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Response	to	S.	Ghosh:	
	
S.	Sippel	et	al.,	2015	
	
This	is	a	very	interesting	work	on	bias	correction	of	climate	simulations	preserving	the	
physics.	This	is	worth	publishing.		
We	thank	the	reviewer	for	the	encouraging	feedback.	
	
I	have	few	minor	points:	
1.	Is	it	possible	to	show	that	the	physics	is	preserved,	through	the	calculation	of	closure	
term	of	water	and	energy	cycle.	They	may	follow	Trenberth	and	Fasullo	(2013),	GRL	to	
compute	the	closure	term.	Trenberth,	K.	E.,	and	J.	T.	Fasullo	(2013),	North	American	
water	and	energy	cycles,	Geophysical	Research	Letters.,	40(2),	365-369,	doi:	
10.1002/grl.50107.	
Yes,	this	is	indeed	possible.	However,	our	paper	deals	with	a	bias-correction	that	
preserves	the	physics	of	the	regional	climate	model	output.	Thus,	our	approach	relies	on	
the	assumption	that	the	output	of	the	climate	model	is	physically	consistent,	i.e.	that	
water	and	energy	balances	are	closed.	We	believe	that	evaluating	the	water	and	energy	
balance	in	the	HadRM3P	model	is	somewhat	outside	of	the	scope	of	our	paper.		
To	this	end,	Massey	et	al	(2014)	showed	that	the	HadRM3P	model,	including	the	new	
parametrization	that	was	introduced	in	the	latter	paper,	produces	a	realistic	energy	
balance;	and	that	the	closure	and	realistic	representation	of	the	global	radiation	balance	
induces	an	important	constraint	on	the	system.	In	HadRM3P,	the	water	balance	is	
closed.	(as	much	as	this	is	possible	in	SST	driven	simulations)	
In	order	to	clarify	this	in	the	manuscript,	we	have	additionally	highlighted	that	“physical	
consistent”	bias	correction	requires	that	water	and	energy	balances	are	closed	and	
realistic	in	the	Discussion	of	the	manuscript.	
	
2.	The	authors	must	mention	that	bias	correction	is	different	from	downscaling.	There	is	
a	recent	trend	of	mixing	both	of	them	just	by	adding	a	disaggregation	to	bias	correction.	
This	can	be	a	good	word	of	caution.	
We	agree	with	the	reviewer	that	this	distinction	is	crucial.	In	the	revised	version	of	the	
manuscript,	this	important	point	is	included	in	the	Discussion	Section:	Here,	we	
emphasize	that	our	bias	correction	is	designed	to	alleviate	biases	in	a	physically	
consistent	way,	but	is	not	designed	for	downscaling	or	to	match	any	scale	mismatches.	
	
	3.	Is	the	bias	stationary	to	apply	for	future	climate	projections?	
An	important	implicit	(and	unavoidable)	assumption	for	bias	correction	of	future	(or	
“counterfactual	past”)	simulations	is	that	the	structure	of	the	bias	remains	constant	over	
time.	Maraun	(2012)	had	shown	that	this	might	be	the	case	on	large	scales,	but	
important	non-stationarities	exist	locally	and	regionally.	Therefore,	in	the	Discussion	
Section	we	(generally)	argue	for	caution	in	applying	any	type	of	bias	correction	to	future	
simulations.	
	
However,	if	one	assumes	stationarity	of	the	bias	structure	through	time,	the	method	can	
be	readily	applied	to	future	(or	“counterfactual	past”)	simulations	(as	the	mapping	
function	for	the	resampling	step	is	defined	between	percentiles,	not	absolute	quantities).	
	
Lastly,	to	address	the	reviewer’s	comment,	we	have	tested	that	the	bias	structure	in	the	
“bias	correction	period”	in	our	paper	(1985-2010)	is	stationary,	by	comparing	the	bias	



structure	in	the	first	(1985-1997)	and	the	second	period	(1998-2010).	See	the	figure	
below	for	the	results:	Although	of	course	this	approach	is	limited	by	the	small	sample	
size	(13	years	for	each	period),	the	bias	structure	is	very	similar	for	both	periods	and	
both	for	the	entire	temperature	signal	and	detrended	temperatures	(i.e.	the	biases	(for	
example,	the	probability	for	an	event	in	the	hot	tail)	are	not	due	to	single	“strange”	years	
but	rather	occur	systematically	in	every	year	in	the	ensemble).	
	
