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Abstract. The prospect of finding generic early warning signals of an approaching tipping point in a

complex system has generated much recent interest. Existing methods are predicated on a separation

of timescales between the system studied and its forcing. However, many systems, including several

candidate tipping elements in the climate system, are forced periodically at a timescale comparable

to their internal dynamics. Here we use alternative early warning signals of tipping points due to local5

bifurcations in systems subjected to periodic forcing whose time scale is similar to the period of the

forcing. These systems are not in, or close to, a fixed point. Instead their steady state is described

by a periodic attractor. For these systems, phase lag and amplification of the system response can

provide early warning signals, based on a linear dynamics approximation. Furthermore, the Fourier

spectrum of the system’s time series reveals harmonics of the forcing period in the system response10

whose amplitude is related to how nonlinear the system’s response is becoming with nonlinear effects

becoming more prominent closer to a bifurcation. We apply these indicators as well as a return map

analysis to a simple conceptual system and satellite observations of Arctic sea ice area, the latter

conjectured to have a bifurcation type tipping point. We findno detectable signal of the Arctic sea

ice approaching a local bifurcation.15

1 Introduction

The potential for early warning of an approaching abrupt change or ‘tipping point’ in a com-

plex, dynamical system has been the focus of much research, see for example Wiesenfeld (1985),

Held and Kleinen (2004), Thompson and Sieber (2011) and Scheffer et al. (2012). Abrupt change in

a system can occur due to a bifurcation - that is, a small smooth change in parameter values can re-20

sult in a sudden or topological change in the system’s attractors. This extreme sensitivity of systems

close to criticality is familiar from studies of critical phenomena in statistical mechanics (Domb et al.

(1972-2001)) and stability analysis in nonlinear dynamical systems (Kuznetsov (2004)). Much work

on the anticipation of bifurcations from time series data e.g. in ecosystems (Carpenter et al. (2011)),
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or the climate system (Dakos et al. (2008) and Lenton (2011)), is based on methods that infer the25

time taken for the system to recover to its steady state (the system’s time scale) from perturbations

away from that steady state. The methods are usually based ona clear separation of three time scales:

(i) The time scale of the dynamics of the system one wants to study, (ii) much faster processes than

the time scale of the system, usually thought of as the perturbations the system recovers from and

(iii) much slower processes than the time scale of the systemwhich govern the present system steady30

state. In addition, the system dynamics are modelled as overdamped, the fast dynamics as a noisy,

normally distributed random variable of small variance andthe slow dynamics as a constant, control

parameter. Provided these are good working approximations, critical slowing down - the increase of

the system’s time scale, is expected prior to a local bifurcation and can be detected by computing

the lag 1 autocorrelation in a sliding window of a system’s time series. An increasing trend in au-35

tocorrelation shows the stability of the system is weakening or equivalently, the system’s time scale

is increasing - which is a generic feature of a system approaching a local bifurcation. Provided the

variance of the fast noisy process is constant, increasing variance of the system’s time series is also

a good indicator of critical slowing down, although it is less robust than lag 1 autocorrelation due to

its dependence on the noisy process.40

For many systems of interest one or more of the above assumptions may be invalid (Williamson and Lenton

(2015)). In particular, when the forcing of a system has a comparable period to the time scale of the

system, the forcing cannot be modelled as a slow, constant control parameter or a fast, random pro-

cess, however they can still be thought of as a perturbation away from the system steady state that

one can measure the recovery time from, an observation we exploit in this manuscript. These systems45

are particularly relevant in the climate system where periodic forcing is a consequence of the motion

of the Earth relative to the Sun. For example, solar insolation variation from the diurnal, annual or

Milankovich cycles. These systems have steady states described by periodic attractors rather than

the simpler, fixed point type attractors required for lag 1 autocorrelation and variance to be used as

early warning indicators.50

In an elegant study Wiesenfeld (1985) computed the Fourier spectra of noisy perturbations in

systems with periodic attractors. Very close to a local bifurcation, the dominant system time scale

asymptotes towards infinity causing the dynamics of the noisy perturbations away from the attractor

to be dependent only on the type of bifurcation and not on the details of the system’s specific equa-

tions. This observation allowed the author to classify all codimension 1 bifurcations in an arbitrary55

periodic system by the harmonics in the spectra of residuals. He called these early warning signals

noisy precursors.

A common method to study stability changes in periodic attractors is the return or Poincaré map,

see Strogatz (2001). Here, one converts the continuous-time periodic orbit into the fixed point of a

return map by sampling the orbit once every period. One can then compute the usual fixed point60

indicators for the resulting return map time series such as lag 1 autocorrelation and variance. Ad-
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vantages of this approach include no linearity requirementon the dynamics of the periodic attractor

although perturbations away from the attractor must be small enough to be treated linearly. One can

also handle systems with internally generated cycles rather than those generated by external periodic

forcing that we look at in this manuscript. To detect any change in stability from the return map the65

time scale of the system must also be greater than the period of the forcing. To see this, imagine

one samples the cycle to create a point in the return map and then immediately after perturbs the

system away from the stable cycle. If the system time scale isshorter than the cycle period, which

is determined by the forcing period, the system will have recovered back to the stable cycle before

the system is sampled again for the next point in the return map. The perturbation and its recovery70

will therefore be invisible to stability analysis on the return map time series. It should be noted that

close to a local bifurcation the system time scale approaches infinity so satisfying this requirement.

However, if this requirement is met only over a few cycles or less it will be very hard to detect.

