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Abstract. In order to have a scaling description of the climate system that is not inherently non-

stationary, the rapid shifts between stadials and interstadials during the last glaciation (the Dansgaard-

Oeschger events) cannot be included in the scaling law. The same is true for the shifts between the

glacial and interglacial states in the quaternary climate. When these events are omitted from a scaling

analysis the climate noise is consistent with a 1/f law on time scales from months to 105 years. If5

the records analysed include the shift events, the effect is to create a break the scaling from a 1/f

law to a 1/fβ law, with 1< β < 2. No evidence of multifractal intermittency have been found in any

of the temperature records investigated, and the events are not a natural consequence of multifractal

scaling.

1 Introduction10

The temporal variations in Earth’s surface temperature are well described as scaling on an extended

range of time scales. In this parsimonious characterisation, a parameter β describes how the fluctua-

tion levels on the different time scales are related to each other. The β-parameter can be defined via

the scaling of the spectral density function of the signal by the relation S(f)∼ f−β . An alternative

is to measure range of the variability on the longest time scales within a time window of length ∆t15

by

T∆t(t) =

∣∣∣∣∣∣ 2

∆t

t+∆t/2∑
i=t

T (t)− 2

∆t

t+∆t∑
i=t+∆t/2

T (t)

∣∣∣∣∣∣ ,
and to define β via the following relation (Lovejoy and Schertzer, 2013):

Var[T∆t(t)]∼∆tβ−1 . (1)

In this description, the temperature fluctuations would decrease with scale if β < 1, implying that20

the climate fluctuations become less prominent as we consider longer time scales, a picture which

is somewhat different than the rich long-range variability indicated by proxy reconstructions of past

climate. On the other hand, a value β > 0 would imply that variability increases with scale, a property
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that (if it were valid on a large range of time scales) would lead to levels of temperature variability

inconsistent with reality. It is therefore a natural a priori working hypothesis, that Earth’s typical25

temperature fluctuations, the climate noise, is characterised by β ' 1. Such a process is called a 1/f

noise.

The 1/f description of Earth’s temperature is of course an idealised model. The reality is that the

climate system consists of many components that respond to perturbations on different characteris-

tic time scales, and the temperature signal can be seen as an aggregation of signals with different30

time-scale characteristics. Since it is difficult to recognise pronounced time scales in the tempera-

ture records, a scaling description is both convenient and accurate. However, we are aware that the

scaling is not perfect, and that there are structures in the climate system that deviate from the scaling

law. One example is the El Niño Southern Oscillation (ENSO), which places larger fluctuations on

the times scales of a few years than what can be expected from a scaling model. Other examples are35

the Dansgaard-Oeschger (DO) cycles in the Greenland climate during the last glacial period, encom-

passing repeated and rapids shifts between a cold stadial state and a much warmer interstadial state.

The result of this phenomena is that the glacial climate on Greenland has much larger millennial-

scale fluctuations than what can expected from a 1/f description. However, as we demonstrate in

this paper, the temperature variations of both the stadial and interstadial climate states fit well with40

the 1/f -scaling, telling us that the deviation from 1/f scaling in the glacial climate arise from these

regime shifting events. As we go to even longer time scales, we also observe anomalous fluctuation

levels on time scales from 104 to 105 years that can be identified with the shifting between glacial

and interglacial conditions.

One could argue that the DO cycles and the glaciation cycles are intrinsic to the climate system45

and should not be treated as special events, and their variations should be reflected in a scaling

description of the climate. For instance, Lovejoy (2014) et al. consider a “break” in the scaling law

with an exponent β ≈ 1.8 on time scales longer than a century. A scaling model invoking two scaling

regimes can account for the millennial-scale temperature fluctuations that are produced by the DO

cycles, which are anomalous with respect to a 1/f model. However, the estimated scaling exponent50

will depend on the average “density” of DO events in the ice-core record used for the estimate, and

since the events are not uniformly distributed over time, there is no uniquely defined scaling exponent

for the last glacial period. Moreover, the scaling law would not be useful as a climate-noise model

for determining the significance of particular trends and events, such as the anthropogenic warming

in the last century.55

The main message of this paper is that the 1/f noise characterisation of the temporal fluctuations

in global mean surface temperature is very robust. It is an accurate description for the Holocene

climate, but it is also valid under both stadial and interstadial conditions during glaciations, and

during both glacial and interglacial conditions in the quaternary climate. The 1/f character of the

climate noise provides us with robust estimates of future natural climate variability, even in present60
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state of global warming. Such an estimate would of course be invalidated by a future regime shift

