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Abstract. The prospect of finding generic early warning signals of gar@@aching tipping pointin a
complex system has generated much recent interest. Eximtithods are predicated on a separation
of timescales between the system studied and its forcingieder, many systems, including several
candidate tipping elements in the climate system, are tbpegiodically at a timescale comparable
to their internal dynamics. Here we use alternative earklywig signals of tipping points due to local
bifurcations in systems subjected to periodic forcing vehiisie scale is similar to the period of the
forcing. These systems are not in, or close to, a fixed paistelhd their steady state is described
by a periodic attractor. For these systems, phase lag antifigatjpn of the system response can
provide early warning signals, based on a linear dynamipsoagmation. Furthermore, the Fourier
spectrum of the system’s time series reveals harmonicsdbtiting period in the system response
whose amplitude is related to how nonlinear the systemfsonrese is becoming with nonlinear effects
becoming more prominent closer to a bifurcation. We apphgéhindicators as well as a return map
analysis to a simple conceptual system and satellite ohens of Arctic sea ice area, the latter
conjectured to have a bifurcation type tipping point. We fireddetectable signal of the Arctic sea
ice approaching a local bifurcation.

1 Introduction

The potential for early warning of an approaching abruptngeaor ‘tipping point’ in a com-

plex, dynamical system has been the focus of much researeﬁosexampllz Wigsgnfglalh_(;&%),
i nMW@OML&M&M. kZQ:L}Z). Abrupt change in
a system can occur due to a bifurcation - that is, a small dmgl@inge in parameter values can re-
sult in a sudden or topological change in the system’s atiracThis extreme sensitivity of systems
close to criticality is familiar from studies of critical phomenain statistical mechanigﬁb}t al.

)) and stability analysis in nonlinear dynaﬁﬁgatemsmmm)). Much work

on the anticipation of bifurcations from time series datp i ecosystem rpenter [. (2011)),
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or the climate systerrL (Dakos g] ell. (2b08) £nd Lénlggn (2014 ased on methods that infer the

time taken for the system to recover to its steady state {thtem’s time scale) from perturbations
away from that steady state. The methods are usually basedlear separation of three time scales:
(i) The time scale of the dynamics of the system one wantaiystii) much faster processes than
the time scale of the system, usually thought of as the geatioms the system recovers from and
(i) much slower processes than the time scale of the systeith govern the present system steady
state. In addition, the system dynamics are modelled aslawgred, the fast dynamics as a noisy,
normally distributed random variable of small variance #rslow dynamics as a constant, control
parameter. Provided these are good working approximatioitisal slowing down - the increase of
the system’s time scale, is expected prior to a local bifiwosand can be detected by computing
the lag 1 autocorrelation in a sliding window of a systenrtsdiseries. An increasing trend in au-
tocorrelation shows the stability of the system is weakgminequivalently, the system’s time scale
is increasing - which is a generic feature of a system appinga local bifurcation. Provided the
variance of the fast noisy process is constant, increasirigince of the system'’s time series is also
a good indicator of critical slowing down, although it isda®bust than lag 1 autocorrelation due to
its dependence on the noisy process.

For many systems of interest one or more of the above assamsptiay be invalic]_(W'Lll'La.ms_o_n_a.nd_Lﬂnlon

)). In particular, when the forcing of a system has aganable period to the time scale of the
system, the forcing cannot be modelled as a slow, constamtatgarameter or a fast, random pro-
cess, however they can still be thought of as a perturbatiay drom the system steady state that
one can measure the recovery time from, an observation weitixggthis manuscript. These systems
are particularly relevant in the climate system where ghcitorcing is a consequence of the motion
of the Earth relative to the Sun. For example, solar insmatiariation from the diurnal, annual or
Milankovich cycles. These systems have steady statesibleddry periodic attractors rather than
the simpler, fixed point type attractors required for lag foaarrelation and variance to be used as
early warning indicators.

In an elegant studLIMeiemlalb_(LbSS) computed the Foupectsa of noisy perturbations in
systems with periodic attractors. Very close to a localtgidition, the dominant system time scale

asymptotes towards infinity causing the dynamics of theynmésturbations away from the attractor
to be dependent only on the type of bifurcation and not on #taild of the system’s specific equa-
tions. This observation allowed the author to classify allimension 1 bifurcations in an arbitrary
periodic system by the harmonics in the spectra of residtiEcalled these early warning signals
NOisy precursors.

A common method to study stability changes in periodic attna is the return or Poincaré map,
se 1). Here, one converts the continuowesgariodic orbit into the fixed point of a
return map by sampling the orbit once every period. One can tompute the usual fixed point
indicators for the resulting return map time series suctagsllautocorrelation and variance. Ad-
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vantages of this approach include no linearity requirerarthe dynamics of the periodic attractor
although perturbations away from the attractor must belsnalugh to be treated linearly. One can
also handle systems with internally generated cyclesrétlaa those generated by external periodic
forcing that we look at in this manuscript. To detect any dim stability from the return map the
time scale of the system must also be greater than the pefittet dorcing. To see this, imagine
one samples the cycle to create a point in the return map amdithmediately after perturbs the
system away from the stable cycle. If the system time scadbaster than the cycle period, which
is determined by the forcing period, the system will haveoveced back to the stable cycle before
the system is sampled again for the next point in the retunp. ke perturbation and its recovery
will therefore be invisible to stability analysis on theugt map time series. It should be noted that
close to a local bifurcation the system time scale appraaictimity so satisfying this requirement.
However, if this requirement is met only over a few cyclesasslit will be very hard to detect.

