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Abstract

The prospect of finding generic early warning signals of an approaching tipping point
in a complex system has generated much recent interest. Existing methods are predi-
cated on a separation of timescales between the system studied and its forcing. How-
ever, many systems, including several candidate tipping elements in the climate sys-5

tem, are forced periodically at a timescale comparable to their internal dynamics. Here
we find alternative early warning signals of tipping points due to local bifurcations in
systems subjected to periodic forcing whose time scale is similar to the period of the
forcing. These systems are not in, or close to, a fixed point. Instead their steady state
is described by a periodic attractor. We show that the phase lag and amplification of10

the system response provide early warning signals, based on a linear dynamics ap-
proximation. Furthermore, the power spectrum of the system’s time series reveals the
generation of harmonics of the forcing period, the size of which are proportional to how
nonlinear the system’s response is becoming with nonlinear effects becoming more
prominent closer to a bifurcation. We apply these indicators to a simple conceptual15

system and satellite observations of Arctic sea ice area, the latter conjectured to have
a bifurcation type tipping point. We find no detectable signal of the Arctic sea ice ap-
proaching a local bifurcation.

1 Introduction

The potential for early warning of an approaching abrupt change or “tipping point” in20

a complex, dynamical system has been the focus of much recent research, see for ex-
ample Scheffer et al. (2009), Lenton (2011) and Scheffer et al. (2012). Abrupt change
in a system can occur due to a bifurcation – that is, a small smooth change in pa-
rameter values can result in a sudden or topological change in the system’s attractors.
Much work on the anticipation of bifurcations from time series data, e.g. in ecosys-25

tems (Scheffer et al., 2009), or the climate system (Dakos et al., 2008; Lenton, 2011),

2244

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/6/2243/2015/esdd-6-2243-2015-print.pdf
http://www.earth-syst-dynam-discuss.net/6/2243/2015/esdd-6-2243-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
6, 2243–2272, 2015

Early warning signals

M. S. Williamson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

has been based on a clear separation of three time scales: (i) the time scale of the
dynamics of the system one wants to study, (ii) much faster processes than the time
scale of the system, and (iii) much slower processes than the time scale of the system.
In addition, the system dynamics are modelled as overdamped, the fast dynamics as
a noisy, normally distributed random variable of small variance and the slow dynamics5

as a constant, control parameter on the time scale of the system. Provided these are
good working approximations, critical slowing down, the increase of the system’s time
scale, is expected prior to a local bifurcation and can be detected by computing the
autocorrelation of a system’s time series. An increasing trend in autocorrelation in time
shows the stability of the system is weakening or equivalently, the system’s time scale10

is increasing – which is a generic feature of a system approaching a local bifurcation.
Provided the variance of the fast noisy process is constant, increasing variance of the
system’s time series is also a good indicator of critical slowing down, although it is less
robust than autocorrelation due to its dependence on the noisy process.

For many systems of interest one or more of the above assumptions may be invalid.15

In particular, when the forcing of a system has a comparable period to the time scale
of the system, the forcing cannot be modelled as a slow, constant control parameter or
a fast, random process. Here we give alternative early warnings signals of approaching
local bifurcations when the period of the forcing is similar to the time scale of the sys-
tem. Systems of this type are particularly relevant in the climate system where periodic20

forcing is a consequence of the motion of the Earth relative to the Sun. For example,
solar insolation variation from the diurnal, annual or Milankovich cycles. We look partic-
ularly at sinusoidal forcing since this approximates the variation of solar insolation well.
However, the method works for any periodic forcing and we also give the derivation of
the general case in the Appendix.25

We show that increasing system time scale as it approaches a local bifurcation
shows up as an increasing phase lag in the system response relative to the forc-
ing. In addition, we show the amplitude of the system response increases as well.
These indicators, like autocorrelation and variance in the usual method, assume the
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linearized dynamics approximate the true nonlinear dynamics well. One might ask how
well the linear approximation works, especially near the bifurcation, since bifurcations
are strictly nonlinear phenomena. We show how to give a quantitative answer to this
question by computing the power spectrum of the system’s time series. In particular,
as the system’s behaviour becomes more nonlinear, harmonics of the forcing period5

are generated in the system response and their amplitudes may be obtained from the
system’s power spectra. Since the system response becomes more nonlinear as one
approaches the bifurcation, one can view the increasing amplitude of harmonics as
another early warning signal.

