)

−1 t ∈ [1/2,1)

0 otherwise

,125

and the integral in Eq. (4) is computed as a sum. With this wavelet we have the relation

W∆t(t) = T∆t(t)
√

∆t, (6)

between the wavelet transform and the Haar fluctuation of Eq. (2). The power spectral density and

the wavelet variance are equivalent representations of the second order statistics of the time record,

one in frequency domain and the other in time domain, and Eqs. (1) and (5) show that they are130

characterised by the same exponent β if there is scaling of the second moment. By the Wiener-

Khinchin theorem, these second-order moments are also equivalent to the autocorrelation function.

Hence, scaling in the second-order statistics plays a special rôle, irrespective of the scaling or non-

scaling of other moments.

The wavelet variance method can be adapted to the case of unevenly sampled data using the135

method described in Lovejoy (2014). In the present work, we obtain very similar results using the

periodogram and the wavelet variance estimators. Claims have been made that higher-order statistics

in the form of a multifractal characterisation is an essential part of the statistical description of these

data (e.g., Lovejoy and Schertzer (2013), Chapter 11). For this reason we include a brief analysis of

higher moments of the data in Sect. 2.4, and discuss their significance in Sect. 2.5.140

2.3 Results of second-order analysis

In Fig. 2 we show the wavelet fluctuation 〈|W (t,∆t)|2〉 estimated for two different segments of the

NGRIP data. Both time series have the same number of data points and both represent time intervals

of 8500 years. The differences between the two time series is that one contains DO cycles, whereas

the other does not. The estimated wavelet fluctuations and the spectral density scale very differently145

for the two time series, and this motivates us to separate stadial and interstadial conditions when

we analyse the scaling in NGRIP data. This separation is shown in Fig. 1(a), where the red curve

represents the δ18O concentration in interstadial periods and the blue curve represents the δ18O

concentration in stadial periods. We have followed Svensson et al. (2008) in defining the dates for

the onsets of the interstadials and we have defined the start dates for the stadial periods to be just after150
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the rapid temperature decrease that typically follows the slow cooling in the interstadial periods. In

Fig. 3 we show the spectral density function and the wavelet scaling function for the stadial data (red

diamonds) and the interstadial periods (purple triangles), which both display an approximate 1/f

scaling, but where the fluctuation variance in the stadial data is larger than in the interstadial data.

These results are different from what is obtained when considering the NGRIP data (during the last155

glaciation) as a single time series (shown as blue diamonds). If we were to define a single scaling

exponent for the whole time series, then we would obtain an estimate β ≈ 1.4.

Fig. 3 shows that the scaling of the stadial and interstadial NGRIP data are similar to the scaling

of global temperatures on shorter time scales during the Holocene. We have included an analysis of

the instrumental temperature record both with (green triangles) and without the anthropogenic com-160

ponent (green disks). The anthropogenic component can be removed by subtracting the response to

the anthropogenic forcing in a simple linear response model of the type considered in (Rypdal and

Rypdal, 2014). We have also included an analysis of the Moberg Northern Hemisphere reconstruc-

tion (black squares), and we observe that the composite scaling wavelet variance function and the

composite spectral density function obtained by combining the instrumental data with the Moberg165

reconstruction, is consistent with a 1/f model on time scales from months to centuries. Since the

NGRIP data also shows 1/f scaling, and since we believe that the scaling of the NGRIP data is a

reflection of global scaling on time scales longer than a millennium, it is illustrative to adjust the fluc-

tuation levels of the NGRIP data so that its Holocene part has a standard deviation close to that of the

standard deviation of the 20-year means of the Moberg reconstruction in the same time period. This170

means that we use the adjusted NGRIP data as a proxy for global temperature on millennial scales.