With this limitation in mind we suggest alternative earlymiags signals of approaching local
bifurcations when the period of the forcing is similar to thnee scale of the system. We look partic-
ularly at sinusoidal forcing since this approximates theateon of solar insolation well. However,
the method works for any periodic forcing and we give thedgion of the general case in the
appendix. We demonstrate that increasing system time ssaieapproaches a local bifurcation
shows up as an increasing phase lag in the system respoateeréd the forcing. In addition, the
amplitude of the system response increases as well. Theisaiors, like lag 1 autocorrelation and
variance in fixed point attractor methods, assume the lineddynamics approximate the true non-
linear dynamics well. One might ask how well the linear appration works, especially near the
bifurcation, since bifurcations are strictly nonlineaeplomena. A quantitative answer to this ques-
tion can be provided by computing the Fourier spectrum ofsirstem’s time series. In particular,
as the system’s behaviour becomes more nonlinear, harmoftice forcing period are generated in
the system response and their amplitudes may be obtainedffi®system’s Fourier spectra. Since
the system response becomes more nonlinear as one ap@daeliEfurcation, one can view the
increasing amplitude of harmonics as another early warsigrmgal.

The paper is organised as follows: In secfibn 2 the early ingrindicators used in the manuscript
are introduced, namely the system response phase lag adifiGatipn as well as harmonic am-
plitudes. We also review a common approach to periodicditirg, the return map, which is com-
plementary to phase lag and response amplification. Inose8ta periodically forced overdamped
system in a double well potential is used to illustrate threetscale separation problem and the prop-
erties of the early warning indicators when a local bifuimats approached. In secti@h 4 we apply
the early warning indicators to satellite observations aftis sea ice area, a system conjectured to
be approaching a local bifurcation. We conclude in se¢fion 5
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2 Early warning indicators of local bifurcations in periodi ¢ systems

As previously mentioned in the introduction, the Arcticseahas been conjectured to be approach-
ing a local bifurcation. Treating this system approximgatehe can think crudely of the slow control
parameter as the decrease of outgoing long-wave radigiiong a warming trend in air temperature
as the Earth’s atmospheric G@oncentration increases. This is a system that is forcaddieally
and deterministically by the annual cycle of short-waveasahsolation. The system response is
dominated by this periodic forcing rather than small anuplé, random noisy forcing also present
and system time scale is roughly the same order of the fopmnigd. In this section, motivated by
detection of local bifurcations in systems like the seatype from time series, we look for suitable
methods. Although this system has no clear separation ef sitales with which to use fixed point
methods directly, the fact that this system has a large agdigieble perturbation one can measure
the response to reduces the need for the statistical methodstherefore large numbers of data)
required for noisy perturbations and so number of data ima series becomes less of an issue.

Students of physics or engineering will likely have solvkd equation for the forced damped
harmonic oscillator and observed in the overdamped limaittine phase and amplitude depend on the
damping parameter (see for exan@l@%:&)). In theiolilg subsections we propose to use
this fact and phase lag and response amplification as sirplstatistical indicators of system time
scale. We demonstrate their properties and their fundtabey@endence on system time scale. These
early warnings are based on a linear dynamics approximatibby taking the Fourier transform
of the system response, one can also look the magnitude ofathi@ear response. This has two
purposes, first one can check the linear approximation isl@od second, because bifurcations are
strictly nonlinear phenomena, the system response wilbimecmore nonlinear as one approaches
the bifurcation giving another early warning indicatortthan be monitored.

The systems we concentrate on in this manuscript, releganternally forced climate problems,
have cycle periods determined by the period of forcing andeway coupling from the forcing
to the system and so are special cases of periodic attraBtmrshese special cases, when forcing
period and system time scale are similar, phase lag andnssonplification are useful indicators.
However, return maps are generally more useful when trgatiore general periodic attractors. At
the end of the section we briefly review the method of returpsna

2.1 Phase lag and response amplification.

We consider systems that can be described by

i = f(x) +D(t) (1)
wheref(z) is, generally a nonlinear function of the system state sealidablex with forcing D(t)
given by

D(t) = Dy, + D, cos(wt). 2
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D,, and D, are constantsy = %’T is the angular frequency aril is the period of the forcing.

We have assumed any other random, noisy external forcingrissmall and can be neglected. The
solution for a general form fab(¢) is given in the appendix, however here we use sinusoidaiifgrc
as this is most relevant for many climate systems and we wastonobscure the simplicity of the
main result.z describes the dynamics of a forced overdamped system. Fisnbnautonomous
system whose state can be completely describedanyglz. After some time, > 7, wherer is the
system time scale, the system will settle into some sorisaftht state, either an orbit or a fixed point
whose mean stateis

1 T+ts
.- / ()t @3)
ts
We now Taylor expand (x) to first order around: so that
TrRa— % + Dy cos(wt). (4)
where
0= 1)~ D)4 D ©)
of
T——l/a—x|r:i (6)

are the linearisation constants. We have assumed higher @mins such ag; 3-L (z — )", n > 2
are small relative to zeroth and first order terms so thatitteafised dynamics approximates the full
nonlinear dynamics well. We show how to check this approxioman sectiof Z.2. Assuming the
approximation is good, one can solve equalfibn 4t &s T the system settles into the orbit

. D,1
th;nT z(t) =ar + Niguns cos(wt + ¢) (7)

where the system response lags the forcing by phage= wt;., = —¢ given by
Brag = arctan(wr). (8)

that is, the phase lag is a function of the forcing frequemzythe system response time scale. One
also notices that the system response, relative to thenfpesnplitude D,, is amplified by a factor

.
V14 w?r?

which is also a direct function ab and . The more general derivation when(¢) can be any

(9)

periodic function is given in the appendi¥ A.
2.2 System nonlinearity and harmonic amplitude from Fourig analysis

By simply looking at the time series of the system responsktha forcing one can determine
what the amplitude and phase lag are when the driving is ofdtra equatiof 2 and the system



response is approximately linear without the need forsttas. However, the system is essentially
nonlinear and these nonlinear effects may become largeanbdurcation or when the system is
driven hard. By taking the Fourier transform of the time egrof the system response one can
guantify how large these nonlinear effects are. With a simihotivation Wiesenf I(J_(LQ_ES) and
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the response, away from periodic attractors very close d¢al Ibifurcations with noisy and weak
periodic modulation respectively.

