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Laver Building, North Park Road, Exeter EX4 4QE, UK

2 Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47,
Wageningen, Netherlands

Correspondence to: Mark S. Williamson (m.s.williamson @exeter.ac.uk)

We would like to thank the referee for his detailed and thoughtful comments on our manuscript.

We reply below (the referee’s original text in italics followed by our response):

My suggestions for the authors would be to take the paper into one of two possible
directions for a major revision. Either, (I) one does incorporate and compare a lot more
to available techniques and previous results on time-periodic dynamical systems. How-
ever, this does seem to be out of the focus of ESD a bit. A second alternative (Il) would
be to shorten the mathematical part and clearly identify some of the warning signs as
the same ones as if one would use return-map methods. With the now available space
one could either try to apply techniques to other forced climate models and draw ap-
plied conclusions, or look at more time series. These are the stronger parts of this paper
and probably more adequate for ESD anyhow. Either way, some re-writing is necessary
to embed the problem in a more proper way into previously developed and available
techniques. Overall, I think if the authors should pursue a major revision using the sec-
ond option (Il), then I could see the revised paper to be a very solid contribution to

ESD.

We also agree the second alternative would be the best way to take a revised manuscript and
this is the direction we have broadly taken in line with the referee’s recommendations. We have
added discussions of existing techniques and previous literature into the introduction of the revised
manuscript including the return map method which we have applied to the examples in the previ-
ous manuscript which we agree was lacking from the original. It turns out the return map method
is complementary to the phase lag and response amplification in that in one regime one set of in-
dicators is not useful while the other is. The systems we were largely concerned with in this and
the previous manuscript are best handled with phase lag and response amplification which was the
reason we did not use return maps in the original manuscript. We discuss this further in the reply
to the referee’s point (1). We have also extensively restructured the manuscript and included sliding

window analysis of harmonic amplitude increasing on approach of a local bifurcation (a suggestion
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of referee #2). Although the manuscript has a slightly revised title, many new figures and has been
significantly restructured to include a more thorough discussion, the technical content, main points
and conclusions are unchanged from the previous manuscript although they are strengthened.

We would have liked to apply our method to more examples in the Earth system but feel the paper
is coherent with an expanded analysis of Arctic sea ice. Plenty of components of the climate are
periodically forced for example by the solar insolation and have similar time scales to this forcing,
however we could not think of any that are conjectured to be approaching a local bifurcation apart
from the Arctic sea ice.

We did consider including analysis of a simple vegetation-savannah model which had a local
bifurcation due to variations in precipitation. We decided not to include this as the model was a bit

simplified and added nothing new to the manuscript, being very similar to the double well example.

However, as far as I can see from the paper, the authors also claim that their methods
and mathematical ideas for early-warning signs are novel. At least, the bulk of the paper
is dedicated to this topic and they use "here we find..." and "we show that..." and similar
formulations to indicate that their approach is new. In my opinion, the major problem I
see with this work is that the authors did not seem to make enough of an effort to link
and/or base their results on previously available mathematical techniques. I will give
the authors the benefit of the doubt that they simply did not know, or could not find the
adequate sources on which their analysis could have been based and/or compared to
since it may not be in the climate-science related journals (and it could very well be
common to just argue things are novel if they have not appeared in a certain subsets of
journals; in general, this is a view which I disagree with, particularly for such a highly

interdisciplinary topic as nonlinear dynamics).

The mathematics we use in the manuscript are very simple and clearly not novel. So much so in
fact that it becomes hard to cite a relevant source as any student of physics or engineering will very
likely have solved the equation for the damped harmonic oscillator forced periodically and found
the solution in the overdamped limit has a phase lag and an amplitude depending on the damping
parameter. For instance one can look in any undergraduate level text on oscillations and waves and
find these solutions. We have cited one such example in the revised manuscript and a discussion of
this point. However, we have not been able to find any other authors using the phase lag, amplification
response and increase in harmonic amplitude as an indicator of the approach of a local bifurcation.
Of course, we would not be surprised if this was not the case since the method is very simple, which
is the reason incidently, that we like it! Because of this simplicity, we have been careful not to make
novelty claims in the previous manuscript but we have eliminated the offending ‘we show’ in the

revised version.
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1) For periodic systems, there is a well-developed theory of return maps which con-
verts the continuous-time periodic orbit into questions about the local fixed point of a
return map (see e.g. the books by Kuznetsov or Guckenheimer/Holmes or in fact many
other dynamical systems texts). It is really strange that the authors do not even mention
this approach to the problem. A very natural approach would be to just to try to re-use
results about slowing down and early-warning signs for local bifurcations for periodic
systems by looking at a return map. Of course, the change of the lag will not be visible
directly in the return map, so it would be reasonable to try to do a comparison why
in certain circumstances the lag might be a better or worse warning sign compared to

quantities computed directly from the return map.

We agree we should have mentioned the return map method and this is indeed another way of
looking for early warning signals of local bifurcations. The motivation for the method outlined in
the manuscript was that we were looking at the particular case of the conjectured Arctic sea ice
bifurcation and for this system the forcing (the annual cycle of insolation) is about the same order as
the time scale of the sea ice (order of months, possibly a couple of years).

Recall methods used for looking for local bifurcations are based on detecting a decrease in the
stability of the system’s steady state by inferring the change in time taken for perturbations away
from that steady state to decay. If the steady state is a fixed point, one usually thinks of the noise
in the system as the perturbation and infers the system time scale by sampling the system’s state at
some time interval and computing the correlation between successive time intervals resulting from
the perturbation’s decay. If the steady state is periodic, like the ones considered in this manuscript,
one approach is to sample the system once every cycle to obtain a new time series that can be treated
as a fixed point steady state, but now the interval between samples of the system state has increased.
This is the return map method and one can repeat the fixed point, compute correlations between the
now increased, successive time intervals.

For the cases we consider in the manuscript, where the period of the forcing is of the same order
as the time scale of the system such as the sea-ice, the return map would take an annual time series
with the resolution of a day if desired (essentially a continuous flow) and convert it to a single point
per cycle, that is one data point per year (a discrete map), T". There are two problems with this: (i)
there are far less data points to analyze in the time series so any trend in the signal becomes harder
to detect with statistical indicators as the standard error scales 1/v/N (N is number of data points
in the time series) and (ii) more importantly, even if there was critical slowing down, since the time
scale of the system, 7 may be smaller or of the same order of the resolution of the return map time
series, detection becomes very difficult or impossible i.e. the time taken for a perturbation to decay
back to the steady state is less than the interval between data points resulting in little or no correlation

between the data points in the return map. One also cannot reliably use autocorrelation, the usual



100

105

110

115

120

125

130

indicator of noisy slowing down of fixed points, to infer time scale as an assumption in the derivation
is that T'/7 is small which it is not in this case.

In addition, for the case of the sea-ice, the opportunity of having such an easy to spot, deterministic
system response to the annual forcing (which one can think of as a very predictable perturbation)
to exploit to infer system time scale without having to do any detailed manipulation of the data
motivated our approach.

We therefore realized very early on in the investigation that a return map method would very likely
not be useful and is not useful for the cases the phase lag and response amplification are most useful.
This gave the resulting ’ignore-return-map-tunnel-vision’ in the manuscript which on reflection we
should have reviewed and critiqued. We have rectified this in the revised manuscript. The cases
where the phase lag and response amplification work well (w7 ~ 1) are not well suited to return map
analysis. Conversely when the interval between return map data points is smaller than the system
time scale, 7/ > 1 (equivalent to w7 > 27), a reasonable condition for return map analysis to work
well, phase lag and response amplification tend to asymptote and are not so useful. The two methods
therefore have some complementarity.