The effect of this adjustment is only a vertical shift of the wavelet scaling function and the spectral

density functions in the double-logarithmic plots, so that it becomes easier to compare the scaling

of the NGRIP data with the Moberg reconstruction and the instrumental data. We do not apply any

adjustments of the fluctuation levels of the stadial and interstadial periods relative to each other. The175

same adjustment is applied to the EPICA data, and here we also consider the scaling of the glacials

and interglacials separately as shown in Fig. 1(b). The scaling estimated from the EPICA data for

glacial periods (black crosses in Fig. 3) follows closely the scaling of the NGRIP data analysed as a

single time series (blue diamonds). This shows that the glacial climates have similar characteristics

in Greenland and in Antartica. Careful examination of the figure shows that the fluctuations grow180

slightly faster with the scale ∆t in the NGRIP time series than for the glacial periods of the EPICA

time series. This is expected since the regime shifting events in Antartica associated with the DO

cycles are much less pronounced than in Greenland (WAIS Divide Project Members, 2015). In the

EPICA data we cannot estimate a scaling exponent for the dynamics in periods without regime shifts,

but our results for the EPICA data are consistent with a description of the climate as a 1/f climate185

noise plus regime shifts. If we analyse the EPICA data without omitting the interglacials, then the
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fluctuations increase even faster with the scale ∆t (orange stars in Fig. 3). This effect is completely

analogous to the effect of shifting between the stadial and interstadial conditions during glaciations.

2.4 A note on multifractal processes

The exponent β is well-defined as long as the power spectral density function S(f) is a power law190

in f , or equivalently if the wavelet variance 〈|W (t,∆t)|2〉 is a power law in ∆t. As mentioned

in Sect. 2.3; if well-defined, the β exponent is related to the temporal correlations in the signal

via simple formulas. In fact, for a (zero-mean) stationary process T (t) with −1< β < 1 we have

〈T (t)T (t+ ∆t)〉 ∼ (β+ 1)β∆tβ−1 and for (a zero-mean) process with stationary increments and

1< β < 3 we have 〈∆T (t)∆T (t+ ∆t)〉 ∼ (β− 1)(β− 2)∆tβ−3, where ∆T (t) is the increment195

process of T (t) (Rypdal and Rypdal, 2012). Thus, the results presented so far in this paper do not

rely on any assumptions of self-similar or multifractal scaling. It is only assumed that the second-

order moments 〈|W (t,∆t)|2〉 are well approximated by power-laws over an extended range of time

scales.

A more complete scaling analysis can be performed if one imposes the more restrictive assumption200

that the wavelet-based structure functions 〈|W (t,∆t)|q〉 are power-laws in ∆t, not only for q = 2,

but for an interval of q-values. The time record can be classified as multifractal only if this is true. It

is then possible to define a scaling function η(q) via the relation

〈|W∆t(t)|q〉 ∼∆tη(q). (7)

Lovejoy and Schertzer (2013) defines a scaling function ξ(∆t) from the moment 〈|T∆t(t)|q〉. From205

Eq. (5) we observe that their scaling function is related to ours by η(q) = ξ(q) + q/2.

By Eqs. (5) and (7) we observe that η(2) = β. If T (t) is self-similar (or if T (t) is the increment

process of a self-similar process in the case β < 1) we have η(q) = βq/2, but in general, the η(q)

may be concave (it bends down). Processes that exhibit power-law structure functions and strictly

concave scaling functions can be characterised as multifractal intermittent. A monofractal is a special210

case of the multifractal class. For a monofractal (monoscaling) process, the scaling function is linear

in q.