Once the system has settled into an orbit of pefigdhe full nonlinear response of an arbitrary
system can be written as a Fourier series, a sui sinusoidal functions with angular frequencies
wy, = 22, amplitudesA,, and phases, i.e.

N
2(t) =Y A cos(wnt + ¢n). (10)

n=0
Then =0 component is a constant, the long term mean of the respdrese,= 1 component is
the linear response of the system andsthe 2 components are theth order harmonics and come
about from the nonlinear response of the system. Since #termyhas settled into a periodic orbit the
system must repeat itself every cycle. The only way the systen do this is by adding harmonics
to linear response. By looking at the ratiégs for n > 2 the nonlinear effects relative to the linear
approximation can be quantified. In practice the largesnibaics will generally be the 2nd(= 2)
and 3rd order = 3) harmonics and provided they are an order of magnitude (rl@stji—'; <107Y
less than the fundamental harmonic, the linear analystssiteist section works well. Calculation of
the amplitudes4,,, can be made via a Fourier transform of the time series.

One may also expect subharmonics, components that haeelpéhniat are integer multiples of the
forcing period, to be observed in the system response. Suioimécs are not possible in the systems
we consider here due to the dimensionality of the phase gpace

Since the ratios% measure how nonlinear the system is one expects these tmg&as the
system approaches a bifurcation. These ratios can be gfoita time series by taking the Fourier
transform for a data window consisting of an integer numlfecyales and sliding this window
forward by one cycle recursively through the time seriese fiamber of cycles in the window must
be large enough that the harmonics can be satisfactoribyvesin the Fourier spectra. In addition,
each cycle must be sampled at a time intetXal< 7'y quist /2 WhereTnyquist IS the minimum
harmonic period you want to resolve.

1systems described by equat[dn 1 are completely describétetiyo dimensional space of variablesndt. Recasting
the nonautonomous system in equafidn 1 as a two dimensiat@i@nous system by identifying a new angular variable
¢ = wt, the system is then described by= f () + D($) andé = w. The resulting phase spate, ¢) is then cylindrical as
¢ is 2r modular. If subharmonics are possible in the periodic sys&sponse the trajectory must wind around the cylinder
at least twice before repeating itself. Such a trajectomylies it crosses itself which is not allowed due to the exiseeand
uniqueness theorem. Therefore subharmonics cannot exist iwo dimensional systems. This is of course not truehieet

and higher dimensional systems.
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2.3 Lag 1 autocorrelation of a return map

Provided the system time scale is larger than its perigd, > 1, one can use return maps to assess
the stability of a periodic attractor. The return map timdese generated by sampling the system
response once every cycle, allows one to apply fixed poitisstal early warning indicators such
as lag 1 autocorrelation. It is noisy, random forcing awayrftthe periodic attractor that this method
infers time scale from, rather than response to deternin@riodic forcing. This is usually done
by calculating the lag 1 autocorrelation for a sliding datadew of the return map time series at
least as long as the system time scale but not so long thahargaising trend in system time scale
skews the autocorrelation estimate. It is also desiratii@ve many points within this window as the
standard error of the estimate scaled Ag'm wherem is the number of cycles (points) within the

window (se(l Williamson and Lgnﬂolj (2015) for a discussi®ioy. time series consisting of a small

number of cycles this can be a limiting factor.

3 Examples

We now demonstrate the early warning indicators in seglitor Zifferent ratios of forcing period,
T, (or equivalently angular frequency) to system time scale. In particular, we use a periodi-
cally forced double well potential as our main system. Thistem has been extensively studied in

the context of stochastic resonance ({SE_e_M_QNa.mﬁ.La_a.mLM@:LehQ_&b) anch_Qa_mmaiLQni_e_dal.

) for reviews) as the simplest model of the phenomerenwioise is also added. Phase and

amplitude have been investigated in this settinéjngmm. [(LQ_Q4) anLj Jung and Ha"[luggi

). This literature is largely concerned with resomegftects in transition probabilities between

the wells (finite barrier height between the wells) rathemtlthe anticipation of local bifurcations
(barrier height tends to zero) that is the central interes¢h
Our system which has one dynamical variableand evolves according to

i=x—2°+D(t) (11)

where overdots denote differentiation with respect to titrend the periodic forcing functiod(t)
is given by equatiofil2. Equatién]l1 models a nonautonomonknear system, the overdamped

limit of a Duffing oscillator (lh_o_mp_s_Qn_a.nd_S_LemlriLt_(ZbOZMhen forcing is constants(= Oi the

familiar, well studied autonomous fold bifurcation is reeced (for example see Strogatz (2001)).

For w = 0, the solutions ofi: = 0, give the system’s fixed points,” (the nuliclines) and number
either one or three depending on the valu®&gf. One can evaluate the stability of these fixed points
by looking at the linearized dynamics close to the fixed mintz*)

oz

J(z*) = %h:ﬂ =1-—32*2 (12)

If J(z*) is negative, the fixed point is stable, if it is positive it isstable. In the region where three
fixed points exist one finds a bistable region i.e. two poingsstable while the third is unstable. The
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bistable region has boundaries marked by the local bifimegstand these can be found by solving
J(z*) = 0for z* when the fixed point becomes neutrally stable. One can alsolate thee-folding
time scale of the system in stater from the Jacobiam = —1/.J(z). We will refer to thee-folding
time as the system time scale. As the system gets closer toiftiveation the system time scale
will increase and tend to infinity at the bifurcation. Earlgmuing indicators are simply functions of
J(x*) or equivalentlyr.