The paper is organised as follows: in Sect. 2 we introduce a conceptual model to10

illustrate periodically forced overdamped systems approaching a local bifurcation and
the time scale separation problem. Then in Sect. 3 we show that the system response
phase lag and amplification are good early warnings of approaching local bifurcations.
These indicators, like previous ones, are based on a linear dynamics approximation,
however in Sect. 4 we give another useful tool that allows one to quantify how good an15

approximation the linearized dynamics is as well as how nonlinear the system is be-
having. In Sect. 5 we calculate these indicators for a conceptual model driven towards
a local bifurcation and for satellite time series data of Arctic sea ice area, a system
conjectured to be approaching a local bifurcation, before concluding in Sect. 6.

2 Periodically driven fold as an idealised example20

Here we use an idealized example of a periodically forced, overdamped system tipping
due to a local bifurcation to illustrate time scale separation between the forcing and the
system’s internal time scale. We first introduce our system which has one dynamical
variable, x, (see Shneidman et al. (1994) and Jung and Hänggi (1993) for work on
periodically driven, noisy double well systems). x evolves according to25

ẋ = x−x3 +D(t) (1)
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where overdots denote differentiation with respect to time, t and the periodic forcing
function D(t) is

D(t) = Dm +Da cos(ωt). (2)

Dm and Da are constants and ω = 2π
T is the angular frequency and T is the period of

the forcing. Equation (1) models a nonautonomous nonlinear system, the overdamped5

limit of a Duffing oscillator (Thompson and Stewart, 2002). When there is no periodic,
just constant forcing (ω = 0) the familiar, well studied autonomous fold bifurcation is
recovered (for example see Strogatz, 2001). For ω = 0, the solutions of ẋ = 0, give the
system’s fixed points, x∗ (the nullclines) and number either one or three depending on
the value of Dm. One can evaluate the stability of these fixed points by looking at the10

linearized dynamics close to the fixed points, J(x∗)

J(x∗) =
∂ẋ
∂x
|x=x∗ = 1−3x∗2. (3)

If J(x∗) is negative, the fixed point is stable, if it is positive it is unstable. In the region
where three fixed points exist one finds two are stable and one is unstable. That is, it is
a bistable region. The bistable region has boundaries marked by the local bifurcations15

and these can be found by solving J(x∗) = 0 for x∗ i.e. when the fixed point becomes
neutrally stable. One can also calculate the e folding time scale of the system in state
x, τ from the Jacobian τ = −1/J(x). We will refer to the e folding time as the system
time scale. Early warning indicators are simply functions of J(x∗) or equivalently τ.

2.1 Period of forcing much slower than system time scale, ωτ� 120

Now consider how the system can be described for the asymptotics of the forcing fre-
quency ω. First imagine that we force the system periodically, but very slowly. That is
T � τ and look at the behaviour of the system. Since D(t) is varying much slower than
the system can respond, the system can adjust to the changing D(t) very quickly and
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effectively remains at a fixed point. We can therefore model D(t) as a slow constant,
control parameter and all the usual assumptions (listed in the introduction) apply. In
this case we can use the autocorrelation as a good early warning indicator of an ap-
proaching local bifurcation. The system state x is plotted against D and against t as
the red line in Fig. 1.5

2.2 Period of forcing much faster than system time scale, ωτ� 1

The forcing is changing much faster than the system can respond to it. The forcing is so
fast relative to how quickly the system can respond, the system effectively looks static
and all the dynamics come from the forcing directly. In this case we can place D(t) in
the fast dynamics. However, not all of the other assumptions are satisfied. It is true10

that D(t) is independent of x, however it is not uncorrelated with itself at different times
and therefore cannot strictly be modelled as a normally distributed random variable,
although at first glance it looks as though it is again possible to use the usual early
warning techniques. The system state x is plotted against D and against t as the green
line in Fig. 1.15