If Fig. 4 we present a crude multifractal analysis of the data sets considered in this paper using

q-values in the range from 0.1 to 4. For the Holocene we find linear scaling functions for both the

instrumental record and the Moberg Northern Hemisphere reconstruction, and in the NGRIP data215

we find linear scaling functions for the stadial periods and the interstadial periods when these are

analysed separately, although, as we have already seen, there is a deviation from the 1/f scaling in

the stadial periods for time scales shorter than about 200 yrs. If the NGRIP record is analysed with

both stadial and interstadial stages included, then it is not clear how to define the scaling function

since the shifts between the two types of stages causes a “break” in the power-law scaling of the220

wavelet-based structure functions. If we define η(q) using the time scales shorter than 2 kyr we
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obtain a linear scaling function corresponding to β = 1.14, and if we use the time scales longer than

4 kyr we obtain a linear scaling function corresponding to β = 1.78. In neither case do we obtain

a strictly concave scaling function. A linear scaling function is also obtained if we disregard the

“break” in the scaling and fit power laws using all the available time scales. In this case the scaling225

function corresponds to β = 1.26. For the periods of the EPICA record that corresponds to ice ages,

we find wavelet-based structure functions that are closer to power-laws than what is observed in the

NGRIP record. This is expected since the abrupt transitions between cold and warm periods is much

less pronounced in Antartica than in Greenland. The scaling function for the ice-age periods in the

EPICA data is linear and corresponds to β = 1.18.230

The results discussed above show that from this analysis there is no evidence of multifractal

intermittency in the temperature records analysed in this paper. This is not very surprising and could

be suspected by direct inspection of the data record. The trained observer would use the fact that if

η(q) is strictly concave, then the kurtosis of W∆t(t),

〈|W∆t(t)|4〉
〈|W∆t(t)|2〉2

∼∆tη(4)−2η(2),235

is decreasing as a power-law function of ∆t, and is therefore leptokurtic1 on the shorter time scales

∆t. Multifractal intermittency in addition implies that the amplitudes of the random fluctuations are

clustered in time, on all time scales, as observed in intermittent turbulence or financial time series

(see e.g., Bouchaud and Muzy (2003)). These are not prominent features in the time series analysed

in this paper. For the NGRIP data, the δ18O ratio slightly deviates from a normal distribution as a240

result of the DO events, but this is not well described by a multifractal model since that would require

the wavelet-based structure functions to be power-laws in ∆t. In fact, what we show in this paper is

that the effect of DO events is to break the scaling, rather than to produce multifractal scaling.

Admittedly this multifractal analysis is a crude first-order characterisation. Our crude analysis

suggests that the records analysed are most reasonably modeled as monofractal. However, to es-245

tablish this with confidence we need to perform statistical hypothesis testing. The strategy for such

testing must consist of two elements. First, we have to test whether we can reject the hypothesis that

the observed records are realisations of a multifractal (with monofractal as a special case) stochastic

process. If this hypothesis can be rejected, there is no point in discussing whether the process is

multifractal or monofractal. If we cannot reject the multifractal hypothesis, we must test if we can250

reject that this multifractal is a monofractal. The outcome of these tests depends on the lengths of the

observed records, since rejection of the various null hypotheses depends on the statistical uncertainty

associated with realisations of the null models. Monte Carlo simulations of these null models is the

simplest tool to establish these uncertainties. In a forthcoming paper we will perform this rigorous

testing of the multifractal hypothesis for the data analysed in the present paper, in addition to a wide255

1A distrubution is leptokurtic if it has high kurtosis compared with a normal distribution. This means that the probability

density function has a high central peak and fatter tails.
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selection of forcing data and climate model data. The results presented here should therefore be

taken as preliminary.

2.5 A note on non-fractal processes that scale in the second moment

In this paper we have focused on scaling in second-order statistics, or more precisely, on modeling

the temperature records as stochastic processes that exhibit scaling of the second moment, but not260

necessarily of other moments. Reviewer Shaun Lovejoy strongly opposes this approach. He con-

siders it as a return to old quasi-Gaussian ideas that disregards the developments of multifractal

formalism and multiplicative cascades, and in his last referee comment he raises doubts about the

existence of processes that exhibit scaling in the second moment, but not in other moments. Here

we will not only demonstrate the existence of such processes, but explain that the serious fallacy265