	
	

	
Figure	1:	Stationarity	of	biases	in	two	periods	(1985-1997,	and	1998-2010),	for	both	the	full	temperature	
signal	and	detrended	temperatures.	
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Response	to	A.	Mondal:	
	
S.	Sippel	et	al.,	2015	
	
The	paper	presents	a	novel	bias	correction	technique	for	use	in	climate	change	impact	
assessment	studies.	The	technique	is	claimed	to	preserve	the	physics	as	well	as	
multivariate	dependence	structures.	Benefits	of	the	proposed	technique	in	comparison	
to	the	existing	methods	are	categorically	brought	out	and	an	end-to-end	application	is	
also	illustrated	using	an	impact-assessment	study.	The	paper	is	overall	very	well	written	
and	will	be	of	interest	to	a	wide	range	of	researchers.	Therefore,	I	would	favor	its	
publication.		
We	thank	the	reviewer	for	the	encouraging	feedback.	
	
However,	I	have	a	few	comments/suggestions	as	I	detail	below	and	would	like	to	see	the	
authors’	responses	to	them.	Since	the	proposed	bias	correction	methods	leads	to	a	
decrease	in	effective	ensemble	size,	large	ensembles	such	as	the	weather@home	
experiment	is	necessary	for	its	application.	In	my	opinion,	this	is	a	strong	limitation	of	
the	method	as	such	large	experiments	are	rare,	particularly	for	developing	regions.	Is	
the	proposed	technique	also	effective	on	GCM	simulations	directly?	
We	agree	with	the	reviewer,	this	issue	is	an	important	consideration	for	the	applicability	
of	our	method.	
The	methodology’s	applicability	depends	on	a	few	factors	(see	also	discussion	in	the	
paper):	

1. (ensemble)	sample	size	and	the	anticipated	application	
2. structure	of	the	bias	in	the	model	(if	the	model	produces	unrealistic	simulations	

in	all	ensemble	members,	then	our	bias	correction	cannot	improve	the	
simulations).	

	
Regarding	(1):	As	demonstrated	in	the	paper,	large	ensembles	are	quite	useful	(but	are	
increasingly	available	also	for	many	parts	of	the	world,	see	e.g.	
http://www.climateprediction.net/weatherathome).		
However,	also	smaller	of	5-10	member	ensembles	could	be	used	for	this	type	of	bias	
correction,	if	one	assumes	ergodicity	over	a	certain	number	of	years.	E.g.	assume	an	
CORDEX-RCM	simulation	with	10	members	over	each	50	years.	In	this	case,	one	could	
still	resample	from	500	ensemble	members,	hence	a	useful	sample	size	should	remain.	
In	this	context,	the	type	of	application	also	plays	a	role:	A	so-derived	ensemble	could	be	
well	interpreted	probabilistically,	but	of	course	“strict	year-to-year	continuity”	would	be	
lost.	
	
Regarding	(2):	In	addition	to	(1),	of	course	the	“magnitude”	of	the	biases	is	important.	
Consider	e.g.	Fig.	2d	in	the	revised	manuscript:	No	loss	in	effective	sample	size	would	
require	that	for	each	decile	in	the	observations,	10%	of	the	original	ensemble	members	
are	available	for	resampling.	In	our	case,	for	the	“worst”	deciles	the	effective	sample	size	
is	reduced	roughly	by	50%	(Fig.	2d).	This	way,	one	could	estimate	whether	the	effective	
sample	size	after	resampling	for	a	smaller	ensemble	is	large	enough	for	the	anticipated	
application	(which	of	course	is	a	function	of	the	“severity”	of	the	bias	and	the	number	of	
ensemble	members).	
	
We	have	stressed	both	points	more	clearly	in	the	discussion	section.	
	