We have included figures illustrating this complementarity in the revised manuscript. Figure [1|is
essentially the same as figure 2 in our manuscript except we have varied D,,, over 100 cycles instead
of 25. This is because we need extra data points to calculate the autocorrelation of the return maps
with any reliability. We have also added Gaussian white noise to & of standard deviation 0.01 as
the return map method needs small perturbations to work. In figure [2| we have plotted all the early
warning indicators for this system including the return map calculated with a sliding window of 25
cycles. The black lines are the theoretical curves and the coloured lines are the estimated curves. The
key point is the theory and estimated autocorrelations do not show anything in this regime (w7 ~ 1).
In figures andwe have plotted the same quantities but with decreased period of forcing ("= 1/4
so wT ~ 4). This is a regime in which phase lag and response amplitude start to asymptote and are
therefore not so useful to infer changing system time scale. However, autocorrelation of the return
map now becomes useful as can be seen in the figure. This system is going in the w7 > 1 regime
which we have previously discussed in the manuscript.

From the sea-ice time scale of 6 months estimated using phase lag (w7 ~ 7) we did not expect
the return map method to be useful. However, these estimates are uncertain so we also calculated
the return map for completeness. The results confirm return map analysis is not useful for this case.
Specifically we show autocorrelation in a sliding window of the return map time series is very un-
certain and/or small.

We have added discussion of these points in similar or more detail in the revised manuscript.

2) The authors are also apparently not aware that there is already quite a bit of very
classical work on early-warning signs for periodic systems. For example, it should be

mentioned that warning signs for bifurcations have already appeared for periodic orbits
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Figure 1. w7 ~ 1: Same figure as figure 3 in the manuscript except variation of D,, is over more cycles to
generate more points for a reliable return map analysis and weak Gaussian white noise of standard deviation
0.01 is added. Parameters are set to D, = 1/2, T'= 7 (the same order as the system time scale 7) and D, is
varied linearly with time between -2 and 2 over about 100 cycles. In the upper panel the black lines are the
nullclines while the system response is the blue line plotted against D(t). In the lower panel we have plotted

the system response (blue) against the forcing D against t /7.

many years ago in the groundbreaking work by Wiesenfeld: Wiesenfeld, K. (1985). Noisy
precursors of nonlinear instabilities. Journal of Statistical Physics, 38(5-6), 1071-1097.
Furthermore, there is also a lot of recent activity on the field as exemplified by the recent
work: Zhu, J., Kuske, R., and Erneux, T. (2014). Tipping points near a delayed saddle
node bifurcation with periodic forcing. arXiv preprint arXiv:1410.5101. I am pretty sure
that upon further search one would be able to come up with a rather long list of papers
that have studied periodic orbits near instability and their statistical, Fourier-analysis,
and phase properties. Then it is a natural question which of these results can be applied
directly to the problem of early-warning signs. The authors simply skip this step in
their analysis. There is one mention to stochastic resonance, and also in this part of the
literature I would expect to find already a lot of readily applicable results. Of course,
after this detailed review, one could try to do a direct and/or different calculation, do a

comparison and then argue which parts are new/old, better/worse, etc.



150

155

160

=

AR(1)

Figure 2. wr ~ 1: The early warning indicators, response amplification (upper panel), A = \/%, and

phase lag (middle panel), ¢2’jr9 = i arctan(wT) calculated for the time series in ﬁgure In the lower panel,

autocorrelation of a sliding window of 25 points of the return map is plotted with standard errors on the estimate.
Black lines are theoretical curves of all the quantities. Phase lag and amplitude response are useful quantities

here however the return map is not.

We have added more context and review of previous literature in a revised manuscript, some
quoted directly below:

’Abrupt change in a system can occur due to a bifurcation - that is, a small smooth change in
parameter values can result in a sudden or topological change in the system’s attractors. Extreme
sensitivity of systems close to criticality is familiar from studies of critical phenomena in statistical
mechanics Domb et al.|(1972-2001) and stability analysis in nonlinear dynamical systems Kuznetsov
(2004).

We have also briefly reviewed Wiesenfeld’s work and mentioned how it differs from ours:

"In an elegant study Wiesenfeld (1985) computed the Fourier spectra of noisy perturbations in
systems with periodic attractors. Very close to a local bifurcation, the dominant system time scale
asymptotes towards infinity causing the dynamics of the noisy perturbations away from the attractor
to be dependent only on the type of bifurcation and not on the details of the system’s specific equa-
tions. This observation allowed the author to classify all codimension 1 bifurcations in an arbitrary
periodic system by the harmonics in the spectra of residuals. He called these early warning signals

noisy precursors.’
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Figure 3. wr ~ 47: Same figure as ﬁgureexcept the period of forcing is decreased to 7' = 1/4. Parameters
are setto D, = 1/2 and D,, is varied linearly with time between -2 and 2 over about 100 cycles. In the upper
panel the black lines are the nullclines while the system response is the blue line plotted against D(¢). In the

lower panel we have plotted the system response (blue) against the forcing D against t/7T".

And when describing using the harmonics in the response:

‘With a similar motivation |Wiesenfeld! (1985) and |Wiesenfeld and McNamaral (1986) calculated
the Fourier spectra of the perturbations, rather than the response, away from periodic attractors very
close to local bifurcations with noisy and weak periodic modulation respectively.’

We have mentioned work on stochastic resonance where appropriate. The simplest systems this
community studies are essentially our conceptual model, that is a periodically driven double well
potential, but with the added complication of additive Gaussian noise. They have studied phase
response, amplitude and Fourier spectra in this context. However, they are interested in hopping be-
tween the wells with some barrier height (the "stochastic resonance’) rather than bifurcations (barrier
height goes to zero) as in our study.

The other reference the referee mentions, Zhu et al.| (2015)), seems of limited relevance. These
authors look at the well known phenomenon of delayed bifurcation when the control parameter is
slowly varied compared to the static case. The control parameter in their study, instead of linearly
increasing with time is now periodic with changes in amplitude and frequency. At the end of the
paper they use a simple sea ice model as an example of this. We have therefore chosen not to include

this work.



Figure 4. wr ~ 4m: The early warning indicators, response amplification (upper panel), A = —22T__ and
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Plag _ i arctan(wT) calculated for the time series in ﬁgure In the lower panel,
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phase lag (middle panel),
autocorrelation of a sliding window of 25 points of the return map is plotted with standard errors on the estimate.
Black lines are theoretical curves of all the quantities. Phase lag and amplitude response have now asymptoted

and are not useful quantities however the return map now becomes useful.

3) Since the authors deal with a time-dependent non-autonomous system when us-

180 ing the variational equation around the periodic orbit before averaging out to a mean
value, it is also very natural to ask which classical results from Floquet theory and
non-autonomous dynamical systems could be applied for finding early-warning signs

for tipping points. In this context, there are many different notions for a spectrum if

we go beyond classical Floquet theory. For example, what about looking at finite-time

185 Lyapunov exponents, the dichotomy spectrum, etc and simply see what these quantities
say as warning signs? At least, things like FTLEs are easily computable via standard

packages so there really is very little effort involved in doing these calculations and

comparing it to the direct calculations the authors do. I would even guess that from re-

turn map data, return times and FTLEs, one should be able to recover identical or very

190 similar warning signs...

These ideas may be potentially useful lines of future investigation. However, we are not familiar
with all the techniques the referee mentions or how they could be applied to time series analysis in

climate applications where the dynamical equations are not known and one’s control on the system



for repeatable experiments is limited or non-existent. We would be interested to hear the referee’s
195 opinion on this.
Although we are interested to hear more about this, the comment is more in line with the first,

rather than the referee recommended and author chosen second direction to take a revised manuscript.