2.3 Period of forcing similar to system time scale, ωτ ∼ 1

In the intermediate regime, T ∼ τ, when the system responds on approximately the
same time scale as the period of the forcing the dynamics are a balance between the
system’s tendency to want to decay towards the fixed point and the forcing trying to
push it away. After some time, t� τ, the system will settle into an orbit rather than20

a fixed point due to the similarity of the time scales. Just as there was a bistable region
where multiple stable fixed points existed for a single value of Dm when ω = 0, analo-
gously in the case T ∼ τ multiple stable periodic attractors are possible given a fixed
set of values for Dm, Da and ω. Which one the system settles in depends only on the
system’s initial condition x(t = 0). One also has local bifurcations in this intermediate25

region, however they are local bifurcations between orbits rather than fixed points. In
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this intermediate regime, one can neither place the Da cos(ωt) part of D(t) in either the
slow or fast processes and therefore the assumptions of the usual early warning meth-
ods are not strictly valid. However one can still find early warning indicators in such
systems and this is what we do in the following section. The system state x is plotted
against D and against t as the blue line in Fig. 1.5

3 Response phase lag and amplification as an early warning of local
bifurcations

We now look at systems that can be described by

ẋ = f (x)+D(t) (4)

where f (x) is, generally a nonlinear function of the system state scalar variable x. Our10

conceptual model, Eq. (1), was a specific example of such a system. The forcing D(t)
is given by Eq. (2). We consider a general form for D(t) in the Appendix, however here
we use simple sinusoidal forcing as this is most relevant for many climate systems and
we wish not to obscure the simplicity of the main results. ẋ describes the dynamics
of a forced overdamped system. This is a nonautonomous system whose state can15

be completely described by t and x. After some time ts� τ the system will settle into
some sort of steady state, either an orbit or a fixed point whose mean state x is

x =
1
T

T+ts∫
ts

x(t)dt. (5)

We now Taylor expand f (x) to first order around x so that

ẋ ≈ a− x
τ
+Da cos(ωt), (6)20
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where

a = f (x)− ∂f
∂x
|x=xx+Dm (7)

τ = −1/
∂f
∂x
|x=x (8)

are the linearisation constants. We have assumed higher order terms such as 1
n!
∂nf
∂xn (x−

x)n, n ≥ 2 are small relative to zeroth and first order terms so that the linearised dynam-5

ics approximates the full nonlinear dynamics well. We show how to check this approxi-
mation in Sect. 4. Assuming for the moment that this is a good approximation, one can
solve Eq. (6) analytically. As t� τ the system settles into the orbit

limt�τx(t) = aτ +
Daτ√

1+ω2τ2
cos(ωt+φ) (9)

where the system response lags the forcing by phase φlag =ωtlag = −φ given by10

φlag = arctan(ωτ) (10)

that is, the phase lag is a function of the forcing frequency and the system response
time scale. One also notices that the system response, relative to the forcing amplitude,
Da, is amplified by a factor

τ√
1+ω2τ2

(11)15

which is also a direct function of ω and τ. We save the more general derivation when
D(t) can be any periodic function to Appendix .
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3.1 Asymptotics of the early warning indicators and examples of systems in
these limits

3.1.1 ωτ� 1, Terrestrial carbon cycle forced by annual solar insolation

Consider the asymptotics of Eq. (10). When the system is losing stability and approach-
ing a local bifurcation its time scale becomes very large, τ� T , and the system phase5

lag becomes φlag→ π/2. That is, the system response lags the forcing by quarter of
a cycle. This limit is also appropriate for systems where the periodic forcing is much
quicker than the time scale of the system. Unfortunately, inferring a time scale of a sys-
tem withφlag→ π/2 is not possible to do reliably from the phase lag asφlag asymptotes
to this value. One can only reliably conclude τ� T .10

The system response amplification in the τ� T limit→ 1
ω . That is, system response

amplitude is related to the forcing amplitude, Da, by Da
ω .

An example of a system approximately modelled by this limit is the global terrestrial
vegetation carbon which has a dominant timescale on the order of decades, much
larger than its periodic forcing, the annual cycle of solar insolation. This dominant time15

scale comes from the large long term carbon storage e.g. the time scale taken for
a forest to regrow once cut down. One sees this phase lag of quarter of a cycle in the
annual minimum of the Mauna Loa CO2 record1 relative to the Northern Hemisphere
solar insolation maximum. This lagged annual minimum in the integrated response of
the total atmospheric carbon results from the dominance of the Northern Hemisphere’s20

mid latitude terrestrial vegetation carbon in the global carbon flux. We have plotted the
Mauna Loa CO2 record and the time of year of the minimum concentration in Fig. 2.

1Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keel-
ing, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
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3.1.2 ωτ� 1, Ice sheet dynamics forced by Milankovitch cycles

When T � τ, there is no phase lag, φlag→ 0, and the system can respond instantly.
The system response amplitude in this limit→ τ. That is, system response amplitude

is related to the forcing amplitude, Da, by Daτ.
An example of a system that has the correct time scale separation and periodic5

forcing are the glacial/interglacial cycles that have the slow build, fast collapse type be-
haviour of relaxation oscillations. Ice sheets have time scales in the order of thousands
of years forced by the solar insolation variation of Milankovitch cycles. The forcing is
a superposition of many different sinusoidal frequencies, the dominant ones having
periods of 41 kyr (related to the obliquity of Earth’s orbit), 19 and 23 kyr (related to the10

precession). Current thinking however, favours more complex, two and higher dimen-
sional dynamics to model these cycles than the single variable models we consider in
this paper (Saltzman, 2002; Crucifix, 2012, 2013; Saedeleer et al., 2013).

3.1.3 ωτ ∼ 1, Ocean mixed layer temperature forced by annual solar insolation

The intermediate regime, when τ ∼ T (the time scale of the system is approximately the15

same as the forcing period) is where phase lag and response amplification are most
useful as early warning indicators as one sees values somewhere between the two
limits.

To give an example of a system operating in this regime consider the annual variation
in sea temperatures in Northern Hemisphere temperate regions. A rough estimate of20

the ocean surface mixed layer time scale gives τ ∼ 10 months and this surface layer is
heated by the annual cycle of solar insolation to varying degrees throughout the year.
Calculation of the phase lag for this τ and T yields a lag of about 2.6 months i.e. roughly
the maximal and minimal sea temperatures are in September and March. Arctic sea
ice extent also falls into this regime and will be one of the systems we apply the early25

warning indicators to in Sect. 5.2.
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4 System nonlinearity from Fourier analysis

By simply looking at the time series of the system response and the forcing one can
determine what the amplitude and phase lag are when the driving is of the form Eq. (2)
and the system response is approximately linear. However, the system is essentially
nonlinear and these nonlinear effects may become large near a bifurcation or when the5

system is driven hard. By taking the Fourier transform of the time series of the system
response one can quantify how large these nonlinear effects are.

Once the system has settled into an orbit of period T , we can write the full nonlinear
response of an arbitrary system as a Fourier series, a sum of N sinusoidal functions
with angular frequencies ωn =

2πn
T , amplitudes An and phases φn i.e.10

x(t) =
N∑
n=0

An cos(ωnt+φn). (12)

The n = 0 component is a constant, the long term mean of the response, the n = 1
component is the linear response of the system and the n ≥ 2 components are the nth
order harmonics and come about from the nonlinear response of the system. Since the
system has settled into a periodic orbit the system must repeat itself every cycle. The15

only way the system can do this is by adding harmonics to linear response. By looking
at the ratios An

A1
for n ≥ 2 we can see how important the nonlinear effects are relative

to the linear approximation. In practice the largest harmonics will generally be the 2nd
(n = 2) and 3rd order (n = 3) harmonics and provided they are an order of magnitude
(10 times, An

A1
< 10−1) less than the fundamental harmonic, the linear analysis in the20

last section works well.
One may also expect subharmonics, components that have periods that are integer

multiples of the forcing period, to be observed in the system response. Subharmonics
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are not possible in the systems we consider here due to the dimensionality of the phase
space.2

Calculation of the amplitudes, An, is via a Fourier transform of the time series. To do
this, we choose to represent the system response, Eq. (12), in the more convenient but
equivalent form5

x(t) =
N∑

n=−N
cne

iωnt (13)

where we have defined cn =
An
2 e

iφn and c−n = c
∗
n. We then take the Fourier transform

of this form to find the cn

cn =
1
T

T∫
0

x(t)e−iωntdt (14)

so the amplitude An associated to the nth harmonic is given by10

An = 2|cn|. (15)

One can also find the phases, φn by taking the argument of cn.