(a tipping point) to a warmer climate state provoked by anthropogenic forcing. A future observed

change in the 1/f character of the noise could therefore be taken as an early warning signal for such

a shift.

2 Data, methods and results65

The analysis in this work is based on four data sets for temperature fluctations: the HadCRUT4

monthly global mean surface temperature (Morice et al., 2012) in the period 1880-2011 CE (Com-

mon Era), the Moberg Northern Hemisphere reconstruction for annual mean temperatures in the

years 1-1978 CE (Moberg et al., 2005), as well as temperature reconstructions from the North Green-

land Ice Core Project (NGRIP) (Andersen et al., 2004) and the European Project for Ice Coring in70

Antarctica (EPICA) (Augustin et al., 2004). For the NGRIP ice core we have used 20-yr means of

δ18O going back 60 kyr. For the EPICA ice core we have temperature reconstructions going back

over 300 kyr, but the data is sampled at uneven time intervals and the time between subsequent data

points becomes very large as we go back more than 200 kyr. In addition we have used annual data

for radiative forcing in the time period 1880-2011 CE (Hansen, 2005) to remove the anthropogenic75

component in HadCRUT4 data. Plots of all four data records are shown in Fig. 1.

2.1 Global versus local scaling

On the face of it, it is difficult to discern scaling laws for the climate noise on time scales longer than

millennia, since we do not have high-resolution global (or hemispheric) temperature reconstructions

for time periods longer than two kyr. The ice core data available only allow us to reconstruct temper-80

atures locally in Greenland and Antartica, and we know from the instrumental record that local and

regional continental temperatures scale differently from the global mean surface temperatures on

time scales shorter than millennial. The differences we find are that local temperature scaling expo-

nents βl are smaller than global temperature exponents βg , and that the ocean temperatures scale with

higher exponents than land temperatures. Since there are strong spatial correlations in the climate85

system, it is possible that all local temperatures are scaling with a lower exponent than the global. In

(Rypdal et al., 2015) this phenomenon is illustrated in an explicit stochastic spatio-temporal model.

In this model, which is fitted to observational instrumental data, we find the relationship βg = 2βl.

This relationship is derived under the highly inaccurate assumption that all local temperatures scale

with the same exponent, but it is still a useful approximation in the following, where we will argue90

that we can use local and regional temperature records to discern the scaling of the global mean

surface temperature on time scales of 10 kyr and longer. We do this by showing that the assumption

that βg/βl > 1 is valid on very long times scales leads to the impossible result that the variance of
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global averages become larger than the mean variance of local averages. Thus we conclude that βl

converges to βg on sufficiently long time scale, and we estimate an upper limit on that time scale.95

Let us denote by σg and σl the standard deviations of the global surface temperature and a local

temperature respectively, on a monthly time scale. From Eq. (1) it follows that the ratio between the

variances for the global and local temperatures at time scale ∆t is

ρ=
(σg
σl

)2(∆t

τ

)βg−βl

,

where τ = 1 month. Unless we expect global temperatures to have larger variations than the local

temperature at time scale ∆t (the global temperature can not have a larger standard deviation than

the average standard deviation of the local temperatures) we must have ρ > 1, or equivalently,

∆t < τ
( σl
σg

)2/(βg−βl)

.