With this limitation in mind we suggest alternative early warnings signals of approaching local

bifurcations when the period of the forcing is similar to thetime scale of the system. We look partic-75

ularly at sinusoidal forcing since this approximates the variation of solar insolation well. However,

the method works for any periodic forcing and we give the derivation of the general case in the

appendix. We demonstrate that increasing system time scaleas it approaches a local bifurcation

shows up as an increasing phase lag in the system response relative to the forcing. In addition, the

amplitude of the system response increases as well. These indicators, like lag 1 autocorrelation and80

variance in fixed point attractor methods, assume the linearized dynamics approximate the true non-

linear dynamics well. One might ask how well the linear approximation works, especially near the

bifurcation, since bifurcations are strictly nonlinear phenomena. A quantitative answer to this ques-

tion can be provided by computing the Fourier spectrum of thesystem’s time series. In particular,

as the system’s behaviour becomes more nonlinear, harmonics of the forcing period are generated in85

the system response and their amplitudes may be obtained from the system’s Fourier spectra. Since

the system response becomes more nonlinear as one approaches the bifurcation, one can view the

increasing amplitude of harmonics as another early warningsignal.

The paper is organised as follows: In section 2 the early warning indicators used in the manuscript

are introduced, namely the system response phase lag and amplification as well as harmonic am-90

plitudes. We also review a common approach to periodic attractors, the return map, which is com-

plementary to phase lag and response amplification. In section 3 a periodically forced overdamped

system in a double well potential is used to illustrate the time scale separation problem and the prop-

erties of the early warning indicators when a local bifurcation is approached. In section 4 we apply

the early warning indicators to satellite observations of Arctic sea ice area, a system conjectured to95

be approaching a local bifurcation. We conclude in section 5.

3



2 Early warning indicators of local bifurcations in periodi c systems

As previously mentioned in the introduction, the Arctic sea-ice has been conjectured to be approach-

ing a local bifurcation. Treating this system approximately, one can think crudely of the slow control

parameter as the decrease of outgoing long-wave radiation,giving a warming trend in air temperature100

as the Earth’s atmospheric CO2 concentration increases. This is a system that is forced periodically

and deterministically by the annual cycle of short-wave solar insolation. The system response is

dominated by this periodic forcing rather than small amplitude, random noisy forcing also present

and system time scale is roughly the same order of the forcingperiod. In this section, motivated by

detection of local bifurcations in systems like the sea-icetype from time series, we look for suitable105

methods. Although this system has no clear separation of time scales with which to use fixed point

methods directly, the fact that this system has a large and predictable perturbation one can measure

the response to reduces the need for the statistical methods(and therefore large numbers of data)

required for noisy perturbations and so number of data in a time series becomes less of an issue.

Students of physics or engineering will likely have solved the equation for the forced damped110

harmonic oscillator and observed in the overdamped limit that the phase and amplitude depend on the

damping parameter (see for example Main (1993)). In the following subsections we propose to use

this fact and phase lag and response amplification as simple non-statistical indicators of system time

scale. We demonstrate their properties and their functional dependence on system time scale. These

early warnings are based on a linear dynamics approximationbut by taking the Fourier transform115

of the system response, one can also look the magnitude of thenonlinear response. This has two

purposes, first one can check the linear approximation is good and second, because bifurcations are

strictly nonlinear phenomena, the system response will become more nonlinear as one approaches

the bifurcation giving another early warning indicator that can be monitored.

The systems we concentrate on in this manuscript, relevant to externally forced climate problems,120

have cycle periods determined by the period of forcing and a one-way coupling from the forcing

to the system and so are special cases of periodic attractors. For these special cases, when forcing

period and system time scale are similar, phase lag and response amplification are useful indicators.

However, return maps are generally more useful when treating more general periodic attractors. At

the end of the section we briefly review the method of return maps.125

2.1 Phase lag and response amplification.

We consider systems that can be described by

ẋ= f(x)+D(t) (1)

wheref(x) is, generally a nonlinear function of the system state scalar variablex with forcingD(t)

given by130

D(t) =Dm +Da cos(ωt). (2)
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Dm andDa are constants,ω = 2π
T

is the angular frequency andT is the period of the forcing.

We have assumed any other random, noisy external forcing is very small and can be neglected. The

solution for a general form forD(t) is given in the appendix, however here we use sinusoidal forcing

as this is most relevant for many climate systems and we wish not to obscure the simplicity of the135

main result.ẋ describes the dynamics of a forced overdamped system. This is a nonautonomous

system whose state can be completely described byt andx. After some timets ≫ τ , whereτ is the

system time scale, the system will settle into some sort of steady state, either an orbit or a fixed point

whose mean statēx is

x̄=
1

T

T+ts
∫

ts

x(t)dt. (3)140

We now Taylor expandf(x) to first order around̄x so that

ẋ≈ a− x

τ
+Da cos(ωt). (4)

where

a= f(x̄)− ∂f

∂x
|x=x̄x̄+Dm (5)

τ =−1/
∂f

∂x
|x=x̄ (6)145

are the linearisation constants. We have assumed higher order terms such as1
n!

∂nf
∂xn (x− x̄)n, n≥ 2

are small relative to zeroth and first order terms so that the linearised dynamics approximates the full

nonlinear dynamics well. We show how to check this approximation in section 2.2. Assuming the

approximation is good, one can solve equation 4. Ast≫ τ the system settles into the orbit

lim
t≫τ

x(t) = aτ +
Daτ√

1+ω2τ2
cos(ωt+φ) (7)150

where the system response lags the forcing by phaseφlag = ωtlag =−φ given by

φlag = arctan(ωτ). (8)

that is, the phase lag is a function of the forcing frequency and the system response time scale. One

also notices that the system response, relative to the forcing amplitude,Da, is amplified by a factor

τ√
1+ω2τ2

(9)155

which is also a direct function ofω and τ . The more general derivation whenD(t) can be any

periodic function is given in the appendix A.