of Lovejoy’s approach is that he fails to distinguish between multifractal noises and non-Gaussian

noises that cannot be modeled within the multiplicative cascade paradigm. Examples of the latter

is the large class of Lévy noises. In less technical terms, the issue is that a multifractal noise may

consist of uncorrelated random variables (e.g., their signs may be uncorrelated), but they will never

be independent (e.g., their squares will be correlated). A Lévy noise, on the other hand, consists270

of independent random variables, which implies that all powers of the variables will be uncorre-

lated. Empirical multifractal analysis methods typically fail to distinguish between these different

classes of processes because they implicitly assume a multifractal model. Often, the distinction is

not easy to make, because a non-Gaussian Lévy noise may have a bursty (intermittent) appearance,

and analysis must be designed to separate multifractal clustering (correlation in higer powers) from275

intermittency of non-Gaussian independent variables. Long-range memory in the process does not

make the distinction less relevant. Such processes may easily be produced from those discussed

above by convolving the zero-memory processes with a memory response kernel.

From a physical viewpoint, it is very important to distinguish between these two classes of stochas-

tic processes. The multifractal processes are based on a turbulent cascade paradigm and the dynam-280

ical description is fundamentally nonlinear. The Lévy noises, and their long-memory cousins, may

arise from non-Gaussian, independent fluctuations on the short time scales, e.g., jumps with ran-

domly distributed waiting times.

We distinguish between a Lévy noise T (t) and a Lévy process X(t). The latter is a continuous-

time stochastic process with stationary, identical and independently distributed (i.i.d.) increments,285

i.e., for any τ the increments X(t+ τ)−X(t) have a well defined distribution which is independent

of t. The discrete-time process T (t) =X(t+1)−X(t), where t is the set of nonnegative integers, is

a Lévy noise. Theoretical results on the fluctuation statistics on varying time scales of Lévy noises

are most conveniently obtained by means of the standard structure functions of the underlying Lévy

process (rather than the wavelet structure function defined in Sect. 2.4), i.e., we define290

Sq(∆t)≡ 〈|X(t+ ∆t)−X(t)|q〉. (8)
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For a process which belongs to the multifractal class we have

Sq(∆t)∼∆tζ(q), (9)

where the scaling function ζ(q) is related to η(q) for the wavelet moments and ξ(q) for the Haar

fluctuation by ζ(q) = η(q) + q/2 = ξ(q) + q. In Appendix A we show that for a Lévy process the295

following relations hold for the second and fourth moments;

S2(∆t) = 〈Y 2〉∆t, (10)

S4(∆t) = 3〈Y 2〉2
[
∆t2 + (

1

3
kurt[Y ]− 1)∆t

]
, (11)

where Y ≡X(1) and kurt[Y ]≡ 〈Y 4〉/〈Y 2〉2 is the kurtosis (flatness) of Y . For a Gaussian process

kurt[Y ] = 3, and hence S4(∆t)∝∆t2. In this case Sq(∆t)∝∆tq/2, X(t) is a Wiener process,300

and T (t) is a Gaussian white noise. For a non-Gaussian Lévy noise, Eq. (11) provides the key

to distinguish it from multifractal noise. For ∆t∼ kurt[Y ]/3− 1 there is a break in the scaling of

S4(∆t). In fact, for ∆t� kurt[Y ]/3− 1 moments higher than q = 2 will scale more or less like

∆t1 (i.e., ζ(q)→ 1 for large q), while for ∆t� kurt/3− 1 they will scale like ∆tq/2. The latter

corresponds to the scaling of a Gaussian white noise, which is quite obvious, since the random305

variables are independent and the central limit theorem implies that the fluctuations are Gaussian on

the long time scales. On the other hand, on the short time scales when the fluctuations are still non-

Gaussian, the scaling function ζ(q) bends over to become flat for large q, which is just the behavior

we find for multifractals. Hence, by leaving out the scales ∆t > kurt[Y ]/3− 1 from the analysis we

will be led to the conclusion that the non-Gaussian Lévy process is multifractal. The trace-moment310

analysis employed by Shaun Lovejoy (Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 2013)

is designed to conceal the scaling behavior on these scales and is not suitable as a model selection

test to distinguish multifractals from non-Gaussian Lévy noises or their long-memory derivatives.