On the time scale of months, the fluctuation levels of continental temperatures is about two orders

of magnitude larger than the fluctuation level for the global mean temperature. If we also use βg = 1

and βl = 1/2 we obtain the condition ∆t < 105 months∼ 10 kyr, i.e., on time scales longer than

10 kyr the ratio βg/βl can no longer be larger than unity. A similar estimate can be obtained from

the NGRIP ice core data. In the Holocene the 20-yr resolution temperature reconstructions from100

Greenland has a standard deviation which is about five times greater than the 20-yr moving average

of the Moberg reconstruction for the Northern hemisphere. Applying the same argument restricts

the time scale for which Greenland scaling exponent is smaller than the global scaling exponent to

approximately 10 kyr.

Based on the reasoning above, we expect scaling of the ice core data to be similar to the global105

scaling on sufficiently long time scales. In the remainder of this paper we demonstrate that the scaling

in the ice core data on time scales up to hundreds of kyr is similar to the 1/f scaling we observe in

global temperature up to a few millennia. This suggests that the 1/f scaling on very long time scales

in ice core data is a reflection of the scaling in global temperatures on these scales.

2.2 Methods for estimation of scaling110

We use two methods to analyse the scaling of temperature records. The first is a simple periodogram

estimation of the specral power denisty S(f). This estimator can also be applied to data with un-

even time sampling using the Lomb-Scargle method (Lomb, 1976). The other method is to take the

wavelet transform of the temperature data:

W (t,∆t) =
1√
∆t

∫
T (t′)ψ

( t− t′
∆t

)
dt′ (2)115

and construct the mean square of the wavelet coefficients. This is a standard technique for estimating

the scaling exponent β (Malamud and Turcotte, 1999), and it is known that 〈|W (t,∆t)|2〉 ∼∆tβ .
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We choose to use the so-called Haar wavelet

ψ(t) =


1 t ∈ [0,1/2)

−1 t ∈ [1/2,1)

0 otherwise

,

and the integral in Eq. 2 is computed as a sum. The method can be adapted to the case of unevenly120

sampled data using the method described in (Lovejoy, 2014). In this work, we obtain very simi-

lar results using the periodogram and the wavelet transform. These are methods for investigating

the so-called second-order statistics of the data, which represents the information contained in the

auto-covariance function. Claims have been made that higher-order statistics in the form of a multi-

fractal characterization is an essential part of the statistical description of these data (e.g., Lovejoy125

and Schertzer (2013), Chapter 11). For this reason we include a multifractal analysis of the data in

Section 2.4.

2.3 Results of second-order analysis

In Fig. 2 we show the wavelet fluctuation 〈|W (t,∆t)|2〉 estimated for two different segments of the

NGRIP data. Both time series have the same number of data points and both represent time intervals130

of 8500 years. The differences between the two time series is that one contains DO cycles, whereas

the other does not. The estimated wavelet fluctuations and the spectral density scale very differently

for the two time series, and this motivates us to separate stadial and interstadial conditions when

we analyse the scaling in NGRIP data. This separation is shown in Fig. 1(a), where the red curve

represents the δ18O concentration in interstadial periods and the blue curve represents the δ18O135

concentration in stadial periods. We have followed Svensson et al. (2008) in defining the dates for

the onsets of the interstadials and we have defined the start dates for the stadial periods to be just after

the rapid temperature decrease that typically follows the slow cooling in the interstadial periods. In

Fig. 3 we show the spectral density function and the wavelet scaling function for the stadial data (red

diamonds) and the interstadial periods (purple triangles), which both display an approximate 1/f140

scaling, but where the fluctuation variance in the stadial data is larger than in the interstadial data.

These results are different from what is obtained when considering the NGRIP data (during the last

glaciation) as a single time series (shown as blue diamonds). If we were to define a single scaling

exponent for the whole time series, then we would obtain an estimate β ≈ 1.4.