2.2 System nonlinearity and harmonic amplitude from Fourier analysis

By simply looking at the time series of the system response and the forcing one can determine

what the amplitude and phase lag are when the driving is of theform equation 2 and the system160
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response is approximately linear without the need for statistics. However, the system is essentially

nonlinear and these nonlinear effects may become large neara bifurcation or when the system is

driven hard. By taking the Fourier transform of the time series of the system response one can

quantify how large these nonlinear effects are. With a similar motivation Wiesenfeld (1985) and

Wiesenfeld and McNamara (1986) calculated the Fourier spectra of the perturbations, rather than165

the response, away from periodic attractors very close to local bifurcations with noisy and weak

periodic modulation respectively.

Once the system has settled into an orbit of periodT , the full nonlinear response of an arbitrary

system can be written as a Fourier series, a sum ofN sinusoidal functions with angular frequencies

ωn = 2πn
T

, amplitudesAn and phasesφn i.e.170

x(t) =

N
∑

n=0

An cos(ωnt+φn). (10)

Then= 0 component is a constant, the long term mean of the response, then= 1 component is

the linear response of the system and then≥ 2 components are thenth order harmonics and come

about from the nonlinear response of the system. Since the system has settled into a periodic orbit the

system must repeat itself every cycle. The only way the system can do this is by adding harmonics175

to linear response. By looking at the ratiosAn

A1
for n≥ 2 the nonlinear effects relative to the linear

approximation can be quantified. In practice the largest harmonics will generally be the 2nd (n= 2)

and 3rd order (n= 3) harmonics and provided they are an order of magnitude (10 times,An

A1
< 10−1)

less than the fundamental harmonic, the linear analysis in the last section works well. Calculation of

the amplitudes,An, can be made via a Fourier transform of the time series.180

One may also expect subharmonics, components that have periods that are integer multiples of the

forcing period, to be observed in the system response. Subharmonics are not possible in the systems

we consider here due to the dimensionality of the phase space. 1

Since the ratiosAn

A1

measure how nonlinear the system is one expects these to increase as the

system approaches a bifurcation. These ratios can be plotted for a time series by taking the Fourier185

transform for a data window consisting of an integer number of cycles and sliding this window

forward by one cycle recursively through the time series. The number of cycles in the window must

be large enough that the harmonics can be satisfactorily resolved in the Fourier spectra. In addition,

each cycle must be sampled at a time interval∆t≤ TNyquist/2 whereTNyquist is the minimum

harmonic period you want to resolve.190

1Systems described by equation 1 are completely described bythe two dimensional space of variablesx andt. Recasting

the nonautonomous system in equation 1 as a two dimensional autonomous system by identifying a new angular variable

φ= ωt, the system is then described byẋ= f(x)+D(φ) andφ̇= ω. The resulting phase space(x,φ) is then cylindrical as

φ is 2π modular. If subharmonics are possible in the periodic system response the trajectory must wind around the cylinder

at least twice before repeating itself. Such a trajectory implies it crosses itself which is not allowed due to the existence and

uniqueness theorem. Therefore subharmonics cannot exist in the two dimensional systems. This is of course not true for three

and higher dimensional systems.
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2.3 Lag 1 autocorrelation of a return map

Provided the system time scale is larger than its period,τ/T > 1, one can use return maps to assess

the stability of a periodic attractor. The return map time series, generated by sampling the system

response once every cycle, allows one to apply fixed point statistical early warning indicators such

as lag 1 autocorrelation. It is noisy, random forcing away from the periodic attractor that this method195

infers time scale from, rather than response to deterministic, periodic forcing. This is usually done

by calculating the lag 1 autocorrelation for a sliding data window of the return map time series at

least as long as the system time scale but not so long that any increasing trend in system time scale

skews the autocorrelation estimate. It is also desirable tohave many points within this window as the

standard error of the estimate scales as1/
√
m wherem is the number of cycles (points) within the200

window (see Williamson and Lenton (2015) for a discussion).For time series consisting of a small

number of cycles this can be a limiting factor.

3 Examples

We now demonstrate the early warning indicators in section 2for different ratios of forcing period,

T , (or equivalently angular frequencyω) to system time scaleτ . In particular, we use a periodi-205

cally forced double well potential as our main system. This system has been extensively studied in

the context of stochastic resonance (see McNamara and Wiesenfeld (1989) and Gammaitoni et al.

(1998) for reviews) as the simplest model of the phenomena when noise is also added. Phase and

amplitude have been investigated in this setting by Shneidman et al. (1994) and Jung and Hänggi

(1993). This literature is largely concerned with resonance effects in transition probabilities between210

the wells (finite barrier height between the wells) rather than the anticipation of local bifurcations

(barrier height tends to zero) that is the central interest here.

Our system which has one dynamical variable,x, and evolves according to

ẋ= x− x3 +D(t) (11)

where overdots denote differentiation with respect to time, t and the periodic forcing functionD(t)215

is given by equation 2. Equation 11 models a nonautonomous nonlinear system, the overdamped

limit of a Duffing oscillator (Thompson and Stewart (2002)).When forcing is constant (ω = 0) the

familiar, well studied autonomous fold bifurcation is recovered (for example see Strogatz (2001)).

For ω = 0, the solutions ofẋ= 0, give the system’s fixed points,x∗ (the nullclines) and number

either one or three depending on the value ofDm. One can evaluate the stability of these fixed points220

by looking at the linearized dynamics close to the fixed points,J(x∗)

J(x∗) =
∂ẋ

∂x
|x=x∗ = 1− 3x∗2 (12)

If J(x∗) is negative, the fixed point is stable, if it is positive it is unstable. In the region where three

fixed points exist one finds a bistable region i.e. two points are stable while the third is unstable. The
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bistable region has boundaries marked by the local bifurcations and these can be found by solving225

J(x∗) = 0 for x∗ when the fixed point becomes neutrally stable. One can also calculate thee-folding

time scale of the system in statex, τ from the Jacobianτ =−1/J(x). We will refer to thee-folding

time as the system time scale. As the system gets closer to thebifurcation the system time scale

will increase and tend to infinity at the bifurcation. Early warning indicators are simply functions of