2Systems described by Eq. (4) are completely described by the two dimensional space of
variables x and t. Recasting the nonautonomous system in Eq. (4) as a two dimensional au-
tonomous system by identifying a new angular variableφ =ωt, the system is then described by
ẋ = f (x)+D(φ) and φ̇ =ω. The resulting phase space (x,φ) is then cylindrical as φ is 2π mod-
ular. If subharmonics are possible in the periodic system response the trajectory must wind
around the cylinder at least twice before repeating itself. Such a trajectory implies it crosses
itself which is not allowed due to the existence and uniqueness theorem. Therefore subhar-
monics cannot exist in the two dimensional systems. This is of course not true for three and
higher dimensional systems.
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Since the ratios An
A1
≡ |cn ||c1 |

measure how nonlinear the system is one expects these

to increase as the system approaches a bifurcation as well as quantitative measures
of how appropriate the linear analysis is. We demonstrate the linear early warning
indicators and the Fourier analysis in the next section.

5 Examples5

5.1 Conceptual model

We now demonstrate how one might use these indicators to detect changing system
time scale (equivalently changing system stability) and therefore the anticipation of
an approaching local bifurcation. We demonstrate this with the conceptual system in
Eq. (1). We assume the forcing amplitude Da and the period T ∼ O(τ) are fixed and Dm10

is a control parameter, slowly varying from negative values towards the local bifurca-
tion. We expect to see the system response become more phase lagged and amplified
as we approach the local bifurcation at Dm ≈ 0.33 when approaching from the lower
nullcline solutions.

In our example we choose to tip the system from one state to another by slowly15

altering the mean of the driving Dm. We could, however, have tipped the system by
changing one of the other driving parameters such as amplitude Da or frequency ω.
Since the system response amplitude depends on Da and ω and phase lag depends
on ω, one must take this into account when inferring system time scales from the
indicators.20

In Fig. 3 we run the system forward in time, linearly varying Dm from −2 to 2 across
the bifurcation over about 25 cycles of the forcing period (for the values of the parame-
ters see the figure caption). In Fig. 4 we have plotted the phase lag and amplitude of the
system response prior to the bifurcation at around t/T = 15 which are both increasing
as the bifurcation is approached due to the increase in τ. Phase lag is calculated from25

the difference between the times of the maxima in the forcing and the system response
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in each cycle. Response amplitude is calculated by taking half the difference between
the maximal and minimal values in the system response in each cycle.

We also plot the ratios An/A1 against Tn/T derived from a Fourier transform of the
system response in Fig. 5. In the upper panel all parameters are the same as Fig. 3
except we have fixed Dm in each of the two runs. In the first run Dm = −2, this is far5

from the bifurcation and one expects the system to behave more linearly (blue line).
One sees a second harmonic around 2 orders of magnitude smaller than the linear
response. In the second run Dm = 0.25 and the orbit is much closer to the bifurcation
(red line). The second harmonic has increased to about an order of magnitude smaller
than the fundamental harmonic and a third harmonic is now also visible indicating the10

system has become more nonlinear.
We illustrate the spectrum of very nonlinear dynamics in the lower panel of Fig. 5.

This is the spectrum of the slow forcing run with the same parameters in Fig. 1 (red line)
that had a response that resembled relaxation oscillations. For these parameters the
dynamics is very nonlinear as shown by the large amplitude of the harmonics. Notice15

only odd harmonics appear in its spectrum. This is because the static potential V =
−
∫
ẋdx is symmetric about x for this value of Dm = 0 i.e. V (x) = V (−x) and therefore

any solution of ẋ must also have this symmetry, x(t+T/2) = −x(t). Only odd harmonics
have this property.3

3This is not sufficient though as there are other parameter settings that feature the second
harmonic and also have the same symmetric potential i.e. Dm = 0 and T = π in Fig. 1 (blue line).
The difference is that the runs featuring second harmonic responses only experience a limited
part of the potential, not the full symmetric potential. Even though the potential is the same, the
forcing is quick enough to trap the system in an orbit in just one of the two potential wells. This
local potential well is asymmetric and what the system sees is effectively described by a Taylor
expansion around the centre of that well. In contrast the relaxation oscillation type run travels
across both wells equally and therefore sees the global symmetric potential requiring an odd
harmonic solution. This is not a generic case however.
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5.2 Arctic sea ice satellite observations