3.1 Period of forcing similar to system time scalewr ~ 1

This regime’ ~ 7, is the main focus study in this manuscript, when the sysesponds on approx-
imately the same time scale as the period of the forcing.igwr#gime the dynamics are a balance
between the system’s tendency to want to decay towards tbé figint and the forcing trying to
push it away. After some time;> 7, the system will settle into an orbit rather than a fixed pdune

to the similarity of the time scales. Just as there was alilestegion where multiple stable fixed
points existed for a single value &f,,, whenw = 0, analogously in the casE ~  multiple stable
periodic attractors are possible given a fixed set of valae®¥,,, D, andw. The system state is
plotted againsD and against as the blue line in figurg 1. Which state the system settlesjiredds
only on the system’s initial conditiom(¢ = 0). Local bifurcations are present in this intermediate
region, however they are local bifurcations between omitiser than fixed points. In this interme-
diate regime, one can neither place thgcos(wt) part of D(t) in either the slow or fast processes
and therefore the assumptions of the usual fixed point eaatyiwg methods are not strictly valid.
This is however where phase lag and response amplificationsaful early warning indicators.

To illustrate the early warning indicators we fix the forcargplitudeD,, and the period” ~ O(r)
and takeD,,, as a control parameter, slowly varying from negative vatogsards the local bifur-
cation in the system described by equafich 11. We expecktthgesystem response become more
phase lagged and amplified as we approach the local bifarcatiD,,, =~ 0.33 when approaching
from the lower nulicline solutions. We also expect the atople of the harmonics of the system
response to increase.

We choose to tip the system from one state to another by slaltdying the mean of the driving
D,,. Alternatively, the system could have tipped by changing ohthe other driving parameters
such as amplitud®,, or frequencyw. Since the system response amplitude depends pandw
and phase lag depends©none must take this into account when inferring system ticages from
the indicators.

In figure[2 the system is run forward in time, linearly varyibg, from -2 to 2 across the bifur-
cation over about 25 cycles of the forcing period (for theueal of the parameters see the figure
caption). Plotted in figurgl 3 are phase lag and amplitude®fifstem response prior to the bifur-
cation at around/T = 15. Both are increasing as the bifurcation is approached dtiestocrease
in 7. Phase lag is calculated from the difference between thestiohthe maxima in the forcing and



Figure 1. The dynamics of the system described by equdfidn 11 in thifieeemht time scale regimes. Forcing
parameters are set 10, = 0, D, = 1/2. In the upper panel system statés plotted againsD(t). The black
lines are the nullclines and the coloured lines are the sysésponses for different periods of forcing. In the
lower panelz is plotted against the number of cycleég’, once the system has reached a steady state. The
dotted line is the forcingD(t) while the colored lines are the system responses. The redslifor the slow
forcing limit, 7 < T, T' = 1007 sowT &~ 1/100. As the system time scale is much faster than the change in the
forcing, the system essentially ‘sticks’ to the fixed pointsil they become unstable at the bifurcations and jump
to a different attractor. One can regard the system respore® different ways: (i) a single periodic attractor
giving a relaxation oscillations in a monostable regioi). Tipping between point attractors by crossing local
bifurcations in a bistable region. This tipping causes ymathics to be very nonlinear. The green line is the fast
forcing limit, ' < 7, T'= 7 /100 sowT ~ 100. There are two possible stable attractors for this set afesl

As the system time scale is much slower than the change intbia§, the system essentially remains static and
all the dynamics come from the forcing itself. Although ihird to see in the figure due to the small amplitude
system response, the lag relative to the forcing is 1/4 otée@nd the dynamics are approximately linear. The
blue line is the intermediate regime~ T, T = 7 sowT &~ 1 and there are two possible stable attractors for
this set of values. As the system time scale is approximatelysame as the period of the forcing, the system
response is a competition between the system’s tenden@ctyydowards the nullcline and the forcing pushing

it away setting up a stable orbit. Notice there is some pregand the dynamics look approximately linear.
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Figure 2. The dynamics of the system are described by equéfidn 11 witying D,,,. Parameters are set
to D, =1/2, T =« (the same order as the system time scate~ 1) and D,, is varied linearly with time
between -2 and 2 over about 25 cycles. In the upper panel #uk Bhes are the nullclines while the system
response is the blue line plotted agaifft). The orbit loses stability around a mean valueldfs 0.5 and
jumps to a new orbit. In the lower panel we have plotted theesysesponse (blue) against the forcibyg
againstt/T". One can see the loss of stability of the orbit aroufi@ ~ 15 and the prior increase in system

response amplitude.

the system response in each cycle. Response amplitudecidatatl by taking half the difference
between the maximal and minimal values in the system regpareach cycle. Also plotted are the
ratios of the second and third harmonic amplitudes to theliaidp of the fundamental harmonic
with time using a sliding window of length 5 complete cyclgamst the time at the end of the slid-
ing window. The window needs to be long enough to resolve #éinmbnics in the spectrum but short
enough to kee®,,, approximately constant. For this example, where the haicranplitudes (and
the nonlinearity of the response) are quite small, 5 cydéke minimum to resolve the peaks. The
sliding window is then advanced one cycle in the time semgsthe harmonic amplitudes are calcu-
lated for this new window. This process is iterated until liheal bifurcation is reached to produce
the lower panel in figuriel 3 which shows both harmonic ampétidcreasing.