4) The authors also spend a long part of the paper on discussing the issue of time

scales and relevant limits. This issue has been discussed in a very analogous situa-

200 tion regarding noise-induced and bifurcation-induced transitions. Depending upon the
time scale of the noise relative to the parameter drift one either sees noise-induced or
bifurcation-induced transitions in certain classes of systems. See for example: Ashwin,

P, Wieczorek, S., Vitolo, R., and Cox, P. (2012). Tipping points in open systems: bifurca-

tion, noise-induced and rate-dependent examples in the climate system. Philosophical

205 Transactions of the Royal Society of London A: Mathematical, Physical and Engineer-
ing Sciences, 370(1962), 1166-1184. Kuehn, C. (2013). A mathematical framework for

critical transitions: normal forms, variance and applications. Journal of Nonlinear Sci-

ence, 23(3), 457-510. In fact, the issue has appeared in many works implicitly before

these works in stochastic multiscale systems. Here the situation is very similar except

210 that there is now instead of the noise-focus a comparison between the forcing scale and
parameter drift scale. Therefore, it is actually quite easy to see that there should be two

asymptotic regimes and one intermediate regime as for the noise/parameter case also in

the forcing/parameter case. In fact, noise terms are frequently just be treated as forcing

terms if the noise is smooth enough and maybe one could even transfer previous results

215 via this view.

We are in agreement with the referee. This is the central issue in applying early warning techniques

and this is why we spend some time discussing it.
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We thank the referee for their time and generally positiverajsal of our manuscript. Many of
the concerns of referee 2 are the same as our first refereeuandsponses to these concerns, if
not detailed enough below, can be found in our reply to Ghaniskuehn. We reply below (ref #2's
original text in italics followed by our response):

In my opinion, the main issue is that the proposed mathematical techniques are not
novel (as already pointed out by Reviewer 1) although they are presented as such. Itis
really strange that the manuscript completely disregards previouswork in the literature
in this area. There is the pioneering work by Wiesenfeld (Journal of Satistical Physics,
1985). It appeared long before the subject of critical transitions became so popular in
the applied sciences and the buzz word of a "tipping point" was even created. Thereis
the recent study by Zhu, Kuske and Erneux (2014) which goesin a similar direction as
the authors’ work. Reviewer 1 is pointing out more previously developed techniquesthe
present work should be linked to.

We agree that we should have referenced previous work moreughly and this has been recti-
fied in a revised version of the manuscript. Please see ourdgponse to Christian Kuehn and his
point (1) and (2) for more details.

Maybe the authors should present more applications of their techniques to earth
system components rather than just mentioning possible candidates.

Please see our first response to Christian Kuehn.

Figure 8 just shows that the annual cycle in the Arctic sea ice area data is quite
strongly aharmonic, corresponding to a nonlinear response of the system to the solar
insolation forcing, as is well known and already clearly visible by eye from the time
series. The evolution of the strength of the nonlinearity over time, which is actually
proposed by the authors as an early-warning signal when approaching a possible bifur-
cation, is not considered at all.
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This is a good point and we thank the referee for pointing dhis We assumed mistakenly that
to reliably resolve the peaks of the harmonics in the Fospectra would require a large amount of
data that would make a sliding window analysis of the timesattifficult. It turns out for the Arctic
sea-ice observations one can reliably resolve the peaksonly 10 full cycles. We have therefore
been able to plot harmonic amplitude against time usingdingliwindow of 10 years and have
added this analysis. Like the other indicators for the seario convincing trend is seen. We have
also included the same analysis for the conceptual modelgieashowing the harmonic amplitudes
increasing as the local bifurcation is approached.



Changes in the revised manuscript

The changes made in the revised manuscript are extensive but are in line with the referee
recommendations. We have

o Added previous literature for context and how it differs with work in the revised manuscript.
Specifically in the introduction and sections 2 and 3.

e Restructured manuscript to include return map analysis and review. Specifically we have
combined section 3 and section 4 and moved them to section 2. The new section 2 has a
discussion of return maps. The new section 3 is a combination of old sections 2 and most of
section 5. The new section 4 is old section 5B.

e Included new figures to show the complementarity between return maps and phase lagin
different time scale regimes.

e Included new figures of harmonic amplitude evolution.

Please note that the technical content and conclusions remain unchanged. Only material relating to
return maps has been added. Previous literature and context has also been added.
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Abstract. The prospect of finding generic early warning signals of gar@@aching tipping pointin a
complex system has generated much recent interest. Eximtithods are predicated on a separation
of timescales between the system studied and its forcingieder, many systems, including several
candidate tipping elements in the climate system, are tbpegiodically at a timescale comparable
to their internal dynamics. Here wime-usealternative early warning signals of tipping points due
to local bifurcations in systems subjected to periodiciftigavhose time scale is similar to the pe-
riod of the forcing. These systems are not in, or close to,edfpoint. Instead their steady state is
described by a periodic attractékle-shewthattheFor thesesystemsphase lag and amplification
of the system respongmnprovide early warning signals, based on a linear dynamipscema-
tion. Furthermore, theewerFourierspectrum of the system’s time series reveatsgeneratiorsf
harmonics of the forcing periogthe size-efwhich-arepropertionalin the systemresponsavhose
amplitudeis relatedto how nonlinear the system’s response is becoming withineat effects be-
coming more prominent closer to a bifurcation. We apply ¢hieslicatorsaswell asa returnmap
analysisto a simple conceptual system and satellite observatiodgdiic sea ice area, the latter
conjectured to have a bifurcation type tipping point. We fireddetectable signal of the Arctic sea
ice approaching a local bifurcation.

1 Introduction

The potential for early warning of an approaching abruptgeeor ‘tipping point’ in a complex, dy-

namical system has been the focus of memtentresearch, see for exam ; ),

). Abrupt change in a system can occur due to a bifuncatthat is, a small smooth change
in parameter values can result in a sudden or topologicaigdén the system’s attractorshis
extremesensitivity of systemscloseto criticality is familiar from studiesof critical phenomena

in_statisticalmechanicg(Domb et al.|(1972-2001)and stability analysisin_nonlineardynamical
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208®)Much work on the anticipation of bifurcations from time seridats

e.g.in ecosystem 3 QlL))or the climate syste al.
(2008) an daahlmasmeﬁbaseebwlgp%mmwm@sm

systemto recoverto its steadystate(the system’stime scale)from perturbationaway from that
steadystate.The methodsareusuallybasedon a clear separation of three time scales: (i) The time

S 0090) pe
SteHeretarizoyv Sl

scale of the dynamics of the system one wants to study, (ihnfaster processes than the time scale
of the systemusuallythoughtof astheperturbationshe systenrecoversrom and (iii) much slower
processes than the time scale of the systdrichgovernthepresensystensteadystate In addition,

the system dynamics are modelled as overdamped, the faatnigmas a noisy, normally distributed
random variable of small variance and the slow dynamics asstant, control parametarthetime
sealeofthesystem Provided these are good working approximations, cristaving down;— the
increase of the system’s time scale, is expected prior taa@ lnfurcation and can be detected by
computing thexutecerrelatiettag 1 autocorrelatiomn aslidingwindow of a system’s time series. An
increasing trend in autocorrelatiémtime-shows the stability of the system is weakening or equiv-
alently, the system’s time scale is increasing - which isrzege feature of a system approaching a
local bifurcation. Provided the variance of the fast noisygess is constant, increasing variance of
the system'’s time series is also a good indicator of cribalving down, although it is less robust
thanlag 1 autocorrelation due to its dependence on the noisy process.