J(x∗) or equivalentlyτ .230

3.1 Period of forcing similar to system time scale,ωτ ∼ 1

This regime,T ∼ τ , is the main focus study in this manuscript, when the system responds on approx-

imately the same time scale as the period of the forcing. In this regime the dynamics are a balance

between the system’s tendency to want to decay towards the fixed point and the forcing trying to

push it away. After some time,t≫ τ , the system will settle into an orbit rather than a fixed pointdue235

to the similarity of the time scales. Just as there was a bistable region where multiple stable fixed

points existed for a single value ofDm whenω = 0, analogously in the caseT ∼ τ multiple stable

periodic attractors are possible given a fixed set of values for Dm, Da andω. The system statex is

plotted againstD and againstt as the blue line in figure 1. Which state the system settles in depends

only on the system’s initial conditionx(t= 0). Local bifurcations are present in this intermediate240

region, however they are local bifurcations between orbitsrather than fixed points. In this interme-

diate regime, one can neither place theDa cos(ωt) part ofD(t) in either the slow or fast processes

and therefore the assumptions of the usual fixed point early warning methods are not strictly valid.

This is however where phase lag and response amplification are useful early warning indicators.

To illustrate the early warning indicators we fix the forcingamplitudeDa and the periodT ∼O(τ)245

and takeDm as a control parameter, slowly varying from negative valuestowards the local bifur-

cation in the system described by equation 11. We expect to see the system response become more

phase lagged and amplified as we approach the local bifurcation atDm ≈ 0.33 when approaching

from the lower nullcline solutions. We also expect the amplitude of the harmonics of the system

response to increase.250

We choose to tip the system from one state to another by slowlyaltering the mean of the driving

Dm. Alternatively, the system could have tipped by changing one of the other driving parameters

such as amplitudeDa or frequencyω. Since the system response amplitude depends onDa andω

and phase lag depends onω, one must take this into account when inferring system time scales from

the indicators.255

In figure 2 the system is run forward in time, linearly varyingDm from -2 to 2 across the bifur-

cation over about 25 cycles of the forcing period (for the values of the parameters see the figure

caption). Plotted in figure 3 are phase lag and amplitude of the system response prior to the bifur-

cation at aroundt/T = 15. Both are increasing as the bifurcation is approached due tothe increase

in τ . Phase lag is calculated from the difference between the times of the maxima in the forcing and260
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Figure 1. The dynamics of the system described by equation 11 in three different time scale regimes. Forcing

parameters are set toDm = 0, Da = 1/2. In the upper panel system statex is plotted againstD(t). The black

lines are the nullclines and the coloured lines are the system responses for different periods of forcing. In the

lower panelx is plotted against the number of cycles,t/T , once the system has reached a steady state. The

dotted line is the forcing,D(t) while the colored lines are the system responses. The red line is for the slow

forcing limit, τ ≪ T , T = 100π soωτ ≈ 1/100. As the system time scale is much faster than the change in the

forcing, the system essentially ‘sticks’ to the fixed pointsuntil they become unstable at the bifurcations and jump

to a different attractor. One can regard the system responsein two different ways: (i) a single periodic attractor

giving a relaxation oscillations in a monostable region. (ii) Tipping between point attractors by crossing local

bifurcations in a bistable region. This tipping causes the dynamics to be very nonlinear. The green line is the fast

forcing limit, T ≪ τ , T = π/100 soωτ ≈ 100. There are two possible stable attractors for this set of values.

As the system time scale is much slower than the change in the forcing, the system essentially remains static and

all the dynamics come from the forcing itself. Although it ishard to see in the figure due to the small amplitude

system response, the lag relative to the forcing is 1/4 of a cycle and the dynamics are approximately linear. The

blue line is the intermediate regime,τ ∼ T , T = π soωτ ≈ 1 and there are two possible stable attractors for

this set of values. As the system time scale is approximatelythe same as the period of the forcing, the system

response is a competition between the system’s tendency to decay towards the nullcline and the forcing pushing

it away setting up a stable orbit. Notice there is some phase lag and the dynamics look approximately linear.
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Figure 2. The dynamics of the system are described by equation 11 with varying Dm. Parameters are set

to Da = 1/2, T = π (the same order as the system time scaleωτ ∼ 1) andDm is varied linearly with time

between -2 and 2 over about 25 cycles. In the upper panel the black lines are the nullclines while the system

response is the blue line plotted againstD(t). The orbit loses stability around a mean value ofD ≈ 0.5 and

jumps to a new orbit. In the lower panel we have plotted the system response (blue) against the forcingD

againstt/T . One can see the loss of stability of the orbit aroundt/T ≈ 15 and the prior increase in system

response amplitude.

the system response in each cycle. Response amplitude is calculated by taking half the difference

between the maximal and minimal values in the system response in each cycle. Also plotted are the

ratios of the second and third harmonic amplitudes to the amplitude of the fundamental harmonic

with time using a sliding window of length 5 complete cycles against the time at the end of the slid-

ing window. The window needs to be long enough to resolve the harmonics in the spectrum but short265

enough to keepDm approximately constant. For this example, where the harmonic amplitudes (and

the nonlinearity of the response) are quite small, 5 cycles is the minimum to resolve the peaks. The

sliding window is then advanced one cycle in the time series and the harmonic amplitudes are calcu-

lated for this new window. This process is iterated until thelocal bifurcation is reached to produce

the lower panel in figure 3 which shows both harmonic amplitudes increasing.270

We also plot the complete spectrum of the ratiosAn/A1 againstTn/T derived from a Fourier

transform of the system response in figure 4. In the upper panel all parameters are the same as figure

2 except we have fixedDm in each of the two runs. In the first runDm =−2, this is far from

the bifurcation and one expects the system to behave more linearly (blue line). One sees a second
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Figure 3. The early warning indicators, response amplification (upper panel),A= Daτ√
1+ω2τ2

, and phase lag

(middle panel),
φlag

2π
= 1

2π
arctan(ωτ ) calculated for the time series in figure 2. We have plotted these indica-

tors prior to the bifurcation att/T ≈ 15. The 2nd (blue) and 3rd (red) harmonic amplitudesAn/A1 are also

plotted in the lower panel using a sliding window of 5 complete cycles. All indicators are increasing as expected.

harmonic around 2 orders of magnitude smaller than the linear response. In the second runDm =275

0.25 and the orbit is much closer to the bifurcation (red line). The second harmonic has increased

to about an order of magnitude smaller than the fundamental harmonic and a third harmonic is now

also visible indicating the system has become more nonlinear.