We also plot the complete spectrum of the ratibs/A; againstT,, /T derived from a Fourier
transform of the system response in figilre 4. In the upper pérEmrameters are the same as figure
[@ except we have fixed,, in each of the two runs. In the first ruR,, = —2, this is far from
the bifurcation and one expects the system to behave maarhin(blue line). One sees a second

10
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Figure 3. The early warning indicators, response amplification (ugamel), A = \/DiL“, and phase lag
14wt

(middle panel) Plag — % arctan(wT) calculated for the time series in figlrk 2. We have plotteddhedica-

2w

tors prior to the bifurcation at/T ~ 15. The 2nd (blue) and 3rd (red) harmonic amplitudes/ A are also

plotted in the lower panel using a sliding window of 5 comeleycles. All indicators are increasing as expected.

harmonic around 2 orders of magnitude smaller than thediresponse. In the second rii),, =
0.25 and the orbit is much closer to the bifurcation (red line)e ®econd harmonic has increased
to about an order of magnitude smaller than the fundameataidnic and a third harmonic is now
also visible indicating the system has become more nornlinea

To give an example of a climate system operating in this regiomnsider the annual variation in
sea temperatures in northern hemisphere temperate redionagh estimate of the ocean surface
mixed layer time scale gives~ 10 months and this surface layer is heated by the annual cycle of
solar insolation to varying degrees throughout the yeadculation of the phase lag for thisand
T yields a lag of about 2.6 months i.e. roughly the maximal amgimal sea temperatures are in
September and March. Arctic sea ice extent also falls ingordgime and we analyze this system in
sectiorl#.

3.1.1 A note about return maps

Towards the upper range afr ~ 1, specificallywr > 27, return map analysis via statistical fixed
point indicators becomes useful with the added caveat liegtiine series of the system must have
enough cycles to produce statistically significant resi&&turn map analysis is complementary to
phase lag and response amplification since these quastiigso asymptote whenr > 2. This

11
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Figure 4. Ratio of thenth order harmonic amplitude to the fundamental harmoniclimde A, /A: against

the ratio of thenth harmonic period to the fundamental harmonic pefladT". The dynamics of the system
are described by equatifnl11. In the upper panel parametefixed toD, = 1/2, T' = = (the same order as
the system time scale). The blue line is foD,,, = —2 (far away from the bifurcation), the nonlinear response
is dominated by the second harmoniclat/T = 1/2 although small, about two orders of magnitude less than
the linear response. The red linelis,, = 1/4, close to the bifurcation the system response has become mor
nonlinear. The second harmonit,(/T = 1/2) is now almost one order of magnitude less and the third order
harmonic . /T = 1/3) is also prominent. In the bottom panel, we show the spectuien the dynamics is
very nonlinear. Parameters are sefig, =0, D, = 1/2, T'= 1007 sowT = 1/100. This is the slow forcing
limit shown in figurdl (red line) which has a very nonlinedaxation oscillation type response. Note only odd
harmonics 1../T =1/3,1/5,1/7, ... etc.) are present due to the system experiencing a symnpeteatial
requiring the solutiong(t), to also have this symmetry.

12
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Figure 5. Same figure as figufé 2 in the manuscript except the variafidn,pis over more cycles to generate
more points for a reliable return map analysis. Weak Gansghite noise of standard deviation 0.01 is added
to the system. Parameters are sebtpo= 1/2 andD,,, is varied linearly with time between -2 and 2 over about
100 cycles. In the upper panel the black lines are the nodsliwhile the system response is the blue line for
T = 7 giving wt ~ 1 whereas the red line has a shorter period’ef 1/4 to givewr ~ 4. These are plotted
againstD(t). In the lower panel we have plotted these system responsiesesseries against the forcing (black

line).

complementarity is illustrated in the following figures.€élblue line in figurdb is essentially the
same as figuriel 24 ~ 1) exceptD,, is varied over 100 cycles instead of 25. This is because extra
data points are needed to calculate the lag 1 autocormelatithe return maps with any reliability.
We have also added Gaussian white noise to equiafion 11 afssthdeviatior).01 as the return
map method needs small perturbations with which to infarrretimes to the cycle. In figuid 6 we
have plotted the early warning indicators for this timeesincluding the return map calculated with
a sliding window of 25 cycles. The black lines are the théoatturves and the blue lines are the
estimated curves. The key point is the theory and estimatatarrelations do not show anything
in this regime ¢ ~ 1) however the phase lag and response amplification arexliearkasing.

Conversely, the red lines in figuké 5 anod 7 are the same giganititit with decreased period of
forcing (I" = 1/4 sowT ~ 4m). This is a regime in which phase lag and response amplittade s
to asymptote and are therefore not so useful to infer chgngystem time scale. However, lag 1
autocorrelation of the return map now becomes useful aseaeén in figurgl7.
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Figure 6. wr ~ 1: The early warning indicators, response amplification @rppanel),A = —2<=__ and
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phase lag (middle panelfé% = % arctan(wT) calculated for the blue time series in figlide 5. In the lower
panel, lag 1 autocorrelation of a sliding window of 25 poiotshe return map is plotted with standard errors
(dashed lines) on the estimate. Black lines are theoratigaks of all the quantities. The key point is phase lag
and amplitude response are useful quantities in this regomever the return map is not.

3.2 Period of forcing much slower than system time scaley™ < 1

When equatiof11 is operating in this regime (period of fagenuch greater than system time scale
T > 1) the system can adjust to changibgt) relatively quickly and effectively remains at a fixed
point. D(t) can therefore be modelled as a slow constant, control paeamed all the usual time
scale separation assumptions apply. Fixed point indisaoch as lag 1 autocorrelation are then
good early warning indicators of local bifurcations. In tast, phase lag and response amplitude
are not useful as these quantities asymptotg g — 0 and— 7 respectively. The system statds
plotted againsD and against as the red line in figurd 1.