For many systems of interest one or more of the above assumsgptiay be invali@illingQn and Lgntdd gzgis))

In particular, when the forcing of a system has a comparadlieg to the time scale of the system,

the forcing cannot be modelled as a slow, constant contraipeter or a fast, random procedere
foreingissimilarte-thetimesealeofthe system-Systemsof thistype-, howeverthey canstill be
thoughtof asa perturbatioraway from the systemsteadystatethat one canmeasureghe recover

time from, an observatiorwe exploitin this manuscriptThesesystemsare particularly relevant in
the climate system where periodic forcing is a consequehiteanotion of the Earth relative to the

Sun. For example, solar insolation variation from the dalirannual or Milankovich cycleShese

attractorgequiredfor lag 1 autocorrelatiomndvarianceto be usedasearlywarningindicators.
In_an elegantstudy/Wi 5) computetthe Fourier spectraof noisy perturbationsn
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A commonmethodto study stability changesn periodic attractorsis the return or Poincaré
of a returnmap by samplingthe orbit onceevery period. One canthen computethe usualfixed
Onecanalsohandlesystemith internallygeneratedyclesratherthanthosegeneratedy external

With this limitation in mind we suggesalternativeearly warningssignalsof approachindocal
bifurcationswhenthe periodof theforcingis similar to thetime scaleof the systemWe look partic-
ularly at sinusoidal forcing since this approximates theateon of solar insolation well. However,
the method works for any periodic forcing and ®leegive the derivation of the general case in the
appendix.

We-shew\We demonstratghat increasing system time scale as it approaches a |dcatiion
shows up as an increasing phase lag in the system respoateer& the forcing. In additionwe
shewthe amplitude of the system response increases as welle Tiidisators, likdag 1 autocorrela-
tion and variance itheusualmethodixed point attractormethodsassume the linearized dynamics
approximate the true nonlinear dynamics well. One mighttask well the linear approximation
works, especially near the bifurcation, since bifurcadiare strictly nonlinear phenomenseshew
hewtegive-aA quantitative answer to this questioanbeprovidedoy computing thgsewerFourier
spectrum of the system’s time series. In particular, asybem’s behaviour becomes more nonlin-
ear, harmonics of the forcing period are generated in thiesysesponse and their amplitudes may
be obtained from the systenpswerFourierspectra. Since the system response becomes more non-
linear as one approaches the bifurcation, one can view treasing amplitude of harmonics as
another early warning signal.

The paper is organised as follows: In sect@w&m&edﬂee&eeﬁeep&ramedw&ﬂmsﬁate

webkm%rema—seeﬁe#ﬂwe&hew%haﬁheﬂthe earlywarningindicatorsusedin the manuscript
areintroduced namelythe system response phase lag and amplificatiergeedearhywarningset
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map which is complementaryo phaseiag and responsamplification.In sectior@ a periodically
forcedoverdampedystemin a doublewell potentialis usedto illustratethe time scaleseparation
problemandthe propertiesof the earlywarningindicatorswhenalocal bifurcationis approached

In section?22w

we applythe earlywarningindicatorsto satelliteobservation®f
Arctic sea ice area, a system conjectured to be approachougbbifurcationbeforeconeluding,

We concludein sectior(5.

2 Early warning indicators of local bifurcations in periodic systems

As previouslymentionedn theintroduction the Arctic sea-icéhasbeenconjecturedo beapproaching
a local bifurcatioms i i i y 'si

_Treating
this systemapproximatelypne canthink crudelyof the slow control parameteasthe decreasef
outgoinglong-waveradiation giving awarmingtrendin air temperatursthe Earth'satmospheric
CO; concentratiorincreasesThis is a systemthatis forced periodically anddeterministicallyby
the annualcycle of short-wavesolarinsolation The systenvesponsés dominatecby this periodic
forcing ratherthan small amplitude randomnoisy forcing also presentand systemtime scaleis
roughlythesameorderof the forcingperiod.In thissectionmotivatechy detectiorof localbifurcations
in systemsike thesea-icaypefrom time serieswe look for suitablemethodsAlthoughthis system
hasnoclearseparationf time scaleswith whichto usefixed pointmethodsirectly,thefactthatthis

4



130 systenmhasalargeandpredictableperturbatioronecanmeasureheresponséo reducesheneedfor
the statisticalmethodqgandtherefordargenumbersof data)requiredfor noisyperturbationgndso
numberof datain a time seriesbecomedessof an issue EquatiorfElhmodelsa-nonautonemet

i 4 ohstanfereirg{c—0) - thefamiliary seliedanis
135 hify ation ecoveredfore Mmnlece mm a = 0-theso ionsof4
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Studentsof physicsor engineeringwill likely havesolvedthe equationfor the forced damped
140 harmonicoscillatorandobservedn the overdampedimit thatthe fixeepeints:H+-

145

equivalently=phaseandamplitudedependnthedampingparamete seeforexaml'

In the following subsectionsve proposeto usethis fact andphaseag andresponsemplification

150 assimplenon-statisticalndicatorsof systemtime scale We demonstratéheir propertiesandtheir
approximationbut by taking the Fouriertransformof the systemresponseone canalsolook the
magnitudef thenonlinearesponseThishastwo purposesirst onecancheckthelinearapproximation
is goodandsecondbecauséifurcationsarestrictly nonlineaphenomenahe systenresponsevill

155  becomemore nonlinearas one approacheshe bifurcationgiving anotherearly warning indicator
thatcanbe monitored.

Thesystemsve concentratenin this manuscriptrelevanto externallyforcedclimateproblems,

to the systemandso are specialcasesf periodicattractorsFor thesespecialcaseswhenforcing

160 periodandsystemtime scalearesimilar, phasdag andresponsemplificationareusefulindicators.

However returnmapsaregenerallymoreusefulwhentreatingmoregenerabperiodicattractors At

the endof the sectionwe briefly reviewthe methodof returnmaps.

2.1 Period-offoreing-muchslowerthan-systemtime sealejwr<<1-
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We-nowleok-atWe considersystems that can be described by
i = f(x) +D(t) (1)

220 wheref(x) is, generally a nonlinear function of the system state sca@dablex —Ourecenceptual

L was-asp ampleefsuehasystemThewith forcing D(t) is-giverby

D{t) = Do - Do cos(wt). @)

Dy, and D, are constantsw = %7 is the angularfrequencyand 7' is the period of the forcing.

225 We haveassumedany otherrandom,noisy externalforcing is very small and can be neglected.
The solutionfor a general form forD(t) is given in the appendix, however here we useiple
sinusoidal forcing as this is most relevant for many climatstems and we wish not to obscure the
simplicity of the mainresuftsesult & describes the dynamics of a forced overdamped system. This
is a nonautonomous system whose state can be completelyodesbyt andx. After some time

230 t, > Tthesystem, wherer is the systemtime scale the systemwill settle into some sort of steady
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state, either an orbit or a fixed point whose mean stase

T+t
=L / (t)dt. 3)

We now Taylor expand (z) to first order around: so that

Tra— % + D cos(wt). (4)
where

a=f(z)— %IgE:ﬁJrDm (5)
T= —1/% - (6)

are the linearisation constants. We have assumed higher @mins such ag; 21 (z — )", n > 2
are small relative to zeroth and first order terms so thatitreatised dynamics approximates the
full nonlinear dynamics well. We show how to check this apqimation in sectioh 2]1. Assuming

omenithatthisis-ageedapproximatidhe approximatioris good one can solve equation
Banalytically Ast > 7 the system settles into the orbit

D,1
1' == —— 7
Jim x(t) =ar + : = cos(wt + ¢) (7)

where the system response lags the forcing by phage= wti., = —¢ given by
Blag = arctan(wr). (8)

that is, the phase lag is a function of the forcing frequemzythe system response time scale. One
also notices that the system response, relative to thenfpeanplitude D,, is amplified by a factor

T

W ®)

which is also a direct function af andr. We-savethe The more general derivation whe(t) can
be any periodic functiots-appendiBl-Hs givenin theappendiXAl
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2.1 Systemnonlinearity and harmonic amplitude from Fourier analysis

By simply looking at the time series of the system responsktha forcing one can determine
what the amplitude and phase lag are when the driving is ofdha equatior 2 and the system
response is approximately lineaithout the needfor statistics However, the system is essentially
nonlinear and these nonlinear effects may become largeanb#urcation or when the system is
driven hard. By taking the Fourier transform of the time sgrof the system response one can
&é;;t;:ii 5) and

quantify how large these nonlinear effects aidth a similar motivation|

|Wi_e_$_enI_QLd_a.n_cLMs:NamAr 86) calculatbe Fourier spectraof the perturbationsratherthan

the responseaway from periodic attractorsvery closeto local bifurcationswith noisy and weak

eriodicmodulationrespectively.
Once the system has settled into an orbit of pefipere-canwrite-the full nonlinear response of

an arbitrary systernanbewritten as a Fourier series, a sum&fsinusoidal functions with angular

frequencies,, = 2”7" amplitudes4,, and phases,, i.e.