Fig. 3 shows that the scaling of the stadial and interstadial NGRIP data are similar to the scaling of145

global temperatures on shorter time scales. We have included an analysis of the instrumental temper-

ature record both with (green triangles) and without the anthropogenic component (green disks). The

anthropogenic component can be removed by subtracting the response to the anthropogenic forcing

in a simple linear response model of the type considered in (Rypdal and Rypdal, 2014). We have

also included an analysis of the Moberg Northern Hemisphere reconstruction (black squares), and150
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we observe that the composite scaling wavelet variance function and the composite spectral density

function obtained by combining the instrumental data with the Moberg reconstruction, is consistent

with a 1/f model on time scales from months to centuries. Since the NGRIP data also shows 1/f

scaling, and since we believe that the scaling of the NGRIP data is a reflection of global scaling on

time scales longer than a millennium, it is illustrative to adjust the fluctuation levels of the NGRIP155

data so that its Holocene part has a standard deviation close to that of the standard deviation of the

20-year means of the Moberg reconstruction in the same time period. This means that we use the

adjusted NGRIP data as a proxy for global temperature on millennial scales. The effect of this adjust-

ment is only a vertical shift of the wavelet scaling function and the spectral density functions in the

double-logarithmic plots, so that it becomes easier to compare the scaling of the NGRIP data with the160

Moberg reconstruction and the instrumental data. We do not apply any adjustments of the fluctuation

levels of the stadial and interstadial periods relative to each other. The same adjustment is applied

to the EPICA data, and here we also consider the scaling of the glacials and interglacials separately

as shown in Fig. 1(b). The scaling estimated from the EPICA data for glacial periods (black crosses

in Fig. 3) follow the almost the same scaling as the NGRIP data analysed as a single time series165

(blue diamonds). This shows that the glacial climates have similar characteristics in Greenland and

in Antartica. Careful examination of the figure shows that the fluctuations grow slightly faster with

the scale ∆t in the NGRIP time series than for the glacial periods of the EPICA time series. This

is expected since the regime shifting events in Antartica (that are known to be connected with the

DO cycles (WAIS Divide Project Members, 2015)) are much less pronounced than on Greenland. In170

the EPICA data we cannot estimate a scaling exponent for the dynamics in periods without regime

shifts, but our results for the EPICA data are consistent with a description of the climate as a 1/f

climate noise plus regime shifts. If we analyse the EPICA data without omitting the interglacials,

then the fluctuations increase even faster with the scale ∆t (orange stars in Fig. 3). This effect is

completely analogous to the effect of shifting between the stadial and interstadial conditions during175

glaciations.

2.4 Results of multifractal analysis

The exponent β is well-defined as long as the power spectral density function S(f) is a power law

in f , or equivalently if the wavelet fluctuation function E|W (t,∆t)|2 is a power law in ∆t. If well-

defined, the β exponent is related to the temporal correlations in the signal via simple formulas.180

In fact, for a (zero-mean) stationary process T (t) with −1< β < 1 we have 〈T (t)T (t+ ∆t)〉 ∼
(β+ 1)β∆tβ−1 and for (a zero-mean) process with stationary increments and 1< β < 3 we have

〈∆T (t)∆T (t+∆t)〉 ∼ (β−1)(β−2)∆tβ−3, where ∆T (t) is the increment process of T (t) (Rypdal

and Rypdal, 2012). Thus, the results presented so far in this paper do not rely on any assumptions

of self-similar or multifractal scaling. It is only assumed that the second-order fluctuation functions185

〈|W (t,∆t)|2〉 are well approximated by power-laws over an extended range of time scales.
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A more complete scaling analysis can be performed if one imposes the more restrictive assumption

that the wavelet-based structure functions 〈|W (t,∆t)|q〉 are power-laws in ∆t, not only for q = 2,

but for an interval of q-values. It is then it is possible to define a scaling function τ(q) via the relation

〈|W (t,∆t)|q〉 ∼∆tτ(q).190

We observe that τ(2) = β. If T (t) is self-similar (or if T (t) is the increment process of a self-similar

process in the case β < 1) we have τ(q) = βq/2, but in general, the τ(q) may be concave. Processes

that exhibit power-law structure functions and strictly concave scaling functions can be characterized

as multifractal intermittent.