An example of a system that has the correct time scale sepamaid periodic forcing are the
glacial/interglacial cycles that have the slow build, fesilapse type behaviour of relaxation oscil-
lations. Ice sheets have time scales in the order of thossaingkars forced by the solar insolation
variation of Milankovitch cycles. The forcing is a superjion of many different sinusoidal fre-
guencies, the dominant ones having periods of 41 kyr (rkatehe obliquity of Earth’s orbit), 19
and 23 kyr (related to the precession). Current thinking év@x;, favours more complex, two and
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Figure 7. wt ~ 4m: The early warning indicators, response amplification @rgmanel),A = \/%, and

phase lag (middle panel?% = % arctan(wT) calculated for the red time series in figlide 5. In the lower
panel, lag 1 autocorrelation of a sliding window of 25 poiotshe return map is plotted with standard errors
(dashed lines) on the estimate. Black lines are theoretigaks of all the quantities. Phase lag and amplitude

response have now asymptoted and are not useful quantities/br the return map now becomes useful.

higher dimensional dynamics to model these cycles thanitiggesvariable models we consider in

this paper (§altzmlalL(deZLQﬂL(Jim]lZL§_ie_dﬁle_djl M), anth Qrugifixl_(;OiB)).

The spectrum of a very nonlinear, relaxation oscillatigmetydynamics is illustrated in the lower

panel of figurd ¥. This is the spectrum of the slow forcing reed(line) in figure[Jl. Only odd
harmonics appear in its spectrum because the static paitéht: — [ idz is symmetric about:
for this value ofD,,, =0 i.e. V(z) = V(—=z) and therefore any solution af must also have this
symmetryz(t +7'/2) = —z(t). Only odd harmonics have this propEth.

2This is not sufficient though as there are other paramettingethat feature the second harmonic and also have the same
symmetric potential i.eD,,, = 0 and7 = = in figure[d (blue line). The difference is that the runs feiayisecond harmonic
responses only experience a limited part of the potent@lthe full symmetric potential. Even though the potentiathe
same, the forcing is quick enough to trap the system in art orlust one of the two potential wells. This local potential
well is asymmetric and what the system sees is effectivedgrifged by a Taylor expansion around the centre of that well.
contrast the relaxation oscillation type run travels astusth wells equally and therefore sees the global symnattential
requiring an odd harmonic solution. This is not a generie dasvever.
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3.3 Period of forcing much faster than system time scaleyr > 1

The system state is plotted againsD and against as the green line in figufd 1. The forcing is
changing much faster than the system can respond so themsgfiiectively looks static and all
the dynamics come from the forcing directly. In this case e placeD(t) in the fast dynamics.
However, not all of the other assumptions for use of lag 1 @telation in a fixed point analysis
are satisfied. It is true thdd(¢) is independent of;, however it is not uncorrelated with itself at
different times and therefore cannot strictly be modelle@ aormally distributed random variable,
although at first glance it looks as though it is again posdibluse usual fixed point early warning
techniques so one must be careful. In this regime, phasendgesponse amplification asymptote
and again are not very useful to detect a trend in increasimg $cale. Phase lag;,, — 7/2 and
response amplifcations 1 so one may only infer > T'.

An example of a system approximately modelled by this limithie global terrestrial vegetation
carbon which has a dominant timescale on the order of decadeh larger than its periodic forcing,
the annual cycle of solar insolation. This dominant timdescames from the large long term carbon
storage e.g. the time scale taken for a forest to regrow oncdawn. One sees this phase lag of
guarter of a cycle in the annual minimum of the Mauna LoaQ(B@:or(B relative to the Northern
hemisphere solar insolation maximum. This lagged annuaimim in the integrated response of
the total atmospheric carbon results from the dominanceeoNorthern Hemisphere’s mid latitude
terrestrial vegetation carbon in the global carbon flux. \&eehplotted the Mauna Loa GQecord
and the time of year of the minimum concentration in figdre 8.

4 Looking for a tipping point in Arctic sea ice satellite obsevations

There has been much research on a possible local bifur@btipping point in the Arctic sea ice,

see for exampIE Armour et aII. (Z&lh), Eisenman and WQmHM), Lindsay and Zhahb (2d05),
Livina and Lgntgk (ZQJBL Ridley et al. (2612) Aﬂdﬂam_meﬂMh l(_QZ 1|2). This possible bifur-

cation in the sea ice cover may be due to the well known icedalfieedback first studied ko
419_6_% anCLS_ellglrJ_(lakg). When ice is present it reflectgh proportion of the incoming solar

radiation due to its higher albedo yet when it starts reagttie darker ocean absorbs more radiation

increasing heating and promoting more sea ice retreat.f€hback can result in instability and
multiple steady states.

We calculate all the previously mentioned early warningdatbrs for a time series of Arctic sea
ice area satellite observations from 1979 to present dagt iEhwe calculate phase lag, response
amplitude, relative size of the 2nd and 3rd harmonics andapel autocorrelation of the return
map with time to look for signs of critical slowing down thatght indicate the approach of a local

3Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ctggids/) and Dr. Ralph Keeling, Scripps Institution of
Oceanography (scrippsco2.ucsd.edu/)
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Figure 8. Atmospheric CQ concentration recorded at Mauna Loa against time in therypgoeel. In the lower
panel we have plotted the minimum annual £édncentration against year. One notices the minimum CO
concentration occurs roughly 3/4 of the way through the.yElis is because maximal carbon uptake occurs
during the Northern hemisphere summer from the terresteigétation and it is maximally lagged behind the
maximum in the Northern hemisphere solar insolation (besting conditions) by 1/4 of a cycle because of

the time scale difference between the response of the systdrthe period of the forcing.

bifurcation or ‘tipping point’ in the Arctic sea-ice. We algalculate the complete Fourier spectra
for the entire time series as a linearity check. In figure 8IBt observations of Arctic sea ice area
are plotted against year. Sea ice area data were obtaimadrtne Cryosphere Today project of the
University of lllinois. This data s@uses SSM/lI and SMMR series satellite products and spans 1979
to present at daily resolution.

