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We would like to thank the referee for his detailed and thoughtful comments on our manuscript.

We reply below (the referee’s original text in italics followed by our response):

My suggestions for the authors would be to take the paper into one of two possible

directions for a major revision. Either, (I) one does incorporate and compare a lot more

to available techniques and previous results on time-periodic dynamical systems. How-5

ever, this does seem to be out of the focus of ESD a bit. A second alternative (II) would

be to shorten the mathematical part and clearly identify some of the warning signs as

the same ones as if one would use return-map methods. With the now available space

one could either try to apply techniques to other forced climate models and draw ap-

plied conclusions, or look at more time series. These are the stronger parts of this paper10

and probably more adequate for ESD anyhow. Either way, some re-writing is necessary

to embed the problem in a more proper way into previously developed and available

techniques. Overall, I think if the authors should pursue a major revision using the sec-

ond option (II), then I could see the revised paper to be a very solid contribution to

ESD.15

We also agree the second alternative would be the best way to take a revised manuscript and

this is the direction we have broadly taken in line with the referee’s recommendations. We have

added discussions of existing techniques and previous literature into the introduction of the revised

manuscript including the return map method which we have applied to the examples in the previ-

ous manuscript which we agree was lacking from the original. It turns out the return map method20

is complementary to the phase lag and response amplification in that in one regime one set of in-

dicators is not useful while the other is. The systems we were largely concerned with in this and

the previous manuscript are best handled with phase lag and response amplification which was the

reason we did not use return maps in the original manuscript. We discuss this further in the reply

to the referee’s point (1). We have also extensively restructured the manuscript and included sliding25

window analysis of harmonic amplitude increasing on approach of a local bifurcation (a suggestion
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of referee #2). Although the manuscript has a slightly revised title, many new figures and has been

significantly restructured to include a more thorough discussion, the technical content, main points

and conclusions are unchanged from the previous manuscript although they are strengthened.

We would have liked to apply our method to more examples in the Earth system but feel the paper30

is coherent with an expanded analysis of Arctic sea ice. Plenty of components of the climate are

periodically forced for example by the solar insolation and have similar time scales to this forcing,

however we could not think of any that are conjectured to be approaching a local bifurcation apart

from the Arctic sea ice.

We did consider including analysis of a simple vegetation-savannah model which had a local35

bifurcation due to variations in precipitation. We decided not to include this as the model was a bit

simplified and added nothing new to the manuscript, being very similar to the double well example.

However, as far as I can see from the paper, the authors also claim that their methods

and mathematical ideas for early-warning signs are novel. At least, the bulk of the paper

is dedicated to this topic and they use "here we find..." and "we show that..." and similar40

formulations to indicate that their approach is new. In my opinion, the major problem I

see with this work is that the authors did not seem to make enough of an effort to link

and/or base their results on previously available mathematical techniques. I will give

the authors the benefit of the doubt that they simply did not know, or could not find the

adequate sources on which their analysis could have been based and/or compared to45

since it may not be in the climate-science related journals (and it could very well be

common to just argue things are novel if they have not appeared in a certain subsets of

journals; in general, this is a view which I disagree with, particularly for such a highly

interdisciplinary topic as nonlinear dynamics).

The mathematics we use in the manuscript are very simple and clearly not novel. So much so in50

fact that it becomes hard to cite a relevant source as any student of physics or engineering will very

likely have solved the equation for the damped harmonic oscillator forced periodically and found

the solution in the overdamped limit has a phase lag and an amplitude depending on the damping

parameter. For instance one can look in any undergraduate level text on oscillations and waves and

find these solutions. We have cited one such example in the revised manuscript and a discussion of55

this point. However, we have not been able to find any other authors using the phase lag, amplification

response and increase in harmonic amplitude as an indicator of the approach of a local bifurcation.

Of course, we would not be surprised if this was not the case since the method is very simple, which

is the reason incidently, that we like it! Because of this simplicity, we have been careful not to make

novelty claims in the previous manuscript but we have eliminated the offending ‘we show’ in the60

revised version.
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1) For periodic systems, there is a well-developed theory of return maps which con-

verts the continuous-time periodic orbit into questions about the local fixed point of a

return map (see e.g. the books by Kuznetsov or Guckenheimer/Holmes or in fact many

other dynamical systems texts). It is really strange that the authors do not even mention65

this approach to the problem. A very natural approach would be to just to try to re-use

results about slowing down and early-warning signs for local bifurcations for periodic

systems by looking at a return map. Of course, the change of the lag will not be visible

directly in the return map, so it would be reasonable to try to do a comparison why

in certain circumstances the lag might be a better or worse warning sign compared to70

quantities computed directly from the return map.

We agree we should have mentioned the return map method and this is indeed another way of

looking for early warning signals of local bifurcations. The motivation for the method outlined in

the manuscript was that we were looking at the particular case of the conjectured Arctic sea ice

bifurcation and for this system the forcing (the annual cycle of insolation) is about the same order as75

the time scale of the sea ice (order of months, possibly a couple of years).

Recall methods used for looking for local bifurcations are based on detecting a decrease in the

stability of the system’s steady state by inferring the change in time taken for perturbations away

from that steady state to decay. If the steady state is a fixed point, one usually thinks of the noise

in the system as the perturbation and infers the system time scale by sampling the system’s state at80

some time interval and computing the correlation between successive time intervals resulting from

the perturbation’s decay. If the steady state is periodic, like the ones considered in this manuscript,

one approach is to sample the system once every cycle to obtain a new time series that can be treated

as a fixed point steady state, but now the interval between samples of the system state has increased.

This is the return map method and one can repeat the fixed point, compute correlations between the85

now increased, successive time intervals.

For the cases we consider in the manuscript, where the period of the forcing is of the same order

as the time scale of the system such as the sea-ice, the return map would take an annual time series

with the resolution of a day if desired (essentially a continuous flow) and convert it to a single point

per cycle, that is one data point per year (a discrete map), T . There are two problems with this: (i)90

there are far less data points to analyze in the time series so any trend in the signal becomes harder

to detect with statistical indicators as the standard error scales 1/
√
N (N is number of data points

in the time series) and (ii) more importantly, even if there was critical slowing down, since the time

scale of the system, τ may be smaller or of the same order of the resolution of the return map time

series, detection becomes very difficult or impossible i.e. the time taken for a perturbation to decay95

back to the steady state is less than the interval between data points resulting in little or no correlation

between the data points in the return map. One also cannot reliably use autocorrelation, the usual
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indicator of noisy slowing down of fixed points, to infer time scale as an assumption in the derivation

is that T/τ is small which it is not in this case.

In addition, for the case of the sea-ice, the opportunity of having such an easy to spot, deterministic100

system response to the annual forcing (which one can think of as a very predictable perturbation)

to exploit to infer system time scale without having to do any detailed manipulation of the data

motivated our approach.

We therefore realized very early on in the investigation that a return map method would very likely

not be useful and is not useful for the cases the phase lag and response amplification are most useful.105

This gave the resulting ’ignore-return-map-tunnel-vision’ in the manuscript which on reflection we

should have reviewed and critiqued. We have rectified this in the revised manuscript. The cases

where the phase lag and response amplification work well (ωτ ∼ 1) are not well suited to return map

analysis. Conversely when the interval between return map data points is smaller than the system

time scale, τ/T ≥ 1 (equivalent to ωτ ≥ 2π), a reasonable condition for return map analysis to work110

well, phase lag and response amplification tend to asymptote and are not so useful. The two methods

therefore have some complementarity.

We have included figures illustrating this complementarity in the revised manuscript. Figure 1 is

essentially the same as figure 2 in our manuscript except we have varied Dm over 100 cycles instead

of 25. This is because we need extra data points to calculate the autocorrelation of the return maps115

with any reliability. We have also added Gaussian white noise to ẋ of standard deviation 0.01 as

the return map method needs small perturbations to work. In figure 2 we have plotted all the early

warning indicators for this system including the return map calculated with a sliding window of 25

cycles. The black lines are the theoretical curves and the coloured lines are the estimated curves. The

key point is the theory and estimated autocorrelations do not show anything in this regime (ωτ ∼ 1).120

In figures 3 and 4 we have plotted the same quantities but with decreased period of forcing (T = 1/4

so ωτ ∼ 4π). This is a regime in which phase lag and response amplitude start to asymptote and are

therefore not so useful to infer changing system time scale. However, autocorrelation of the return

map now becomes useful as can be seen in the figure. This system is going in the ωτ � 1 regime

which we have previously discussed in the manuscript.125

From the sea-ice time scale of 6 months estimated using phase lag (ωτ ∼ π) we did not expect

the return map method to be useful. However, these estimates are uncertain so we also calculated

the return map for completeness. The results confirm return map analysis is not useful for this case.

Specifically we show autocorrelation in a sliding window of the return map time series is very un-

certain and/or small.130

We have added discussion of these points in similar or more detail in the revised manuscript.

2) The authors are also apparently not aware that there is already quite a bit of very

classical work on early-warning signs for periodic systems. For example, it should be

mentioned that warning signs for bifurcations have already appeared for periodic orbits
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Figure 1. ωτ ∼ 1: Same figure as figure 3 in the manuscript except variation of Dm is over more cycles to

generate more points for a reliable return map analysis and weak Gaussian white noise of standard deviation

0.01 is added. Parameters are set to Da = 1/2, T = π (the same order as the system time scale τ ) and Dm is

varied linearly with time between -2 and 2 over about 100 cycles. In the upper panel the black lines are the

nullclines while the system response is the blue line plotted against D(t). In the lower panel we have plotted

the system response (blue) against the forcing D against t/T .

many years ago in the groundbreaking work by Wiesenfeld: Wiesenfeld, K. (1985). Noisy135

precursors of nonlinear instabilities. Journal of Statistical Physics, 38(5-6), 1071-1097.

Furthermore, there is also a lot of recent activity on the field as exemplified by the recent

work: Zhu, J., Kuske, R., and Erneux, T. (2014). Tipping points near a delayed saddle

node bifurcation with periodic forcing. arXiv preprint arXiv:1410.5101. I am pretty sure

that upon further search one would be able to come up with a rather long list of papers140

that have studied periodic orbits near instability and their statistical, Fourier-analysis,

and phase properties. Then it is a natural question which of these results can be applied

directly to the problem of early-warning signs. The authors simply skip this step in

their analysis. There is one mention to stochastic resonance, and also in this part of the

literature I would expect to find already a lot of readily applicable results. Of course,145

after this detailed review, one could try to do a direct and/or different calculation, do a

comparison and then argue which parts are new/old, better/worse, etc.
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Figure 2. ωτ ∼ 1: The early warning indicators, response amplification (upper panel), A= Daτ√
1+ω2τ2

, and

phase lag (middle panel), φlag

2π
= 1

2π
arctan(ωτ) calculated for the time series in figure 1. In the lower panel,

autocorrelation of a sliding window of 25 points of the return map is plotted with standard errors on the estimate.

Black lines are theoretical curves of all the quantities. Phase lag and amplitude response are useful quantities

here however the return map is not.

We have added more context and review of previous literature in a revised manuscript, some

quoted directly below:

’Abrupt change in a system can occur due to a bifurcation - that is, a small smooth change in150

parameter values can result in a sudden or topological change in the system’s attractors. Extreme

sensitivity of systems close to criticality is familiar from studies of critical phenomena in statistical

mechanics Domb et al. (1972-2001) and stability analysis in nonlinear dynamical systems Kuznetsov

(2004).’

We have also briefly reviewed Wiesenfeld’s work and mentioned how it differs from ours:155

’In an elegant study Wiesenfeld (1985) computed the Fourier spectra of noisy perturbations in

systems with periodic attractors. Very close to a local bifurcation, the dominant system time scale

asymptotes towards infinity causing the dynamics of the noisy perturbations away from the attractor

to be dependent only on the type of bifurcation and not on the details of the system’s specific equa-

tions. This observation allowed the author to classify all codimension 1 bifurcations in an arbitrary160

periodic system by the harmonics in the spectra of residuals. He called these early warning signals

noisy precursors.’
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Figure 3. ωτ ∼ 4π: Same figure as figure 1 except the period of forcing is decreased to T = 1/4. Parameters

are set to Da = 1/2 and Dm is varied linearly with time between -2 and 2 over about 100 cycles. In the upper

panel the black lines are the nullclines while the system response is the blue line plotted against D(t). In the

lower panel we have plotted the system response (blue) against the forcing D against t/T .

And when describing using the harmonics in the response:

‘With a similar motivation Wiesenfeld (1985) and Wiesenfeld and McNamara (1986) calculated

the Fourier spectra of the perturbations, rather than the response, away from periodic attractors very165

close to local bifurcations with noisy and weak periodic modulation respectively.’

We have mentioned work on stochastic resonance where appropriate. The simplest systems this

community studies are essentially our conceptual model, that is a periodically driven double well

potential, but with the added complication of additive Gaussian noise. They have studied phase

response, amplitude and Fourier spectra in this context. However, they are interested in hopping be-170

tween the wells with some barrier height (the ’stochastic resonance’) rather than bifurcations (barrier

height goes to zero) as in our study.

The other reference the referee mentions, Zhu et al. (2015), seems of limited relevance. These

authors look at the well known phenomenon of delayed bifurcation when the control parameter is

slowly varied compared to the static case. The control parameter in their study, instead of linearly175

increasing with time is now periodic with changes in amplitude and frequency. At the end of the

paper they use a simple sea ice model as an example of this. We have therefore chosen not to include

this work.
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Figure 4. ωτ ∼ 4π: The early warning indicators, response amplification (upper panel), A= Daτ√
1+ω2τ2

, and

phase lag (middle panel), φlag

2π
= 1

2π
arctan(ωτ) calculated for the time series in figure 3. In the lower panel,

autocorrelation of a sliding window of 25 points of the return map is plotted with standard errors on the estimate.

Black lines are theoretical curves of all the quantities. Phase lag and amplitude response have now asymptoted

and are not useful quantities however the return map now becomes useful.

3) Since the authors deal with a time-dependent non-autonomous system when us-

ing the variational equation around the periodic orbit before averaging out to a mean180

value, it is also very natural to ask which classical results from Floquet theory and

non-autonomous dynamical systems could be applied for finding early-warning signs

for tipping points. In this context, there are many different notions for a spectrum if

we go beyond classical Floquet theory. For example, what about looking at finite-time

Lyapunov exponents, the dichotomy spectrum, etc and simply see what these quantities185

say as warning signs? At least, things like FTLEs are easily computable via standard

packages so there really is very little effort involved in doing these calculations and

comparing it to the direct calculations the authors do. I would even guess that from re-

turn map data, return times and FTLEs, one should be able to recover identical or very

similar warning signs...190

These ideas may be potentially useful lines of future investigation. However, we are not familiar

with all the techniques the referee mentions or how they could be applied to time series analysis in

climate applications where the dynamical equations are not known and one’s control on the system
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for repeatable experiments is limited or non-existent. We would be interested to hear the referee’s

opinion on this.195

Although we are interested to hear more about this, the comment is more in line with the first,

rather than the referee recommended and author chosen second direction to take a revised manuscript.

4) The authors also spend a long part of the paper on discussing the issue of time

scales and relevant limits. This issue has been discussed in a very analogous situa-

tion regarding noise-induced and bifurcation-induced transitions. Depending upon the200

time scale of the noise relative to the parameter drift one either sees noise-induced or

bifurcation-induced transitions in certain classes of systems. See for example: Ashwin,

P., Wieczorek, S., Vitolo, R., and Cox, P. (2012). Tipping points in open systems: bifurca-

tion, noise-induced and rate-dependent examples in the climate system. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineer-205

ing Sciences, 370(1962), 1166-1184. Kuehn, C. (2013). A mathematical framework for

critical transitions: normal forms, variance and applications. Journal of Nonlinear Sci-

ence, 23(3), 457-510. In fact, the issue has appeared in many works implicitly before

these works in stochastic multiscale systems. Here the situation is very similar except

that there is now instead of the noise-focus a comparison between the forcing scale and210

parameter drift scale. Therefore, it is actually quite easy to see that there should be two

asymptotic regimes and one intermediate regime as for the noise/parameter case also in

the forcing/parameter case. In fact, noise terms are frequently just be treated as forcing

terms if the noise is smooth enough and maybe one could even transfer previous results

via this view.215

We are in agreement with the referee. This is the central issue in applying early warning techniques

and this is why we spend some time discussing it.
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Correspondence to: Mark S. Williamson (m.s.williamson@exeter.ac.uk)

We thank the referee for their time and generally positive appraisal of our manuscript. Many of

the concerns of referee 2 are the same as our first referee and our responses to these concerns, if

not detailed enough below, can be found in our reply to Christian Kuehn. We reply below (ref #2’s

original text in italics followed by our response):

In my opinion, the main issue is that the proposed mathematical techniques are not5

novel (as already pointed out by Reviewer 1) although they are presented as such. It is

really strange that the manuscript completely disregards previous work in the literature

in this area. There is the pioneering work by Wiesenfeld (Journal of Statistical Physics,

1985). It appeared long before the subject of critical transitions became so popular in

the applied sciences and the buzz word of a "tipping point" was even created. There is10

the recent study by Zhu, Kuske and Erneux (2014) which goes in a similar direction as

the authors’ work. Reviewer 1 is pointing out more previously developed techniques the

present work should be linked to.

We agree that we should have referenced previous work more thoroughly and this has been recti-

fied in a revised version of the manuscript. Please see our first response to Christian Kuehn and his15

point (1) and (2) for more details.

Maybe the authors should present more applications of their techniques to earth

system components rather than just mentioning possible candidates.

Please see our first response to Christian Kuehn.

Figure 8 just shows that the annual cycle in the Arctic sea ice area data is quite20

strongly aharmonic, corresponding to a nonlinear response of the system to the solar

insolation forcing, as is well known and already clearly visible by eye from the time

series. The evolution of the strength of the nonlinearity over time, which is actually

proposed by the authors as an early-warning signal when approaching a possible bifur-

cation, is not considered at all.25
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This is a good point and we thank the referee for pointing thisout. We assumed mistakenly that

to reliably resolve the peaks of the harmonics in the Fourierspectra would require a large amount of

data that would make a sliding window analysis of the time series difficult. It turns out for the Arctic

sea-ice observations one can reliably resolve the peaks with only 10 full cycles. We have therefore

been able to plot harmonic amplitude against time using a sliding window of 10 years and have30

added this analysis. Like the other indicators for the sea ice, no convincing trend is seen. We have

also included the same analysis for the conceptual model example showing the harmonic amplitudes

increasing as the local bifurcation is approached.
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Changes in the revised manuscript 

 

The changes made in the revised manuscript are extensive but are in line with the referee 

recommendations. We have 

 

 Added previous literature for context and how it differs with work in the revised manuscript. 

Specifically in the introduction and sections 2 and 3. 

 Restructured manuscript to include return map analysis and review. Specifically we have 

combined section 3 and section 4 and moved them to section 2. The new section 2 has a 

discussion of return maps. The new section 3 is a combination of old sections 2 and most of 

section 5. The new section 4 is old section 5B.  

 Included new figures to show the complementarity between return maps and phase lag in 

different time scale regimes. 

 Included new figures of harmonic amplitude evolution. 

 

Please note that the technical content and conclusions remain unchanged. Only material relating to 

return maps has been added. Previous literature and context has also been added. 
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Abstract. The prospect of finding generic early warning signals of an approaching tipping point in a

complex system has generated much recent interest. Existing methods are predicated on a separation

of timescales between the system studied and its forcing. However, many systems, including several

candidate tipping elements in the climate system, are forced periodically at a timescale comparable

to their internal dynamics. Here wefind
✿✿✿

usealternative early warning signals of tipping points due5

to local bifurcations in systems subjected to periodic forcing whose time scale is similar to the pe-

riod of the forcing. These systems are not in, or close to, a fixed point. Instead their steady state is

described by a periodic attractor.We showthat the
✿✿✿

For
✿✿✿✿

these
✿✿✿✿✿✿✿✿

systems,phase lag and amplification

of the system response
✿✿✿

can
✿

provide early warning signals, based on a linear dynamics approxima-

tion. Furthermore, thepower
✿✿✿✿✿✿

Fourierspectrum of the system’s time series revealsthegenerationof10

harmonics of the forcing period, thesize of which areproportional
✿

in
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿

whose

✿✿✿✿✿✿✿✿

amplitude
✿✿

is
✿✿✿✿✿✿

relatedto how nonlinear the system’s response is becoming with nonlinear effects be-

coming more prominent closer to a bifurcation. We apply these indicators
✿

as
✿✿✿✿

well
✿✿✿

as
✿

a
✿✿✿✿✿✿

return
✿✿✿✿

map

✿✿✿✿✿✿

analysis
✿

to a simple conceptual system and satellite observations ofArctic sea ice area, the latter

conjectured to have a bifurcation type tipping point. We findno detectable signal of the Arctic sea15

ice approaching a local bifurcation.