To give an example of a climate system operating in this regime consider the annual variation in

sea temperatures in northern hemisphere temperate regions. A rough estimate of the ocean surface280

mixed layer time scale givesτ ∼ 10 months and this surface layer is heated by the annual cycle of

solar insolation to varying degrees throughout the year. Calculation of the phase lag for thisτ and

T yields a lag of about 2.6 months i.e. roughly the maximal and minimal sea temperatures are in

September and March. Arctic sea ice extent also falls into this regime and we analyze this system in

section 4.285

3.1.1 A note about return maps

Towards the upper range ofωτ ∼ 1, specificallyωτ > 2π, return map analysis via statistical fixed

point indicators becomes useful with the added caveat that the time series of the system must have

enough cycles to produce statistically significant results. Return map analysis is complementary to

phase lag and response amplification since these quantitiesstart to asymptote whenωτ > 2π. This290
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Figure 4. Ratio of thenth order harmonic amplitude to the fundamental harmonic amplitude An/A1 against

the ratio of thenth harmonic period to the fundamental harmonic periodTn/T . The dynamics of the system

are described by equation 11. In the upper panel parameters are fixed toDa = 1/2, T = π (the same order as

the system time scaleτ ). The blue line is forDm =−2 (far away from the bifurcation), the nonlinear response

is dominated by the second harmonic atTn/T = 1/2 although small, about two orders of magnitude less than

the linear response. The red line isDm = 1/4, close to the bifurcation the system response has become more

nonlinear. The second harmonic (Tn/T = 1/2) is now almost one order of magnitude less and the third order

harmonic (Tn/T = 1/3) is also prominent. In the bottom panel, we show the spectrumwhen the dynamics is

very nonlinear. Parameters are set toDm = 0, Da = 1/2, T = 100π soωτ ≈ 1/100. This is the slow forcing

limit shown in figure 1 (red line) which has a very nonlinear relaxation oscillation type response. Note only odd

harmonics (Tn/T = 1/3,1/5,1/7, ... etc.) are present due to the system experiencing a symmetricpotential

requiring the solution,x(t), to also have this symmetry.
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Figure 5. Same figure as figure 2 in the manuscript except the variation of Dm is over more cycles to generate

more points for a reliable return map analysis. Weak Gaussian white noise of standard deviation 0.01 is added

to the system. Parameters are set toDa = 1/2 andDm is varied linearly with time between -2 and 2 over about

100 cycles. In the upper panel the black lines are the nullclines while the system response is the blue line for

T = π giving ωτ ∼ 1 whereas the red line has a shorter period ofT = 1/4 to giveωτ ∼ 4π. These are plotted

againstD(t). In the lower panel we have plotted these system responses astime series against the forcing (black

line).

complementarity is illustrated in the following figures. The blue line in figure 5 is essentially the

same as figure 2 (ωτ ∼ 1) exceptDm is varied over 100 cycles instead of 25. This is because extra

data points are needed to calculate the lag 1 autocorrelation of the return maps with any reliability.

We have also added Gaussian white noise to equation 11 of standard deviation0.01 as the return

map method needs small perturbations with which to infer return times to the cycle. In figure 6 we295

have plotted the early warning indicators for this time series including the return map calculated with

a sliding window of 25 cycles. The black lines are the theoretical curves and the blue lines are the

estimated curves. The key point is the theory and estimated autocorrelations do not show anything

in this regime (ωτ ∼ 1) however the phase lag and response amplification are clearly increasing.

Conversely, the red lines in figure 5 and 7 are the same quantities but with decreased period of300

forcing (T = 1/4 soωτ ∼ 4π). This is a regime in which phase lag and response amplitude start

to asymptote and are therefore not so useful to infer changing system time scale. However, lag 1

autocorrelation of the return map now becomes useful as can be seen in figure 7.
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Figure 6. ωτ ∼ 1: The early warning indicators, response amplification (upper panel),A= Daτ√
1+ω2τ2

, and

phase lag (middle panel),
φlag

2π
= 1

2π
arctan(ωτ ) calculated for the blue time series in figure 5. In the lower

panel, lag 1 autocorrelation of a sliding window of 25 pointsof the return map is plotted with standard errors

(dashed lines) on the estimate. Black lines are theoreticalcurves of all the quantities. The key point is phase lag

and amplitude response are useful quantities in this regimehowever the return map is not.

3.2 Period of forcing much slower than system time scale,ωτ ≪ 1

When equation 11 is operating in this regime (period of forcing much greater than system time scale305

T ≫ τ ) the system can adjust to changingD(t) relatively quickly and effectively remains at a fixed

point.D(t) can therefore be modelled as a slow constant, control parameter and all the usual time

scale separation assumptions apply. Fixed point indicators such as lag 1 autocorrelation are then

good early warning indicators of local bifurcations. In contrast, phase lag and response amplitude

are not useful as these quantities asymptote toφlag → 0 and→ τ respectively. The system statex is310

plotted againstD and againstt as the red line in figure 1.