	
I	also	have	concerns	with	the	quantile	mapping	based	technique	for	more	general	
applications	of	the	proposed	bias	correction	method.	The	retention	of	an	ensemble	
member	depends	on	q_mod	as	given	by	the	transfer	function.	Therefore,	if	a	model	
simulated	value	does	not	correspond	to	a	quantile	of	the	observed	record,	that	value	is	
rejected,	thereby	indirectly	defining	a	prescribed	range	of	possible	values	of	the	variable	
based	on	certain	number	of	years	of	observations.	For	bias	correction	of	future	values,	
clearly,	there	is	no	way	to	ensure	that	the	actual	values	belong	to	that	range.	
We	agree	with	the	reviewer	in	that	the	choice	of	the	resampling	constraint	is	a	critical	
step	for	the	applicability	of	the	methodology.	However,	we	would	like	to	add	two	
comments:	

1) Present-day	bias	correction:	For	transient	bias	correction,	the	underlying	
assumption	is	that	the	actual	range	of	variability	in	the	observations	is	
representative,	as	correctly	pointed	out	by	the	reviewer	(but	not	fully	restricted	
to	that	as	in	quantile-quantile	mapping	or	similar	approaches,	due	to	the	kernel	
bandwidth	that	allows	some	flexibility).	However,	for	this	reason	we	argue	in	the	
paper	that	an	“aggregated”	constraint	(i.e.,	aggregated	both	in	time	(JJA)	and	in	
space	(Central	Europe))	is	more	useful	than	constraints	define	on	short	periods	
or	single	grid	cells,	because	the	resampling	would	then	be	very	sensitive	to	the	
observed	variability.	We	have	tried	to	discuss	this	point	more	clearly	in	the	
manuscript.	

2) Bias-correction	of	future	simulations:	For	future	simulations,	clearly	a	direct	
application	of	the	bias	correction	based	on	resampling	a	range	of	absolute	values	
is	not	meaningful	(as	correctly	stated	by	the	reviewer).	However,	if	one	assumes	
that	the	structure	of	the	biases	relative	to	the	observations	holds	in	the	future	
(i.e.	not	in	absolute	values,	but	in	the	percentiles	of	model	simulations	relative	to	
percentiles	in	the	observations,	see	e.g.	Fig.	2b	in	the	revised	manuscript),	the	
bias	correction	is	still	applicable,	as	the	transfer	function	is	defined	as	a	mapping	
between	the	percentiles	and	calibrated	on	the	present	(e.g.	Fig.	2b,	see	also	our	
response	to	Referee	#1).	Of	course	this	is	a	rigorous	assumption,	and	we	are	not	
arguing	that	this	should	be	assumed,	but	this	kind	of	“stationarity	assumption	of	
the	bias	structure”	underlies	implicitly	all	bias	correction	approaches	for	future	
simulations.		

	
Further,	selection	of	Gaussian	kernels	seem	somewhat	arbitrary.	It	is	a	subjective	choice,	
and	so	is	the	choice	of	Cubic	Hermite	splines.	
This	is	of	course	correct.		
The	choice	of	the	Gaussian	kernel	is	motivated	by	the	choice	of	the	resampling	metric	
and	the	Central	limit	theorem:	Since	the	constraint	is	quite	highly	aggregated	(JJA	means	
over	a	relatively	large	region,	Central	Europe),	we	believe	that	the	choice	for	a	Gaussian	
kernel	seems	somewhat	“natural”.	
Cubic	Hermite	splines	for	interpolation	are	clearly	an	arbitrary	choice,	but	the	form	of	
the	transfer	function	is	almost	entirely	determined	by	the	two	kernels	over	observations	
and	the	model	ensemble	(because	both	kernels	allow	resampling	of	an	arbitrarily	large	
number	of	random	variables).	
	
	
Additionally,	in	my	opinion,	more	clarity	is	solicited	in	the	description	of	the	proposed	
bias	correction	methodology.		



We	thank	the	reviewer	for	highlighting	the	need	for	a	“cleaner”	methodological	
description.		
We	have	redrawn	the	figures	for	the	methodological	illustration	(Fig.	2b	and	2c).	We	
hope	that	these	now	better	reflect	the	procedure	how	the	transfer	function	is	obtained	
as	a	mapping	between	percentiles	in	the	observations	and	model	ensemble?	
Additional	changes	to	the	methodological	description	are	highlighted	below	as	a	
response	to	the	reviewer’s	comments.	
	