1 Introduction

The potential for early warning of an approaching abrupt change or ‘tipping point’ in a complex, dy-

namical system has been the focus of muchrecentresearch, see for exampleScheffer et al. (2009),

Lenton (2011)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wiesenfeld (1985),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Held and Kleinen (2004),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Thompson and Sieber (2011)and Scheffer et al.20

(2012). Abrupt change in a system can occur due to a bifurcation - that is, a small smooth change

in parameter values can result in a sudden or topological change in the system’s attractors.
✿✿✿✿

This

✿✿✿✿✿✿

extreme
✿✿✿✿✿✿✿✿✿

sensitivity
✿✿✿

of
✿✿✿✿✿✿✿

systems
✿✿✿✿✿

close
✿✿

to
✿✿✿✿✿✿✿✿✿

criticality
✿✿

is
✿✿✿✿✿✿✿

familiar
✿✿✿✿✿

from
✿✿✿✿✿✿

studies
✿✿

of
✿✿✿✿✿✿✿

critical
✿✿✿✿✿✿✿✿✿✿

phenomena

✿✿

in
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿

mechanics
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Domb et al. (1972-2001))
✿✿✿✿

and
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿✿

analysis
✿✿

in
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿✿

dynamical
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✿✿✿✿✿✿

systems
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kuznetsov (2004)).
✿

Much work on the anticipation of bifurcations from time series data,25

e.g. in ecosystems (Scheffer et al. (2009)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Carpenter et al. (2011)), or the climate system (Dakos et al.

(2008) and Lenton (2011)),hasbeenbasedon
✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿

methods
✿✿✿✿

that
✿✿✿✿

infer
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

taken
✿✿✿

for
✿✿✿

the

✿✿✿✿✿✿

system
✿✿

to
✿✿✿✿✿✿

recover
✿✿✿

to
✿✿

its
✿✿✿✿✿✿

steady
✿✿✿✿✿

state
✿✿✿

(the
✿✿✿✿✿✿✿✿

system’s
✿✿✿✿

time
✿✿✿✿✿✿

scale)
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿

away
✿✿✿✿✿

from
✿✿✿✿

that

✿✿✿✿✿

steady
✿✿✿✿✿

state.
✿✿✿✿

The
✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿✿✿✿✿

usually
✿✿✿✿✿

based
✿✿✿

on a clear separation of three time scales: (i) The time

scale of the dynamics of the system one wants to study, (ii) much faster processes than the time scale30

of the system,
✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿

thought
✿✿

of
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

recovers
✿✿✿✿

from
✿

and (iii) much slower

processes than the time scale of the system
✿✿✿✿✿

which
✿✿✿✿✿✿

govern
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿✿

system
✿✿✿✿✿✿

steady
✿✿✿✿

state. In addition,

the system dynamics are modelled as overdamped, the fast dynamics as a noisy, normally distributed

random variable of small variance and the slow dynamics as a constant, control parameteronthetime

scaleof thesystem. Provided these are good working approximations, criticalslowing down,
✿

- the35

increase of the system’s time scale, is expected prior to a local bifurcation and can be detected by

computing theautocorrelation
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

in
✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

windowof a system’s time series. An

increasing trend in autocorrelationin time shows the stability of the system is weakening or equiv-

alently, the system’s time scale is increasing - which is a generic feature of a system approaching a

local bifurcation. Provided the variance of the fast noisy process is constant, increasing variance of40

the system’s time series is also a good indicator of criticalslowing down, although it is less robust

than
✿✿

lag
✿✿

1 autocorrelation due to its dependence on the noisy process.

For many systems of interest one or more of the above assumptions may be invalid
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Williamson and Lenton (2015)).

In particular, when the forcing of a system has a comparable period to the time scale of the system,

the forcing cannot be modelled as a slow, constant control parameter or a fast, random process. Here45

we give alternativeearlywarningssignalsof approachinglocal bifurcationswhentheperiodof the

forcing is similar to the time scaleof the system.Systemsof this type
✿

,
✿✿✿✿✿✿✿

however
✿✿✿✿

they
✿✿✿

can
✿✿✿✿

still
✿✿✿

be

✿✿✿✿✿✿

thought
✿✿

of
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿

away
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿

steady
✿✿✿✿

state
✿✿✿✿

that
✿✿✿

one
✿✿✿✿

can
✿✿✿✿✿✿✿

measure
✿✿✿

the
✿✿✿✿✿✿✿✿

recovery

✿✿✿✿

time
✿✿✿✿✿

from,
✿✿

an
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿

we
✿✿✿✿✿✿

exploit
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

manuscript.
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿

systemsare particularly relevant in

the climate system where periodic forcing is a consequence of the motion of the Earth relative to the50

Sun. For example, solar insolation variation from the diurnal, annual or Milankovich cycles.
✿✿✿✿✿

These

✿✿✿✿✿✿

systems
✿✿✿✿✿

have
✿✿✿✿✿

steady
✿✿✿✿✿

states
✿✿✿✿✿✿✿✿✿

described
✿✿

by
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿

simpler,
✿✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿

type

✿✿✿✿✿✿✿

attractors
✿✿✿✿✿✿✿✿

required
✿✿

for
✿✿✿

lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿

and
✿✿✿✿✿✿✿

variance
✿✿

to
✿✿✿

be
✿✿✿✿

used
✿✿

as
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿✿

indicators.
✿

✿✿

In
✿✿

an
✿✿✿✿✿✿✿

elegant
✿✿✿✿✿

study
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wiesenfeld (1985) computed
✿✿✿

the
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿

spectra
✿✿✿

of
✿✿✿✿✿

noisy
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿

in

✿✿✿✿✿✿

systems
✿✿✿✿✿

with
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors.
✿✿✿✿✿

Very
✿✿✿✿

close
✿✿✿

to
✿

a
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

bifurcation,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale55

✿✿✿✿✿✿✿✿✿

asymptotes
✿✿✿✿✿✿✿

towards
✿✿✿✿✿✿

infinity
✿✿✿✿✿✿✿

causing
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿

noisy
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿

away
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

attractor

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿✿

only
✿✿

on
✿✿✿✿

the
✿✿✿✿

type
✿✿

of
✿✿✿✿✿✿✿✿✿✿

bifurcation
✿✿✿✿

and
✿✿✿

not
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

details
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

system’s
✿✿✿✿✿✿✿

specific

✿✿✿✿✿✿✿✿

equations.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

allowed
✿✿✿

the
✿✿✿✿✿✿

author
✿✿

to
✿✿✿✿✿✿✿

classify
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿

codimension
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿

in
✿✿✿

an

✿✿✿✿✿✿✿

arbitrary
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿

system
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonics
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spectra
✿✿

of
✿✿✿✿✿✿✿✿✿

residuals.
✿✿

He
✿✿✿✿✿✿

called
✿✿✿✿

these
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning

✿✿✿✿✿✿

signals
✿✿✿✿

noisy
✿✿✿✿✿✿✿✿✿✿

precursors.60

2



✿

A
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

method
✿✿✿

to
✿✿✿✿✿

study
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿

changes
✿✿✿

in
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors
✿✿

is
✿✿✿✿

the
✿✿✿✿✿

return
✿✿✿

or
✿✿✿✿✿✿✿✿

Poincaré

✿✿✿✿

map,
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Strogatz (2001).
✿✿✿✿

Here,
✿✿✿✿

one
✿✿✿✿✿✿✿

converts
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

continuous-time
✿✿✿✿✿✿✿

periodic
✿✿✿✿

orbit
✿✿✿✿

into
✿✿✿

the
✿✿✿✿

fixed
✿✿✿✿✿

point

✿✿

of
✿

a
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿

by
✿✿✿✿✿✿✿✿

sampling
✿✿✿

the
✿✿✿✿

orbit
✿✿✿✿✿

once
✿✿✿✿✿

every
✿✿✿✿✿✿

period.
✿✿✿✿✿

One
✿✿✿

can
✿✿✿✿

then
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿

usual
✿✿✿✿✿

fixed

✿✿✿✿

point
✿✿✿✿✿✿✿✿✿

indicators
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

such
✿✿

as
✿✿✿

lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿

and
✿✿✿✿✿✿✿✿

variance.

✿✿✿✿✿✿✿✿✿

Advantages
✿✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿

include
✿✿✿

no
✿✿✿✿✿✿✿

linearity
✿✿✿✿✿✿✿✿✿✿✿

requirement
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

periodic65

✿✿✿✿✿✿✿

attractor
✿✿✿✿✿✿✿

although
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿

away
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

attractor
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿

small
✿✿✿✿✿✿

enough
✿✿

to
✿✿✿

be
✿✿✿✿✿✿

treated
✿✿✿✿✿✿✿

linearly.

✿✿✿

One
✿✿✿✿

can
✿✿✿

also
✿✿✿✿✿✿

handle
✿✿✿✿✿✿✿

systems
✿✿✿✿

with
✿✿✿✿✿✿✿✿

internally
✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿

cycles
✿✿✿✿✿✿

rather
✿✿✿

than
✿✿✿✿✿

those
✿✿✿✿✿✿✿✿

generated
✿✿✿

by
✿✿✿✿✿✿✿

external

✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿

forcing
✿✿✿

that
✿✿✿

we
✿✿✿✿

look
✿✿

at
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

manuscript.
✿✿

To
✿✿✿✿✿

detect
✿✿✿✿

any
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿✿✿✿

stability
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

return

✿✿✿

map
✿✿✿✿

the
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿

must
✿✿✿✿

also
✿✿

be
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿

period
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forcing.
✿✿

To
✿✿✿✿

see
✿✿✿✿

this,

✿✿✿✿✿✿

imagine
✿✿✿✿

one
✿✿✿✿✿✿✿

samples
✿✿

the
✿✿✿✿✿

cycle
✿✿

to
✿✿✿✿✿

create
✿✿

a
✿✿✿✿

point
✿✿

in
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿

and
✿✿✿✿

then
✿✿✿✿✿✿✿✿✿✿✿

immediately
✿✿✿✿

after
✿✿✿✿✿✿✿

perturbs70

✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿

away
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

stable
✿✿✿✿✿

cycle.
✿✿

If
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿

scale
✿✿

is
✿✿✿✿✿✿

shorter
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

cycle
✿✿✿✿✿✿

period,
✿✿✿✿✿✿

which

✿

is
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

period,
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

will
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿

recovered
✿✿✿✿

back
✿✿

to
✿✿✿

the
✿✿✿✿✿

stable
✿✿✿✿✿

cycle
✿✿✿✿✿✿

before

✿✿

the
✿✿✿✿✿✿✿

system
✿

is
✿✿✿✿✿✿✿✿

sampled
✿✿✿✿✿

again
✿✿✿

for
✿✿✿

the
✿✿✿✿

next
✿✿✿✿

point
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

map.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿

recovery

✿✿✿

will
✿✿✿✿✿✿✿✿

therefore
✿✿

be
✿✿✿✿✿✿✿✿

invisible
✿✿

to
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿

analysis
✿✿

on
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿

time
✿✿✿✿✿

series.
✿✿

It
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿

noted
✿✿✿✿

that

✿✿✿✿

close
✿✿

to
✿✿

a
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

bifurcation
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿✿✿

infinity
✿✿

so
✿✿✿✿✿✿✿✿✿

satisfying
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

requirement.75

✿✿✿✿✿✿✿✿

However,
✿

if
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

requirement
✿✿

is
✿✿✿

met
✿✿✿✿

only
✿✿✿✿

over
✿✿

a
✿✿✿

few
✿✿✿✿✿✿

cycles
✿✿

or
✿✿✿

less
✿✿

it
✿✿✿

will
✿✿✿

be
✿✿✿✿

very
✿✿✿✿

hard
✿✿

to
✿✿✿✿✿✿

detect.

✿✿✿✿

With
✿✿✿

this
✿✿✿✿✿✿✿✿✿

limitation
✿✿

in
✿✿✿✿✿

mind
✿✿✿

we
✿✿✿✿✿✿

suggest
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿

early
✿✿✿✿✿✿✿✿

warnings
✿✿✿✿✿✿

signals
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

approaching
✿✿✿✿✿

local

✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿

period
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿

is
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿

time
✿✿✿✿

scale
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

system.We look partic-

ularly at sinusoidal forcing since this approximates the variation of solar insolation well. However,

the method works for any periodic forcing and wealsogive the derivation of the general case in the80

appendix.

We show
✿✿✿

We
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿

that increasing system time scale as it approaches a local bifurcation

shows up as an increasing phase lag in the system response relative to the forcing. In addition,we

showthe amplitude of the system response increases as well. These indicators, like
✿✿

lag
✿✿

1 autocorrela-

tion and variance intheusualmethod
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿

attractor
✿✿✿✿✿✿✿

methods, assume the linearized dynamics85

approximate the true nonlinear dynamics well. One might askhow well the linear approximation

works, especially near the bifurcation, since bifurcations are strictly nonlinear phenomena.Weshow

howto givea
✿

A
✿

quantitative answer to this question
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

providedby computing thepower
✿✿✿✿✿✿

Fourier

spectrum of the system’s time series. In particular, as the system’s behaviour becomes more nonlin-

ear, harmonics of the forcing period are generated in the system response and their amplitudes may90

be obtained from the system’spower
✿✿✿✿✿✿

Fourierspectra. Since the system response becomes more non-

linear as one approaches the bifurcation, one can view the increasing amplitude of harmonics as

another early warning signal.

The paper is organised as follows: In section3 we introducea conceptualmodel to illustrate

periodicallyforcedoverdampedsystemsapproachingalocalbifurcationandthetimescaleseparation95

problem.Thenin section2 we showthat the
✿

2
✿✿✿

the
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿✿

indicators
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

manuscript

✿✿

are
✿✿✿✿✿✿✿✿✿✿

introduced,
✿✿✿✿✿✿

namely
✿✿✿

the
✿

system response phase lag and amplificationaregoodearlywarningsof

3



approachinglocal bifurcations.Theseindicators,like previousones,arebasedon alineardynamics

approximation,howeverin section2.1 we give anotherusefultool thatallowsoneto quantifyhow

goodanapproximationthelinearizeddynamicsis aswell ashownonlinearthesystemisbehaving
✿✿

as100

✿✿✿

well
✿✿✿

as
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿✿

amplitudes.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿

review
✿

a
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿✿

approach
✿✿

to
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors,
✿✿✿

the
✿✿✿✿✿✿

return

✿✿✿✿

map,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

complementary
✿✿✿

to
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿✿

amplification.
✿✿

In
✿✿✿✿✿✿

section
✿✿

3
✿

a
✿✿✿✿✿✿✿✿✿✿✿

periodically

✿✿✿✿✿

forced
✿✿✿✿✿✿✿✿✿✿✿

overdamped
✿✿✿✿✿✿

system
✿✿

in
✿

a
✿✿✿✿✿✿

double
✿✿✿✿

well
✿✿✿✿✿✿✿✿

potential
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿✿✿✿✿✿✿✿

separation

✿✿✿✿✿✿✿

problem
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

properties
✿✿

of
✿✿✿

the
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿✿✿

when
✿✿

a
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

bifurcation
✿✿

is
✿✿✿✿✿✿✿✿✿✿

approached.

In section??wecalculatetheseindicatorsfor aconceptualmodeldriventowardsalocalbifurcation105

andfor satellitetime seriesdata
✿

4
✿✿✿

we
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿

to
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿

observations
✿

of

Arctic sea ice area, a system conjectured to be approaching alocal bifurcation, beforeconcluding
✿

.

✿✿✿

We
✿✿✿✿✿✿✿

conclude
✿

in section 5.

2 Periodically driven fold asan idealisedexample

Hereweuseanidealizedexampleof aperiodicallyforced,overdampedsystemtippingdueto110

2
✿✿✿✿✿

Early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿✿

indicators
✿✿✿

of
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿

in
✿✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

systems

✿✿

As
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿

mentioned
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

introduction,
✿✿✿

the
✿✿✿✿✿

Arctic
✿✿✿✿✿✿

sea-ice
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

conjectured
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

approaching

a local bifurcationto illustratetime scaleseparationbetweenthe forcing andthe system’sinternal

timescale.Wefirst introduceoursystemwhichhasonedynamicalvariable,x, (seeShneidman et al. (1994),

Jung and Hänggi (1993) forwork on periodically driven, noisy doublewell systems).x evolves115

accordingto

ẋ= x− x3 +D(t)

whereoverdotsdenotedifferentiationwith respectto time, t andtheperiodicforcing functionD(t)

is

D(t) =Dm +Da cos(ωt).120

Dm andDa are constantsandω = 2π
T

is the angularfrequencyand T is the period .
✿✿✿✿✿✿✿✿

Treating

✿✿✿

this
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximately,
✿✿✿

one
✿✿✿✿

can
✿✿✿✿

think
✿✿✿✿✿✿✿

crudely
✿✿

of
✿✿✿

the
✿✿✿✿✿

slow
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

parameter
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

decrease
✿✿✿

of

✿✿✿✿✿✿✿

outgoing
✿✿✿✿✿✿✿✿✿

long-wave
✿✿✿✿✿✿✿✿

radiation,
✿✿✿✿✿✿

giving
✿

a
✿✿✿✿✿✿✿✿

warming
✿✿✿✿

trend
✿✿

in
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

Earth’s
✿✿✿✿✿✿✿✿✿✿✿

atmospheric

✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿✿✿

increases.
✿✿✿✿

This
✿✿

is
✿

a
✿✿✿✿✿✿✿

system
✿✿✿

that
✿✿

is
✿✿✿✿✿✿

forced
✿✿✿✿✿✿✿✿✿✿

periodically
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

deterministically
✿✿✿

by

✿✿

the
✿✿✿✿✿✿

annual
✿✿✿✿✿

cycle
✿✿

of
✿✿✿✿✿✿✿✿✿✿

short-wave
✿✿✿✿

solar
✿✿✿✿✿✿✿✿✿

insolation.
✿✿✿✿

The
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

response
✿

is
✿✿✿✿✿✿✿✿✿

dominated
✿✿✿

by
✿✿✿✿

this
✿✿✿✿✿✿✿

periodic125

✿✿✿✿✿✿

forcing
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

amplitude,
✿✿✿✿✿✿✿

random
✿✿✿✿✿

noisy
✿✿✿✿✿✿

forcing
✿✿✿✿

also
✿✿✿✿✿✿✿

present
✿✿✿

and
✿✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿

is

✿✿✿✿✿✿

roughly
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

order
✿

of the forcing
✿✿✿✿✿

period.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿

section,
✿✿✿✿✿✿✿✿

motivated
✿✿✿

by
✿✿✿✿✿✿✿

detection
✿✿

of
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

bifurcations

✿✿

in
✿✿✿✿✿✿

systems
✿✿✿✿

like
✿✿✿

the
✿✿✿✿✿✿

sea-ice
✿✿✿✿

type
✿✿✿✿

from
✿✿✿✿

time
✿✿✿✿✿

series,
✿✿✿

we
✿✿✿✿

look
✿✿✿

for
✿✿✿✿✿✿✿

suitable
✿✿✿✿✿✿✿

methods.
✿✿✿✿✿✿✿✿

Although
✿✿✿✿

this
✿✿✿✿✿✿

system

✿✿✿

has
✿✿

no
✿✿✿✿

clear
✿✿✿✿✿✿✿✿✿

separation
✿✿

of
✿✿✿✿

time
✿✿✿✿✿

scales
✿✿✿✿

with
✿✿✿✿✿✿

which
✿✿

to
✿✿✿

use
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿

directly,
✿✿✿

the
✿✿✿

fact
✿✿✿

that
✿✿✿✿

this
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✿✿✿✿✿✿

system
✿✿✿

has
✿

a
✿✿✿✿

large
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

predictable
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿

one
✿✿✿

can
✿✿✿✿✿✿✿

measure
✿✿✿

the
✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿

need
✿✿✿

for130

✿✿

the
✿✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

methods
✿✿✿✿

(and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿

large
✿✿✿✿✿✿✿

numbers
✿✿✿

of
✿✿✿✿

data)
✿✿✿✿✿✿✿

required
✿✿✿

for
✿✿✿✿✿

noisy
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿

and
✿✿✿

so

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿

data
✿✿

in
✿

a
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

becomes
✿✿✿

less
✿✿✿

of
✿✿

an
✿✿✿✿✿

issue. Equation11 modelsa nonautonomous

nonlinearsystem,the overdampedlimit of a Duffing oscillator (Thompson and Stewart (2002)).