An example of a system that has the correct time scale separation and periodic forcing are the

glacial/interglacial cycles that have the slow build, fastcollapse type behaviour of relaxation oscil-

lations. Ice sheets have time scales in the order of thousands of years forced by the solar insolation

variation of Milankovitch cycles. The forcing is a superposition of many different sinusoidal fre-315

quencies, the dominant ones having periods of 41 kyr (related to the obliquity of Earth’s orbit), 19

and 23 kyr (related to the precession). Current thinking however, favours more complex, two and
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Figure 7. ωτ ∼ 4π: The early warning indicators, response amplification (upper panel),A= Daτ√
1+ω2τ2

, and

phase lag (middle panel),
φlag

2π
= 1

2π
arctan(ωτ ) calculated for the red time series in figure 5. In the lower

panel, lag 1 autocorrelation of a sliding window of 25 pointsof the return map is plotted with standard errors

(dashed lines) on the estimate. Black lines are theoreticalcurves of all the quantities. Phase lag and amplitude

response have now asymptoted and are not useful quantities however the return map now becomes useful.

higher dimensional dynamics to model these cycles than the single variable models we consider in

this paper (Saltzman (2002),Crucifix (2012), Saedeleer et al. (2013), and Crucifix (2013)).

The spectrum of a very nonlinear, relaxation oscillation type, dynamics is illustrated in the lower320

panel of figure 4. This is the spectrum of the slow forcing run (red line) in figure 1. Only odd

harmonics appear in its spectrum because the static potential V =−
∫

ẋdx is symmetric aboutx

for this value ofDm = 0 i.e. V (x) = V (−x) and therefore any solution oḟx must also have this

symmetry,x(t+T/2) =−x(t). Only odd harmonics have this property.2

2This is not sufficient though as there are other parameter settings that feature the second harmonic and also have the same

symmetric potential i.e.Dm = 0 andT = π in figure 1 (blue line). The difference is that the runs featuring second harmonic

responses only experience a limited part of the potential, not the full symmetric potential. Even though the potential is the

same, the forcing is quick enough to trap the system in an orbit in just one of the two potential wells. This local potential

well is asymmetric and what the system sees is effectively described by a Taylor expansion around the centre of that well.In

contrast the relaxation oscillation type run travels across both wells equally and therefore sees the global symmetricpotential

requiring an odd harmonic solution. This is not a generic case however.
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3.3 Period of forcing much faster than system time scale,ωτ ≫ 1325

The system statex is plotted againstD and againstt as the green line in figure 1. The forcing is

changing much faster than the system can respond so the system effectively looks static and all

the dynamics come from the forcing directly. In this case we can placeD(t) in the fast dynamics.

However, not all of the other assumptions for use of lag 1 autocorrelation in a fixed point analysis

are satisfied. It is true thatD(t) is independent ofx, however it is not uncorrelated with itself at330

different times and therefore cannot strictly be modelled as a normally distributed random variable,

although at first glance it looks as though it is again possible to use usual fixed point early warning

techniques so one must be careful. In this regime, phase lag and response amplification asymptote

and again are not very useful to detect a trend in increasing time scale. Phase lag,φlag → π/2 and

response amplifcation→ 1

ω
so one may only inferτ ≫ T .335

An example of a system approximately modelled by this limit is the global terrestrial vegetation

carbon which has a dominant timescale on the order of decades, much larger than its periodic forcing,

the annual cycle of solar insolation. This dominant time scale comes from the large long term carbon

storage e.g. the time scale taken for a forest to regrow once cut down. One sees this phase lag of

quarter of a cycle in the annual minimum of the Mauna Loa CO2 record3 relative to the Northern340

hemisphere solar insolation maximum. This lagged annual minimum in the integrated response of

the total atmospheric carbon results from the dominance of the Northern Hemisphere’s mid latitude

terrestrial vegetation carbon in the global carbon flux. We have plotted the Mauna Loa CO2 record

and the time of year of the minimum concentration in figure 8.

4 Looking for a tipping point in Arctic sea ice satellite observations345

There has been much research on a possible local bifurcationand tipping point in the Arctic sea ice,

see for example Armour et al. (2011), Eisenman and Wettlaufer (2009), Lindsay and Zhang (2005),

Livina and Lenton (2013), Ridley et al. (2012) and Wang and Overland (2012). This possible bifur-

cation in the sea ice cover may be due to the well known ice albedo feedback first studied by Budyko

(1969) and Sellers (1969). When ice is present it reflects a high proportion of the incoming solar350

radiation due to its higher albedo yet when it starts receding the darker ocean absorbs more radiation

increasing heating and promoting more sea ice retreat. Thisfeedback can result in instability and

multiple steady states.

We calculate all the previously mentioned early warning indicators for a time series of Arctic sea

ice area satellite observations from 1979 to present day. That is we calculate phase lag, response355

amplitude, relative size of the 2nd and 3rd harmonics and thelag 1 autocorrelation of the return

map with time to look for signs of critical slowing down that might indicate the approach of a local

3Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of

Oceanography (scrippsco2.ucsd.edu/)
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Figure 8. Atmospheric CO2 concentration recorded at Mauna Loa against time in the upper panel. In the lower

panel we have plotted the minimum annual CO2 concentration against year. One notices the minimum CO2

concentration occurs roughly 3/4 of the way through the year. This is because maximal carbon uptake occurs

during the Northern hemisphere summer from the terrestrialvegetation and it is maximally lagged behind the

maximum in the Northern hemisphere solar insolation (best growing conditions) by 1/4 of a cycle because of

the time scale difference between the response of the systemand the period of the forcing.

bifurcation or ‘tipping point’ in the Arctic sea-ice. We also calculate the complete Fourier spectra

for the entire time series as a linearity check. In figure 9 satellite observations of Arctic sea ice area

are plotted against year. Sea ice area data were obtained from The Cryosphere Today project of the360

University of Illinois. This data set4 uses SSM/I and SMMR series satellite products and spans 1979

to present at daily resolution.