There has been much research in to a possible local bifurcation and tipping point in
the Arctic sea ice without a clear consensus emerging, see for example Armour et al.
(2011), Eisenman and Wettlaufer (2009), Lindsay and Zhang (2005), Livina and Lenton
(2013), Ridley et al. (2012) and Wang and Overland (2012). This possible bifurcation5

in the sea ice cover may be due to the well known ice albedo feedback first studied
by Budyko (1969) and Sellers (1969). When ice is present it reflects a high proportion
of the incoming solar radiation due to its higher albedo yet when it starts receding the
darker ocean absorbs more radiation increasing heating and promoting more sea ice
retreat. This feedback can result in instability and multiple steady states.10

We analyze a time series of Arctic sea ice area satellite observations from 1979 to
present data and calculate the phase lag, response amplitude and spectrum of the time
series to look for signs of critical slowing down. In Fig. 6 we have plotted the Arctic sea
ice area against year. Sea ice area data were obtained from The Cryosphere Today
project of the University of Illinois. This dataset4 uses SSM/I and SMMR series satellite15

products and spans 1979 to present at daily resolution.
In Fig. 7 we plot the amplitude of the sea ice area annual cycle and the phase lag

between the sea ice area minimum and maximum during each cycle. We assume the
maximal and minimal driving occurs at the same time as maximal and minimal of the
solar insolation, that is, the midpoint and end point of the year respectively to obtain20

phase lags. To limit the the impact of high frequency variability on the location of the
extrema, we have smoothed the daily data with a sliding window with 30 days.

From Fig. 7 we see the cycle amplitude is increasing with time although the phase
lag does not appreciably change. We first make some rough calculations to see if
these plots are consistent with each other: from the phase lag figure, a time scale of25

τ ∼ [0.33,0.5] yr from the lag of [0.18,0.2] of a cycle can be inferred. If we assume
for the moment, the amplitude of the forcing Da is not changing throughout the time

4http://arctic.atmos.uiuc.edu/cryosphere/timeseries.anom.1979-2008
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period of the observations (this may not be true) and take the smallest value in the
range for τ1978 = 0.33 yr at occurring in 1978 and the largest value in 2015, τ2015 = 0.5
yr we can make a rough calculation of how much the sea ice amplitude would have

increased i.e. A2015
A1978

= τ2015
τ1978

√
1+ω2τ2

1978

1+ω2τ2015
≈ 1.06. From Fig. 7 we take the amplitude at 1978

to be A1978 ∼ 4.5 and at 2015 to be A2015 ∼ 5 we find A2015
A1978

= 1.11. These values could5

therefore be consistent with a constant Da and a changing time scale. However, the
time scales inferred from either the phase lag or amplitude are not changing apprecia-
bly and therefore it seems unlikely the system is approaching a local bifurcation.

We note that the phase lag is a more robust indicator. This is because the phase
lag depends only on the product of the frequency of the forcing and the system time10

scale whereas the amplitude depends additionally on the amplitude of the driving, Da,
which may well be changing throughout the observational period and could account
for some or all of the increase seen in the amplitude in Fig. 7. Although the solar
insolation will be a large component of the forcing amplitude and is essentially fixed,
other factors such as clouds as well as air and sea temperatures will also factor into15

the driving amplitude. Geometrical constraints imposed by land masses affecting the
maximal extent of the sea ice will also influence the amplitude of the sea ice oscillation
when ice extent is large (Eisenman, 2010). In contrast, we can take the frequency of
the driving to be essentially fixed by the annual solar insolation cycle making the phase
lag more robust.20

We have also plotted the ratios An/A1 for the entire time series in Fig. 8. We note the
nonlinear effects are quite prominent in this system, second and third harmonics are
around an order of magnitude smaller than the linear response, although we can still
probably get away with the linear analysis. These nonlinearities may be due to albedo
effect or to the geometrical effects of the Arctic ocean basin (Eisenman, 2010).25

To conclude, from this simple analysis it seems that the system’s time scale and
therefore stability is not changing appreciably if at all and it is unlikely to be approaching
a local bifurcation. However, simple theoretical models, such as Eisenman and Wett-
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laufer (2009) and Eisenman (2012) suggest that the sea ice time scale does not change
very much approaching the bifurcation, even decreasing slightly before rapidly chang-
ing over a very small interval and therefore would be very hard to detect if present.