N
x(t) = Z Ay, cos(wnt + dp). (10)
n=0

Then =0 component is a constant, the long term mean of the respdrese,= 1 component is
the linear response of the system andsthe 2 components are theth order harmonics and come
about from the nonlinear response of the system. Since #tersyhas settled into a periodic orbit the
system must repeat itself every cycle. The only way the syst@n do this is by adding harmonics
to linear response. By looking at the ratiégr for n > 2 we-eansechewimpertantthe nonlinear
effectsarerelative to the linear approximatiaranbe quantified In practice the largest harmonics
will generally be the 2ndi{ = 2) and 3rd orden§ = 3) harmonics and provided they are an order of
magnitude (10 timesﬁ—'; < 1071Y) less than the fundamental harmonic, the linear analystseitast

10



325

330

335

340

345

section works wellCalculationof the amplitudes canbe madevia a Fouriertransformof the

time series.
One may also expect subharmonics, components that hawglpéhiat are integer multiples of the
forcing period, to be observed in the system response. Suioimécs are not possible in the systems

we consider here due to the dimensionality of the phase sﬂace
Caleulationof theamplitudesA—isvia-aFeuriertransformefSincetheratios 4= measurdiow
nonlinearthe systemis oneexpectgheseto increaseasthe systemapproachea bifurcation. These

Ay =2cy].

Onecanalsefindthephasesed-bytakirgtheargumenbie—Thenumberof cyclesin thewindow

mustbe large enoughthat the harmonicscan be satisfactorilyresolvedin the Fourier spectra.ln
addition, eachcycle mustbe sampledat a time interval At < T, /2 whereT, st 1S the

minimumharmonicperiodyou wantto resolve.

1systems described by equat[dn 1 are completely describétetiyo dimensional space of variablesindt. Recasting
the nonautonomous system in equafidn 1 as a two dimensiat@i@mous system by identifying a new angular variable
¢ = wt, the system is then described by= f () + D($) andé = w. The resulting phase spate, ¢) is then cylindrical as
¢ is 2 modular. If subharmonics are possible in the periodic systesponse the trajectory must wind around the cylinder
at least twice before repeating itself. Such a trajectomylies it crosses itself which is not allowed due to the exiseeand
uniqueness theorem. Therefore subharmonics cannot exist iwo dimensional systems. This is of course not truehieet
and higher dimensional systems.

11



2.2 Lag 1 autocorrelation of areturn ma;

350  Providedthe systemiime scaleis largerthanits period, /7 > 1, onecanusereturnmapsio assess
355 by calculatingthelag 1 autocarrelatiorfor a sliding datawindow of the retunmaptime seriesat
standarcerrorof the estimatescalesas1/,/m wherem is the numberof cycles(points)within the
window seelWiIIiamsgn and Lent& 2015) fa discussion)For time seriesconsistingof a small

360 numberof cyclesthis canbealimiting factor.

3 Examples

We now demonstrate¢he earlywarningindicatorsin sectior for differentratiosof forcing period,

T, (or equivalentlyangularfrequencyw) to systemtime scaler. In particularwe usea periodicall
forceddoublewell potentialas our main system.This systemhasbeenextensivelystudiedin the

365 contexiof stochasticesonanc e&gNamara and Wigggnfél 1989 mmaitoni et i_@@jor
reviews)asthe simplestmodelof the phenomenavhennoiseis alsoadded Phaseandamplitude

havebeeninvestigatedn this settingb [&hnﬂdman_el_elil @m

literatureis largely concernedvith resonanceffectsin transitionprobabilitiesbetweenthe wells

finite barrier heightbetweenthe wells) ratherthan the anticipationof local bifurcations(barrier
370 heighttendsto zero)thatis the centralinteresthere.

3.1 Cenceptualmedel

Our systemwhich has

onedynamicalvariable,z, andevolvesaccordingo

#=z—2"+D(t) (11)

375 whereoverdotsdenotedifferentiationwith respecto time, t andthe periodicforcing function D (¢
is given by equatiorf2. Equatior{I1 modelsa nonautonomousonlinearsystem the overdamped

limit of a Duffing oscillator 1 (2002))Mhenforcing is constaniw = 0) the
familiar, well studiedautonomousold bifurcationis recoveredfor examplese 1).

the nullclines) and number

For w = 0, the solutionsof = = 0, give the system’sfixed points, z*

380 eitheroneor threedependingnthevalueof D,,. Onecanevaluataghestability of thesefixed points

12



by looking atthelinearizeddynamicscloseto thefixed points,J (z*

J(z*) = g—jm* =1—3z*? (12)

is negativethefixed pointis stable|f it is positiveit is unstableln theregionwherethree

385 bistableregionhashoundariesnarkedby the local bifurcationsandthesecanbe foundby solving

time asthe system time sca

andtendto infinity at the bifurcation.Early warningindicatorsare simply functionsof J(z*) or
equivalentlyr.

3.1 Period of forcing similar to systemtime scale,wr ~ 1

305 approximatelythe sametime scaleasthe period of the forcing. In this regimethe dynamicsare
400 multiple stableperiodicattractorsare possiblegivena fixed setof valuesfor D, D, andw. The

systemstatex is plottedagainstD andagainst astheblueline in figurell. Which statethe system
settlesin depend®nly on the system’sinitial conditionz(¢ = 0). Local bifurcationsarepresenin
405 fastprocesseandthereforethe assumptionst the usualfixed point earlywarningmethodsarenot

Tolllustratetheearlywarningindicatorswefix theforcing amplitudeD,, and the period” ~ O(r)
arefixed-andandtake D,, is-asa control parameter, slowly varying from negative valuegatals

410 the local bifurcatiorin the systemdescribedby equatiorfll We expect to see the system response
become more phase lagged and amplified as we approach théifoceation atD,,, ~ 0.33 when
approaching from the lower nulicline solution&e also expectthe amplitudeof the harmonicsof
the systenresponsdo increase.

tn-eurexamplewe-We choose to tip the system from one state to another by slovdyiad) the

415 mean of the drivingD,,,. Weceuld-howeverhavetippedthesystemAlternatively,thesystemcould

13



Figure 1. The dynamicsof the systemdescribecby equatiorfLTin threedifferenttime scaleregimes Forcing
arameteraresetto D,, = 0, D, = 1/2. In theupperpanelsystemstatez is plottedagainstD(t). Theblack
to adifferentattractorOnecanregardthe systenresponsén two differentways: (i) asingleperiodicattractor
iving a relaxationoscillationsin a monostableegion. (ii) Tipping betweenpoint attractorshy crossinglocal

it awaysettingup a stableorbit. Notice thereis somephasdag andthe dynamicslook approximatelylinear.

14
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havetippedby changing one of the other driving parameters such as amdplD,, or frequencyw.
Since the system response amplitude depend3 pandw and phase lag depends @none must
take this into account when inferring system time scalesfifee indicators.