For	example,	do	the	authors	simply	concatenate	observed	data	listed	in	Table	1?	How	do	
they	fit	the	kernel	density	‘over	the	observed	meteorological	constraint	in	various	
observational	datasets’	(blue	cdf	in	Figure	2(a)?		How	are	the	800	ensemble	members	
merged	to	obtain	the	red	cdf	of	Figure	2(a)?	The	authors	also	mention	that	they	derive	a	
bias-corrected	sample	by	‘randomly	resampling	n	times	from	f_obs’:	what	is	the	length	
of	the	sample?	
Further,	q_mod_X	and	q_obs_X	represent	a	given	quantile	in	the	model	ensemble	and	
observation,	respectively.	Does	this	then	imply	that	bias	correction	is	carried	out	
individually	for	each	quantile?	
	
One	dataset	is	used	at	a	time.	Concatenation	or	another	form	of	combination	of	different	
observational	datasets	would	be	an	option,	but	could	result	in	somewhat	“strange”	
distributions	(e.g.	if	one	dataset	is	simply	offset	relative	to	another	one	would	yield	a	
bimodal	distribution).	Therefore,	figures	4	and	5	contain	several	lines	in	the	return	time	
plots,	one	for	the	correction	with	each	observational	dataset	separately.	Since	the	
different	observational	datasets	were	very	similar	to	each	other	for	the	aggregated	
temperature	constraint	(Fig.	4a,	b),	only	the	ERA-Interim	constraint	was	used	for	the	
LPJmL	simulations.	This	has	been	clarified	in	the	manuscript.	
The	Gaussian	kernel	density	fit	uses	a	bandwidth	estimation	procedure	following	
Sheather	and	Jones	(1991).	Subsequently,	resampling	is	done	by	1)	sampling	n	times	
with	replacement	from	the	respective	observations	(e.g.	x_i),	and	2)	sampling	from	a	
Gaussian	distribution	with	mean	x_i	and	the	bandwidth	h	as	the	standard	deviation	
(definition	of	the	Gaussian	kernel).	The	Gaussian	kernel	fit	is	identically	applied	to	he	
observations	and	the	model	ensemble	(i.e.	the	temperature	constraint	is	obtained	from	
each	ensemble	member	and	each	year	and	the	Gaussian	kernel	is	fitted	over	all	of	them).	
The	length	of	the	sample	is	n=800	for	the	illustrative	application	and	probabilistic	
interpretation	in	the	manuscript.	
Bias	correction	is	done	by	resampling	percentiles	from	the	observations	and	retaining	
the	ensemble	member	that	corresponds	as	given	by	the	transfer	function	(in	that	sense,	
bias	correction	is	applied	individually	to	each	resampled	(random)	percentile).	
	
We	have	clarified	these	issues	in	the	Methods	section	of	the	manuscript.	
	
For	fitting	the	GEV	distribution,	though	the	length	of	all	the	observed	records	listed	in	
Table	1	is	greater,	the	authors	mention	about	a	‘relatively	small	sample	size	(1901-	
2014)’.	I	did	not	understand	why	(why	not	all	26	years?).	Also,	statistical	extreme	value	
theory	requires	certain	conditions	to	be	held	true	for	application	of	the	GEV	dis-	
tribution	to	the	block	maxima.	If	10-year	samples	are	‘randomly	concatenated’,	the	tail	
behaviour	may	change,	thereby	questioning	the	application	of	extreme	value	theory	to	
the	concatenated	datasets.	Another,	more	fundamental	issue	concerns	the	random	
nature	of	the	model	output.	The	bias	corrected	variables	are	after	all	output	of	models	