In figure[I0 we plot the amplitude of the sea ice area annudé@md the phase lag between
the sea ice area minimum and maximum during each cycle. Waresthe maximal and minimal
driving occurs at the same time as maximal and minimal of ¢h&r snsolation, that is, the midpoint
and end point of the year respectively to obtain phase lagkmiit the the impact of high frequency
variability on the location of the extrema, we have smootieddaily data with a sliding window of
30 days.

From figurdID we see the cycle amplitude is increasing witle tallthough the phase lag does not
appreciably change. We first make some rough calculatiossdaf these plots are consistent with
each other: From the phase lag figure, a time scale-0f0.33,0.5] yr from the lag 0f[0.18,0.2]

“http://arctic.atmos.uiuc.edu/cryosphere/timeseaiesn.1979-2008
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Figure 9. Arctic sea ice area satellite observations from 1979 togmieslay (2015) obtained from The
Cryosphere Today project of the University of Illinois.

of a cycle can be inferred. If we assume for the moment the iaidpl of the forcingD,, is not
changing throughout the time period of the observationis (ttay not be true) and take the smallest
value in the range fory97s = 0.33 yr occurring in 1978 and the largest value in 20%H,5 = 0.5

yr we can make a rough calculation of how much the sea ice amdpliwould have increased i.e.
% = %\/ % ~ 1.06. From figurd_ID we take the amplitude at 1978 tahgrs ~ 4.5

and at 2015 to bélyg15 ~ 5 we find 2‘%3;2 = 1.11. These values could therefore be consistent with a
constantD, and a changing time scale. However, the time scales infémeteither the phase lag
or amplitude are not changing appreciably and therefoeseitrs unlikely the system is approaching
a local bifurcation.

We note that the phase lag is a more robust indicator. Thiedause the phase lag depends only
on the product of the frequency of the forcing and the sysieme scale whereas the amplitude
depends additionally on the amplitude of the drividg,, which may well be changing throughout
the observational period and could account for some or gh@increase seen in the amplitude in
figure[10. Although the solar insolation will be a large comeuot of the forcing amplitude and is
essentially fixed, other factors such as clouds as well aarairsea temperatures will also factor
into the driving amplitude. Geometrical constraints imgbdy land masses affecting the maximal
extent of the sea ice will also influence the amplitude of & ise oscillation when ice extent is
large (Eisenmari (2010)). In contrast, we can take the fregyuef the driving to be essentially fixed
by the annual solar insolation cycle making the phase lagmabust.
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In the lower panel of figureZ10 we have plotted the ratio of theosd and third harmonic ampli-
tudes to the amplitude of the fundamental harmonic with tisiag a sliding window of 10 complete
cycles against the year at the end of the window. We have hseahinimal window length needed
to resolve both harmonics reliably. This indicator alsovehao clear trend with time.

We have also calculated the lag 1 autocorrelation of themehap. From phase lag, the estimate
time scale of the seaice is 0.5 yusi(~ 7) which is less tham /T > 1 needed for a reliable estimate.
However, the estimated time scale is uncertain and it is@wable the return map analysis might
work. As there are only 37 complete years of data, any retup time series has a maximum of
37 data points. To discern any trend in the autocorrelatienreeeds as many windows as possible,
however this results in a decreasing number of data pointirpe series and an increasing error
in the estimate. We have therefore chosen a sliding windo@0ofycles although the results are
invariant to this choice, always being very uncertain. \edirly detrend the cycle in each sliding
window and then create the return map time series from thegiged window. One can also choose
at which point in the cycle one wants to take the return mamfemd this additional freedom is
utilized in the right hand panel in figurell2. Lag 1 autocatieh is plotted against sliding window
end year £ axis) and day of the year in each cycle the return map genkoadthey axis). We
create a new return maps every 10 days giving 36 differemtpaiithin each cycle. As seen in the
figure autocorrelation depends very heavily on where in ylodecone chooses to generate the map,
a sign that the return map is not a good approach for this mystegood return map should be
largely invariant to where in the cycle it is taken providéd tycle is stable and not changing. In
the left hand panel of figufe1L2 we plot the standard errodeidiby the autocorrelation. Note that
most estimates of lag 1 autocorrelation have standardsdiaager than half their value giving very
uncertain estimates. In an effort to reduce the uncerjainithe estimate we have also taken the
mean autocorrelation over all points in the cycle the retnap is taken in figure“13. The mean lag
1 autocorrelation is 0.160.26 which corresponds to a (very uncertain) time scale ef 0.55 yrs.
This is consistent with the estimates from the phase lag dl8b suggests that the sampling interval
T > 7 and therefore determining the time scale using the retumaparoach is difficult. We have
increased the sliding window to 37 years to minimize thedad error in the estimate, however one
will not be able to then see a trend in autocorrelation. Ewgrile standard errors are still greater
than half the estimate.

We have also plotted the full spectrum of the ratihs/A; for the entire time series in figurell1.
We note the nonlinear effects are quite prominent in thisesyssecond and third harmonics are
around an order of magnitude smaller than the linear regy@ithough we can still probably get
away with the linear analysis. Forth, fifth and sixth harnesrare also visible. These nonlinearities
may be due to albedo effect or to the geometrical effectsoohtictic ocean basilO)).