Whenthereis no periodic,just constantforcing (ω = 0) thefamiliar, well studiedautonomousfold

bifurcationis recovered(for exampleseeStrogatz (2001)).For ω = 0, thesolutionsof ẋ= 0, give135

thesystem’s fixedpoints,x∗ (thenullclines)andnumbereitheroneor threedependingonthevalue

of Dm. Onecanevaluatethe stability of thesefixed pointsby looking at the linearizeddynamics

closeto

✿✿✿✿✿✿✿

Students
✿✿

of
✿✿✿✿✿✿✿

physics
✿✿

or
✿✿✿✿✿✿✿✿✿✿

engineering
✿✿✿✿

will
✿✿✿✿✿✿

likely
✿✿✿✿

have
✿✿✿✿✿✿

solved
✿✿✿

the
✿✿✿✿✿✿✿✿

equation
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

forced
✿✿✿✿✿✿✿

damped

✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿

oscillator
✿✿✿✿

and
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

overdamped
✿✿✿✿

limit
✿✿✿✿

thatthefixedpoints,J(x∗)140

J(x∗) =
∂ẋ

∂x
|x=x∗ = 1− 3x∗2

If J(x∗) is negative,thefixedpoint isstable,if it ispositiveit isunstable.In theregionwherethree

fixed pointsexist onefinds two arestableandone is unstable.That is, it is a bistableregion.The

bistableregionhasboundariesmarkedby the local bifurcationsandthesecan befoundby solving

J(x∗) = 0 for x∗ i.e. when the fixed point becomesneutrally stable.One can also calculatethe145

e-folding timescaleof thesystemin statex, τ from theJacobianτ =−1/J(x). We will refer to the

e-folding time asthesystemtime scale.Early warningindicatorsaresimply functionsof J(x∗) or

equivalentlyτ
✿✿✿✿✿

phase
✿✿✿

and
✿✿✿✿✿✿✿✿

amplitude
✿✿✿✿✿✿✿

depend
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

damping
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

(see
✿✿✿

for
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿✿✿✿✿✿

Main (1993)).

✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿

subsections
✿✿✿

we
✿✿✿✿✿✿✿

propose
✿✿

to
✿✿✿

use
✿✿✿✿

this
✿✿✿✿

fact
✿✿✿

and
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿✿

and
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿✿

amplification

✿✿

as
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿✿✿✿

non-statistical
✿✿✿✿✿✿✿✿✿

indicators
✿✿

of
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿✿

scale.
✿✿✿

We
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

properties
✿✿✿

and
✿✿✿✿✿

their150

✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿

on
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale.
✿✿✿✿✿✿

These
✿✿✿✿

early
✿✿✿✿✿✿✿✿

warnings
✿✿✿

are
✿✿✿✿✿

based
✿✿✿

on
✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

dynamics

✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿

but
✿✿✿

by
✿✿✿✿✿

taking
✿✿✿

the
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿

transform
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

response,
✿✿✿✿

one
✿✿✿

can
✿✿✿✿

also
✿✿✿✿✿

look
✿✿✿

the

✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿

response.
✿✿✿✿

This
✿✿✿

has
✿✿✿

two
✿✿✿✿✿✿✿✿

purposes,
✿✿✿✿

first
✿✿✿

one
✿✿✿

can
✿✿✿✿✿

check
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿✿

approximation

✿

is
✿✿✿✿✿

good
✿✿✿

and
✿✿✿✿✿✿✿

second,
✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿

are
✿✿✿✿✿✿

strictly
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿✿✿

phenomena,
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

response
✿✿✿✿

will

✿✿✿✿✿✿

become
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿

as
✿✿✿

one
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

bifurcation
✿✿✿✿✿

giving
✿✿✿✿✿✿✿

another
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicator155

✿✿✿

that
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

monitored.

✿✿✿

The
✿✿✿✿✿✿✿

systems
✿✿✿

we
✿✿✿✿✿✿✿✿✿

concentrate
✿✿✿

on
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

manuscript,
✿✿✿✿✿✿✿

relevant
✿✿

to
✿✿✿✿✿✿✿✿

externally
✿✿✿✿✿✿

forced
✿✿✿✿✿✿

climate
✿✿✿✿✿✿✿✿✿

problems,

✿✿✿✿

have
✿✿✿✿✿

cycle
✿✿✿✿✿✿

periods
✿✿✿✿✿✿✿✿✿✿

determined
✿✿

by
✿✿✿✿

the
✿✿✿✿✿

period
✿✿✿

of
✿✿✿✿✿✿

forcing
✿✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿

one-way
✿✿✿✿✿✿✿✿

coupling
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

forcing

✿✿

to
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿

and
✿✿✿

so
✿✿✿

are
✿✿✿✿✿✿

special
✿✿✿✿✿

cases
✿✿

of
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿✿

attractors.
✿✿✿

For
✿✿✿✿✿

these
✿✿✿✿✿✿

special
✿✿✿✿✿

cases,
✿✿✿✿✿

when
✿✿✿✿✿✿✿

forcing

✿✿✿✿✿

period
✿✿✿

and
✿✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿

are
✿✿✿✿✿✿✿

similar,
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿

are
✿✿✿✿✿✿

useful
✿✿✿✿✿✿✿✿✿

indicators.160

✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

return
✿✿✿✿✿

maps
✿✿✿

are
✿✿✿✿✿✿✿✿

generally
✿✿✿✿

more
✿✿✿✿✿✿

useful
✿✿✿✿✿

when
✿✿✿✿✿✿

treating
✿✿✿✿✿

more
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors.
✿✿✿

At

✿✿

the
✿✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

section
✿✿✿

we
✿✿✿✿✿✿

briefly
✿✿✿✿✿✿

review
✿✿

the
✿✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿

return
✿✿✿✿✿✿

maps.

2.1 Period of forcing much slower than systemtime scale,ωτ ≪ 1
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Now considerhow the systemcan be describedfor the asymptoticsof the forcing frequencyω.

First imaginethat we force the systemperiodically,but very slowly. That is T ≫ τ and look at165

thebehaviourof the system.SinceD(t) is varyingmuchslowerthanthe systemcanrespond,the

systemcanadjustto thechangingD(t) veryquickly andeffectivelyremainsatafixedpoint.Wecan

thereforemodelD(t) asaslow constant,controlparameterandall theusualassumptions(listed in

theintroduction)apply.In thiscasewecanusetheautocorrelationasagoodearlywarningindicator

of anapproachinglocal bifurcation.Thesystemstatex isplottedagainstD andagainstt asthered170

line in figure1.

2.1
✿✿✿✿✿

Phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿✿

amplification.

2.2 Period of forcing much faster than systemtime scale,ωτ ≫ 1

Theforcing is changingmuchfasterthanthesystemcanrespondto it. Theforcing is sofastrelative

to how quickly the systemcan respond,the systemeffectively looks static and all the dynamics175

comefrom the forcing directly. In this casewe canplaceD(t) in the fastdynamics.However,not

all of theotherassumptionsaresatisfied.It is truethatD(t) is independentof x, howeverit is not

uncorrelatedwith itself at different timesandthereforecannotstrictly bemodelledasa normally

distributedrandomvariable,althoughatfirst glanceit looks asthoughit isagainpossibleto usethe

usualearlywarningtechniques.Thesystemstatex is plottedagainstD andagainstt asthegreen180

line in figure1.

2.2 Period of forcing similar to systemtime scale,ωτ ∼ 1

In theintermediateregime,T ∼ τ , whenthesystemrespondsonapproximatelythesametimescale

astheperiod of the forcing the dynamicsare a balancebetweenthe system’stendencyto want to

decaytowardsthe fixed point andthe forcing trying to pushit away.After sometime, t≫ τ , the185

systemwill settleinto anorbit ratherthanafixed point dueto thesimilarity of thetime scales.Just

astherewasa bistableregionwheremultiple stablefixed pointsexistedfor asinglevalue of Dm

whenω = 0, analogouslyin the caseT ∼ τ multiple stableperiodicattractorsarepossiblegiven a

fixedsetof valuesfor Dm, Da andω.Whichonethesystemsettlesin dependsonly on thesystem’s

initial conditionx(t = 0). Onealsohaslocal bifurcationsin this intermediateregion,howeverthey190

arelocal bifurcationsbetweenorbits ratherthanfixed points. In this intermediateregime,onecan

neitherplacethe Da cos(ωt) part of D(t) in either the slow or fast processesand thereforethe

assumptionsof the usualearly warningmethodsarenot strictly valid. Howeveronecanstill find

earlywarningindicatorsin suchsystemsandthis iswhatwedo in thefollowing section.Thesystem

statex is plottedagainstD andagainstt astheblueline in figure 1.195

Thedynamicsof thesystemdescribedbyequation11 in threedifferenttimescaleregimes.Forcing

parametersaresettoDm = 0, Da = 1/2. In theupperpanelsystemstatex is plottedagainstD(t).
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Theblacklinesarethenullclinesandthecolouredlinesarethesystemresponsesfor differentperiods

of forcing. In the lower panelx is plottedagainstthenumberof cycles,t/T , oncethe systemhas

reacheda steadystate.The dottedline is the forcing,D(t) while the coloredlines arethe system200

responses.The red line is for the slow forcing limit, τ ≪ T , T = 100π soωτ ≈ 1/100. As the

systemtime scaleis muchfasterthanthe changein the forcing, the systemessentially‘sticks’ to

the fixed points until they becomeunstableat the bifurcationsand jump to a different attractor.

Onecanregardthe systemresponsein two different ways: (i) a singleperiodicattractorgiving a

relaxationoscillationsin amonostableregion.(ii) Tippingbetweenpointattractorsby crossinglocal205

bifurcationsin a bistableregion.This tipping causesthedynamicsto bevery nonlinear.Thegreen

line is thefastforcinglimit, T ≪ τ , T = π/100 soωτ ≈ 100. Therearetwo possiblestableattractors

for this setof values.As thesystemtime scaleis muchslowerthanthe changein the forcing, the

systemessentiallyremainsstaticandall thedynamicscomefrom the forcing itself. Although it is

hardto seein thefiguredueto thesmallamplitudesystemresponse,thelagrelativeto theforcing is210

1/4 of a cycleandthedynamicsareapproximatelylinear.Theblueline is the intermediateregime,

τ ∼ T , T = π soωτ ≈ 1 andtherearetwo possiblestableattractorsfor this set of values.As the

systemtime scaleis approximatelythesameastheperiodof the forcing, thesystemresponseis a

competitionbetweenthesystem’stendencytodecaytowardsthenullclineandtheforcingpushingit

awaysettingup astableorbit. Noticethereissomephaselag andthedynamicslook approximately215

linear.

3 Responsephaselag and amplification asan early warning of local bifurcations.

We nowlook at
✿✿✿

We
✿✿✿✿✿✿✿

considersystems that can be described by

ẋ= f(x)+D(t) (1)

wheref(x) is, generally a nonlinear function of the system state scalar variablex . Our conceptual220

model,equation11, was a specificexampleof sucha system.The
✿✿✿✿

with forcing D(t) is given by

equation2. We consider
✿✿✿✿

given
✿✿✿

by

D(t) =Dm +Da cos(ωt).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)

✿✿✿

Dm
✿✿✿✿

and
✿✿✿

Da
✿✿✿

are
✿✿✿✿✿✿✿✿✿

constants,
✿✿✿✿✿✿✿

ω = 2π
T ✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

angular
✿✿✿✿✿✿✿✿✿

frequency
✿✿✿✿

and
✿✿

T
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

period
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

forcing.

✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿✿✿✿

assumed
✿✿✿

any
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

random,
✿✿✿✿✿

noisy
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿

forcing
✿✿✿

is
✿✿✿✿

very
✿✿✿✿✿

small
✿✿✿✿

and
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

neglected.225

✿✿✿

The
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿

a general form forD(t)
✿

is
✿✿✿✿✿

given
✿

in the appendix, however here we usesimple

sinusoidal forcing as this is most relevant for many climatesystems and we wish not to obscure the

simplicity of the mainresults
✿✿✿✿

result. ẋ describes the dynamics of a forced overdamped system. This

is a nonautonomous system whose state can be completely described byt andx. After some time

ts ≫ τ thesystem,
✿✿✿✿✿✿

where
✿

τ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale,
✿✿✿

the
✿✿✿✿✿✿

system
✿

will settle into some sort of steady230
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state, either an orbit or a fixed point whose mean statex̄ is

x̄=
1

T

T+ts
∫

ts

x(t)dt. (3)

We now Taylor expandf(x) to first order around̄x so that

ẋ≈ a− x

τ
+Da cos(ωt). (4)

where235

a= f(x̄)− ∂f

∂x
|x=x̄x̄+Dm (5)

τ =−1/
∂f

∂x
|x=x̄ (6)

are the linearisation constants. We have assumed higher order terms such as1
n!

∂nf
∂xn (x− x̄)n, n≥ 2

are small relative to zeroth and first order terms so that the linearised dynamics approximates the

full nonlinear dynamics well. We show how to check this approximation in section 2.1. Assuming240

for themomentthat this is agoodapproximation
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

is
✿✿✿✿

good, one can solve equation

4analytically. As t≫ τ the system settles into the orbit

lim
t≫τ

x(t) = aτ +
Daτ√

1+ω2τ2
cos(ωt+φ) (7)

where the system response lags the forcing by phaseφlag = ωtlag =−φ given by

φlag = arctan(ωτ). (8)245

that is, the phase lag is a function of the forcing frequency and the system response time scale. One

also notices that the system response, relative to the forcing amplitude,Da, is amplified by a factor

τ√
1+ω2τ2

(9)

which is also a direct function ofω andτ . We savethe
✿✿✿

The
✿

more general derivation whenD(t) can

be any periodic functionto appendixA.
✿✿

is
✿✿✿✿

given
✿✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿

appendix
✿✿✿

A.250

2.1 Asymptotics of the early warning indicators and examplesof systemsin theselimits

2.0.1 ωτ ≫ 1, Terrestrial carbon cycleforced by annual solar insolation

Considertheasymptoticsof equation8.Whenthesystemis losingstabilityandapproachingalocal

bifurcationits timescalebecomesverylarge,τ ≫ T , andthesystemphaselagbecomesφlag → π/2.

That is, thesystemresponselagstheforcingby quarterof acycle.This limit is alsoappropriatefor255

systemswheretheperiodicforcing ismuchquickerthanthetimescaleof thesystem.Unfortunately,

inferringa time scaleof asystemwith φlag → π/2 is not possibleto do reliably from thephaselag

asφlag asymptotesto thisvalue.Onecanonly reliablyconcludeτ ≫ T .
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Thesystemresponseamplificationin theτ ≫ T limit → 1

ω
. That is, systemresponseamplitude

is relatedto theforcingamplitude,Da, by Da

ω
.260

An exampleof asystemapproximatelymodelledby this limit is theglobalterrestrialvegetation

carbonwhichhasadominanttimescaleontheorderofdecades,muchlargerthanitsperiodicforcing,

theannualcycleof solarinsolation.Thisdominanttimescalecomesfrom thelargelongtermcarbon

storagee.g.the time scaletakenfor a forest to regrowoncecut down.Oneseesthis phaselag of

quarterof a cycle in theannualminimum of theMaunaLoa CO2 record1 relativeto theNorthern265

hemispheresolarinsolationmaximum.This laggedannualminimum in the integratedresponseof

thetotal atmosphericcarbonresultsfrom thedominanceof theNorthernHemisphere’smid latitude

terrestrialvegetationcarbonin theglobalcarbonflux. We haveplottedtheMaunaLoa CO2 record

andthetime of yearof theminimumconcentrationin figure 8.

AtmosphericCO2 concentrationrecordedat MaunaLoa againsttime in the upperpanel.In the270

lower panelwe haveplotted the minimum annualCO2 concentrationagainstyear. One notices

the minimum CO2 concentrationoccursroughly3/4 of the way throughthe year.This is because

maximalcarbonuptakeoccursduringtheNorthernhemispheresummerfromtheterrestrialvegetation

andit is maximally laggedbehindthemaximumin theNorthernhemispheresolarinsolation(best

growingconditions)by 1/4 of acyclebecauseof thetime scaledifferencebetweentheresponseof275

thesystemandtheperiodof the forcing. In this casethesystemis the terrestrialvegetationwhich

hasa timescaleof decadesandtheperiodicforcing is theannualcycle of solarinsolation.

2.0.1 ωτ ≪ 1, Ice sheetdynamicsforced by Milankovitch cycles

WhenT ≫ τ , thereis nophaselag,φlag → 0, andthesystemcanrespondinstantly.

Thesystemresponseamplitudein this limit → τ . That is,systemresponseamplitudeis relatedto280

theforcingamplitude,Da, byDaτ .

An exampleof a systemthat hasthe correcttime scaleseparationandperiodicforcing arethe

glacial/interglacialcyclesthathavetheslowbuild,fastcollapsetypebehaviourof relaxationoscillations.

Icesheetshavetimescalesin theorderof thousandsof yearsforcedby thesolarinsolationvariation

of Milankovitch cycles.The forcing is a superpositionof many different sinusoidalfrequencies,285

the dominantoneshavingperiodsof 41 kyr (relatedto the obliquity of Earth’sorbit), 19 and23

kyr (relatedto the precession).Currentthinking however,favoursmorecomplex,two andhigher

dimensionaldynamicsto model thesecyclesthan the single variablemodelswe considerin this

paper(Saltzman (2002),Crucifix (2012),Saedeleer et al. (2013),andCrucifix (2013)).

2.0.1 ωτ ∼ 1, Oceanmixed layer temperature forced by annual solar insolation290

1Dr. Pieter Tans,NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)and Dr. Ralph Keeling, Scripps Institution of

Oceanography(scrippsco2.ucsd.edu/)
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The intermediateregime,whenτ ∼ T (the time scaleof the systemis approximatelythe sameas

theforcing period)is wherephaselag andresponseamplificationaremostusefulasearlywarning

indicatorsasoneseesvaluessomewherebetweenthetwo limits.