In figure[2 werun-thesystemthe systemis run forward in time, linearly varyingD,,, from -2
to 2 across the bifurcation over about 25 cycles of the fagrg@eriod (for the values of the pa-

rameters see the figure captiol)-figureBrwe-haveplotiedthePlottedin figure[3 are phase lag
and amplitude of the system response prior to the bifuraticaround /T = 15which-arebeth-,
Both areincreasing as the bifurcation is approached due to theaserinr. Phase lag is calcu-
lated from the difference between the times of the maximbérforcing and the system response in
each cycle. Response amplitude is calculated by takingtmatifference between the maximal and
minimal values in the system response in each cy&lso plottedaretheratiosof the secondand
needsto be long enoughto resolvethe harmonicsin the spectrumbut shortenoughto keep Dy,
approximatelyconstantFor this example wherethe harmonicamplitudegandthe nonlinearityof

figurel3 which showsboth harmonicamplitudesncreasing.
We also plot thecompletespectrumof the ratios A,, /A, againstT,, /T derived from a Fourier

transform of the system response in figilre 4. In the upper pérEmrameters are the same as figure
[@ except we have fixed,, in each of the two runs. In the first ruR,, = —2, this is far from
the bifurcation and one expects the system to behave maarlin(blue line). One sees a second
harmonic around 2 orders of magnitude smaller than thedirespponse. In the second rih,, =
0.25 and the orbit is much closer to the bifurcation (red line)e ®econd harmonic has increased
to about an order of magnitude smaller than the fundameataibnic and a third harmonic is now

also visible indicating the system has become more nonlinea

seatemperatures northernhemispheréemperatgegions.A roughestimateof the oceansurface

SeptembeandMarch.Arctic seaice extentalsofalls into this regimeandwe analyzethis systemin
sectiordd.

15
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Figure 2. The dynamics of the system are described by equéfibn 11 \&itfing D,,,. Parameters are set to
D, =1/2, T == (the same order as the system time seale ~ 1) and D,,, is varied linearly with time
between -2 and 2 over about 25 cycles. In the upper panel #uk Bhes are the nullclines while the system
response is the blue line plotted agaifft). The orbit loses stability around a mean valueldf: 0.5 and
jumps to a new orbit. In the lower panel we have plotted theesysesponse (blue) against the forcibyg
againstt/T". One can see the loss of stability of the orbit aroufi@ ~ 15 and the prior increase in system

response amplitude.

3.1.1 A noteaboutreturn maps

455  pointindicatorshecomesisefulwith the addedcaveatthatthetime seriesof the systemmusthave
enoughcyclesto producestatisticallysignificantresults. Returnmapanalysisis complementaryo
phasdag andrespons@mplificationsincethesequantitiesstartto asymptotevhenwsr > 2. This
sameasfigurefd (w7 ~ 1) exceptDy, is variedover 100 cyclesinsteadof 25. This is becausextra

460  datapointsareneededo calculatethelag 1 autocorrelatiorof the returnmapswith any reliability.
We havealso addedGaussianwhite noiseto equatior{L] of standardieviation0.01 asthe return
haveplottedtheearlywarningindicatorsfor thistime seriesncludingthereturnmapcalculatedwith.

465  estimatedcurves Thekey pointis the theoryandestimatedautocorrelationsio not showanything

16
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Figure 3. The early warning indicators, response amplification (ugamel), A = \/DiL“, and phase lag
14wt

(tewermiddle panel) Plag — % arctan(wT) calculated for the time series in figurke 2. We have plottedehe

! 27

indicators prior to the bifurcation ay7T" = 15. Nete-beth-The 2nd (blue) and 3rd (red) harmonicamplitudes

A, /A, arealsoplottedin the lower panelusing a sliding window of 5 completecycles.All indicators are
increasing asnewette-expecexpected

forcing (T = 1/4 sowr ~ 4). This is aregimein which phaselag and responsemplitudestart

3.2 Period of forcing much slower than systemtime scale w 1
Whenequatioril1is operatingn this regime(periodof forcingmuchgreatethansystentime scale

T > 1) thesystemcanadijustto changingD(t) relatively quickly andeffectivelyremainsat a fixed
arenotusefulasthesequantitiesasymptotdo ¢;q4 —» 0 and— 7 respectivelyThesystenstates is
plottedagainstD andagainst astheredline in figurell.

glaciallinterglaciatyclesthathavethe slow build, fast collapsetype behaviourof relaxation oscil-

lations.Fertheseparameterthedynam very-nonline hownby-thelargeamplitudeofthe

17
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Figure 4. Ratio of the nth orderharmonicamplitudeto the fundamentaharmonicamplitude A,, /A, against

theratio of the nth harmonicperiodto the fundamentaharmonicperiodT;, /T. The dynamicsof the system

aredescribedby equatiorL]l. In the upperpanelparametersirefixed to D, = 1/2, T = 7 (the sameorderas

thesystemtime scaler). Theblueline is for D,,, = —2 (far awayfrom thebifurcation),thenonlinearresponse
is dominatedoy the seconcharmonicat 7,, /T = 1/2 althoughsmall,abouttwo ordersof magnituddessthan

thelinearresponseTheredline is D,, = 1/4, closeto the bifurcationthe systemresponsénashecomemore

nonlinear.The seconcharmonic(7T,, /T = 1/2) is now almostone orderof magnituddessandthe third order
harmonic(7;, /T = 1/3) is alsoprominent.In the bottompanel,we showthe spectrumwhenthe dynamicsis

very nonlinear.Parameteraresetto D,, =0, D, = 1/2, T'= 1007 sowT ~ 1/100. This is the slow forcin

limit shownin figure[dl (redline) which hasavery nonlinearelaxationoscillationtyperesponseNote only odd

harmonics(T,, /T = 1/3,1/5,1/7,... etc.) are presentdueto the systemexperiencinga symmetricpotential

requiringthesolution,z(t), to alsohavethis symmetry.

18



Figure 5. Samefigure asfigureldin the manuscripexceptthevariationof D.,, is overmorecyclesto generate
morepointsfor areliablereturnmapanalysis Weak Gaussiaiwhite noiseof standardieviation0.01is added

T = w giving wt ~ 1 whereagheredline hasa shorterperiodof T' = 1/4 to give wr ~ 4m. Theseareplotted
againstD(t). In thelower panelwe haveplottedthesesystenresponseastime seriesagainstheforcing (black

line).

harmoeniesNeticeenhce sheetdhavetime scalesn the orderof thousand®f yearsforcedby the

solarinsolationvariationof Milankovitch cycles.The forcing is a superpositiorof manydifferent
sinusoidafrequenciesthedominanbneshavingperiodof 41 kyr (relatedio theobliquity of Earth’s
485 orbit), 19 and23 kyr (relatedto the precession)Currentthinking however favoursmorecomplex,

two and higher dimensionaldynamicsto modelthesecyclesthan the single variablemodelswe

consideiin thispa e@_@an 2 r ii>L(;Ql1 leer et al. (201 nolgrugifizl JZQlJB

Thespectrunof avery nonlinearrelaxationoscillationtype,dynamicss illustratedin thelower
490 panelof figurefd. This is the spectrumof the slow forcing run (red line) in figure[D. Only odd

harmonics appear in its spectrurthis-is-because the static potentidl= — [ idx is symmetric

aboutz for this value ofD,,, = 0 i.e. V(z) = V(—z) and therefore any solution éfmust also have
this symmetryg(t + 7'/2) = —z(t). Only odd harmonics have this propetity.

2This is not sufficient though as there are other paramettingethat feature the second harmonic and also have the same
symmetric potential i.eD,,, = 0 andT = = in figure[d (blue line). The difference is that the runs feiayisecond harmonic
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Figure 6. wr ~ 1: The earl

3.3 Period of forcing much faster than systemtime scale,wt > 1

The systemstates is plottedagainstD andagainstt asthe greenline in figure[ll. The forcing is
the dynamicscomefrom the forcing directly. In this casewe canplaceD(¢) in the fastdynamics.
aresatisfied It is truethat D(¢) is independenof x, howeverit is not uncorrelatedvith itself at
andagainarenot very usefulto detecta trendin increasingime scale.Phasdag, ¢;,, — 7/2 and

responses only experience a limited part of the potent@lthe full symmetric potential. Even though the potentiathe

same, the forcing is quick enough to trap the system in art orljist one of the two potential wells. This local potential
well is asymmetric and what the system sees is effectivedgrifged by a Taylor expansion around the centre of that well.
contrast the relaxation oscillation type run travels estosth wells equally and therefore sees the global symmaitintial
requiring an odd harmonic solution. This is not a generie dasvever.