To conclude, from this simple analysis it seems that theesysttime scale and therefore sta-
bility is not changing appreciably if at all and it is unlikeio be approaching a local bifurcation.
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Figure 10. In the upper panel amplitude of sea ice area within each éygiotted against year. In the middle
panel phase lag is plotted between the sea ice area mininaghtiie) and maximum (blue line) and the solar
insolation minimum and maximum respectively against trer yla the lower panel, the 2nd (blue) and 3rd (red)
harmonic amplitudes!,, /A, are plotted against year end using a sliding window of 10s/€Etnie amplitude is

increasing however the phase lag is not. Harmonic ampbtade show no convincing trend.

However, simple theoretical models, sucl|3_as_Ei5_enman_a.the} kZD_Qb)I._EiS_QnmJaIJ_(ZdIZ) and
[B_alhia.mLe_t_ahJ_(,ZQiG) (who also used a return map approagdugest that the sea ice time scale does
not change very much approaching the bifurcation, everedsang slightly before rapidly changing

over a very small interval and therefore would be very hardeiect if present.

5 Conclusions

Much previous work on detecting local bifurcations fromeiseries required one to be able to par-
tition the universe into widely separated time scales andahthe system dynamics as overdamped.
When this is the case one can use the usual, statistical foiatlgarly warning indicators of increas-
ing lag 1 autocorrelation and variance since these indisa@asure the system'’s response to small
perturbations away from its fixed point by the fast, noisygesses. It is the response to this small,
noisy forcing that allows one to measure the system’s tinmes@ he systems we have been looking
at in this paper do not have fast or random forcing. The systeonsidered here have determinis-
tic forcing with a period roughly that of its time scale alttgh the dynamics are still overdamped.
Deterministic forcing again allows one to infer the systeitime scale simply by measuring the
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Figure 11. Ratio of thenth order harmonic amplitude to the fundamental harmoniclimnde A, /A; found

from the Fourier transform of the Arctic sea ice area timéeseagainst the ratio of theth harmonic period
to the fundamental harmonic peri@i /7. One can see the Arctic sea ice response features promeamids
third, forth, fifth and sixth harmonics in its spectrum.

response to the forcing without the need for large amountat required by statistical quantities

for robust estimates. We used two analogous early warnigigators to lag 1 autocorrelation and

variance in these systems; these were phase lag and respopbfcation respectively. Just as au-

tocorrelation is more robust as an indicator (it is a functid fewer parameters), the same is true of
phase lag, only depending on the frequency of the forcinglamtime scale of the system. The sys-
tem response amplification also depends on the amplitudechfy, which in many circumstances

is probably difficult to measure.

We also used a Fourier transform of the time series to qyantitv nonlinear the system is be-
having and whether the linear approximations usually madegaod. Further, by using a sliding
window within the time series, one may also look at the evotubf the harmonic amplitudes as a
further early warning indicator.

We also discussed return map methods that essentially k@periodic attractor to a fixed point
type so that one may use the usual fixed point indicators. ¥estiowed there was a complemen-
tarity between return map indicators and phase lag and msspamplification, the latter being more
useful for regimes in whictvr ~ 1 and the former being more useful whemn > 2.
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Figure 12. Left panel: Lag 1 autocorrelation of the return map agailging) window end year using a sliding
window of 20 years: axis) and point within the cycle the return map is createchentaxis (we create return
maps every 10 days). One sees autocorrelation depends eavilyhon where in the cycle one chooses to
generate the the return map. Right panel: Standard errbiecdutocorrelation return map estimate divided by
the estimate against sliding window end year. The estinsatery uncertain almost everywhere with standard

errors generally being at least half as big as the estimate.

We applied these indicators to satellite observations ofiésea ice area, a system whose period
of forcing, effectively the annual cycle of insolation, idar to the time scale of the system. This is
also a system that has been conjectured to have a tippinggario a local bifurcation. We did not
find any detectable critical slowing down and therefore sighthis bifurcation. It should be noted
however simple models of the sea ice suggest critical sigwimwn only occurs very close to the
bifurcation making it very hard to detect.

Appendix A: Phase lag and response amplification with arbitary periodic forcing

Phase lag and response amplification can be found for the georral case of any type of periodic

forcing D by solving

. X
i+ —=D() (A1)
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Figure 13. Mean lag 1 autocorrelation of the return map across allisgafoints within the cycle using a
sliding window of 20 years. This is the same as fidurk 12 withrtiean taken along thg axis. Estimated
autocorrelation is still very uncertain. The mean is théddale with the dotted lines being the mean plus/minus
the standard error. The mean value across all yearsH0.26 which corresponds to a (very uncertain) time

scale ofr ~ 0.55 yrs.

7 the timescale of the system (thdolding time). For any periodic forcind)(¢) with periodT" can
be written as the Fourier series

N
D(t) = Bjcos(wit + xi)- (A2)
=0
470 B, are the amplitudes of the different component sinusoidalesav; = % are the frequencies
of the components ang; are the phases of each of the components. As the equatiore# lihe
superposition principle holds. That is, we assume the isolitas the form
N
z(t) = Z'Tz (t) (A3)
=0
by setting all but théth term of the driving to zero we can solve the+ 1 equations
475  @; + Ti_ B; cos(wit + x4) (A4)
T
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for eachzx;(t). These solutions can be superposed to obtain the full salti any periodic driving
term. This is

cos (w;t + x; — arctan(w; 7))

N
;m
T

¢
480 —e 7 cos(x; — arctan(w; 7))+ xoe” T (AD)

which settles into orbit

cos (w;t + x; — arctan(w; 7)) (AB)

Zm

whent > 7, that is, the solution is just the sum of each of the forcinmponents, each with a
response amplification of

485 —— (A7)

V1+wir?

and a response lagging the forcing with a phase of
P19 = arctan(w;T). (A8)

One can find out what these phase lags and amplitudes areibyg take Fourier transform of the
time series of both the forcing and response.
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