In figure 10 we plot the amplitude of the sea ice area annual cycle and the phase lag between

the sea ice area minimum and maximum during each cycle. We assume the maximal and minimal

driving occurs at the same time as maximal and minimal of the solar insolation, that is, the midpoint365

and end point of the year respectively to obtain phase lags. To limit the the impact of high frequency

variability on the location of the extrema, we have smoothedthe daily data with a sliding window of

30 days.

From figure 10 we see the cycle amplitude is increasing with time although the phase lag does not

appreciably change. We first make some rough calculations tosee if these plots are consistent with370

each other: From the phase lag figure, a time scale ofτ ∼ [0.33,0.5] yr from the lag of[0.18,0.2]

4http://arctic.atmos.uiuc.edu/cryosphere/timeseries.anom.1979-2008

17



1980 1985 1990 1995 2000 2005 2010 2015
2

4

6

8

10

12

14

16

year

se
a 

ic
e 

ar
ea

 (
106  k

m
2 )

Figure 9. Arctic sea ice area satellite observations from 1979 to present day (2015) obtained from The

Cryosphere Today project of the University of Illinois.

of a cycle can be inferred. If we assume for the moment the amplitude of the forcingDa is not

changing throughout the time period of the observations (this may not be true) and take the smallest

value in the range forτ1978 = 0.33 yr occurring in 1978 and the largest value in 2015,τ2015 = 0.5

yr we can make a rough calculation of how much the sea ice amplitude would have increased i.e.375

A2015

A1978

= τ2015
τ1978

√

1+ω2τ2

1978

1+ω2τ2015
≈ 1.06. From figure 10 we take the amplitude at 1978 to beA1978 ∼ 4.5

and at 2015 to beA2015 ∼ 5 we find A2015

A1978

= 1.11. These values could therefore be consistent with a

constantDa and a changing time scale. However, the time scales inferredfrom either the phase lag

or amplitude are not changing appreciably and therefore it seems unlikely the system is approaching

a local bifurcation.380

We note that the phase lag is a more robust indicator. This is because the phase lag depends only

on the product of the frequency of the forcing and the system time scale whereas the amplitude

depends additionally on the amplitude of the driving,Da, which may well be changing throughout

the observational period and could account for some or all ofthe increase seen in the amplitude in

figure 10. Although the solar insolation will be a large component of the forcing amplitude and is385

essentially fixed, other factors such as clouds as well as airand sea temperatures will also factor

into the driving amplitude. Geometrical constraints imposed by land masses affecting the maximal

extent of the sea ice will also influence the amplitude of the sea ice oscillation when ice extent is

large (Eisenman (2010)). In contrast, we can take the frequency of the driving to be essentially fixed

by the annual solar insolation cycle making the phase lag more robust.390
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In the lower panel of figure 10 we have plotted the ratio of the second and third harmonic ampli-

tudes to the amplitude of the fundamental harmonic with timeusing a sliding window of 10 complete

cycles against the year at the end of the window. We have used the minimal window length needed

to resolve both harmonics reliably. This indicator also shows no clear trend with time.

We have also calculated the lag 1 autocorrelation of the return map. From phase lag, the estimate395

time scale of the sea ice is 0.5 yrs (ωτ ∼ π) which is less thanτ/T > 1 needed for a reliable estimate.

However, the estimated time scale is uncertain and it is conceivable the return map analysis might

work. As there are only 37 complete years of data, any return map time series has a maximum of

37 data points. To discern any trend in the autocorrelation one needs as many windows as possible,

however this results in a decreasing number of data points per time series and an increasing error400

in the estimate. We have therefore chosen a sliding window of20 cycles although the results are

invariant to this choice, always being very uncertain. We linearly detrend the cycle in each sliding

window and then create the return map time series from that detrended window. One can also choose

at which point in the cycle one wants to take the return map from and this additional freedom is

utilized in the right hand panel in figure 12. Lag 1 autocorrelation is plotted against sliding window405

end year (x axis) and day of the year in each cycle the return map generated on (they axis). We

create a new return maps every 10 days giving 36 different points within each cycle. As seen in the

figure autocorrelation depends very heavily on where in the cycle one chooses to generate the map,

a sign that the return map is not a good approach for this system. A good return map should be

largely invariant to where in the cycle it is taken provided the cycle is stable and not changing. In410

the left hand panel of figure 12 we plot the standard error divided by the autocorrelation. Note that

most estimates of lag 1 autocorrelation have standard errors larger than half their value giving very

uncertain estimates. In an effort to reduce the uncertainity in the estimate we have also taken the

mean autocorrelation over all points in the cycle the returnmap is taken in figure 13. The mean lag

1 autocorrelation is 0.16±0.26 which corresponds to a (very uncertain) time scale ofτ ≈ 0.55 yrs.415

This is consistent with the estimates from the phase lag. This also suggests that the sampling interval

T > τ and therefore determining the time scale using the return map approach is difficult. We have

increased the sliding window to 37 years to minimize the standard error in the estimate, however one

will not be able to then see a trend in autocorrelation. Even so, the standard errors are still greater

than half the estimate.420

We have also plotted the full spectrum of the ratiosAn/A1 for the entire time series in figure 11.

We note the nonlinear effects are quite prominent in this system, second and third harmonics are

around an order of magnitude smaller than the linear response, although we can still probably get

away with the linear analysis. Forth, fifth and sixth harmonics are also visible. These nonlinearities

may be due to albedo effect or to the geometrical effects of the Arctic ocean basin (Eisenman (2010)).425

To conclude, from this simple analysis it seems that the system’s time scale and therefore sta-

bility is not changing appreciably if at all and it is unlikely to be approaching a local bifurcation.
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Figure 10. In the upper panel amplitude of sea ice area within each cycleis plotted against year. In the middle

panel phase lag is plotted between the sea ice area minimum (red line) and maximum (blue line) and the solar

insolation minimum and maximum respectively against the year. In the lower panel, the 2nd (blue) and 3rd (red)

harmonic amplitudesAn/A1 are plotted against year end using a sliding window of 10 years. The amplitude is

increasing however the phase lag is not. Harmonic amplitudes also show no convincing trend.