If Fig. 4 we present a multifractal analysis of the data sets considered in this paper using q-values195

in the range from 0.1 to 4. For the Holocene we find linear scaling functions for both the instrumental

record and the Moberg Northern Hemisphere reconstruction, and in the NGRIP data we find linear

scaling functions for the both the stadial periods and the interstadial periods when these are analysed

separately, although, as we have already seen, there is a deviation from the 1/f scaling in the stadial

periods for time scales shorter than about 200 yrs. If the NGRIP record is analysed with both stadial200

and interstadial stages included, then it is not clear how to define the scaling function since the shifts

between the two types of stages causes a “break” in the power-law scaling of the wavelet-based

structure functions. If we define τ(q) using the time scales shorter than 2 kyr we obtain a linear

scaling function corresponding to β = 1.14, and if we use the time scales longer than 4 kyr we obtain

a linear scaling function corresponding to β = 1.78. In neither case do we obtain a strictly concave205

scaling function. A linear scaling function is also obtained if we disregard the “break” in the scaling

and fit power laws using all the available time scales. In this case the scaling function corresponds to

β = 1.26. For the periods of the EPICA record that corresponds to ice ages, we find wavelet-based

structure functions that are closer to power-laws than what is observed in the NGRIP record. This

is expected since the abrupt transitions between cold and warm periods is much less pronounced in210

Antartica than in Greenland. The scaling function for the ice-age periods in the EPICA data is linear

and corresponds to β = 1.18.

The results discussed above show that there is no evidence of multifractal intermittency in the

temperature records analysed in this paper. This is not very surprising and could be established by

direct inspection of the data record. The trained observer would use the fact that if τ(q) is strictly215

concave, then the kurtosis of W (t,∆t),

〈|W (t,∆t)|4〉
〈|W (t,∆t)|2〉2

∼∆tτ(4)−2τ(2),

is decreasing as a power-law function of ∆t, and is therefore leptokurtic1 on the shorter time scales

∆t. Multifractal intermittency also implies that the amplitudes of the random fluctuations are clus-

tered in time, on all time scales, as observed in intermittent turbulence or financial time series (see220

1A distrubution is leptokurtic if it has high kurtosis compared with a normal distribution. This means that the probability

density function has a high central peak and fatter tails.
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e.g., Bouchaud and Muzy (2003)). These are not prominent features in the time series analysed in

paper. For the NGRIP data, the δ18O ratio slightly deviates from a normal distribution as a result of

the DO events, but this is not well described by a multifractal model since that would require the

wavelet-based structure functions to be power-laws in ∆t. In fact, what we show in this paper is that

effect of DO events is to break the scaling, rather than to produce multifractal scaling.225

3 Discussion and concluding remarks

Accurate characterization of the climate noise is essential for the detection and evaluation of anthro-

pogenic climate change. For instance, when we apply standard statistical methods for estimating the

significance of a temperature trend, the result depends crucially on the so-called error model, i.e.,

the model for the climate noise. There is strong evidence that the temperature fluctuations are better230

described by scaling models than by so-called red-noise models (or AR(1)-type models). However,

simply characterizing the climate noise as scaling does not specify an error model. The exponent

in the scaling law (the β parameter) must also be determined, and it is usually determined from the

same signal as we are testing for trends. Most estimators of β are sensitive to trends, providing too

large β-estimates when applied to signals with strong trends. So if we estimate β under the assump-235

tion that our null hypothesis (no trend) is true, then we are being led to a model with a value of β

which is too large if the alternative hypothesis is true (there is a real trend). The large value of β will

then lead us to believe that the climate noise can produce pseudo-trends comparable to the estimated

trend in the signal, and the result is that we have a test with low statistical power (the probability of

detecting a significant trend is low even if there is a real trend). It is important to realize that there240

is nothing formally wrong with using a trend-detection test with low power. It only means that it

will be difficult to make statistical significant conclusions about the observed trends. The lack of

statistical significance under a weak test does not mean that the trends are not real. It would however

be incorrect to give a general characterization of the climate noise by the exponent β if it is likely

that the β-estimate is strongly biased by the presence of a trend.245

One approach to the problem described above is to apply some type of de-trending to the signal

prior to the estimation of β. This may seem to be an inconsistent step, since the β should be esti-

mated under the assumption that the null hypothesis is true. However, since de-trending only has a

small effect if the null hypothesis is true, de-trending is valid under both the null hypothesis and the

alternative hypothesis. If de-trending is applied, the statistical powers of the standard trend-detection250

techniques for scaling processes are greatly improved.