In Fig. 5 we present an analysis of a synthetic jump-diffusion process, which belongs to the class

of Lévy noises. The details of this process are explained in Appendix B. The second-order structure315

function is a power law (a straight-line in the log-log plot), but the other structure functions are not.

If a scaling function is produced by fitting a straight line to the structure functions on the long time

scales, and computing the slopes, we find the scaling function of a white Gaussian noise (the red line

in Fig. 5d). If the same is done on the short time scales, the estimated scaling function is concave as

one would expect for a multifractal (the blue curve). In Fig. 6, we show the same for a jump-diffusion320

process with memory, produced by convolving the Lévy noise with a memory kernel. Hence, the

difficulties related to distinguishing multifractals from other types of non-Gaussian processes is not

something that is limited to processes of independent random variables.
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3 Discussion and concluding remarks

Accurate characterization of the climate noise is essential for the detection and evaluation of anthro-325

pogenic climate change. For instance, when we apply standard statistical methods for estimating the

significance of a temperature trend, the result depends crucially on the so-called error model, i.e.,

the model for the climate noise that is used as a null hypothesis. There is strong evidence that the

temperature fluctuations are better described by scaling models than by so-called red-noise mod-

els (or AR(1)-type models). However, simply characterising the climate noise as scaling does not330

specify an error model. The exponent in the scaling law (the β parameter) must also be determined,

and it is usually determined from the same signal as we are testing for trends. If we do that without

detrending we risk to estimate a too high β for the error model, which yields a trend test with weak

statistical power, i.e., we may fail to detect a trend even if it his present. It is possible to improve the

statistical power in a logically consistent way by detrending prior to estimating β, but the approach335

is often (incorrectly) criticized for being circular, since β should be estimated under the assumption

that the error model (null hypothesis) is true. However, since de-trending only has a small effect if

the null hypothesis is true, de-trending is valid under both the null hypothesis and the alternative

hypothesis.

Another approach, which is the motivation for this paper, is to characterise the scaling of the340

climate noise from pre-industrial temperature records. If we are to use the scaling exponent estimated

from pre-industrial records to demonstrate the anomalous climate event associated anthropogenic

influence, we must be confident that the temperature scaling does not change significantly over

time. We must also be confident that the scaling is robust, in the sense that it is not too sensitive to

moderate changes in the climate state. The results presented in this paper suggest that, unless the345

climate system experiences dramatic regime shifting events, we can be confident that the natural

fluctuations in global surface temperature is approximated by 1/f -type scaling on a large range of

time scales. This result makes it easy to determine, on any time scale, if the observed increase in

global mean surface temperature is inconsistent with the natural variability, and by how much.

The 1/f scaling described here is the same scaling observed in numerous publications by Shaun350

Lovejoy and Daniel Schertzer, e.g., Lovejoy et al. (2013); Lovejoy and Schertzer (2013); Love-

joy (2014). The important difference in our interpretations is that they believe this scaling is lim-

ited to the scale range from a few months to a century (the “macroweather regime"). Our analysis

suggests that this scaling is an expression of Nature’s internal “humming" in Quaternary surface

temperature variability on all scales up to hundreds of kyr. A natural conclusion drawn from this355

interpretation is that description of the observed deviations from this scaling caused by DO events

and glacial/interglacial transitions should be sought in dynamical-stochastic models rather than in

general scaling laws (Braun et al., 2011; Rypdal, 2016).
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Appendix A: Lévy processes