However, simple theoretical models, such as Eisenman and Wettlaufer (2009), Eisenman (2012) and

Bathiany et al. (2016) (who also used a return map approach) suggest that the sea ice time scale does

not change very much approaching the bifurcation, even decreasing slightly before rapidly changing430

over a very small interval and therefore would be very hard todetect if present.

5 Conclusions

Much previous work on detecting local bifurcations from time series required one to be able to par-

tition the universe into widely separated time scales and model the system dynamics as overdamped.

When this is the case one can use the usual, statistical fixed point early warning indicators of increas-435

ing lag 1 autocorrelation and variance since these indicators measure the system’s response to small

perturbations away from its fixed point by the fast, noisy processes. It is the response to this small,

noisy forcing that allows one to measure the system’s time scale. The systems we have been looking

at in this paper do not have fast or random forcing. The systems considered here have determinis-

tic forcing with a period roughly that of its time scale although the dynamics are still overdamped.440

Deterministic forcing again allows one to infer the system’s time scale simply by measuring the
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Figure 11. Ratio of thenth order harmonic amplitude to the fundamental harmonic amplitude An/A1 found

from the Fourier transform of the Arctic sea ice area time series against the ratio of thenth harmonic period

to the fundamental harmonic periodTn/T . One can see the Arctic sea ice response features prominent second,

third, forth, fifth and sixth harmonics in its spectrum.

response to the forcing without the need for large amounts ofdata required by statistical quantities

for robust estimates. We used two analogous early warning indicators to lag 1 autocorrelation and

variance in these systems; these were phase lag and responseamplification respectively. Just as au-

tocorrelation is more robust as an indicator (it is a function of fewer parameters), the same is true of445

phase lag, only depending on the frequency of the forcing andthe time scale of the system. The sys-

tem response amplification also depends on the amplitude of forcing, which in many circumstances

is probably difficult to measure.

We also used a Fourier transform of the time series to quantify how nonlinear the system is be-

having and whether the linear approximations usually made are good. Further, by using a sliding450

window within the time series, one may also look at the evolution of the harmonic amplitudes as a

further early warning indicator.

We also discussed return map methods that essentially convert a periodic attractor to a fixed point

type so that one may use the usual fixed point indicators. We also showed there was a complemen-

tarity between return map indicators and phase lag and response amplification, the latter being more455

useful for regimes in whichωτ ∼ 1 and the former being more useful whenωτ > 2π.
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Figure 12.Left panel: Lag 1 autocorrelation of the return map against sliding window end year using a sliding

window of 20 years (x axis) and point within the cycle the return map is created on they axis (we create return

maps every 10 days). One sees autocorrelation depends very heavily on where in the cycle one chooses to

generate the the return map. Right panel: Standard error of the autocorrelation return map estimate divided by

the estimate against sliding window end year. The estimate is very uncertain almost everywhere with standard

errors generally being at least half as big as the estimate.

We applied these indicators to satellite observations of Arctic sea ice area, a system whose period

of forcing, effectively the annual cycle of insolation, is similar to the time scale of the system. This is

also a system that has been conjectured to have a tipping point due to a local bifurcation. We did not

find any detectable critical slowing down and therefore signs of this bifurcation. It should be noted460

however simple models of the sea ice suggest critical slowing down only occurs very close to the

bifurcation making it very hard to detect.

Appendix A: Phase lag and response amplification with arbitrary periodic forcing

Phase lag and response amplification can be found for the moregeneral case of any type of periodic

forcingD by solving465

ẋ+
x

τ
=D(t) (A1)
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Figure 13. Mean lag 1 autocorrelation of the return map across all starting points within the cycle using a

sliding window of 20 years. This is the same as figure 12 with the mean taken along they axis. Estimated

autocorrelation is still very uncertain. The mean is the solid line with the dotted lines being the mean plus/minus

the standard error. The mean value across all years 0.16±0.26 which corresponds to a (very uncertain) time

scale ofτ ≈ 0.55 yrs.

τ the timescale of the system (thee folding time). For any periodic forcing,D(t) with periodT can

be written as the Fourier series

D(t) =
N
∑

i=0

Bi cos(ωit+χi). (A2)

Bi are the amplitudes of the different component sinusoidal waves,ωi =
2πi
T

are the frequencies470

of the components andχi are the phases of each of the components. As the equation is linear the

superposition principle holds. That is, we assume the solution has the form

x(t) =

N
∑

i=0

xi(t) (A3)

by setting all but theith term of the driving to zero we can solve theN +1 equations

ẋi +
xi

τ
=Bi cos(ωit+χi) (A4)475
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for eachxi(t). These solutions can be superposed to obtain the full solution to any periodic driving

term. This is

x(t) =

N
∑

i=0

τBi
√

1+ω2
i τ

2
[cos(ωit+χi− arctan(ωiτ))

− e−
t
τ cos(χi− arctan(ωiτ))] + x0e

−
t
τ (A5)480

which settles into orbit

x(t) =

N
∑

i=0

τBi
√

1+ω2
i τ

2
cos(ωit+χi− arctan(ωiτ)) (A6)

whent≫ τ , that is, the solution is just the sum of each of the forcing componentsi, each with a

response amplification of

τ
√

1+ω2
i τ

2
(A7)485

and a response lagging the forcing with a phase of

φlag
i = arctan(ωiτ). (A8)

One can find out what these phase lags and amplitudes are by taking the Fourier transform of the

time series of both the forcing and response.
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