that	are	deterministic	in	nature;	therefore,	whether	they	can	be	considered	as	random	
variables	remains	a	question.	
We	agree	with	the	reviewer’s	concerns	regarding	concatenation	of	observational	
datasets.	This	might	change	the	tail	behaviour	and	could	lead	to	many	other	problems.	
Therefore	we	have	clarified	in	the	revised	manuscript	that	we	do	not	concatenate	
observational	datasets,	but	perform	the	analysis	with	each	observational	dataset	
separately.	Hence,	10-year	sample	are	concatenated	only	from	the	same	observational	
dataset	(following	the	procedure	outlined	in	the	manuscript),	thus	assuming	ergodicity.	
Regarding	10-year	samples	from	the	model	ensemble,	we	would	like	to	add	that	each	
ensemble	member	(i.e.	each	year	in	the	ensemble)	has	been	initialized	separately,	i.e.	
each	year	can	be	considered	as	a	random	realization	(therefore	we	believe	that	this	
resampling	procedure	is	appropriate).	
The	reviewer	also	addresses	a	more	fundamental	issue,	namely	the	random	nature	of	
the	model	output.	Here,	we	also	agree	with	the	reviewer,	but	would	like	to	add	another	
comment:	For	deriving	the	initial-condition	ensemble	that	is	used	in	our	study,	initial	
conditions	for	each	ensemble	member	are	perturbed	randomly	at	the	beginning	of	each	
year.	Therefore,	different	years	in	the	ensemble	(but	not	different	months...)	can	indeed	
be	regarded	as	random	realizations.	
	
Other	points:		
Abstract,	last	line:	‘uptake	of	our	methodology.	.	.for	accurately	quantify-	ing	past.	.	
.extremes’	–	how	is	bias	correction	important	for	quantifying	past	extremes	which	have	
been	already	observed?	Perhaps	the	authors	mean	‘quantifying	changes	in	past	
extremes’?	
This	is	correct.	Thanks.	
Page	2011,	first	sentence	–	this	information	is	repeating	for	the	third	time	here.	
This	sentence	has	been	removed.	
Page	2021,	Para	15:	‘Although	more	sophisticated.	.	.in	this	study’	–	perhaps	a	‘that’	
missing?	
For	readability,	sentence	has	been	rewritten.	
All	references	listed	contain	two	years	of	publication	each	–	please	correct	this.	Also,	
Coles,	2001	is	a	single-author	book.	The	reference	to	Coles,	2001	is	incorrect	in	the	list.	
Thanks	for	pointing	this	out.	It’s	corrected	in	the	revised	manuscript	version.	
Figure	3	(and	similar	figures)	and	Section	4.1	–	Figure	3	is	not	self-explanatory.	If	the	x-
axis	doesn’t	consist	of	values/units,	then	what	to	the	width	of	each	shape	represent?	
The	description	was	added	to	the	figure	caption	of	Fig.	3	and	Fig.	6:	“Both	sides	of	each	
violin	are	constructed	as	rotated,	equal-area	kernel	density	estimates,	and	a	standard	
boxplot	is	drawn	inside	each	violin.” 

 

 

	
	
	
	 	



Response	to	H.	Hoffmann:	
	
S.	Sippel	et	al.,	2015	
	
Just	going	through	the	references:	
Talking	about	2d	or	multidimensional	bias	correction,	the	paper	correctly	cites	the	ar-	
ticle	"Two	dimensional	bias	correction	of	temperature	and	precipitation	copulas	in	cli-	
mate	models"	of	Piani	and	Haerter,	September	2012.	However,	it	should	consequently	
cite	as	well	the	following	article	of	Hoffmann	and	Rath,	February	2012:	Meteorolog-	
ically	consistent	bias	correction	of	climate	time	series	for	agricultural	models.	Theor	
Appl	Climatol	(2012)	110:129–141	
Both	articles	deal	with	multidimensional	bias	correction	and	test	2d-examples.	To	my	
knowledge,	these	are	the	first	two	doing	this.	
	
We	agree	with	the	comment	of	the	referee:	Hofmann	and	Rath	(2012)	also	applied	a	2-
dimensional	bias	correction	methodology.	In	the	revised	manuscript,	we	cite	both	
references	that	used	a	bivariate	bias	correction	scheme.	
	
Best	regards	
Sebastian	Sippel	on	behalf	of	all	authors	
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Abstract. Understanding, quantifying and attributing the impacts of extreme weather and climate

events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However,

climate model simulations generated for this purpose typically exhibit biases in their output that

hinders any straightforward assessment of impacts. To overcome this issue, various bias correction

strategies are routinely used to alleviate climate model deficiencies most of which have been criti-5

cized for physical inconsistency and the non-preservation of the multivariate correlation structure.