6 Conclusions

Much previous work on detecting local bifurcations from time series required one to be5

able to partition the universe into widely separated time scales and model the system
dynamics as overdamped. When this is the case one can use the usual early warning
indicators of increasing autocorrelation and variance since these indicators measure
the system’s response to small perturbations away from its fixed point by the fast,
noisy processes. It is the response to this small, noisy forcing that allows one to mea-10

sure the system’s time scale. The systems we have been looking at in this paper do not
have fast or random forcing. The systems considered here have deterministic forcing
with a period roughly that of its time scale although the dynamics are still overdamped.
Deterministic forcing again allows one to infer the system’s time scale simply by mea-
suring the response to the forcing. We found two analogous early warning indicators to15

the autocorrelation and variance in these systems; these were phase lag and response
amplification respectively. Just as autocorrelation is more robust as an indicator (it is
a function of fewer parameters), the same is true of phase lag, only depending on the
frequency of the forcing and the time scale of the system. The system response am-
plification also depends on the amplitude of forcing, which in many circumstances is20

probably difficult to measure.
We also showed that by taking a Fourier transform of the time series one can quantify

how nonlinear the system is behaving and whether the linear approximations usually
made are good.

We applied these new indicators to satellite observations of Arctic sea ice area,25

a system whose period of forcing, effectively the annual cycle of insolation, is similar to
the time scale of the system. This is also a system that has been conjectured to have
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a tipping point due to a local bifurcation. We did not find any detectable critical slowing
down and therefore signs of this bifurcation. It should be noted however simple models
of the sea ice suggest critical slowing down only occurs very close to the bifurcation
making it very hard to detect.

Appendix: Early warnings with arbitrary periodic forcing5

Here we give the derivation for the more general case of any type of periodic forcing D.
That is we solve the equation

ẋ+
x
τ
= D(t). (A1)

τ the timescale of the system (the e folding time). For any periodic forcing, D(t) with
period T can be written as the Fourier series10

D(t) =
N∑
i=0

Bi cos(ωi t+ χi ). (A2)

Bi are the amplitudes of the different component sinusoidal waves, ωi =
2πi
T are the

frequencies of the components and χi are the phases of each of the components. As
the equation is linear the superposition principle holds. That is, we assume the solution
has the form15

x(t) =
N∑
i=0

xi (t) (A3)

by setting all but the i th term of the driving to zero we can solve the N +1 equations

ẋi +
xi
τ
= Bi cos(ωi t+ χi ) (A4)
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for each xi (t) which is just the same as the original sinusoidally forced equation. We
can then superpose them to obtain the full solution to any periodic driving term. The
solution of the forced system is

x(t) =
N∑
i=0

τBi√
1+ω2

i τ
2

[cos(ωi t+ χi −arctan(ωiτ))

−e− tτ cos(χi −arctan(ωiτ))]+x0e
− tτ (A5)5

which settles into orbit

x(t) =
N∑
i=0

τBi√
1+ω2

i τ
2

cos(ωi t+ χi −arctan(ωiτ)) (A6)

when t� τ, that is, the solution is just the sum of each of the forcing components i ,
each with a response amplification of

τ√
1+ω2

i τ
2

(A7)10

and a response lagging the forcing with a phase of

φlag
i = arctan(ωiτ). (A8)