LetX(t) be a random walk process with stationary and independent increments. This means that the360

random variablesX(t+1)−X(t) are independent and all have the same distribution. If we normalise

so that X(0) = 0 we can write X(t+ 1)−X(t)
d
=X(1), where d

= denotes equality in distribution

for random variables. A random walk of this type is called a Lévy process (see Appelbaum (2004)

for a review), and for it to be well-defined in continuous time one must assume that X(1) belongs

to the class of infinitely divisible random variables. This is a technical requirement that ensures that365

an increment X(t+ ∆t)−X(t) has a well-defined distribution for arbitrary small ∆t. Since a Lévy

process has stationary and independent increments, it is uniquely defined by the (infinitely divisible)

distribution of X(1). In the following we denote Y =X(1).

The characteristic function of the random variable Y is defined as the φY (u) = 〈eiuY 〉. If Y has a

probability density function pY , then370

φY (u) =

∫
eiuypY (y)dy

is the Fourier transform of pY . When working with Lévy processes it is common to define the

function ψ(u) via the relation φY (u) = eψ(u), and ψ(u) is usually called the Lévy exponent. Note

that since φY (0) = 1 we have ψ(0) = 0. Since ψ(u) defines the random variable Y it also determines

the Lévy process uniquely. If t is an integer the value ofX(t) is a random variable that can be written375

as a sum of lag-1 increments:

X(t) =
(
X(1)−X(0)

)
+
(
X(2)−X(1)

)
+ · · ·+

(
X(t)−X(t− 1)

)
.

This is a sum of t independent copies of the random variable Y , and therefore the characteristic

function of X(t) is

φX(t)(u) = 〈eiuY 〉t = etψ(u).380

In general there is a simple relation between the n’th moment of a random variable and the n’th

derivative of its characteristic function evaluated in u= 0. Using this relation we can express the

moments of X(t) via the formula (Gardiner, 2009),

〈X(t)n〉= i−n
dn

dun

∣∣∣
u=0

etψ(u).

This implies that 〈X(t)〉=−iψ′(0)t, so if we assume that the process does not have a linear drift,385

then we must have φ′(0) = 0. The second moment is computed the same way:

〈X(t)2〉=− d2

du2

∣∣∣
u=0

etψ(u) = t2etψ(0)ψ′(0)2 + tetψ(0)ψ′′(0) =−ψ′′(0)t= 〈Y 2〉 t.

Since increments are stationary we have the following result for the second order structure function:

S2(∆t) =

〈∣∣X(t+ ∆t)−X(t)
∣∣∣2〉= 〈X(∆t)2〉= 〈Y 2〉∆t.
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This is an important result, because it shows that the second structure function of any Lévy processes390

scales linearly with the time scale ∆t. It is also interesting to compute the fourth structure function

S4(∆t), because for a self-similar process with S2(∆t)∝∆t one must have S4(∆t)∝∆t2. For a

Lévy process X(t) with zero drift we have

S4(∆t) = 〈X(∆t)4〉=
d4

du4

∣∣∣
u=0

e∆tψ(u)

= ∆t4e∆tψ(0)ψ′(0)4 + 6∆t3e∆tψ(0)ψ′(0)2ψ′′(0) + 3∆t2e∆tψ(0)ψ′′(0)2395

+ 4∆t2ψ(3)(0)e∆tψ(0)ψ′(0) + ∆tψ(4)(0)e∆tψ(0)

= 3ψ′′(0)2∆t2 +ψ(4)(0)∆t,

and since ψ′′(0) =−〈Y 2〉 and ψ(4)(0) = 〈Y 4〉− 3〈Y 2〉2, we can write

S4(∆t) = 3〈Y 2〉2∆t2 +
(
〈Y 4〉− 3〈Y 2〉2

)
∆t. (A1)

The ratio between the second and first terms in the above equation is400

〈Y 4〉− 3〈Y 2〉2

3〈Y 2〉2∆t
=

kurt[Y ]− 3

3∆t
,

and hence we can conclude that S4(∆t)∼∆t2 for ∆t� kurt[Y ]− 3 and S4(∆t)∼∆t for ∆t�
kurt[Y ]− 3.