Another approach, which is the motivation for this paper, is to characterize the scaling of the

climate noise from pre-industrial temperature records. If we are to use the scaling exponent estimated

from pre-industrial records to demonstrate the anomalous climate event associated anthropogenic

influence, we must be confident that the temperature scaling does not change significantly over255
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time. We must also be confident that the scaling is robust, in the sense that it is not too sensitive

to moderate changes in the climate state. The main result of this paper is that unless the climate

system experiences dramatic regime shifting events, we can be confident that the natural fluctuations

in global surface temperature is approximated by 1/f -type scaling on a large range of time scales.

This result makes it easy to determine, on any time scale, if the observed increase in global mean260

surface temperature is inconsistent with the natural variability, and by how much.
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Figure 1. (a): The δ18O concentration in the NGRIP ice core dating back to 60 kyr before present (BP). Here

present means AD 2000 (= 2000 CE). The data is given as 20-year mean values. The time series is split into

stadial (blue) and interstadial (red) periods. (b): The temperature reconstruction from the EPICA ice core.

The shown time series is sampled with a time resolution of roughly 200 years. The temperature curve in the

glacial periods is given in a blue color. (c): The Moberg reconstruction for the mean surface temperature in

the Northern Hemisphere. The data is given with annual resolution. (d): The HadCRUT4 monthly global mean

surface temperature where the anthropogenic component has been removed using a linear-response model.
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Figure 2. (a): The δ18O concentration in the NGRIP ice core. The data is given as 20-yr mean values. Two

different parts of the the times series is shown. The blue curve represents the δ18O concentration in a time

period starting approximately 50 kyr before present (BP) and has a duration of approximately 8500 years. As

in Fig. 1, present means AD 2000 (= 2000 CE). The black curve represents the δ18O concentration in a long

stadial period that started about 22 kyrs BP and has a duration of approximately 8500 years. (b): The wavelet

scaling functions estimated from the two parts of the NGRIP data set. The blue points are the estimates from

the part of the NGRIP ice core that is shown as a blue curve in (a), and which contains DO cycles. The black

points are the estimates from the the part of the NGRIP ice core that is shown as a black curve in (a), and which

does not contain any DO cycles.
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Figure 3. (a): For each time series considered in this paper we show double-logarithmic plots of the wavelet

fluctuation 〈|W (t,∆t)|2〉 as a function of the time scale ∆t. The green triangles and the green circles represent

the the HadCRUT4 monthly global mean surface temperatures with and without the anthropogenic component

respectively. The black circles is the analysis of the Moberg Northern Hemisphere reconstruction. The analysis

of the 20-yr mean NGRIP data is shown as the blue diamonds, the purple triangles and the red diamonds. The

blue diamonds show the results of the analysis of the entire dataset dating back to 60 kyrs BP. The red diamonds

are the results of the analysis preformed on the stadial periods only, and the purple triangles are the results of

the analysis of the interstadial periods only. The results for the EPICA ice core data are shown as the orange

stars and the black crosses. The orange stars are obtained by analysis of the entire data set dating back 200 kyrs,

and the black crosses are obtained by only analysing the two most recent glaciations. The two solid lines have

slopes β = 1 and β = 1.8. (b): As in (a), but instead of the wavelet fluctuation function we show the spectral

density function S(f). The two solid lines have slopes −β with β = 1 and β = 1.8.
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Figure 4. (a): The estimated wavelet-based structure functions 〈|W (t,∆t)|q〉 for the HadCRUT4 monthly

global mean surface temperature where the anthropogenic component has been removed using a linear-response

model. The lines show the fitted power-law functions cq∆tτ(q). The q-values are q = 0.1,1.0,1.5, . . . ,4.0. (b)

The scaling function τ(q) obtained from the fitted power-laws in (a). The line is a linear fit to the estimated

scaling function, and the slope of this line is β/2 with β = 0.88. (c-d): As (a) and (b) but in this case for the

Moberg Northern Hemisphere reconstruction. (g-f):
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