To give an exampleof a systemoperatingin this regimeconsiderthe annualvariation in sea

temperaturesin northernhemispheretemperateregions.A roughestimateof theoceansurfacemixed295

layer time scalegivesτ ∼ 10 monthsandthis surfacelayer is heatedby the annualcycle of solar

insolationto varyingdegreesthroughouttheyear.Calculationof thephaselagfor this τ andT yields

a lag of about2.6monthsi.e. roughlythemaximalandminimal seatemperaturesarein September

andMarch.Arctic seaice extentalsofalls into this regimeandwill beoneof thesystemswe apply

theearlywarningindicatorsto in section??.300

3 Systemnonlinearity from Fourier analysis

2.1
✿✿✿✿✿✿

System
✿✿✿✿✿✿✿✿✿✿✿

nonlinearity
✿✿✿

and
✿✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitude
✿✿✿✿✿

from
✿✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿

analysis

By simply looking at the time series of the system response and the forcing one can determine

what the amplitude and phase lag are when the driving is of theform equation 2 and the system

response is approximately linear
✿✿✿✿✿✿

without
✿✿✿

the
✿✿✿✿

need
✿✿✿

for
✿✿✿✿✿✿✿✿

statistics. However, the system is essentially305

nonlinear and these nonlinear effects may become large neara bifurcation or when the system is

driven hard. By taking the Fourier transform of the time series of the system response one can

quantify how large these nonlinear effects are.
✿✿✿✿

With
✿✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿✿

motivation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wiesenfeld (1985) and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Wiesenfeld and McNamara (1986) calculated
✿✿✿✿

the
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿

spectra
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

perturbations,
✿✿✿✿✿

rather
✿✿✿✿✿

than

✿✿

the
✿✿✿✿✿✿✿✿✿

response,
✿✿✿✿✿

away
✿✿✿✿

from
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿✿

attractors
✿✿✿✿

very
✿✿✿✿✿

close
✿✿

to
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿✿

with
✿✿✿✿✿

noisy
✿✿✿✿

and
✿✿✿✿✿

weak310

✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿✿

modulation
✿✿✿✿✿✿✿✿✿✿✿

respectively.

Once the system has settled into an orbit of periodT , we canwrite the full nonlinear response of

an arbitrary system
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

written
✿

as a Fourier series, a sum ofN sinusoidal functions with angular

frequenciesωn = 2πn
T

, amplitudesAn and phasesφn i.e.

x(t) =

N
∑

n=0

An cos(ωnt+φn). (10)315

Then= 0 component is a constant, the long term mean of the response, then= 1 component is

the linear response of the system and then≥ 2 components are thenth order harmonics and come

about from the nonlinear response of the system. Since the system has settled into a periodic orbit the

system must repeat itself every cycle. The only way the system can do this is by adding harmonics

to linear response. By looking at the ratiosAn

A1

for n≥ 2 we canseehow importantthe nonlinear320

effectsarerelative to the linear approximation
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

quantified. In practice the largest harmonics

will generally be the 2nd (n= 2) and 3rd order (n= 3) harmonics and provided they are an order of

magnitude (10 times,An

A1
< 10−1) less than the fundamental harmonic, the linear analysis inthe last
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section works well.
✿✿✿✿✿✿✿✿✿

Calculation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

amplitudes,
✿✿✿

An,
✿✿✿✿

can
✿✿

be
✿✿✿✿✿

made
✿✿✿

via
✿✿

a
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿

transform
✿✿✿

of
✿✿✿

the

✿✿✿✿

time
✿✿✿✿✿

series.
✿

325

One may also expect subharmonics, components that have periods that are integer multiples of the

forcing period, to be observed in the system response. Subharmonics are not possible in the systems

we consider here due to the dimensionality of the phase space. 1

Calculationof theamplitudes,An, isvia aFouriertransformof
✿✿✿✿✿

Since
✿✿✿

the
✿✿✿✿

ratios
✿✿✿✿

An

A1 ✿✿✿✿✿✿✿

measure
✿✿✿✿

how

✿✿✿✿✿✿✿✿

nonlinear
✿✿✿

the
✿✿✿✿✿✿

system
✿✿

is
✿✿✿

one
✿✿✿✿✿✿

expects
✿✿✿✿✿

these
✿✿

to
✿✿✿✿✿✿✿

increase
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿

approaches
✿✿

a
✿✿✿✿✿✿✿✿✿

bifurcation.
✿✿✿✿✿✿

These330

✿✿✿✿

ratios
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

plotted
✿✿✿

for
✿✿

a
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

by
✿✿✿✿✿✿

taking
✿✿✿

the
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿✿✿

transform
✿✿✿

for
✿

a
✿✿✿✿

data
✿✿✿✿✿✿✿

window
✿✿✿✿✿✿✿✿✿

consisting

✿✿

of
✿✿

an
✿✿✿✿✿✿

integer
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

cycles
✿✿✿✿

and
✿✿✿✿✿✿

sliding
✿✿✿

this
✿✿✿✿✿✿✿

window
✿✿✿✿✿✿✿

forward
✿✿✿

by
✿✿✿

one
✿✿✿✿✿

cycle
✿✿✿✿✿✿✿✿✿✿

recursively
✿✿✿✿✿✿✿

through

the time series.To do this, we chooseto representthe systemresponse,equation10, in the more

convenientbut equivalentform

x(t) =

N
∑

n=−N

cne
iωnt335

wherewehavedefinedcn = An

2
eiφn andc−n = c∗n. We thentaketheFouriertransformof this form

to find thecn

cn =
1

T

T
∫

0

x(t)e−iωntdt

sotheamplitudeAn associatedto thenth harmonicisgivenby

An = 2|cn|.340

Onecanalsofind thephases,φn by takingtheargumentof cn.
✿✿✿✿

The
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

cycles
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

window

✿✿✿✿

must
✿✿✿

be
✿✿✿✿

large
✿✿✿✿✿✿✿

enough
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonics
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

satisfactorily
✿✿✿✿✿✿✿

resolved
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿

spectra.
✿✿✿

In

✿✿✿✿✿✿✿

addition,
✿✿✿✿

each
✿✿✿✿✿

cycle
✿✿✿✿✿

must
✿✿✿

be
✿✿✿✿✿✿✿

sampled
✿✿

at
✿✿

a
✿✿✿✿

time
✿✿✿✿✿✿✿

interval
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∆t≤ TNyquist/2
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿

TNyquist
✿✿

is
✿✿✿✿

the

✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿

period
✿✿✿✿

you
✿✿✿✿

want
✿✿

to
✿✿✿✿✿✿✿

resolve.
✿

Sincetheratios An

A1

≡ |cn|
|c1|

measurehow nonlinearthesystemis oneexpectstheseto increaseas345

thesystemapproachesa bifurcationaswell asquantitativemeasuresof how appropriatethe linear

analysisis . We demonstratethelinearearlywarningindicatorsandtheFourieranalysisin thenext

section.
1Systems described by equation 1 are completely described bythe two dimensional space of variablesx andt. Recasting

the nonautonomous system in equation 1 as a two dimensional autonomous system by identifying a new angular variable

φ= ωt, the system is then described byẋ= f(x)+D(φ) andφ̇= ω. The resulting phase space(x,φ) is then cylindrical as

φ is 2π modular. If subharmonics are possible in the periodic system response the trajectory must wind around the cylinder

at least twice before repeating itself. Such a trajectory implies it crosses itself which is not allowed due to the existence and

uniqueness theorem. Therefore subharmonics cannot exist in the two dimensional systems. This is of course not true for three

and higher dimensional systems.
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2.2
✿✿✿

Lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿

a
✿✿✿✿✿✿

return
✿✿✿✿

map

✿✿✿✿✿✿✿

Provided
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿

is
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿

its
✿✿✿✿✿✿

period,
✿✿✿✿✿✿✿✿

τ/T > 1,
✿✿✿✿

one
✿✿✿

can
✿✿✿

use
✿✿✿✿✿

return
✿✿✿✿✿

maps
✿✿

to
✿✿✿✿✿✿

assess350

✿✿

the
✿✿✿✿✿✿✿✿

stability
✿✿

of
✿

a
✿✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

attractor.
✿✿✿✿

The
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿

time
✿✿✿✿✿

series,
✿✿✿✿✿✿✿✿✿

generated
✿✿

by
✿✿✿✿✿✿✿✿

sampling
✿✿✿

the
✿✿✿✿✿✿✿

system

✿✿✿✿✿✿✿

response
✿✿✿✿

once
✿✿✿✿✿

every
✿✿✿✿✿✿

cycle,
✿✿✿✿✿

allows
✿✿✿✿

one
✿✿

to
✿✿✿✿✿

apply
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿✿✿

such

✿✿

as
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation.
✿✿

It
✿✿

is
✿✿✿✿✿

noisy,
✿✿✿✿✿✿

random
✿✿✿✿✿✿

forcing
✿✿✿✿✿

away
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

attractor
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿✿

method

✿✿✿✿✿

infers
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿

from,
✿✿✿✿✿

rather
✿✿✿✿✿

than
✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

deterministic,
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

forcing.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿

usually
✿✿✿✿✿

done

✿✿

by
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿

the
✿✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿

for
✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿

data
✿✿✿✿✿✿✿

window
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿

at355

✿✿✿✿

least
✿✿

as
✿✿✿✿

long
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿✿

but
✿✿✿

not
✿✿

so
✿✿✿✿

long
✿✿✿✿

that
✿✿✿

any
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿

trend
✿✿

in
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale

✿✿✿✿✿

skews
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿✿✿✿✿

estimate.
✿✿

It
✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿

desirable
✿✿

to
✿✿✿✿

have
✿✿✿✿✿

many
✿✿✿✿✿

points
✿✿✿✿✿✿

within
✿✿✿

this
✿✿✿✿✿✿✿

window
✿✿

as
✿✿✿

the

✿✿✿✿✿✿✿

standard
✿✿✿✿

error
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

estimate
✿✿✿✿✿

scales
✿✿

as
✿✿✿✿✿✿

1/
√
m

✿✿✿✿✿✿

where
✿✿

m
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿

cycles
✿✿✿✿✿✿✿

(points)
✿✿✿✿✿✿

within
✿✿✿

the

✿✿✿✿✿✿

window
✿✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Williamson and Lenton (2015) for
✿✿

a
✿✿✿✿✿✿✿✿✿✿

discussion).
✿✿✿

For
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿✿

consisting
✿✿

of
✿✿

a
✿✿✿✿✿

small

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

cycles
✿✿✿

this
✿✿✿

can
✿✿✿

be
✿

a
✿✿✿✿✿✿✿

limiting
✿✿✿✿✿✿

factor.360

3 Examples

✿✿✿

We
✿✿✿✿

now
✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿

the
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿✿

indicators
✿✿

in
✿✿✿✿✿✿

section
✿✿

2
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿

ratios
✿✿

of
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

period,

✿✿

T ,
✿✿✿

(or
✿✿✿✿✿✿✿✿✿✿

equivalently
✿✿✿✿✿✿✿

angular
✿✿✿✿✿✿✿✿

frequency
✿✿✿

ω)
✿✿

to
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿

scale
✿✿

τ .
✿✿✿

In
✿✿✿✿✿✿✿✿

particular,
✿✿✿

we
✿✿✿

use
✿✿

a
✿✿✿✿✿✿✿✿✿✿

periodically

✿✿✿✿✿

forced
✿✿✿✿✿✿

double
✿✿✿✿

well
✿✿✿✿✿✿✿✿

potential
✿✿

as
✿✿✿✿

our
✿✿✿✿

main
✿✿✿✿✿✿✿

system.
✿✿✿✿

This
✿✿✿✿✿✿

system
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

extensively
✿✿✿✿✿✿

studied
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿

context
✿✿

of
✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿✿

resonance
✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

McNamara and Wiesenfeld (1989) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gammaitoni et al. (1998) for365

✿✿✿✿✿✿✿

reviews)
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

simplest
✿✿✿✿✿

model
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

phenomena
✿✿✿✿✿

when
✿✿✿✿✿

noise
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿

added.
✿✿✿✿✿

Phase
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

amplitude

✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

setting
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shneidman et al. (1994) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Jung and Hänggi (1993).
✿✿✿✿

This

✿✿✿✿✿✿✿

literature
✿✿

is
✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿

concerned
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

resonance
✿✿✿✿✿✿

effects
✿✿

in
✿✿✿✿✿✿✿✿✿

transition
✿✿✿✿✿✿✿✿✿✿

probabilities
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿

wells

✿✿✿✿✿

(finite
✿✿✿✿✿✿

barrier
✿✿✿✿✿✿

height
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿

wells)
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

anticipation
✿✿

of
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿✿✿✿✿

(barrier

✿✿✿✿✿

height
✿✿✿✿✿✿

tends
✿✿

to
✿✿✿✿

zero)
✿✿✿✿

that
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

central
✿✿✿✿✿✿

interest
✿✿✿✿

here.
✿
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3.1 Conceptualmodel

We now demonstratehow onemight usetheseindicatorsto detectchanging
✿✿✿

Our
✿✿✿✿✿✿

system
✿✿✿✿✿

which
✿✿✿✿

has

✿✿✿

one
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿

variable,
✿✿

x,
✿✿✿✿

and
✿✿✿✿✿✿

evolves
✿✿✿✿✿✿✿✿✿

according
✿✿

to

ẋ= x− x3 +D(t)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)

✿✿✿✿✿

where
✿✿✿✿✿✿✿

overdots
✿✿✿✿✿✿

denote
✿✿✿✿✿✿✿✿✿✿✿✿

differentiation
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿

time,
✿

t
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

function
✿✿✿✿✿

D(t)375

✿

is
✿✿✿✿✿

given
✿✿✿

by
✿✿✿✿✿✿✿✿

equation
✿✿

2.
✿✿✿✿✿✿✿✿

Equation
✿✿

11
✿✿✿✿✿✿✿

models
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

nonautonomous
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿

system,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

overdamped

✿✿✿✿

limit
✿✿

of
✿✿

a
✿✿✿✿✿✿

Duffing
✿✿✿✿✿✿✿✿

oscillator
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Thompson and Stewart (2002)).
✿✿✿✿✿

When
✿✿✿✿✿✿✿

forcing
✿✿

is
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿

(ω = 0)
✿✿✿

the

✿✿✿✿✿✿✿

familiar,
✿✿✿✿

well
✿✿✿✿✿✿

studied
✿✿✿✿✿✿✿✿✿✿✿

autonomous
✿✿✿

fold
✿✿✿✿✿✿✿✿✿✿

bifurcation
✿✿

is
✿✿✿✿✿✿✿✿

recovered
✿✿✿✿

(for
✿✿✿✿✿✿✿

example
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Strogatz (2001)).

✿✿✿

For
✿✿✿✿✿✿

ω = 0,
✿✿✿

the
✿✿✿✿✿✿✿✿

solutions
✿✿

of
✿✿✿✿✿✿

ẋ= 0,
✿✿✿✿

give
✿✿✿

the
✿✿✿✿✿✿✿✿

system’s
✿✿✿✿

fixed
✿✿✿✿✿✿✿

points,
✿✿

x∗
✿✿✿✿

(the
✿✿✿✿✿✿✿✿✿

nullclines)
✿✿✿✿

and
✿✿✿✿✿✿✿

number

✿✿✿✿✿

either
✿✿✿

one
✿✿

or
✿✿✿✿

three
✿✿✿✿✿✿✿✿✿

depending
✿✿✿

on
✿✿✿

the
✿✿✿✿

value
✿✿

of
✿✿✿✿

Dm.
✿✿✿✿

One
✿✿✿

can
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿

stability
✿✿

of
✿✿✿✿✿

these
✿✿✿✿

fixed
✿✿✿✿✿✿

points380
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✿✿

by
✿✿✿✿✿✿✿

looking
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

linearized
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿

fixed
✿✿✿✿✿✿

points,
✿✿✿✿✿

J(x∗)
✿

J(x∗) =
∂ẋ

∂x
|x=x∗ = 1− 3x∗2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(12)

✿

If
✿✿✿✿✿✿

J(x∗)
✿✿

is
✿✿✿✿✿✿✿

negative,
✿✿✿

the
✿✿✿✿✿

fixed
✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿

stable,
✿✿

if
✿

it
✿✿

is
✿✿✿✿✿✿✿

positive
✿

it
✿✿

is
✿✿✿✿✿✿✿✿

unstable.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

region
✿✿✿✿✿

where
✿✿✿✿✿

three

✿✿✿✿

fixed
✿✿✿✿✿

points
✿✿✿✿✿

exist
✿✿✿

one
✿✿✿✿

finds
✿✿

a
✿✿✿✿✿✿

bistable
✿✿✿✿✿✿

region
✿✿✿

i.e.
✿✿✿

two
✿✿✿✿✿✿

points
✿✿

are
✿✿✿✿✿✿

stable
✿✿✿✿✿

while
✿✿

the
✿✿✿✿✿

third
✿

is
✿✿✿✿✿✿✿✿

unstable.
✿✿✿✿

The

✿✿✿✿✿✿

bistable
✿✿✿✿✿✿

region
✿✿✿

has
✿✿✿✿✿✿✿✿✿✿

boundaries
✿✿✿✿✿✿

marked
✿✿✿

by
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿✿

and
✿✿✿✿✿

these
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

found
✿✿

by
✿✿✿✿✿✿✿

solving385

✿✿✿✿✿✿✿✿

J(x∗) = 0
✿✿✿

for
✿✿✿

x∗
✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿

fixed
✿✿✿✿

point
✿✿✿✿✿✿✿✿

becomes
✿✿✿✿✿✿✿

neutrally
✿✿✿✿✿✿

stable.
✿✿✿✿

One
✿✿✿

can
✿✿✿

also
✿✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿

e-folding

✿✿✿✿

time
✿✿✿✿

scale
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿

in
✿✿✿✿

state
✿✿

x,
✿✿

τ
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

Jacobian
✿✿✿✿✿✿✿✿✿✿✿✿

τ =−1/J(x).
✿✿✿

We
✿✿✿✿

will
✿✿✿✿

refer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

e-folding

✿✿✿✿

time
✿✿

as
✿✿✿

thesystem time scale(equivalentlychangingsystemstability) andthereforetheanticipation

of an approachinglocal bifurcation.We demonstratethis with the conceptualsystemin equation

11.We assumethe .
✿✿✿

As
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

gets
✿✿✿✿✿

closer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

bifurcation
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿✿✿

will
✿✿✿✿✿✿✿

increase390

✿✿✿

and
✿✿✿✿

tend
✿✿

to
✿✿✿✿✿✿✿

infinity
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

bifurcation.
✿✿✿✿✿

Early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿✿

indicators
✿✿✿

are
✿✿✿✿✿✿

simply
✿✿✿✿✿✿✿✿

functions
✿✿✿

of
✿✿✿✿✿

J(x∗)
✿✿✿

or

✿✿✿✿✿✿✿✿✿✿

equivalently
✿✿

τ .

3.1
✿✿✿✿✿

Period
✿✿

of
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale,
✿✿✿✿✿✿✿

ωτ ∼ 1

✿✿✿✿

This
✿✿✿✿✿✿

regime,
✿✿✿✿✿✿✿

T ∼ τ ,
✿✿

is
✿✿✿

the
✿✿✿✿✿

main
✿✿✿✿✿

focus
✿✿✿✿✿✿

study
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

manuscript,
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

responds
✿✿✿

on

✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

period
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

forcing.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿

regime
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿

are395

✿

a
✿✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

system’s
✿✿✿✿✿✿✿✿

tendency
✿✿

to
✿✿✿✿✿

want
✿✿

to
✿✿✿✿✿

decay
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

forcing

✿✿✿✿✿

trying
✿✿

to
✿✿✿✿✿

push
✿

it
✿✿✿✿✿✿

away.
✿✿✿✿✿

After
✿✿✿✿✿

some
✿✿✿✿

time,
✿✿✿✿✿✿

t≫ τ ,
✿✿✿

the
✿✿✿✿✿✿✿

system
✿✿✿✿

will
✿✿✿✿✿

settle
✿✿✿

into
✿✿✿

an
✿✿✿✿

orbit
✿✿✿✿✿✿

rather
✿✿✿✿

than
✿✿

a

✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

similarity
✿✿

of
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿

scales.
✿✿✿

Just
✿✿✿

as
✿✿✿✿

there
✿✿✿✿

was
✿

a
✿✿✿✿✿✿✿

bistable
✿✿✿✿✿

region
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿

multiple

✿✿✿✿✿

stable
✿✿✿✿

fixed
✿✿✿✿✿✿

points
✿✿✿✿✿✿

existed
✿✿✿

for
✿✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿

value
✿✿

of
✿✿✿✿

Dm
✿✿✿✿✿

when
✿✿✿✿✿✿

ω = 0,
✿✿✿✿✿✿✿✿✿✿

analogously
✿✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿✿✿✿✿

T ∼ τ

✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

stable
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿✿

attractors
✿✿✿

are
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

given
✿✿

a
✿✿✿✿✿

fixed
✿✿

set
✿✿✿

of
✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿

Dm,
✿✿✿

Da
✿✿✿

and
✿✿✿

ω.
✿✿✿✿

The400

✿✿✿✿✿✿

system
✿✿✿✿

state
✿

x
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿✿✿✿✿

against
✿✿

D
✿✿✿

and
✿✿✿✿✿✿

against
✿✿

t
✿✿

as
✿✿✿

the
✿✿✿✿

blue
✿✿✿

line
✿✿

in
✿✿✿✿✿✿

figure
✿✿

1.
✿✿✿✿✿

Which
✿✿✿✿✿

state
✿✿✿

the
✿✿✿✿✿✿

system

✿✿✿✿✿

settles
✿✿

in
✿✿✿✿✿✿✿

depends
✿✿✿✿

only
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

system’s
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿

condition
✿✿✿✿✿✿✿✿

x(t= 0).
✿✿✿✿✿

Local
✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿

are
✿✿✿✿✿✿✿

present
✿✿

in

✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿✿

region,
✿✿✿✿✿✿✿✿

however
✿✿✿✿

they
✿✿✿

are
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿✿✿✿✿

between
✿✿✿✿✿

orbits
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿✿✿

fixed
✿✿✿✿✿✿

points.

✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿✿

regime,
✿✿✿✿

one
✿✿✿

can
✿✿✿✿✿✿

neither
✿✿✿✿✿

place
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Da cos(ωt)
✿✿✿

part
✿✿

of
✿✿✿✿✿

D(t)
✿✿

in
✿✿✿✿✿

either
✿✿✿

the
✿✿✿✿

slow
✿✿✿

or

✿✿✿

fast
✿✿✿✿✿✿✿✿

processes
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿

of
✿✿✿

the
✿✿✿✿✿

usual
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿✿

not405

✿✿✿✿✿✿

strictly
✿✿✿✿✿

valid.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

however
✿✿✿✿✿

where
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿✿

and
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿

are
✿✿✿✿✿

useful
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning

✿✿✿✿✿✿✿✿

indicators.
✿

✿✿

To
✿✿✿✿✿✿✿

illustrate
✿✿✿

the
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿

we
✿✿

fix
✿✿✿

theforcing amplitudeDa and the periodT ∼O(τ)

arefixed and
✿✿✿

and
✿✿✿✿

take
✿

Dm is
✿✿

as
✿

a control parameter, slowly varying from negative values towards

the local bifurcation
✿

in
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿

described
✿✿

by
✿✿✿✿✿✿✿✿

equation
✿✿

11. We expect to see the system response410

become more phase lagged and amplified as we approach the local bifurcation atDm ≈ 0.33 when

approaching from the lower nullcline solutions.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿

expect
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonics
✿✿✿

of

✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿✿✿✿✿✿

increase.

In our examplewe
✿✿

We
✿

choose to tip the system from one state to another by slowly altering the

mean of the drivingDm. Wecould,however,havetippedthesystem
✿✿✿✿✿✿✿✿✿✿✿

Alternatively,
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿

could415
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Figure 1.
✿✿✿

The
✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

described
✿✿✿

by
✿✿✿✿✿✿

equation
✿✿✿

11
✿

in
✿✿✿✿✿

three
✿✿✿✿✿✿

different
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿✿✿

regimes.
✿✿✿✿✿✿

Forcing

✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿

set
✿✿

to
✿✿✿✿✿✿✿

Dm = 0,
✿✿✿✿✿✿✿✿

Da = 1/2.
✿✿

In
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿

panel
✿✿✿✿✿

system
✿✿✿✿

state
✿✿

x
✿

is
✿✿✿✿✿✿

plotted
✿✿✿✿✿

against
✿✿✿✿✿

D(t).
✿✿✿

The
✿✿✿✿✿

black

✿✿✿

lines
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿

nullclines
✿✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿

coloured
✿✿✿✿

lines
✿✿✿

are
✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

responses
✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

periods
✿✿

of
✿✿✿✿✿✿

forcing.
✿✿

In
✿✿✿

the

✿✿✿✿

lower
✿✿✿✿✿

panel
✿

x
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

cycles,
✿✿✿✿

t/T ,
✿✿✿✿

once
✿✿✿

the
✿✿✿✿✿

system
✿✿✿

has
✿✿✿✿✿✿

reached
✿✿

a
✿✿✿✿✿

steady
✿✿✿✿

state.
✿✿✿✿

The

✿✿✿✿✿

dotted
✿✿✿✿

line
✿✿

is
✿✿

the
✿✿✿✿✿✿

forcing,
✿✿✿✿✿

D(t)
✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿

colored
✿✿✿✿

lines
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

responses.
✿✿✿

The
✿✿✿

red
✿✿✿✿

line
✿

is
✿✿✿

for
✿✿✿

the
✿✿✿✿

slow

✿✿✿✿✿

forcing
✿✿✿✿

limit,
✿✿✿✿✿✿

τ ≪ T ,
✿✿✿✿✿✿✿✿

T = 100π
✿✿

so
✿✿✿✿✿✿✿✿✿✿

ωτ ≈ 1/100.
✿✿✿

As
✿✿

the
✿✿✿✿✿✿

system
✿✿✿

time
✿✿✿✿

scale
✿✿

is
✿✿✿✿

much
✿✿✿✿✿

faster
✿✿✿

than
✿✿✿

the
✿✿✿✿✿

change
✿✿

in
✿✿✿

the

✿✿✿✿✿✿

forcing,
✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

essentially
✿✿✿✿✿

‘sticks’
✿✿

to
✿✿

the
✿✿✿✿

fixed
✿✿✿✿✿

points
✿✿✿✿

until
✿✿✿

they
✿✿✿✿✿✿

become
✿✿✿✿✿✿✿

unstable
✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

bifurcations
✿✿✿

and
✿✿✿✿

jump

✿

to
✿✿

a
✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

attractor.
✿✿✿✿

One
✿✿✿

can
✿✿✿✿✿

regard
✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿

response
✿✿

in
✿✿✿

two
✿✿✿✿✿✿✿

different
✿✿✿✿✿

ways:
✿✿

(i)
✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

attractor

✿✿✿✿✿

giving
✿

a
✿✿✿✿✿✿✿✿

relaxation
✿✿✿✿✿✿✿✿

oscillations
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿

monostable
✿✿✿✿✿✿

region.
✿✿✿

(ii)
✿✿✿✿✿✿

Tipping
✿✿✿✿✿✿

between
✿✿✿✿✿

point
✿✿✿✿✿✿✿

attractors
✿✿

by
✿✿✿✿✿✿✿

crossing
✿✿✿✿

local

✿✿✿✿✿✿✿✿✿

bifurcations
✿

in
✿✿

a
✿✿✿✿✿✿

bistable
✿✿✿✿✿

region.
✿✿✿✿

This
✿✿✿✿✿

tipping
✿✿✿✿✿

causes
✿✿✿

the
✿✿✿✿✿✿✿

dynamics
✿✿

to
✿✿

be
✿✿✿

very
✿✿✿✿✿✿✿✿

nonlinear.
✿✿✿

The
✿✿✿✿

green
✿✿✿✿

line
✿

is
✿✿✿

the
✿✿✿

fast

✿✿✿✿✿

forcing
✿✿✿✿✿

limit,
✿✿✿✿✿✿

T ≪ τ ,
✿✿✿✿✿✿✿✿✿

T = π/100
✿✿

so
✿✿✿✿✿✿✿✿

ωτ ≈ 100.
✿✿✿✿✿

There
✿✿

are
✿✿✿✿

two
✿✿✿✿✿✿

possible
✿✿✿✿✿

stable
✿✿✿✿✿✿✿

attractors
✿✿

for
✿✿✿✿

this
✿✿

set
✿✿

of
✿✿✿✿✿✿

values.

✿✿

As
✿✿✿

the
✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿

scale
✿

is
✿✿✿✿

much
✿✿✿✿✿✿

slower
✿✿✿

than
✿✿✿

the
✿✿✿✿✿

change
✿✿

in
✿✿

the
✿✿✿✿✿✿✿

forcing,
✿✿

the
✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

essentially
✿✿✿✿✿✿✿

remains
✿✿✿✿

static
✿✿✿

and

✿✿

all
✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿

come
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

forcing
✿✿✿✿✿

itself.
✿✿✿✿✿✿✿

Although
✿

it
✿✿

is
✿✿✿✿

hard
✿

to
✿✿✿

see
✿✿

in
✿✿✿

the
✿✿✿✿

figure
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

small
✿✿✿✿✿✿✿✿

amplitude

✿✿✿✿✿

system
✿✿✿✿✿✿✿

response,
✿✿✿

the
✿✿

lag
✿✿✿✿✿✿

relative
✿✿

to
✿✿✿

the
✿✿✿✿✿

forcing
✿✿

is
✿✿✿

1/4
✿✿

of
✿

a
✿✿✿✿

cycle
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

dynamics
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿

linear.
✿✿✿✿

The

✿✿✿

blue
✿✿✿

line
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿✿

regime,
✿✿✿✿✿✿

τ ∼ T ,
✿✿✿✿✿

T = π
✿✿

so
✿✿✿✿✿✿

ωτ ≈ 1
✿✿✿

and
✿✿✿✿✿

there
✿✿

are
✿✿✿✿

two
✿✿✿✿✿✿

possible
✿✿✿✿✿

stable
✿✿✿✿✿✿✿

attractors
✿✿✿

for

✿✿✿

this
✿✿

set
✿✿

of
✿✿✿✿✿✿

values.
✿✿

As
✿✿✿

the
✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿

scale
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿

the
✿✿✿✿

same
✿✿

as
✿✿

the
✿✿✿✿✿✿

period
✿✿

of
✿✿

the
✿✿✿✿✿✿

forcing,
✿✿✿

the
✿✿✿✿✿✿

system

✿✿✿✿✿✿

response
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿

competition
✿✿✿✿✿✿✿

between
✿✿

the
✿✿✿✿✿✿✿

system’s
✿✿✿✿✿✿✿

tendency
✿

to
✿✿✿✿✿

decay
✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿

nullcline
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿✿

pushing

✿

it
✿✿✿✿

away
✿✿✿✿✿

setting
✿✿✿

up
✿

a
✿✿✿✿✿

stable
✿✿✿✿

orbit.
✿✿✿✿✿

Notice
✿✿✿✿

there
✿✿

is
✿✿✿✿

some
✿✿✿✿✿

phase
✿✿

lag
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

dynamics
✿✿✿✿

look
✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿

linear.
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✿✿✿✿

have
✿✿✿✿✿

tipped
✿

by changing one of the other driving parameters such as amplitudeDa or frequencyω.

Since the system response amplitude depends onDa andω and phase lag depends onω, one must

take this into account when inferring system time scales from the indicators.

In figure 2we run the system
✿✿✿

the
✿✿✿✿✿✿

system
✿✿

is
✿✿✿

run
✿

forward in time, linearly varyingDm from -2

to 2 across the bifurcation over about 25 cycles of the forcing period (for the values of the pa-420

rameters see the figure caption).In figure 3 we haveplottedthe
✿✿✿✿✿✿

Plotted
✿✿

in
✿✿✿✿✿

figure
✿✿

3
✿✿✿

are
✿

phase lag

and amplitude of the system response prior to the bifurcation at aroundt/T = 15which areboth
✿

.

✿✿✿✿

Both
✿✿✿

are
✿

increasing as the bifurcation is approached due to the increase inτ . Phase lag is calcu-

lated from the difference between the times of the maxima in the forcing and the system response in

each cycle. Response amplitude is calculated by taking halfthe difference between the maximal and425

minimal values in the system response in each cycle.
✿✿✿

Also
✿✿✿✿✿✿✿

plotted
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

ratios
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

and

✿✿✿✿

third
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿

with
✿✿✿✿

time
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿

sliding

✿✿✿✿✿✿

window
✿✿✿

of
✿✿✿✿✿

length
✿✿

5
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿

cycles
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿

time
✿✿

at
✿✿✿

the
✿✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window.
✿✿✿✿

The
✿✿✿✿✿✿✿

window

✿✿✿✿✿

needs
✿✿

to
✿✿

be
✿✿✿✿✿

long
✿✿✿✿✿✿

enough
✿✿✿

to
✿✿✿✿✿✿

resolve
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonics
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿

spectrum
✿✿✿

but
✿✿✿✿

short
✿✿✿✿✿✿✿

enough
✿✿

to
✿✿✿✿✿

keep
✿✿✿✿

Dm

✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿✿✿

constant.
✿✿✿✿

For
✿✿✿

this
✿✿✿✿✿✿✿✿

example,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿✿✿

(and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

nonlinearity
✿✿✿

of430

✿✿

the
✿✿✿✿✿✿✿✿✿

response)
✿✿✿

are
✿✿✿✿

quite
✿✿✿✿✿✿

small,
✿

5
✿✿✿✿✿✿

cycles
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

minimum
✿✿

to
✿✿✿✿✿✿

resolve
✿✿✿

the
✿✿✿✿✿✿

peaks.
✿✿✿✿

The
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿

is

✿✿✿

then
✿✿✿✿✿✿✿✿

advanced
✿✿✿✿

one
✿✿✿✿✿

cycle
✿✿

in
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿✿

are
✿✿✿✿✿✿✿✿✿

calculated
✿✿

for
✿✿✿✿

this
✿✿✿✿

new

✿✿✿✿✿✿✿

window.
✿✿✿✿

This
✿✿✿✿✿✿

process
✿✿

is
✿✿✿✿✿✿✿

iterated
✿✿✿✿

until
✿✿✿

the
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

bifurcation
✿✿

is
✿✿✿✿✿✿✿

reached
✿✿

to
✿✿✿✿✿✿✿

produce
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿

panel
✿✿

in

✿✿✿✿✿

figure
✿

3
✿✿✿✿✿✿

which
✿✿✿✿✿

shows
✿✿✿✿

both
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿✿✿✿✿✿✿✿✿

increasing.

We also plot the
✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿✿✿

spectrum
✿✿✿

of
✿✿✿

the
✿

ratiosAn/A1 againstTn/T derived from a Fourier435

transform of the system response in figure 4. In the upper panel all parameters are the same as figure

2 except we have fixedDm in each of the two runs. In the first runDm =−2, this is far from

the bifurcation and one expects the system to behave more linearly (blue line). One sees a second

harmonic around 2 orders of magnitude smaller than the linear response. In the second runDm =

0.25 and the orbit is much closer to the bifurcation (red line). The second harmonic has increased440

to about an order of magnitude smaller than the fundamental harmonic and a third harmonic is now

also visible indicating the system has become more nonlinear.

We illustratethespectrumof very nonlineardynamicsin the lower panelof figure 4. This is the

spectrumof theslow forcingrun with thesameparametersin figure 1 (redline) thathadaresponse

thatresembled445

✿✿

To
✿✿✿✿

give
✿✿

an
✿✿✿✿✿✿✿✿

example
✿✿

of
✿

a
✿✿✿✿✿✿✿

climate
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿

operating
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

regime
✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿

variation
✿✿

in

✿✿✿

sea
✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

in
✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿✿✿✿✿

temperate
✿✿✿✿✿✿✿

regions.
✿✿

A
✿✿✿✿✿✿

rough
✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿

the
✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

surface

✿✿✿✿✿

mixed
✿✿✿✿✿

layer
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿

gives
✿✿✿✿✿✿

τ ∼ 10
✿✿✿✿✿✿✿

months
✿✿✿

and
✿✿✿✿

this
✿✿✿✿✿✿

surface
✿✿✿✿

layer
✿✿

is
✿✿✿✿✿✿

heated
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

annual
✿✿✿✿

cycle
✿✿✿

of

✿✿✿✿

solar
✿✿✿✿✿✿✿✿

insolation
✿✿✿

to
✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿

degrees
✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿

year.
✿✿✿✿✿✿✿✿✿✿

Calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

for
✿✿✿

this
✿✿

τ
✿✿✿✿

and

✿

T
✿✿✿✿✿✿

yields
✿

a
✿✿✿✿

lag
✿✿

of
✿✿✿✿✿

about
✿✿✿

2.6
✿✿✿✿✿✿✿

months
✿✿✿

i.e.
✿✿✿✿✿✿✿

roughly
✿✿✿

the
✿✿✿✿✿✿✿

maximal
✿✿✿✿

and
✿✿✿✿✿✿✿

minimal
✿✿✿

sea
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿

are
✿✿✿

in450

✿✿✿✿✿✿✿✿✿

September
✿✿✿

and
✿✿✿✿✿✿

March.
✿✿✿✿✿✿

Arctic
✿✿✿

sea
✿✿

ice
✿✿✿✿✿✿

extent
✿✿✿✿

also
✿✿✿

falls
✿✿✿✿

into
✿✿✿

this
✿✿✿✿✿✿

regime
✿✿✿✿

and
✿✿✿

we
✿✿✿✿✿✿

analyze
✿✿✿✿

this
✿✿✿✿✿✿

system
✿✿

in

✿✿✿✿✿✿

section
✿✿

4.
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Figure 2. The dynamics of the system are described by equation 11 with varyingDm. Parameters are set to

Da = 1/2, T = π (the same order as the system time scaleτ
✿✿✿✿✿

ωτ ∼ 1) andDm is varied linearly with time

between -2 and 2 over about 25 cycles. In the upper panel the black lines are the nullclines while the system

response is the blue line plotted againstD(t). The orbit loses stability around a mean value ofD ≈ 0.5 and

jumps to a new orbit. In the lower panel we have plotted the system response (blue) against the forcingD

againstt/T . One can see the loss of stability of the orbit aroundt/T ≈ 15 and the prior increase in system

response amplitude.

3.1.1
✿

A
✿✿✿✿✿

note
✿✿✿✿✿

about
✿✿✿✿✿✿

return
✿✿✿✿✿

maps

✿✿✿✿✿✿✿

Towards
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿

ωτ ∼ 1,
✿✿✿✿✿✿✿✿✿✿

specifically
✿✿✿✿✿✿✿✿

ωτ > 2π,
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿

analysis
✿✿✿

via
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

fixed

✿✿✿✿

point
✿✿✿✿✿✿✿✿✿

indicators
✿✿✿✿✿✿✿

becomes
✿✿✿✿✿✿

useful
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

added
✿✿✿✿✿✿

caveat
✿✿✿

that
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

must
✿✿✿✿✿

have455

✿✿✿✿✿✿

enough
✿✿✿✿✿

cycles
✿✿✿

to
✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿

results.
✿✿✿✿✿✿

Return
✿✿✿✿

map
✿✿✿✿✿✿✿

analysis
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

complementary
✿✿

to

✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿✿

since
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

quantities
✿✿✿✿

start
✿✿

to
✿✿✿✿✿✿✿✿

asymptote
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

ωτ > 2π.
✿✿✿✿

This

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

complementarity
✿✿

is
✿✿✿✿✿✿✿✿

illustrated
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

figures.
✿✿✿

The
✿✿✿✿✿

blue
✿✿✿

line
✿✿

in
✿✿✿✿✿✿

figure
✿

5
✿✿

is
✿✿✿✿✿✿✿✿✿✿

essentially
✿✿✿

the

✿✿✿✿

same
✿✿

as
✿✿✿✿✿✿

figure
✿

2
✿✿✿✿✿✿✿✿

(ωτ ∼ 1)
✿✿✿✿✿✿

except
✿✿✿

Dm
✿✿

is
✿✿✿✿✿✿

varied
✿✿✿✿

over
✿✿✿

100
✿✿✿✿✿✿

cycles
✿✿✿✿✿✿

instead
✿✿

of
✿✿✿

25.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿✿✿

extra

✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿

are
✿✿✿✿✿✿

needed
✿✿

to
✿✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

maps
✿✿✿✿✿

with
✿✿✿

any
✿✿✿✿✿✿✿✿✿

reliability.460

✿✿✿

We
✿✿✿✿

have
✿✿✿✿

also
✿✿✿✿✿

added
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿

white
✿✿✿✿✿

noise
✿✿✿

to
✿✿✿✿✿✿✿

equation
✿✿✿

11
✿✿

of
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿

0.01
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

return

✿✿✿

map
✿✿✿✿✿✿✿

method
✿✿✿✿✿

needs
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿

with
✿✿✿✿✿✿

which
✿✿

to
✿✿✿✿

infer
✿✿✿✿✿

return
✿✿✿✿✿

times
✿✿✿

to
✿✿✿

the
✿✿✿✿✿

cycle.
✿✿

In
✿✿✿✿✿

figure
✿✿

6
✿✿✿

we

✿✿✿✿

have
✿✿✿✿✿✿

plotted
✿✿✿

the
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿

for
✿✿✿

this
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

with

✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿

of
✿✿✿

25
✿✿✿✿✿✿

cycles.
✿✿✿✿

The
✿✿✿✿

black
✿✿✿✿✿

lines
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿

curves
✿✿✿

and
✿✿✿

the
✿✿✿✿

blue
✿✿✿✿✿

lines
✿✿✿

are
✿✿✿

the

✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿

curves.
✿✿✿✿

The
✿✿✿

key
✿✿✿✿✿

point
✿✿

is
✿✿✿

the
✿✿✿✿✿

theory
✿✿✿✿

and
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelations
✿✿

do
✿✿✿

not
✿✿✿✿✿

show
✿✿✿✿✿✿✿✿

anything465

✿✿

in
✿✿✿

this
✿✿✿✿✿✿

regime
✿✿✿✿✿✿✿✿

(ωτ ∼ 1)
✿✿✿✿✿✿✿

however
✿✿✿

the
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿

are
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿✿

increasing.
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Figure 3. The early warning indicators, response amplification (upper panel),A= Daτ√
1+ω2τ2

, and phase lag

(lower
✿✿✿✿✿

middle
✿

panel),
φlag

2π
= 1

2π
arctan(ωτ ) calculated for the time series in figure 2. We have plotted these

indicators prior to the bifurcation att/T ≈ 15. Note both
✿✿

The
✿✿✿✿

2nd
✿✿✿✿✿

(blue)
✿✿✿

and
✿✿✿

3rd
✿✿✿✿

(red)
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes

✿✿✿✿✿

An/A1
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿

plotted
✿✿

in
✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿

panel
✿✿✿✿

using
✿✿

a
✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿

of
✿

5
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿

cycles.
✿✿✿

All
✿

indicators are

increasing asonewould expect
✿✿✿✿✿✿✿

expected.

✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿

red
✿✿✿✿

lines
✿✿

in
✿✿✿✿✿✿

figure
✿

5
✿✿✿✿

and
✿

7
✿✿✿

are
✿✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

quantities
✿✿✿

but
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

decreased
✿✿✿✿✿

period
✿✿✿

of

✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿✿

(T = 1/4
✿✿

so
✿✿✿✿✿✿✿✿✿

ωτ ∼ 4π).
✿✿✿✿✿

This
✿✿

is
✿

a
✿✿✿✿✿✿

regime
✿✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿

phase
✿✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿

amplitude
✿✿✿✿

start

✿✿

to
✿✿✿✿✿✿✿✿

asymptote
✿✿✿✿

and
✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿

not
✿✿✿

so
✿✿✿✿✿

useful
✿✿

to
✿✿✿✿✿

infer
✿✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿✿

scale.
✿✿✿✿✿✿✿✿

However,
✿✿✿

lag
✿✿

1

✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿

now
✿✿✿✿✿✿✿✿

becomes
✿✿✿✿✿

useful
✿✿

as
✿✿✿✿

can
✿✿

be
✿✿✿✿

seen
✿✿

in
✿✿✿✿✿

figure
✿✿

7.
✿

470

3.2
✿✿✿✿✿

Period
✿✿

of
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿

much
✿✿✿✿✿✿

slower
✿✿✿✿✿

than
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale,
✿✿✿✿✿✿✿✿

ωτ ≪ 1

✿✿✿✿✿

When
✿✿✿✿✿✿✿

equation
✿✿✿

11
✿

is
✿✿✿✿✿✿✿✿

operating
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

regime
✿✿✿✿✿✿

(period
✿✿

of
✿✿✿✿✿✿

forcing
✿✿✿✿✿

much
✿✿✿✿✿✿

greater
✿✿✿✿

than
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿

scale

✿✿✿✿✿✿

T ≫ τ )
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿

can
✿✿✿✿✿✿

adjust
✿✿

to
✿✿✿✿✿✿✿✿

changing
✿✿✿✿

D(t)
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿✿

quickly
✿✿✿

and
✿✿✿✿✿✿✿✿✿

effectively
✿✿✿✿✿✿✿

remains
✿✿

at
✿

a
✿✿✿✿✿

fixed

✿✿✿✿✿

point.
✿✿✿✿

D(t)
✿✿✿✿

can
✿✿✿✿✿✿✿

therefore
✿✿✿

be
✿✿✿✿✿✿✿✿

modelled
✿✿

as
✿✿

a
✿✿✿✿

slow
✿✿✿✿✿✿✿✿

constant,
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

and
✿✿✿

all
✿✿✿

the
✿✿✿✿✿

usual
✿✿✿✿

time

✿✿✿✿

scale
✿✿✿✿✿✿✿✿✿

separation
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿

apply.
✿✿✿✿✿

Fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿✿

indicators
✿✿✿✿

such
✿✿✿

as
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿

are
✿✿✿✿✿

then475

✿✿✿✿

good
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿

of
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿✿

bifurcations.
✿✿

In
✿✿✿✿✿✿✿✿

contrast,
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿

amplitude

✿✿

are
✿✿✿

not
✿✿✿✿✿✿

useful
✿✿

as
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

quantities
✿✿✿✿✿✿✿✿✿

asymptote
✿✿

to
✿✿✿✿✿✿✿✿

φlag → 0
✿✿✿

and
✿✿✿✿

→ τ
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿✿✿✿✿✿

system
✿✿✿✿

state
✿✿

x
✿✿

is

✿✿✿✿✿✿

plotted
✿✿✿✿✿✿

against
✿✿

D
✿✿✿

and
✿✿✿✿✿✿

against
✿✿

t
✿✿

as
✿✿✿

the
✿✿✿

red
✿✿✿

line
✿✿

in
✿✿✿✿✿✿

figure
✿✿

1.

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿

of
✿✿

a
✿✿✿✿✿✿

system
✿✿✿✿

that
✿✿✿

has
✿✿✿

the
✿✿✿✿✿✿

correct
✿✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿✿✿✿✿

separation
✿✿✿✿

and
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿

forcing
✿✿✿✿

are
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

glacial/interglacial
✿✿✿✿✿

cycles
✿✿✿✿

that
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿

slow
✿✿✿✿✿

build,
✿✿✿

fast
✿✿✿✿✿✿✿

collapse
✿✿✿✿

type
✿✿✿✿✿✿✿✿✿

behaviour
✿✿

of
✿

relaxation oscil-480
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Figure 4.
✿✿✿

Ratio
✿✿

of
✿✿✿

the
✿✿✿

nth
✿✿✿✿✿

order
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿

amplitude
✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿

amplitude
✿✿✿✿✿✿

An/A1
✿✿✿✿✿✿

against

✿✿

the
✿✿✿✿

ratio
✿✿

of
✿✿✿

the
✿✿✿

nth
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿

period
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿

period
✿✿✿✿✿✿

Tn/T .
✿✿✿

The
✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system

✿✿

are
✿✿✿✿✿✿✿✿

described
✿✿

by
✿✿✿✿✿✿✿

equation
✿✿

11.
✿✿

In
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿

panel
✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿✿

fixed
✿✿

to
✿✿✿✿✿✿✿✿✿

Da = 1/2,
✿✿✿✿✿

T = π
✿✿✿

(the
✿✿✿✿

same
✿✿✿✿✿

order
✿✿

as

✿✿

the
✿✿✿✿✿✿

system
✿✿✿

time
✿✿✿✿

scale
✿✿✿

τ ).
✿✿✿

The
✿✿✿✿

blue
✿✿✿

line
✿

is
✿✿✿

for
✿✿✿✿✿✿✿✿

Dm =−2
✿✿✿

(far
✿✿✿✿

away
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

bifurcation),
✿✿✿

the
✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿

response

✿

is
✿✿✿✿✿✿✿✿

dominated
✿✿✿

by
✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿

harmonic
✿✿

at
✿✿✿✿✿✿✿✿✿✿

Tn/T = 1/2
✿✿✿✿✿✿

although
✿✿✿✿✿

small,
✿✿✿✿✿

about
✿✿✿

two
✿✿✿✿✿

orders
✿✿

of
✿✿✿✿✿✿✿✿

magnitude
✿✿✿

less
✿✿✿✿

than

✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

response.
✿✿✿

The
✿✿✿

red
✿✿✿

line
✿✿

is
✿✿✿✿✿✿✿✿✿

Dm = 1/4,
✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

bifurcation
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿

response
✿✿✿

has
✿✿✿✿✿✿

become
✿✿✿✿✿

more

✿✿✿✿✿✿✿

nonlinear.
✿✿✿

The
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿✿✿

(Tn/T = 1/2)
✿✿

is
✿✿✿✿

now
✿✿✿✿✿

almost
✿✿✿

one
✿✿✿✿

order
✿✿

of
✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿

less
✿✿✿

and
✿✿

the
✿✿✿✿

third
✿✿✿✿✿

order

✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿✿✿

(Tn/T = 1/3)
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿

prominent.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿✿✿✿

panel,
✿✿

we
✿✿✿✿✿

show
✿✿

the
✿✿✿✿✿✿✿

spectrum
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿

dynamics
✿✿

is

✿✿✿

very
✿✿✿✿✿✿✿✿

nonlinear.
✿✿✿✿✿✿✿✿

Parameters
✿✿✿

are
✿✿

set
✿✿

to
✿✿✿✿✿✿✿

Dm = 0,
✿✿✿✿✿✿✿✿✿

Da = 1/2,
✿✿✿✿✿✿✿✿

T = 100π
✿✿

so
✿✿✿✿✿✿✿✿✿✿

ωτ ≈ 1/100.
✿✿✿✿

This
✿

is
✿✿✿

the
✿✿✿✿

slow
✿✿✿✿✿✿

forcing

✿✿✿

limit
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

figure
✿

1
✿✿✿✿

(red
✿✿✿

line)
✿✿✿✿✿

which
✿✿✿

has
✿

a
✿✿✿✿

very
✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿

relaxation
✿✿✿✿✿✿✿✿

oscillation
✿✿✿✿

type
✿✿✿✿✿✿✿

response.
✿✿✿✿

Note
✿✿✿✿

only
✿✿✿

odd

✿✿✿✿✿✿✿

harmonics
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Tn/T = 1/3,1/5,1/7, ...
✿✿✿✿

etc.)
✿✿✿

are
✿✿✿✿✿✿

present
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿

experiencing
✿✿

a
✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿✿✿✿

potential

✿✿✿✿✿✿✿

requiring
✿✿

the
✿✿✿✿✿✿✿

solution,
✿✿✿✿

x(t),
✿✿

to
✿✿✿

also
✿✿✿✿

have
✿✿✿

this
✿✿✿✿✿✿✿✿

symmetry.
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Figure 5.
✿✿✿✿

Same
✿✿✿✿✿

figure
✿✿

as
✿✿✿✿✿

figure
✿

2
✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿✿

manuscript
✿✿✿✿✿

except
✿✿✿

the
✿✿✿✿✿✿✿

variation
✿✿

of
✿✿✿

Dm
✿✿

is
✿✿✿

over
✿✿✿✿

more
✿✿✿✿✿

cycles
✿✿

to
✿✿✿✿✿✿✿

generate

✿✿✿✿

more
✿✿✿✿✿

points
✿✿

for
✿

a
✿✿✿✿✿✿

reliable
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿

analysis.
✿✿✿✿✿

Weak
✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿

white
✿✿✿✿

noise
✿✿

of
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

0.01
✿✿

is
✿✿✿✿✿

added

✿

to
✿✿✿

the
✿✿✿✿✿✿

system.
✿✿✿✿✿✿✿✿

Parameters
✿✿✿

are
✿✿

set
✿✿

to
✿✿✿✿✿✿✿✿

Da = 1/2
✿✿✿

and
✿✿✿

Dm
✿✿

is
✿✿✿✿✿

varied
✿✿✿✿✿✿

linearly
✿✿✿

with
✿✿✿✿

time
✿✿✿✿✿✿

between
✿✿

-2
✿✿✿

and
✿✿

2
✿✿✿

over
✿✿✿✿✿

about

✿✿✿

100
✿✿✿✿✿

cycles.
✿✿

In
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿✿

panel
✿✿✿

the
✿✿✿✿

black
✿✿✿✿

lines
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿

nullclines
✿✿✿✿✿

while
✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

response
✿

is
✿✿✿

the
✿✿✿✿

blue
✿✿✿

line
✿✿✿

for

✿✿✿✿✿

T = π
✿✿✿✿✿

giving
✿✿✿✿✿✿

ωτ ∼ 1
✿✿✿✿✿✿

whereas
✿✿✿

the
✿✿

red
✿✿✿✿

line
✿✿

has
✿✿

a
✿✿✿✿✿

shorter
✿✿✿✿✿

period
✿✿

of
✿✿✿✿✿✿✿

T = 1/4
✿✿

to
✿✿✿

give
✿✿✿✿✿✿✿✿

ωτ ∼ 4π.
✿✿✿✿✿

These
✿✿

are
✿✿✿✿✿✿

plotted

✿✿✿✿✿

against
✿✿✿✿✿

D(t).
✿

In
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿

panel
✿✿

we
✿✿✿✿

have
✿✿✿✿✿

plotted
✿✿✿✿

these
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿

responses
✿✿

as
✿✿✿✿

time
✿✿✿✿

series
✿✿✿✿✿✿

against
✿✿

the
✿✿✿✿✿✿

forcing
✿✿✿✿✿

(black

✿✿✿✿

line).

harmonics.Noticeonly
✿✿✿

Ice
✿✿✿✿✿

sheets
✿✿✿✿

have
✿✿✿✿✿

time
✿✿✿✿✿

scales
✿✿

in
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿✿✿✿✿✿✿

thousands
✿✿

of
✿✿✿✿

years
✿✿✿✿✿✿

forced
✿✿✿

by
✿✿✿

the

✿✿✿✿

solar
✿✿✿✿✿✿✿✿

insolation
✿✿✿✿✿✿✿✿

variation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

Milankovitch
✿✿✿✿✿✿

cycles.
✿✿✿✿

The
✿✿✿✿✿✿

forcing
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

superposition
✿✿

of
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿

different

✿✿✿✿✿✿✿✿

sinusoidal
✿✿✿✿✿✿✿✿✿✿

frequencies,
✿✿✿

the
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿

ones
✿✿✿✿✿✿

having
✿✿✿✿✿✿

periods
✿✿

of
✿✿✿

41
✿✿✿

kyr
✿✿✿✿✿✿

(related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

obliquity
✿✿

of
✿✿✿✿✿✿

Earth’s

✿✿✿✿✿

orbit),
✿✿✿

19
✿✿✿

and
✿✿✿

23
✿✿✿

kyr
✿✿✿✿✿✿

(related
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

precession).
✿✿✿✿✿✿✿

Current
✿✿✿✿✿✿✿

thinking
✿✿✿✿✿✿✿✿

however,
✿✿✿✿✿✿

favours
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex,485

✿✿✿

two
✿✿✿✿

and
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿✿

dimensional
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

to
✿✿✿✿✿

model
✿✿✿✿✿

these
✿✿✿✿✿✿

cycles
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

single
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿

models
✿✿✿

we

✿✿✿✿✿✿✿

consider
✿✿

in
✿✿✿

this
✿✿✿✿✿

paper
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Saltzman (2002),Crucifix (2012),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Saedeleer et al. (2013),
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Crucifix (2013)).

✿✿✿

The
✿✿✿✿✿✿✿✿

spectrum
✿✿

of
✿✿

a
✿✿✿✿

very
✿✿✿✿✿✿✿✿

nonlinear,
✿✿✿✿✿✿✿✿✿

relaxation
✿✿✿✿✿✿✿✿✿

oscillation
✿✿✿✿

type,
✿✿✿✿✿✿✿✿

dynamics
✿✿

is
✿✿✿✿✿✿✿✿✿

illustrated
✿✿

in
✿✿✿

the
✿✿✿✿✿

lower

✿✿✿✿

panel
✿✿✿

of
✿✿✿✿✿

figure
✿✿✿

4.
✿✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

spectrum
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

slow
✿✿✿✿✿✿

forcing
✿✿✿✿

run
✿✿✿✿

(red
✿✿✿✿

line)
✿✿

in
✿✿✿✿✿✿

figure
✿✿

1.
✿✿✿✿✿

Only
✿

odd490

harmonics appear in its spectrum. This is because the static potentialV =−
∫

ẋdx is symmetric

aboutx for this value ofDm = 0 i.e.V (x) = V (−x) and therefore any solution ofẋ must also have

this symmetry,x(t+T/2) =−x(t). Only odd harmonics have this property.2

2This is not sufficient though as there are other parameter settings that feature the second harmonic and also have the same

symmetric potential i.e.Dm = 0 andT = π in figure 1 (blue line). The difference is that the runs featuring second harmonic

19



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

φ la
g/2

π

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

t/T

A
R

(1
)

Figure 6.
✿✿✿✿✿✿

ωτ ∼ 1:
✿✿✿

The
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators,
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿✿✿✿

(upper
✿✿✿✿✿

panel),
✿✿✿✿✿✿✿✿✿✿✿✿

A= Daτ√
1+ω2τ2

,
✿✿✿✿

and

✿✿✿✿

phase
✿✿✿

lag
✿✿✿✿✿✿

(middle
✿✿✿✿✿✿

panel),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

φlag

2π
= 1

2π
arctan(ωτ )

✿✿✿✿✿✿✿✿

calculated
✿✿✿

for
✿✿

the
✿✿✿✿

blue
✿✿✿✿

time
✿✿✿✿

series
✿✿

in
✿✿✿✿✿

figure
✿✿

5.
✿✿

In
✿✿✿

the
✿✿✿✿✿

lower

✿✿✿✿

panel,
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿

window
✿✿

of
✿✿

25
✿✿✿✿✿

points
✿✿

of
✿✿✿

the
✿✿✿✿✿

return
✿✿✿

map
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿

with
✿✿✿✿✿✿✿

standard
✿✿✿✿✿

errors

✿✿✿✿✿✿

(dashed
✿✿✿✿

lines)
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

estimate.
✿✿✿✿

Black
✿✿✿✿

lines
✿✿✿

are
✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿

curves
✿✿

of
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿

quantities.
✿✿✿

The
✿✿✿

key
✿✿✿✿

point
✿✿

is
✿✿✿✿

phase
✿✿✿

lag

✿✿✿

and
✿✿✿✿✿✿✿

amplitude
✿✿✿✿✿✿✿

response
✿✿✿

are
✿✿✿✿

useful
✿✿✿✿✿✿✿✿

quantities
✿✿

in
✿✿✿

this
✿✿✿✿✿

regime
✿✿✿✿✿✿✿

however
✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿

is
✿✿✿✿

not.

3.3
✿✿✿✿✿

Period
✿✿

of
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿

much
✿✿✿✿✿

faster
✿✿✿✿✿

than
✿✿✿✿✿✿

system
✿✿✿✿

time
✿✿✿✿✿✿

scale,
✿✿✿✿✿✿✿

ωτ ≫ 1

✿✿✿

The
✿✿✿✿✿✿

system
✿✿✿✿✿

state
✿

x
✿✿

is
✿✿✿✿✿✿✿

plotted
✿✿✿✿✿✿

against
✿✿

D
✿✿✿✿

and
✿✿✿✿✿✿

against
✿✿

t
✿✿

as
✿✿✿

the
✿✿✿✿✿

green
✿✿✿✿

line
✿✿

in
✿✿✿✿✿

figure
✿✿

1.
✿✿✿✿

The
✿✿✿✿✿✿✿

forcing
✿✿

is495

✿✿✿✿✿✿✿

changing
✿✿✿✿✿✿

much
✿✿✿✿✿

faster
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿

can
✿✿✿✿✿✿✿

respond
✿✿✿

so
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿

effectively
✿✿✿✿✿

looks
✿✿✿✿✿

static
✿✿✿✿

and
✿✿✿

all

✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

come
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

directly.
✿✿

In
✿✿✿

this
✿✿✿✿

case
✿✿✿

we
✿✿✿✿

can
✿✿✿✿✿

place
✿✿✿✿

D(t)
✿✿

in
✿✿✿

the
✿✿✿✿

fast
✿✿✿✿✿✿✿✿✿

dynamics.