One can find out what these phase lags and amplitudes are by taking the Fourier
transform of the time series of both the forcing and response.
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Figure 1. The dynamics of the system described by Eq. (1) in three different time scale regimes.
Forcing parameters are set to Dm = 0, Da = 1/2. In the upper panel system state x is plotted
against D(t). The black lines are the nullclines and the coloured lines are the system responses
for different periods of forcing. In the lower panel x is plotted against the number of cycles, t/T ,
once the system has reached a steady state. The dotted line is the forcing, D(t) while the
colored lines are the system responses. The red line is for the slow forcing limit, τ� T , T =
100π so ωτ ≈ 1/100. As the system time scale is much faster than the change in the forcing,
the system essentially “sticks” to the fixed points until they become unstable at the bifurcations
and jump to a different attractor. One can regard the system response in two different ways:
(i) a single periodic attractor giving a relaxation oscillations in a monostable region. (ii) Tipping
between point attractors by crossing local bifurcations in a bistable region. This tipping causes
the dynamics to be very nonlinear. The green line is the fast forcing limit, T � τ, T = π/100
so ωτ ≈ 100. There are two possible stable attractors for this set of values. As the system
time scale is much slower than the change in the forcing, the system essentially remains static
and all the dynamics come from the forcing itself. Although it is hard to see in the figure due
to the small amplitude system response, the lag relative to the forcing is 1/4 of a cycle and
the dynamics are approximately linear. The blue line is the intermediate regime, τ ∼ T , T = π
so ωτ ≈ 1 and there are two possible stable attractors for this set of values. As the system
time scale is approximately the same as the period of the forcing, the system response is
a competition between the system’s tendency to decay towards the nullcline and the forcing
pushing it away setting up a stable orbit. Notice there is some phase lag and the dynamics look
approximately linear.
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Figure 2. Atmospheric CO2 concentration recorded at Mauna Loa against time in the upper
panel. In the lower panel we have plotted the minimum annual CO2 concentration against year.
One notices the minimum CO2 concentration occurs roughly 3/4 of the way through the year.
This is because maximal carbon uptake occurs during the Northern Hemisphere summer from
the terrestrial vegetation and it is maximally lagged behind the maximum in the Northern Hemi-
sphere solar insolation (best growing conditions) by 1/4 of a cycle because of the time scale
difference between the response of the system and the period of the forcing. In this case the
system is the terrestrial vegetation which has a timescale of decades and the periodic forcing
is the annual cycle of solar insolation.
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Figure 3. The dynamics of the system are described by Eq. (1) with varying Dm. Parameters
are set to Da = 1/2, T = π (the same order as the system time scale τ) and Dm is varied linearly
with time between −2 and 2 over about 25 cycles. In the upper panel the black lines are the
nullclines while the system response is the blue line plotted against D(t). The orbit loses stability
around a mean value of D ≈ 0.5 and jumps to a new orbit. In the lower panel we have plotted
the system response (blue) against the forcing D against t/T . One can see the loss of stability
of the orbit around t/T ≈ 15 and the prior increase in system response amplitude.
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Figure 4. The early warning indicators, response amplification (upper panel), A = Daτ√
1+ω2τ2

, and

phase lag (lower panel),
φlag

2π = 1
2π arctan(ωτ) calculated for the time series in Fig. 3. We have

plotted these indicators prior to the bifurcation at t/T ≈ 15. Note both indicators are increasing
as one would expect.
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Figure 5. Ratio of the nth order harmonic amplitude to the fundamental harmonic amplitude
An/A1 against the ratio of the nth harmonic period to the fundamental harmonic period Tn/T .
The dynamics of the system are described by Eq. (1). Parameters are fixed to Da = 1/2, T = π
(the same order as the system time scale τ) for the upper panel. The blue line is for Dm = −2
(far away from the bifurcation), the nonlinear response is dominated by the second harmonic at
Tn/T = 1/2 although small, about two orders of magnitude less than the linear response. The
red line is Dm = 1/4, close to the bifurcation the system response has become more nonlinear.
The second harmonic (Tn/T = 1/2) is now almost one order of magnitude less and the third
order harmonic (Tn/T = 1/3) is also prominent. In the bottom panel, we show the spectrum
when the dynamics is very nonlinear. Parameters are set to Dm = 0, Da = 1/2, T = 100π so
ωτ ≈ 1/100. This is the slow forcing limit shown in Fig. 1 (red line) which has a very nonlinear
relaxation oscillation type response. Note only odd harmonics (Tn/T = 1/3,1/5,1/7, . . . etc.)
are present due to the system experiencing a symmetric potential requiring the solution, x(t),
to also have this symmetry.
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Figure 6. Arctic sea ice area satellite observations from 1979 to present day (2015) obtained
from The Cryosphere Today project of the University of Illinois.
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Figure 7. In the upper panel amplitude of sea ice area oscillation within each annual is plotted
against year and in the lower panel phase lag between the sea ice area minimum (red line)
and maximum (blue line) and the solar insolation minimum and maximum are plotted. The
oscillation amplitude is increasing however the phase lag is not.
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Figure 8. Ratio of the nth order harmonic amplitude to the fundamental harmonic amplitude
An/A1 found from the Fourier transform of the Arctic sea ice area time series against the ratio
of the nth harmonic period to the fundamental harmonic period Tn/T .
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