20



o.oz,l.b,vvm

0.01- *

haselag (middle panel ,‘bﬂ = L arctan(w7) calculatedfor the red time seriesin figure[B. In the lower

anel,lag 1 autocorrelatiorof a sliding window of 25 pointsof the returnmapis plottedwith standarderrors
dashedines) on the estimate Black lines aretheoreticalcurvesof all the quantities Phasdag andamplitude
responsdiavenow asymptotedandarenot usefulquantitieshoweverthe returnmapnow becomesuseful.

505 An exampleof a systemapproximatelymodelledby this limit is the global terrestrialvegetation
storagee.g.the time scaletakenfor a forestto regrowoncecut down. Oneseesthis phaselag of
510  hemisphereolarinsolationmaximum. This laggedannualminimumin the integratedesponsef

terrestrialvegetatiorcarbonin the global carbonflux. We haveplottedthe MaunalLoa CO, record
andthetime of yearof the minimumconcentratiornn figure[8.

3Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trendsihd Dr. Ralph Keeling, Scripps Institution of

Oceanographyscrippsco2.ucsd.edu/)
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h*eéte@%&hesameerde#as&hesys{emtlmeseMeHn the upper panelFheblueline-isfor
Pr=—2{farawayfromn the bifureation);lower panelwe haveplottedthe rerlinearesponsesdeminated
by-minimumannualCo; concentratioragainsyear.Onenoticesthe secencharmenicat i/ =/ 2-although
smath-abeuttwe-erdersminimum CO, concentrationoccursroughly 3/4 of magnitueelessthan-the tinear
respensay throughtheyear Fhereetine Thisis Hm—+/4-closetobecausenaximalcarbonuptakeoccurs
mthemmmmghe%m%%mﬂem
terrestrialvegetatiorandthe thire
e#der—hamqeme%%)—lt is mmmmgmhebmmpmm

w‘r—%—lﬁeeiFmsﬁtheaewferemghmﬂ—&hGWHmammummﬁgweﬂtheNorthernhemls heresolarinsolation
(reetinebestgrowing conditions whieh-hasby 1/4of a verHGMmeance#a*aﬂeﬁeseﬂkaﬂen%ypecme

of the time scaledifferencebetweenthe respons
a%eﬁ#esemdﬂeifeof the systenexperieneingasymmetricpotentialrequiringand theselﬁﬂen—%éﬁ—te-alse
eriodof theforcing.
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3.4

4 Looking for atipping point in Arctic seaice satellite observations

There has been much reseaiele-ona possible local bifurcation and tipping pointin the ArciEa
icewi gingsee for examplg Armour et a]l. (2&)]Jl) Eisenman and Weﬁlauf
;0_0;$)I Lindsay and ZhahL]_(;dOE), Livina and LgHm(idK@lgLet_al. (2Qﬂ2) ar‘]d Wang and QverILmd

). This possible bifurcation in the sea ice cover magileeto the well known ice albedo feed-

back first studied bLLB_u_d;LLtJ}_uQ|69) alld_S_ellel;Ls_(i%Q). Wieeris present it reflects a high pro-

portion of the incoming solar radiation due to its higherealb yet when it starts receding the darker

ocean absorbs more radiation increasing heating and pilognobre sea ice retreat. This feedback
can result in instability and multiple steady states.

We anabyzecalculateall the previouslymentionedearly warningindicatorsfor a time series of
Arctic sea ice area satellite observations from 1979 togmetaandcaleulatetheday. Thatis we

calculatephase lag, response amplit ime series, relativesizeof the 2ndand

3rd harmonicsandthelag 1 autocorrelatiof thereturnmapuwith time to look for signs of critical
slowing down:thatmightindicatetheapproactof alocal bifurcationor ‘tipping point in theArctic

In figure[Qwe-haveplotiedthesatelliteobservation®f Arctic sea ice areareplottedagainst year.
Sea ice area data were obtained from The Cryosphere Tod@cpod the University of lllinois.
Thisdat&sequtgsgﬂ uses SSM/lI and SMMR series satellite products and spanstbg#@sent at
daily resolution.

In figure[I0 we plot the amplitude of the sea ice area annuat@md the phase lag between
the sea ice area minimum and maximum during each cycle. Wamasthe maximal and minimal
driving occurs at the same time as maximal and minimal of dher snsolation, that is, the midpoint
and end point of the year respectively to obtain phase lagmit the the impact of high frequency
variability on the location of the extrema, we have smoottieddaily data with a sliding window
with-of 30 days.

From figurd_ID we see the cycle amplitude is increasing witle tallthough the phase lag does not
appreciably change. We first make some rough calculatiossdaf these plots are consistent with
each other: From the phase lag figure, a time scale-0f0.33,0.5] yr from the lag 0f[0.18,0.2]
of a cycle can be inferred. If we assume for the moméhe amplitude of the forcind,, is not
changing throughout the time period of the observatioris (ttay not be true) and take the smallest
value in the range for,97s = 0.33 yr atoccurring in 1978 and the largest value in 20&5;5 = 0.5
yr we can make a rough calculation of how much the sea ice ampliwould have increased i.e.
Asnis — T01s % ~ 1.06. From figurd_ID we take the amplitude at 1978 tahgrs ~ 4.5

A197s T1978

and at 2015 to bélyq15 ~ 5 we find % = 1.11. These values could therefore be consistent with a

4http://arctic.atmos.uiuc.edu/cryosphere/timeseaiesm.1979-2008
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Figure 9. Arctic sea ice area satellite observations from 1979 togmieslay (2015) obtained from The

Cryosphere Today project of the University of Illinois.

constantD,, and a changing time scale. However, the time scales infémedeither the phase lag
or amplitude are not changing appreciably and therefoeseitrs unlikely the system is approaching
a local bifurcation.

We note that the phase lag is a more robust indicator. Thiedalse the phase lag depends only
on the product of the frequency of the forcing and the sysieme scale whereas the amplitude
depends additionally on the amplitude of the driviiy,, which may well be changing throughout
the observational period and could account for some or ah@fncrease seen in the amplitude in
figure[10. Although the solar insolation will be a large coment of the forcing amplitude and is
essentially fixed, other factors such as clouds as well agrmirsea temperatures will also factor
into the driving amplitude. Geometrical constraints imgbdy land masses affecting the maximal
extent of the sea ice will also influence the amplitude of ti ise oscillation when ice extent is
large (Eisenman (2010)). In contrast, we can take the freguef the driving to be essentially fixed
by the annual solar insolation cycle making the phase lagmabust.