✿✿✿✿✿✿✿✿

However,
✿✿✿

not
✿✿

all
✿✿✿

of
✿✿✿

the
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿

for
✿✿✿

use
✿✿

of
✿✿✿

lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

in
✿

a
✿✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿

analysis

✿✿

are
✿✿✿✿✿✿✿✿

satisfied.
✿✿

It
✿✿

is
✿✿✿✿

true
✿✿✿✿

that
✿✿✿✿

D(t)
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿

x,
✿✿✿✿✿✿✿✿

however
✿✿

it
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿

uncorrelated
✿✿✿✿

with
✿✿✿✿✿

itself
✿✿

at

✿✿✿✿✿✿✿

different
✿✿✿✿✿

times
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿

cannot
✿✿✿✿✿✿

strictly
✿✿

be
✿✿✿✿✿✿✿✿

modelled
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿

normally
✿✿✿✿✿✿✿✿✿

distributed
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿

variable,500

✿✿✿✿✿✿✿

although
✿✿

at
✿✿✿✿

first
✿✿✿✿✿

glance
✿✿

it
✿✿✿✿✿

looks
✿✿

as
✿✿✿✿✿✿

though
✿✿

it
✿✿

is
✿✿✿✿✿

again
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿

use
✿✿✿✿✿

usual
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning

✿✿✿✿✿✿✿✿✿

techniques
✿✿

so
✿✿✿

one
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿

careful.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿

regime,
✿✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿✿✿✿✿✿✿

asymptote

✿✿✿

and
✿✿✿✿✿

again
✿✿✿

are
✿✿✿

not
✿✿✿✿

very
✿✿✿✿✿

useful
✿✿✿

to
✿✿✿✿✿

detect
✿

a
✿✿✿✿✿

trend
✿✿

in
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

time
✿✿✿✿✿

scale.
✿✿✿✿✿✿

Phase
✿✿✿

lag,
✿✿✿✿✿✿✿✿✿✿

φlag → π/2
✿✿✿✿

and

✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplifcation
✿✿✿✿

→ 1

ω✿✿

so
✿✿✿✿

one
✿✿✿✿

may
✿✿✿✿

only
✿✿✿✿

infer
✿✿✿✿✿✿

τ ≫ T .
✿

responses only experience a limited part of the potential, not the full symmetric potential. Even though the potential is the

same, the forcing is quick enough to trap the system in an orbit in just one of the two potential wells. This local potential

well is asymmetric and what the system sees is effectively described by a Taylor expansion around the centre of that well.In

contrast the relaxation oscillation type run travels across both wells equally and therefore sees the global symmetricpotential

requiring an odd harmonic solution. This is not a generic case however.
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Figure 7.
✿✿✿✿✿✿✿

ωτ ∼ 4π:
✿✿✿

The
✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators,
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿✿✿

(upper
✿✿✿✿✿✿

panel),
✿✿✿✿✿✿✿✿✿✿✿

A= Daτ√
1+ω2τ2

,
✿✿✿✿

and

✿✿✿✿

phase
✿✿✿

lag
✿✿✿✿✿✿

(middle
✿✿✿✿✿✿

panel),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

φlag

2π
= 1

2π
arctan(ωτ )

✿✿✿✿✿✿✿✿

calculated
✿✿✿

for
✿✿✿

the
✿✿✿

red
✿✿✿

time
✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿

figure
✿✿

5.
✿✿

In
✿✿✿

the
✿✿✿✿✿

lower

✿✿✿✿

panel,
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿

window
✿✿

of
✿✿

25
✿✿✿✿✿

points
✿✿

of
✿✿✿

the
✿✿✿✿✿

return
✿✿✿

map
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿

with
✿✿✿✿✿✿✿

standard
✿✿✿✿✿

errors

✿✿✿✿✿✿

(dashed
✿✿✿✿

lines)
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

estimate.
✿✿✿✿✿

Black
✿✿✿✿

lines
✿✿

are
✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿✿

curves
✿✿

of
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿

quantities.
✿✿✿✿✿

Phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

amplitude

✿✿✿✿✿✿

response
✿✿✿✿

have
✿✿✿✿

now
✿✿✿✿✿✿✿✿

asymptoted
✿✿✿

and
✿✿✿

are
✿✿✿

not
✿✿✿✿✿

useful
✿✿✿✿✿✿✿

quantities
✿✿✿✿✿✿✿

however
✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿

now
✿✿✿✿✿✿✿

becomes
✿✿✿✿✿

useful.

✿✿

An
✿✿✿✿✿✿✿✿

example
✿✿

of
✿

a
✿✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿✿✿✿✿✿

modelled
✿✿

by
✿✿✿✿

this
✿✿✿✿

limit
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿✿

vegetation505

✿✿✿✿✿

carbon
✿✿✿✿✿✿

which
✿✿✿

has
✿

a
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿✿✿✿✿

timescale
✿✿

on
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿✿✿✿✿

decades,
✿✿✿✿✿

much
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿

its
✿✿✿✿✿✿✿

periodic
✿✿✿✿✿✿✿

forcing,

✿✿

the
✿✿✿✿✿✿

annual
✿✿✿✿✿

cycle
✿✿

of
✿✿✿✿

solar
✿✿✿✿✿✿✿✿✿

insolation.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿✿✿✿

comes
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿

long
✿✿✿✿

term
✿✿✿✿✿✿

carbon

✿✿✿✿✿✿

storage
✿✿✿

e.g.
✿✿✿

the
✿✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿

taken
✿✿✿

for
✿✿

a
✿✿✿✿✿

forest
✿✿

to
✿✿✿✿✿✿

regrow
✿✿✿✿✿

once
✿✿✿

cut
✿✿✿✿✿✿

down.
✿✿✿✿

One
✿✿✿

sees
✿✿✿✿

this
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

of

✿✿✿✿✿✿

quarter
✿✿

of
✿

a
✿✿✿✿✿

cycle
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿✿

minimum
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Mauna
✿✿✿✿

Loa
✿✿✿✿

CO2
✿✿✿✿✿✿

record3
✿✿✿✿✿✿

relative
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

Northern

✿✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿✿

solar
✿✿✿✿✿✿✿✿

insolation
✿✿✿✿✿✿✿✿✿

maximum.
✿✿✿✿✿

This
✿✿✿✿✿✿

lagged
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿

minimum
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

integrated
✿✿✿✿✿✿✿

response
✿✿✿

of510

✿✿

the
✿✿✿✿✿

total
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿

carbon
✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dominance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿✿✿✿✿

Hemisphere’s
✿✿✿

mid
✿✿✿✿✿✿✿

latitude

✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿

carbon
✿✿

in
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿✿

carbon
✿✿✿✿

flux.
✿✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿✿

plotted
✿✿✿

the
✿✿✿✿✿✿

Mauna
✿✿✿✿

Loa
✿✿✿✿

CO2
✿✿✿✿✿✿

record

✿✿✿

and
✿✿✿

the
✿✿✿✿

time
✿✿

of
✿✿✿✿

year
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

in
✿✿✿✿✿

figure
✿✿

8.

3
✿✿

Dr.
✿✿✿✿

Pieter
✿✿✿✿

Tans,
✿✿✿✿✿✿✿✿✿✿

NOAA/ESRL
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(www.esrl.noaa.gov/gmd/ccgg/trends/)
✿✿✿

and
✿✿

Dr.
✿✿✿✿✿

Ralph
✿✿✿✿✿✿

Keeling,
✿✿✿✿✿

Scripps
✿✿✿✿✿✿✿✿

Institution
✿✿

of

✿✿✿✿✿✿✿✿✿

Oceanography
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(scrippsco2.ucsd.edu/)
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Figure 8. Ratio of the nth order harmonic amplitude to the fundamentalharmonic amplitude An/A1

✿✿✿✿✿✿✿✿✿

Atmospheric
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

recorded
✿✿

at
✿✿✿✿✿

Mauna
✿✿✿✿

Loa againstthe ratio of the nth harmonicperiod to the

fundamentalharmonicperiodTn/T . Thedynamicsof thesystemaredescribedby equation11.Parametersare

fixed toDa = 1/2, T = π (thesameorderasthesystemtimescaleτ ) for
✿

in the upper panel.Theblueline isfor

Dm =−2 (far awayfrom
✿✿

In thebifurcation),
✿✿✿✿

lower
✿✿✿✿✿

panel
✿✿

we
✿✿✿✿

have
✿✿✿✿✿

plotted
✿

thenonlinearresponseis dominated

by
✿✿✿✿✿✿✿

minimum
✿✿✿✿✿

annual
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿

against
✿✿✿✿

year.
✿✿✿

One
✿✿✿✿✿

notices
✿

thesecondharmonicatTn/T = 1/2 although

small, about two orders
✿✿✿✿✿✿✿

minimum
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿

occurs
✿✿✿✿✿✿

roughly
✿✿✿

3/4
✿

of magnitudelessthan the linear

response
✿✿✿

way
✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿

year. Theredline
✿✿✿✿

This isDm = 1/4, closeto
✿✿✿✿✿

because
✿✿✿✿✿✿✿

maximal
✿✿✿✿✿

carbon
✿✿✿✿✿✿

uptake
✿✿✿✿✿

occurs

✿✿✿✿✿

duringthebifurcation
✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿✿✿

summer
✿✿✿✿

from
✿

thesystemresponsehasbecomemorenonlinear.The

secondharmonic(Tn/T = 1/2) is now almostoneorder of magnitudeless
✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿

vegetationandthethird

orderharmonic(Tn/T = 1/3)
✿

it
✿

is alsoprominent.In
✿✿✿✿✿✿✿

maximally
✿✿✿✿✿✿

lagged
✿✿✿✿✿

behind
✿

the bottompanel,we show

the spectrumwhenthe dynamicsis very nonlinear.Parametersareset toDm = 0, Da = 1/2, T = 100π so

ωτ ≈ 1/100. This is theslowforcinglimit shown
✿✿✿✿✿✿✿

maximumin figure1
✿✿

the
✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿✿✿

hemisphere
✿✿✿✿

solar
✿✿✿✿✿✿✿✿

insolation

(redline
✿✿✿

best
✿✿✿✿✿✿

growing
✿✿✿✿✿✿✿✿

conditions) whichhas
✿✿

by
✿✿

1/4
✿✿

of
✿

averynonlinearrelaxationoscillationtype
✿✿✿✿

cycle
✿✿✿✿✿✿

because

✿

of
✿✿✿

the
✿✿✿✿

time
✿✿✿✿

scale
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿

between
✿✿✿

the
✿

response. Noteonly oddharmonics(Tn/T = 1/3,1/5,1/7, ... etc.)

arepresentdue to
✿

of
✿

the systemexperiencinga symmetricpotentialrequiring
✿✿

and
✿

the solution,x(t), to also

havethis symmetry
✿✿✿✿✿

period
✿✿

of
✿✿

the
✿✿✿✿✿✿

forcing.
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3.4 Arctic seaicesatelliteobservations

4
✿✿✿✿✿✿✿

Looking
✿✿✿

for
✿✿

a
✿✿✿✿✿✿

tipping
✿✿✿✿✿

point
✿✿

in
✿✿✿✿✿✿

Arctic
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿✿

observations515

There has been much researchin to
✿✿

on
✿

a possible local bifurcation and tipping point in the Arcticsea

icewithoutaclearconsensusemerging, see for example Armour et al. (2011), Eisenman and Wettlaufer

(2009), Lindsay and Zhang (2005), Livina and Lenton (2013),Ridley et al. (2012) and Wang and Overland

(2012). This possible bifurcation in the sea ice cover may bedue to the well known ice albedo feed-

back first studied by Budyko (1969) and Sellers (1969). When ice is present it reflects a high pro-520

portion of the incoming solar radiation due to its higher albedo yet when it starts receding the darker

ocean absorbs more radiation increasing heating and promoting more sea ice retreat. This feedback

can result in instability and multiple steady states.

We analyze
✿✿✿✿✿✿✿

calculate
✿✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicators
✿✿✿

for
✿

a time series of

Arctic sea ice area satellite observations from 1979 to presentdataandcalculatethe
✿✿✿

day.
✿✿✿✿

That
✿✿

is
✿✿✿

we525

✿✿✿✿✿✿✿

calculate
✿

phase lag, response amplitudeandspectrumof thetimeseries
✿

,
✿✿✿✿✿✿

relative
✿✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿

2nd
✿✿✿✿

and

✿✿✿

3rd
✿✿✿✿✿✿✿✿✿

harmonics
✿✿✿

and
✿✿✿

the
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿

with
✿✿✿✿

time to look for signs of critical

slowing down.
✿✿✿

that
✿✿✿✿✿

might
✿✿✿✿✿✿

indicate
✿✿✿

the
✿✿✿✿✿✿✿✿

approach
✿✿

of
✿✿

a
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

bifurcation
✿✿

or
✿✿✿✿✿✿✿

‘tipping
✿✿✿✿✿

point’
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

Arctic

✿✿✿✿✿✿

sea-ice.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿

Fourier
✿✿✿✿✿✿✿

spectra
✿✿

for
✿✿✿

the
✿✿✿✿✿

entire
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

linearity
✿✿✿✿✿✿

check.

In figure 9we haveplottedthe
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of
✿

Arctic sea ice area
✿✿✿

are
✿✿✿✿✿✿

plotted
✿

against year.530

Sea ice area data were obtained from The Cryosphere Today project of the University of Illinois.

Thisdataset
✿✿✿

data
✿✿✿

set
✿

4 uses SSM/I and SMMR series satellite products and spans 1979to present at

daily resolution.

In figure 10 we plot the amplitude of the sea ice area annual cycle and the phase lag between

the sea ice area minimum and maximum during each cycle. We assume the maximal and minimal535

driving occurs at the same time as maximal and minimal of the solar insolation, that is, the midpoint

and end point of the year respectively to obtain phase lags. To limit the the impact of high frequency

variability on the location of the extrema, we have smoothedthe daily data with a sliding window

with
✿✿

of 30 days.

From figure 10 we see the cycle amplitude is increasing with time although the phase lag does not540

appreciably change. We first make some rough calculations tosee if these plots are consistent with

each other: From the phase lag figure, a time scale ofτ ∼ [0.33,0.5] yr from the lag of[0.18,0.2]

of a cycle can be inferred. If we assume for the moment, the amplitude of the forcingDa is not

changing throughout the time period of the observations (this may not be true) and take the smallest

value in the range forτ1978 = 0.33 yr atoccurring in 1978 and the largest value in 2015,τ2015 = 0.5545

yr we can make a rough calculation of how much the sea ice amplitude would have increased i.e.
A2015

A1978
= τ2015

τ1978

√

1+ω2τ2

1978

1+ω2τ2015
≈ 1.06. From figure 10 we take the amplitude at 1978 to beA1978 ∼ 4.5

and at 2015 to beA2015 ∼ 5 we find A2015

A1978

= 1.11. These values could therefore be consistent with a

4http://arctic.atmos.uiuc.edu/cryosphere/timeseries.anom.1979-2008
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Figure 9. Arctic sea ice area satellite observations from 1979 to present day (2015) obtained from The

Cryosphere Today project of the University of Illinois.

constantDa and a changing time scale. However, the time scales inferredfrom either the phase lag

or amplitude are not changing appreciably and therefore it seems unlikely the system is approaching550

a local bifurcation.

We note that the phase lag is a more robust indicator. This is because the phase lag depends only

on the product of the frequency of the forcing and the system time scale whereas the amplitude

depends additionally on the amplitude of the driving,Da, which may well be changing throughout

the observational period and could account for some or all ofthe increase seen in the amplitude in555

figure 10. Although the solar insolation will be a large component of the forcing amplitude and is

essentially fixed, other factors such as clouds as well as airand sea temperatures will also factor

into the driving amplitude. Geometrical constraints imposed by land masses affecting the maximal

extent of the sea ice will also influence the amplitude of the sea ice oscillation when ice extent is

large (Eisenman (2010)). In contrast, we can take the frequency of the driving to be essentially fixed560

by the annual solar insolation cycle making the phase lag more robust.

Wehavealsoplottedthe
✿

In
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿

panel
✿✿

of
✿✿✿✿✿

figure
✿✿✿

10
✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿

plotted
✿✿✿

the
✿✿✿✿

ratio
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

and

✿✿✿✿

third
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿

with
✿✿✿✿

time
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿

sliding

✿✿✿✿✿✿

window
✿✿✿

of
✿✿

10
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿

cycles
✿✿✿✿✿✿✿

against
✿✿

the
✿✿✿✿

year
✿✿

at
✿✿✿

the
✿✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

window.
✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿

used
✿✿

the
✿✿✿✿✿✿✿✿

minimal

✿✿✿✿✿✿

window
✿✿✿✿✿✿

length
✿✿✿✿✿✿

needed
✿✿

to
✿✿✿✿✿✿✿

resolve
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

harmonics
✿✿✿✿✿✿✿

reliably.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicator
✿✿✿

also
✿✿✿✿✿✿

shows
✿✿✿

no
✿✿✿✿

clear
✿✿✿✿✿

trend565

✿✿✿✿

with
✿✿✿✿

time.
✿
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✿✿✿

We
✿✿✿✿

have
✿✿✿✿

also
✿✿✿✿✿✿✿✿

calculated
✿✿✿

the
✿✿✿

lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

map.
✿✿✿✿✿

From
✿✿✿✿✿

phase
✿✿✿✿

lag,
✿✿

the
✿✿✿✿✿✿✿✿

estimate

✿✿✿✿

time
✿✿✿✿

scale
✿✿

of
✿✿✿

the
✿✿✿

sea
✿✿✿

ice
✿

is
✿✿✿

0.5
✿✿✿

yrs
✿✿✿✿✿✿✿✿

(ωτ ∼ π)
✿✿✿✿✿

which
✿✿

is
✿✿✿

less
✿✿✿✿

than
✿✿✿✿✿✿✿✿

τ/T > 1
✿✿✿✿✿✿

needed
✿✿

for
✿✿

a
✿✿✿✿✿✿

reliable
✿✿✿✿✿✿✿✿

estimate.

✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿

is
✿✿✿✿✿✿✿✿

uncertain
✿✿✿

and
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿

conceivable
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

might

✿✿✿✿✿

work.
✿✿

As
✿✿✿✿✿

there
✿✿✿

are
✿✿✿✿

only
✿✿✿

37
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿

years
✿✿

of
✿✿✿✿✿

data,
✿✿✿

any
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿

has
✿✿

a
✿✿✿✿✿✿✿✿

maximum
✿✿✿

of570

✿✿

37
✿✿✿✿

data
✿✿✿✿✿✿

points.
✿✿

To
✿✿✿✿✿✿✿

discern
✿✿✿

any
✿✿✿✿✿

trend
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿

one
✿✿✿✿✿

needs
✿✿

as
✿✿✿✿✿

many
✿✿✿✿✿✿✿✿

windows
✿✿

as
✿✿✿✿✿✿✿✿

possible,

✿✿✿✿✿✿✿

however
✿✿✿

this
✿✿✿✿✿✿

results
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿

points
✿✿✿

per
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

and
✿✿

an
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿

error

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

estimate.
✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿

chosen
✿✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿

of
✿✿✿

20
✿✿✿✿✿✿

cycles
✿✿✿✿✿✿✿✿

although
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

are

✿✿✿✿✿✿✿

invariant
✿✿

to
✿✿✿✿

this
✿✿✿✿✿✿

choice,
✿✿✿✿✿✿

always
✿✿✿✿✿

being
✿✿✿✿

very
✿✿✿✿✿✿✿✿✿

uncertain.
✿✿✿

We
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿

detrend
✿✿✿

the
✿✿✿✿✿

cycle
✿✿

in
✿✿✿✿✿

each
✿✿✿✿✿✿

sliding

✿✿✿✿✿✿

window
✿✿✿✿

and
✿✿✿✿

then
✿✿✿✿✿

create
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

from
✿✿✿✿

that
✿✿✿✿✿✿✿✿

detrended
✿✿✿✿✿✿✿

window.
✿✿✿✿

One
✿✿✿

can
✿✿✿✿

also
✿✿✿✿✿✿

choose575

✿

at
✿✿✿✿✿✿

which
✿✿✿✿✿

point
✿✿

in
✿✿✿

the
✿✿✿✿✿

cycle
✿✿✿✿

one
✿✿✿✿✿

wants
✿✿

to
✿✿✿✿

take
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿

from
✿✿✿✿

and
✿✿✿✿

this
✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

freedom
✿✿

is

✿✿✿✿✿✿

utilized
✿✿

in
✿✿✿

the
✿✿✿✿

right
✿✿✿✿✿

hand
✿✿✿✿✿

panel
✿✿

in
✿✿✿✿✿

figure
✿✿✿

12.
✿✿✿✿

Lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

is
✿✿✿✿✿✿

plotted
✿✿✿✿✿✿

against
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window

✿✿✿

end
✿✿✿✿

year
✿✿

(x
✿✿✿✿✿

axis)
✿✿✿✿

and
✿✿✿

day
✿✿

of
✿✿✿✿

the
✿✿✿✿

year
✿✿

in
✿✿✿✿

each
✿✿✿✿✿

cycle
✿✿✿

the
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿

generated
✿✿✿

on
✿✿✿✿

(the
✿

y
✿✿✿✿✿

axis).
✿✿✿✿

We

✿✿✿✿✿

create
✿

a
✿✿✿✿

new
✿✿✿✿✿

return
✿✿✿✿✿

maps
✿✿✿✿✿

every
✿✿✿

10
✿✿✿✿

days
✿✿✿✿✿

giving
✿✿✿

36
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

points
✿✿✿✿✿

within
✿✿✿✿✿

each
✿✿✿✿✿

cycle.
✿✿✿

As
✿✿✿✿

seen
✿✿

in
✿✿✿

the

✿✿✿✿✿

figure
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿✿✿✿

depends
✿✿✿✿

very
✿✿✿✿✿✿✿

heavily
✿✿

on
✿✿✿✿✿✿

where
✿✿

in
✿✿✿

the
✿✿✿✿✿

cycle
✿✿✿

one
✿✿✿✿✿✿✿

chooses
✿✿

to
✿✿✿✿✿✿✿

generate
✿✿✿

the
✿✿✿✿✿

map,580

✿

a
✿✿✿✿

sign
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿

is
✿✿✿✿

not
✿

a
✿✿✿✿✿

good
✿✿✿✿✿✿✿✿

approach
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿

system.
✿✿

A
✿✿✿✿

good
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿

should
✿✿✿

be

✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿

invariant
✿✿

to
✿✿✿✿✿✿

where
✿✿

in
✿✿✿

the
✿✿✿✿✿

cycle
✿✿

it
✿✿

is
✿✿✿✿

taken
✿✿✿✿✿✿✿✿

provided
✿✿✿

the
✿✿✿✿✿

cycle
✿✿

is
✿✿✿✿✿

stable
✿✿✿✿

and
✿✿✿

not
✿✿✿✿✿✿✿✿

changing.
✿✿✿

In

✿✿

the
✿✿✿✿

left
✿✿✿✿

hand
✿✿✿✿✿

panel
✿✿

of
✿✿✿✿✿

figure
✿✿✿

12
✿✿✿

we
✿✿✿✿

plot
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿

error
✿✿✿✿✿✿✿

divided
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation.
✿✿✿✿

Note
✿✿✿✿

that

✿✿✿✿

most
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿

lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿✿

have
✿✿✿✿✿✿✿

standard
✿✿✿✿✿

errors
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿✿

half
✿✿✿✿

their
✿✿✿✿✿

value
✿✿✿✿✿✿

giving
✿✿✿✿

very

✿✿✿✿✿✿✿

uncertain
✿✿✿✿✿✿✿✿✿

estimates.
✿✿

In
✿✿✿

an
✿✿✿✿✿

effort
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainity
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

estimate
✿✿✿

we
✿✿✿✿✿

have
✿✿✿✿

also
✿✿✿✿✿

taken
✿✿✿

the585

✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿

over
✿✿✿

all
✿✿✿✿✿

points
✿✿

in
✿✿✿

the
✿✿✿✿✿

cycle
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿

is
✿✿✿✿✿

taken
✿✿

in
✿✿✿✿✿

figure
✿✿✿

13.
✿✿✿✿

The
✿✿✿✿✿

mean
✿✿✿

lag

✿

1
✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

is
✿✿✿✿✿✿✿✿✿

0.16±0.26
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿✿

to
✿

a
✿✿✿✿✿

(very
✿✿✿✿✿✿✿✿✿

uncertain)
✿✿✿✿

time
✿✿✿✿

scale
✿✿

of
✿✿✿✿✿✿✿✿

τ ≈ 0.55
✿✿✿✿

yrs.

✿✿✿✿

This
✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

phase
✿✿✿

lag.
✿✿✿✿

This
✿✿✿✿

also
✿✿✿✿✿✿✿

suggests
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿

interval

✿✿✿✿✿

T > τ
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿✿

determining
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

scale
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿✿✿

difficult.
✿✿✿

We
✿✿✿✿✿

have

✿✿✿✿✿✿✿✿

increased
✿✿

the
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿

to
✿✿✿

37
✿✿✿✿

years
✿✿

to
✿✿✿✿✿✿✿✿

minimize
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

estimate,
✿✿✿✿✿✿✿

however
✿✿✿✿

one590

✿✿✿

will
✿✿✿

not
✿✿✿

be
✿✿✿✿

able
✿✿

to
✿✿✿✿

then
✿✿✿

see
✿✿

a
✿✿✿✿

trend
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation.
✿✿✿✿

Even
✿✿✿

so,
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿

still
✿✿✿✿✿✿

greater

✿✿✿

than
✿✿✿✿

half
✿✿✿

the
✿✿✿✿✿✿✿✿

estimate.

✿✿✿

We
✿✿✿✿

have
✿✿✿✿

also
✿✿✿✿✿✿

plotted
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿✿✿

spectrum
✿✿

of
✿✿✿

theratiosAn/A1 for the entire time series in figure 11.

We note the nonlinear effects are quite prominent in this system, second and third harmonics are

around an order of magnitude smaller than the linear response, although we can still probably get595

away with the linear analysis.
✿✿✿✿✿

Forth,
✿✿✿✿

fifth
✿✿✿

and
✿✿✿✿✿

sixth
✿✿✿✿✿✿✿✿✿

harmonics
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿

visible.These nonlinearities

may be due to albedo effect or to the geometrical effects of the Arctic ocean basin (Eisenman (2010)).

To conclude, from this simple analysis it seems that the system’s time scale and therefore sta-

bility is not changing appreciably if at all and it is unlikely to be approaching a local bifurcation.

However, simple theoretical models, such as Eisenman and Wettlaufer (2009)andEisenman (2012)
✿

,600

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Eisenman (2012) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bathiany et al. (2016) (who
✿✿✿

also
✿✿✿✿✿

used
✿

a
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿✿

approach)suggest that the

sea ice time scale does not change very much approaching the bifurcation, even decreasing slightly
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Figure 10. In the upper panel amplitude of sea ice areaoscillationwithin eachannual
✿✿✿✿

cycle is plotted against

yearand in
✿

.
✿✿

In the lower
✿✿✿✿✿

middle panel phase lag
✿

is
✿✿✿✿✿✿

plotted
✿

between the sea ice area minimum (red line) and

maximum (blue line) and the solar insolation minimum and maximum
✿✿✿✿✿✿✿✿✿

respectively
✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿

year.
✿✿

In
✿✿

the
✿✿✿✿✿

lower

✿✿✿✿

panel,
✿✿✿

the
✿✿✿

2nd
✿✿✿✿✿

(blue)
✿✿✿

and
✿✿✿

3rd
✿✿✿✿✿

(red)
✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿

amplitudes
✿✿✿✿✿✿

An/A1
✿

are plotted
✿✿✿✿✿

against
✿✿✿✿

year
✿✿✿

end
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿

sliding

✿✿✿✿✿✿

window
✿✿

of
✿✿

10
✿✿✿✿

years. Theoscillationamplitude is increasing however the phase lag is not.
✿✿✿✿✿✿✿

Harmonic
✿✿✿✿✿✿✿✿✿

amplitudes

✿✿✿

also
✿✿✿✿

show
✿✿

no
✿✿✿✿✿✿✿✿✿

convincing
✿✿✿✿

trend.

before rapidly changing over a very small interval and therefore would be very hard to detect if

present.

5 Conclusions605

Much previous work on detecting local bifurcations from time series required one to be able to par-

tition the universe into widely separated time scales and model the system dynamics as overdamped.

When this is the case one can use the usual,
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿

fixed
✿✿✿✿

point
✿

early warning indicators of increas-

ing
✿✿

lag
✿✿

1 autocorrelation and variance since these indicators measure the system’s response to small

perturbations away from its fixed point by the fast, noisy processes. It is the response to this small,610

noisy forcing that allows one to measure the system’s time scale. The systems we have been looking

at in this paper do not have fast or random forcing. The systems considered here have determinis-

tic forcing with a period roughly that of its time scale although the dynamics are still overdamped.

Deterministic forcing again allows one to infer the system’s time scale simply by measuring the re-

sponse to the forcing. We found
✿✿✿✿✿✿

without
✿✿✿

the
✿✿✿✿✿

need
✿✿✿

for
✿✿✿✿

large
✿✿✿✿✿✿✿

amounts
✿✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿

required
✿✿✿

by
✿✿✿✿✿✿✿✿

statistical615
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Figure 11. Ratio of thenth order harmonic amplitude to the fundamental harmonic amplitude An/A1 found

from the Fourier transform of the Arctic sea ice area time series against the ratio of thenth harmonic period

to the fundamental harmonic periodTn/T .
✿✿✿

One
✿✿✿

can
✿✿✿

see
✿✿✿

the
✿✿✿✿✿

Arctic
✿✿

sea
✿✿✿

ice
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿

features
✿✿✿✿✿✿✿✿

prominent
✿✿✿✿✿✿

second,

✿✿✿✿

third,
✿✿✿✿

forth,
✿✿✿✿

fifth
✿✿✿

and
✿✿✿✿

sixth
✿✿✿✿✿✿✿✿

harmonics
✿

in
✿✿✿

its
✿✿✿✿✿✿✿

spectrum.

✿✿✿✿✿✿✿✿

quantities
✿✿✿

for
✿✿✿✿✿

robust
✿✿✿✿✿✿✿✿

estimates.
✿✿✿

We
✿✿✿✿✿

usedtwo analogous early warning indicators tothe
✿✿

lag
✿✿

1 autocor-

relation and variance in these systems; these were phase lagand response amplification respectively.

Just as autocorrelation is more robust as an indicator (it isa function of fewer parameters), the same

is true of phase lag, only depending on the frequency of the forcing and the time scale of the sys-

tem. The system response amplification also depends on the amplitude of forcing, which in many620

circumstances is probably difficult to measure.

We alsoshowedthat by taking
✿✿✿✿

useda Fourier transform of the time seriesonecan
✿

to
✿

quantify

how nonlinear the system is behaving and whether the linear approximations usually made are good.

✿✿✿✿✿✿

Further,
✿✿✿

by
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿✿

window
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series,
✿✿✿✿

one
✿✿✿✿

may
✿✿✿

also
✿✿✿✿✿

look
✿✿

at
✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿

harmonic
✿✿✿✿✿✿✿✿✿

amplitudes
✿✿

as
✿

a
✿✿✿✿✿✿

further
✿✿✿✿✿

early
✿✿✿✿✿✿✿

warning
✿✿✿✿✿✿✿✿

indicator.625

We applied thesenew
✿✿✿✿

also
✿✿✿✿✿✿✿✿

discussed
✿✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿

methods
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

essentially
✿✿✿✿✿✿✿

convert
✿

a
✿✿✿✿✿✿✿✿

periodic

✿✿✿✿✿✿✿

attractor
✿✿

to
✿

a
✿✿✿✿✿

fixed
✿✿✿✿

point
✿✿✿✿

type
✿✿✿

so
✿✿✿

that
✿✿✿✿

one
✿✿✿✿

may
✿✿✿

use
✿✿✿

the
✿✿✿✿✿

usual
✿✿✿✿

fixed
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿✿

indicators.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿✿

showed

✿✿✿✿

there
✿✿✿

was
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

complementarity
✿✿✿✿✿✿✿

between
✿✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿✿

indicators
✿✿✿

and
✿✿✿✿✿

phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification,

✿✿

the
✿✿✿✿✿

latter
✿✿✿✿✿

being
✿✿✿✿✿

more
✿✿✿✿✿✿

useful
✿✿✿

for
✿✿✿✿✿✿

regimes
✿✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿✿✿

ωτ ∼ 1
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿✿✿

being
✿✿✿✿✿

more
✿✿✿✿✿✿

useful
✿✿✿✿✿

when

✿✿✿✿✿✿✿✿

ωτ > 2π.630
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Figure 12.
✿✿✿

Left
✿✿✿✿✿

panel:
✿✿✿

Lag
✿✿

1
✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿

against
✿✿✿✿✿

sliding
✿✿✿✿✿✿

window
✿✿✿

end
✿✿✿✿

year
✿✿✿✿

using
✿

a
✿✿✿✿✿✿

sliding

✿✿✿✿✿✿

window
✿✿

of
✿✿

20
✿✿✿✿

years
✿✿

(x
✿✿✿✿

axis)
✿✿✿

and
✿✿✿✿

point
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿

cycle
✿✿✿

the
✿✿✿✿✿

return
✿✿✿

map
✿✿

is
✿✿✿✿✿

created
✿✿✿

on
✿✿

the
✿✿

y
✿✿✿

axis
✿✿✿

(we
✿✿✿✿✿

create
✿✿✿✿✿

return

✿✿✿✿

maps
✿✿✿✿

every
✿✿✿

10
✿✿✿✿✿

days).
✿✿✿✿

One
✿✿✿

sees
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿✿✿

depends
✿✿✿✿

very
✿✿✿✿✿✿

heavily
✿✿✿

on
✿✿✿✿✿

where
✿✿

in
✿✿✿

the
✿✿✿✿

cycle
✿✿✿

one
✿✿✿✿✿✿✿

chooses
✿✿

to

✿✿✿✿✿✿

generate
✿✿✿

the
✿✿

the
✿✿✿✿✿

return
✿✿✿✿

map.
✿✿✿✿✿

Right
✿✿✿✿✿

panel:
✿✿✿✿✿✿✿

Standard
✿✿✿✿

error
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿

return
✿✿✿✿

map
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿

divided
✿✿✿

by

✿✿

the
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿

against
✿✿✿✿✿✿

sliding
✿✿✿✿✿✿

window
✿✿✿

end
✿✿✿✿

year.
✿✿✿

The
✿✿✿✿✿✿✿

estimate
✿

is
✿✿✿✿

very
✿✿✿✿✿✿✿

uncertain
✿✿✿✿✿✿

almost
✿✿✿✿✿✿✿✿

everywhere
✿✿✿✿

with
✿✿✿✿✿✿✿

standard

✿✿✿✿

errors
✿✿✿✿✿✿✿

generally
✿✿✿✿✿

being
✿✿

at
✿✿✿

least
✿✿✿✿

half
✿

as
✿✿✿

big
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

estimate.

✿✿✿

We
✿✿✿✿✿✿

applied
✿✿✿✿✿

theseindicators to satellite observations of Arctic sea ice area, a system whose period

of forcing, effectively the annual cycle of insolation, is similar to the time scale of the system. This is

also a system that has been conjectured to have a tipping point due to a local bifurcation. We did not

find any detectable critical slowing down and therefore signs of this bifurcation. It should be noted

however simple models of the sea ice suggest critical slowing down only occurs very close to the635

bifurcation making it very hard to detect.

Appendix A: Early warnings
✿✿✿✿✿

Phase
✿✿✿

lag
✿✿✿

and
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿✿

amplification with arbitrary periodic

forcing

Herewegive thederivation
✿✿✿✿

Phase
✿✿✿

lag
✿✿✿✿

and
✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿✿✿✿

amplification
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

foundfor the more general

case of any type of periodic forcingD . That is we solvetheequation
✿✿

by
✿✿✿✿✿✿

solving
✿

640

ẋ+
x

τ
=D(t) (A1)
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Figure 13.
✿✿✿✿

Mean
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿

of
✿✿✿

the
✿✿✿✿✿

return
✿✿✿

map
✿✿✿✿✿✿

across
✿✿

all
✿✿✿✿✿✿

starting
✿✿✿✿✿

points
✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

cycle
✿✿✿✿

using
✿✿

a

✿✿✿✿✿

sliding
✿✿✿✿✿✿

window
✿✿

of
✿✿✿

20
✿✿✿✿✿

years.
✿✿✿✿

This
✿

is
✿✿✿

the
✿✿✿✿✿

same
✿✿

as
✿✿✿✿✿

figure
✿✿

12
✿✿✿✿

with
✿✿✿

the
✿✿✿✿

mean
✿✿✿✿✿

taken
✿✿✿✿

along
✿✿✿

the
✿✿

y
✿✿✿✿

axis.
✿✿✿✿✿✿✿✿

Estimated

✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿

is
✿✿✿✿

still
✿✿✿

very
✿✿✿✿✿✿✿✿

uncertain.
✿✿✿

The
✿✿✿✿

mean
✿✿

is
✿✿

the
✿✿✿✿

solid
✿✿✿

line
✿✿✿✿

with
✿✿

the
✿✿✿✿✿

dotted
✿✿✿✿

lines
✿✿✿✿✿

being
✿✿

the
✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

plus/minus

✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿

error.
✿✿✿✿

The
✿✿✿✿

mean
✿✿✿✿✿

value
✿✿✿✿✿

across
✿✿

all
✿✿✿✿✿

years
✿✿✿✿✿✿✿✿

0.16±0.26
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿

a
✿✿✿✿

(very
✿✿✿✿✿✿✿✿

uncertain)
✿✿✿✿

time

✿✿✿✿

scale
✿✿

of
✿✿✿✿✿✿✿

τ ≈ 0.55
✿✿✿

yrs.

τ the timescale of the system (thee folding time). For any periodic forcing,D(t) with periodT can

be written as the Fourier series

D(t) =
N
∑

i=0

Bi cos(ωit+χi). (A2)

Bi are the amplitudes of the different component sinusoidal waves,ωi =
2πi
T

are the frequencies645

of the components andχi are the phases of each of the components. As the equation is linear the

superposition principle holds. That is, we assume the solution has the form

x(t) =

N
∑

i=0

xi(t) (A3)

by setting all but theith term of the driving to zero we can solve theN +1 equations

ẋi +
xi

τ
=Bi cos(ωit+χi) (A4)650

for eachxi(t)which is just the sameas the original sinusoidallyforced equation.We can then

superposethem.
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿

solutions
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

superposedto obtain the full solution to any periodic driving
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term.Thesolutionof theforcedsystem
✿✿✿✿

This is

x(t) =

N
∑

i=0

τBi
√

1+ω2
i τ

2
[cos(ωit+χi− arctan(ωiτ))655

− e−
t
τ cos(χi− arctan(ωiτ))] + x0e

−
t
τ (A5)

which settles into orbit

x(t) =

N
∑

i=0

τBi
√

1+ω2
i τ

2
cos(ωit+χi− arctan(ωiτ)) (A6)

whent≫ τ , that is, the solution is just the sum of each of the forcing componentsi, each with a

response amplification of660

τ
√

1+ω2
i τ

2
(A7)

and a response lagging the forcing with a phase of

φlag
i = arctan(ωiτ). (A8)

One can find out what these phase lags and amplitudes are by taking the Fourier transform of the

time series of both the forcing and response.665
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