Appendix B: A Poisson jump process

A Poisson jump process is defined via the Lévy exponent405

ψ(u) = λ

∫
(eiux− 1)dPJ(x),

where PJ(x) is the distribution function for the jumps and λ is the rate for the occurrence of jumps.

For simplicity we can imagine a process where we have positive jumps of fixed size x+:

dPJ(x) = δ(x−x+)

and410

ψ(u) = λ(eiux+ − 1).

Hence the probability density function for X(t) becomes

pX(t)(x) =
1

2π

∫
e−iuxetψ(u) du=

1

2π

∫
e−iuxetλ(eiux+−1) du

=
e−λt

2π

∫
e−iuxetλe

iux+
du=

e−λt

2π

∫
e−iux

∞∑
n=0

1

n!
(tλeiux+)n du

=
e−λt

2π

∞∑
n=0

1

n!
(λt)n

∫
eiunx+e−iux du415

= e−λt
∞∑
n=0

1

n!
(λt)nδ(x−nx+)
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There is a drift

〈X(t)〉=

∫
xPX(t)(x)dx= x+e

−λt
∞∑
n=0

1

n!
(λt)nn= λt,

and

〈|X(t)−λt|q〉=

∫
|x−λt|qPX(t)(x)dx= e−λt

∞∑
n=0

1

n!
(λt)n|nx+−λt|q.

Appendix C: Lévy processes convolved with memory kernels

Let X(t) be a Lévy prosess and for β ∈ (1,3), define a fractional Lévy process by

Z(t) =

0∫
−∞

(
(t− s)

β
2−1− (−s)

β
2−1
)
dX(s) +

t∫
0

(t− s)
β
2−1dX(s)

=

∞∫
−∞

(
(t− s)

β
2−1
+ − (−s)

β
2−1
+

)
dX(s) =

∞∫
−∞

Kβ(t,s)dX(s),420

where

Kβ(t,s) = (t− s)
β
2−1
+ − (−s)

β
2−1
+ = (t− s)

β
2−1Θ(t− s)− (−s)

β
2−1Θ(−s).

Note that

Kβ(at,as) = (at− as)
β
2−1Θ(at− as)− (−as)

β
2−1Θ(−as) = a

β
2−1K(t,s),

and since 〈dX(t)dX(s)〉 ∝ δ(t− s)dt we have425

〈Z(t)2〉=

∞∫
−∞

∞∫
−∞

Kβ(t,s)Kβ(t,s′)E[dX(s)dX(s′)] =

∞∫
−∞

Kβ(t,s)2 ds.

This implies that

〈Z(at)2〉=

∞∫
−∞

Kβ(at,s)2 ds=

∞∫
−∞

Kβ(at,as)2 ads= aβ−1E[Z(t)2],

i.e. 〈Z(∆t)2〉= 〈Z(1)2〉∆tβ−1.
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Figure 1. (a): The δ18O concentration in the NGRIP ice core dating back to 60 kyr before present (BP). Here

present means AD 2000 (= 2000 CE). The data is given as 20-year mean values. The time series is split into

stadial (blue) and interstadial (red) periods. (b): The temperature reconstruction from the EPICA ice core.