We havealsoplottedtheln thelower panelof figurelJwe haveplottedtheratio of the secondand
third harmonicamplitudeso the amplitudeof the fundamentaharmonicwith time usinga slidin
window of 10 completecyclesagainstheyearatthe endof thewindow. We haveusedthe minimal

window lengthneededo resolveboth harmonicgeliably. This indicatoralsoshowsno cleartrend
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We havealsocalculatedhelag 1 autocorrelatiorf thereturnmap.Fromphasdag, theestimate
However,the estimatedime scaleis uncertainandit is conceivablehe returnmapanalysismight
570 work. As thereareonly 37 completeyearsof data,any returnmaptime serieshasa maximumof
invariantto this choice,alwaysbeingvery uncertainWe linearly detrendthe cyclein eachsliding
575 windowandthencreatethereturnmaptime seriesfrom thatdetrendeavindow. Onecanalsochoose
endyear(z axis) andday of the yearin eachcycle the returnmapgeneratedn (the y axis). We
createa newreturnmapsevery10 daysgiving 36 differentpointswithin eachcycle.As seenin the
580 figureautocorrelatiomlependsery heavilyon wherein the cycle onechooseso generatéhe map,
a sign thatthe returnmapis not a good approactfor this system.A_goodreturnmap shouldbe
the left handpanelof figure[12 we plot the standarcerrordividedby the autocorrelationNote that
mostestimatef lag 1 autocorrelatiothavestandarderrorslargerthanhalf their valuegiving very
585 uncertainestimatesin an effort to reducethe uncertainityin the estimatewe havealsotakenthe
1 autocorrelations 0.16+0.26 which correspondso a (very uncertain)time scaleof 7 ~ 0.55 yrs.
Thisis consistentith theestimatesrom thephasdag. This alsosuggestshatthesamplingnterval
T > 7 andthereforedetermininghetime scaleusingthereturnmapapproactis difficult. We have
590 increasedhesliding windowto 37 yearsto minimizethestandarcrrorin theestimatehoweverone

will notbe ableto thenseea trendin autocorrelationEvenso, the standarcerrorsarestill greater
thanhalf the estimate.

We havealsoplottedthefull spectrunof theratiosA,, /A; for the entire time series in figufell1.

We note the nonlinear effects are quite prominent in thisesyssecond and third harmonics are

595 around an order of magnitude smaller than the linear regpaithough we can still probably get
away with the linear analysi&orth,fifth andsixth harmonicsarealsovisible. These nonlinearities

may be due to albedo effect or to the geometrical effectsooftictic ocean basilO)).

To conclude, from this simple analysis it seems that theesysttime scale and therefore sta-

bility is not changing appreciably if at all and it is unlikeio be approaching a local bifurcation.

600 However, simple theoretical models, suc

Eisenmani (2012) anBathiany et al. (2016) (whalsousedareturnmapapproachyuggest that the
sea ice time scale does not change very much approachinguheation, even decreasing slightly
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Figure 10. In the upper panel amplitude of sea ice ageaiftatienwithin eacharnualcycleis plotted against
yeaeneHn-, In thetewermiddle panel phase lag plotted between the sea ice area minimum (red line) and
maximum (blue line) and the solar insolation minimum and imaxn respectivelyagainstheyear.In thelower

anel,the 2nd (blue) and 3rd (red) harmonicamplitudesA,, /A, are plottedagainstyearendusinga slidin
window of 10 years Theeseitiatieramplitude is increasing however the phase lag isiatmonicamplitudes

alsoshowno convincingtrend.

before rapidly changing over a very small interval and tfeeewould be very hard to detect if
present.

5 Conclusions

Much previous work on detecting local bifurcations froméiseries required one to be able to par-
tition the universe into widely separated time scales andahthe system dynamics as overdamped.
When this is the case one can use the ystialisticalfixed pointearly warning indicators of increas-
ing lag 1 autocorrelation and variance since these indicators med#se system’s response to small
perturbations away from its fixed point by the fast, noisygesses. It is the response to this small,
noisy forcing that allows one to measure the system’s tinmes@ he systems we have been looking
at in this paper do not have fast or random forcing. The systeonsidered here have determinis-
tic forcing with a period roughly that of its time scale alttgh the dynamics are still overdamped.
Deterministic forcing again allows one to infer the systetithe scale simply by measuring the re-

sponse to the forcingWe-feundwithout the needfor largeamountf datarequiredby statistical
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Figure 11. Ratio of thenth order harmonic amplitude to the fundamental harmoniclimnde A, /A; found
from the Fourier transform of the Arctic sea ice area timéeseagainst the ratio of theth harmonic period

to the fundamental harmonic peri@d /7. Onecanseethe Arctic seaice responsédeaturesprominentsecond,
third, forth, fifth andsixth harmonicdn its spectrum.

quantitiesfor robustestimatesWe usedtwo analogous early warning indicatorsiteelag 1 autocor-
relation and variance in these systems; these were phaardagsponse amplification respectively.
Just as autocorrelation is more robust as an indicatordifusiction of fewer parameters), the same
is true of phase lag, only depending on the frequency of tharfg and the time scale of the sys-
tem. The system response amplification also depends on thktwaae of forcing, which in many
circumstances is probably difficult to measure.

We alsoshowedthatby-taking-useda Fourier transform of the time seriesecanto quantify
how nonlinear the system is behaving and whether the linganoaimations usually made are good.

We appliedthesenew-also discussedeturn map methodsthat essentiallyconverta periodic
therewasacomplementaritpetweeneturnmapindicatorsandphaseagandresponsamplification,

WT > 27
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Figure 12. Left panel:Lag 1 autocorrelatiorof the returnmapagainstliding window endyearusinga slidin

window of 20 years(z axis)andpointwithin the cyclethereturnmapis createdon the y axis (we createreturn

mapsevery 10 days).One seesautocorrelatiordependsvery heavily on wherein the cycle one chooseso

eneratehethereturnmap.Right panel:Standarderror of the autocorrelatiorreturnmapestimatedivided b

the estimateagainstsliding window endyear. The estimates very uncertainalmosteverywherewith standard
errorsgenerallybeingat leasthalf asbig asthe estimate.

We appliedtheseindicators to satellite observations of Arctic sea ice aaesystem whose period
of forcing, effectively the annual cycle of insolation, imdar to the time scale of the system. This is
also a system that has been conjectured to have a tippinggwario a local bifurcation. We did not
find any detectable critical slowing down and therefore sighthis bifurcation. It should be noted
however simple models of the sea ice suggest critical sigwimwn only occurs very close to the

bifurcation making it very hard to detect.

Appendix A: Early-waraings-Phaselag and responseamplification with arbitrary periodic
forcing

HerewegivethederivationPhasdag andresponsamplificationcanbefoundfor the more general
case of any type of periodic forcing —Fhatisweselvetheequatierdy solving

i+ % = D(t) (A1)
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Figure 13. Meanlag 1 autocorrelationof the return map acrossall startingpoints within the cycle usinga
sliding window of 20 years.This is the sameas figure[I2 with the meantakenalong the y axis. Estimated
autocorrelations still very uncertain.Themeanis thesolidline with the dottedlinesbeingthe meanplus/minus

the standarcderror. The meanvalue acrossall years0.16+0.26 which correspondso a (very uncertain)time

scaleof 7 ~ 0.55 yrs.

7 the timescale of the system (thdolding time). For any periodic forcing)(¢) with periodT" can
be written as the Fourier series

N
D(f) = Z Bi cos(wit + Xi)- (A2)
=0

B, are the amplitudes of the different component sinusoidalesia.; = % are the frequencies

of the components ang, are the phases of each of the components. As the equatioreés lihe
superposition principle holds. That is, we assume the isollitas the form

w(t) =) wi(t) (A3)
by setting all but théth term of the driving to zero we can solve the+ 1 equations

i+ L = Bjcos(wit + Xs) (Ad)
T

for eachux; (t)whi
superpoestiem, Thesesolutionscanbesuperposetb obtain the full solution to any periodic driving
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term.FheselutionoftheforcedsystemT hisis

Z [cos (w;t + x; — arctan(w;T))
V1+w; 72

t t
— e~ 7 cos(x; — arctan(w;7))] +xpe” T (AB)

which settles into orbit

cos (w;t + x; — arctan(w; 7)) (A6)

Zm

whent > 7, that is, the solution is just the sum of each of the forcinmponents, each with a
response amplification of

T

—_— A7
V14 w?ir? (A7)
and a response lagging the forcing with a phase of

(béag = arctan(w;7). (A8)

One can find out what these phase lags and amplitudes areihyg take Fourier transform of the
time series of both the forcing and response.
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