The shown time series is sampled with a time resolution of roughly 200 years. The temperature curve in the

glacial periods is given in a blue color. (c): The Moberg reconstruction for the mean surface temperature in

the Northern Hemisphere. The data is given with annual resolution. (d): The HadCRUT4 monthly global mean

surface temperature where the anthropogenic component has been removed using a linear-response model.
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Figure 2. (a): The δ18O concentration in the NGRIP ice core. The data is given as 20-yr mean values. Two

different parts of the the times series is shown. The blue curve represents the δ18O concentration in a time

period starting approximately 50 kyr before present (BP) and has a duration of approximately 8500 years. As

in Fig. 1, present means AD 2000 (= 2000 CE). The black curve represents the δ18O concentration in a long

stadial period that started about 22 kyrs BP and has a duration of approximately 8500 years. (b): The wavelet

scaling functions estimated from the two parts of the NGRIP data set. The blue points are the estimates from

the part of the NGRIP ice core that is shown as a blue curve in (a), and which contains DO cycles. The black

points are the estimates from the the part of the NGRIP ice core that is shown as a black curve in (a), and which

does not contain any DO cycles.
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Figure 3. (a): For each time series considered in this paper we show double-logarithmic plots of the wavelet

fluctuation 〈|W (t,∆t)|2〉 as a function of the time scale ∆t. The green triangles and the green circles represent

the the HadCRUT4 monthly global mean surface temperatures with and without the anthropogenic component

respectively. The black circles is the analysis of the Moberg Northern Hemisphere reconstruction. The analysis

of the 20-yr mean NGRIP data is shown as the blue diamonds, the purple triangles and the red diamonds. The

blue diamonds show the results of the analysis of the entire dataset dating back to 60 kyrs BP. The red diamonds

are the results of the analysis preformed on the stadial periods only, and the purple triangles are the results of

the analysis of the interstadial periods only. The results for the EPICA ice core data are shown as the orange

stars and the black crosses. The orange stars are obtained by analysis of the entire data set dating back 200 kyrs,

and the black crosses are obtained by only analysing the two most recent glaciations. The two solid lines have

slopes β = 1 and β = 1.8. (b): As in (a), but instead of the wavelet fluctuation function we show the spectral

density function S(f). The two solid lines have slopes −β with β = 1 and β = 1.8.
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Figure 4. (a): The estimated wavelet-based structure functions 〈|W (t,∆t)|q〉 for the HadCRUT4 monthly

global mean surface temperature where the anthropogenic component has been removed using a linear-response

model. The lines show the fitted power-law functions cq∆tτ(q). The q-values are q = 0.1,1.0,1.5, . . . ,4.0. (b)

The scaling function τ(q) obtained from the fitted power-laws in (a). The line is a linear fit to the estimated

scaling function, and the slope of this line is β/2 with β = 0.88. (c-d): As (a) and (b) but in this case for the

Moberg Northern Hemisphere reconstruction. (e-f): As (a) and (b) but for the interstadial periods in the NGRIP

record. (g-h): As (a) and (b) but for the stadial periods in the NGRIP record. (i-j): As (a) and (b) but for the

ice age periods in the EPICA record. (k-l): As (a) and (b) but for the NGRIP record including both stadial and

interstadial periods. The red curve in (l) is the scaling function estimated from the longest time scales, the blue

curve is the scaling function estimated from the shortest time scales, and the green curve is the scaling function

estimated using all the available time scales.
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Figure 5. (a): The increments of a jump-diffusion process shown in (b). This is a non-Gaussian independent

noise process. (b): A realisation of a jump-diffusion process, and the cumulative sum of the signal in (a). This

process is the sum of a Brownian motion and a Poisson jump process as described in Appendix B. The jump

distribution is Gaussian with a standard deviation that is ten times greater than the standard deviation of the

increments of the Brownian motion. (c): Sq(∆t for q = 1,2,3 for the jump-diffusion process as computed from

a large ensemble of realisations of the process. (d): Scaling function ζ(q) estimated from structure functions

like those in (c). The red line is estimated by computing the slope of the structure-function curves on the longest

time scale (∆t= 500). The blue curve is estimated from the slopes at the shortest time scale ((∆t= 1). The

black curve by estimating the slope of the straight line drawn between the end points of the structure-function

curves.

21



Figure 6. As Fig. 5, but for a a jump-diffusion process with memory as described in Appendix C. The parameter

value β = 0.4 is used.
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