In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves

the physical consistency and multivariate correlation structure of the model output. This procedure

strongly improves the representation of climatic extremes and variability in a large regional climate

model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for sum-10

mer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere-

atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the

bias corrected climate forcing. The resampling-based bias correction yields strongly improved sta-

tistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight

the importance to carefully consider statistical moments beyond the mean for climate impact simula-15

tions. In conclusion, the present study introduces an approach to alleviate climate model biases in a

physically consistent way and demonstrates that this yields strongly improved simulations of climate

extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by

the climate and impact modelling community therefore seems desirable for accurately quantifying

::::::
changes

::
in
:
past, current and future extremes.20

1
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1
:::::::::::
Introduction

Weather and climate extreme events such as heat waves, droughts or storms cause major impacts

upon human societies and ecosystems (IPCC, 2012). In recent years, these climatic events have

changed in intensity and frequency in many parts of the world (Barriopedro et al., 2011; Donat

et al., 2013; Seneviratne et al., 2014) and changes are likely to continue throughout the 21st century25

(Sillmann et al., 2013). Therefore, improving the scientific understanding of these events, including

the link to impacts, constitutes an important research challenge (IPCC, 2012; Zhang et al., 2014).

The impacts of climate extremes and potential changes therein are strongly felt in the terrestial

biosphere. For example, heat and drought events trigger ecological responses (Reyer et al., 2013;

Frank et al., 2015), which in turn induces changes to the cycling of water and carbon through such30

systems with potential feedback to the atmosphere and climate system (Reichstein et al., 2013; Frank

et al., 2015). Indeed, on continental to global scales, it has been shown that large-scale reductions in

photosynthetic uptake of carbon by plants are mainly driven by water limitations (Zscheischler et al.,

2014a, b). Furthermore, it has been demonstrated that a single large event such as the European heat

and drought summer 2003 alone might undo several years of ecosystem carbon sequestration (Ciais35

et al., 2005), thus potentially jeopardizing the terrestrial carbon sink potential (Lewis et al., 2011).

A widely debated question in this realm is whether the observed changes in the occurrence of

climatic extremes and associated impacts can be attributed to specific changes in climate forcing,

both anthropogenic or natural (Allen, 2003; Stone and Allen, 2005; Stone et al., 2009). To this end,

large climate model ensembles are needed in order to derive robust probabilistic conclusions about40

changes in the odds of these events (Bindoff et al., 2013; Massey et al., 2014), because direct assess-

ments of rare extremes are often prohibited by the lack of long and good quality observational time

series. Hence, climate models are indispensable tools to study present and future climate extremes

on various spatial and temporal scales, and the availability of such simulations is often a prerequisite

for studying climate impacts.45

However, despite considerable progress in recent years, global and regional climate models typ-

ically exhibit biases in various statistical moments of their simulated variables (Ehret et al., 2012;

Wang et al., 2014), which often impedes direct assessments of climate extremes (Otto et al., 2012;

Sippel and Otto, 2014) or simulating impacts (Maraun et al., 2010; Hempel et al., 2013). These biases

are often due to an imperfect representation of physical processes in the models, parametrizations50

of sub-grid scale processes, and an over- or underestimation of feedbacks with the land-atmosphere

or ocean-atmosphere feedbacks (Ehret et al., 2012; Mueller and Seneviratne, 2014). Due to the vari-

ous origins of model biases, these biases are frequently varying depending on weather patterns both

spatially and temporally, for instance in the distributed weather@home ensemble-based modelling

framework (Massey et al., 2014) or in an ensemble of regional climate models (Vautard et al., 2013).55

To alleviate this issue, various bias correction schemes have been developped
:::::::::
developed in re-

cent years that generally aim to statistically transform biased model output in order to derive more
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realistic simulations (see e.g. Maraun et al., 2010; Teutschbein and Seibert, 2012). To do so, a sta-

tistical relationship (‘transfer function’) is built between the statistical distribution of an observed

and simulated variable (Piani et al., 2010). Such methods span a wide range from very simple para-60

metric transformations adjusting simulated means to observations (i.e. also called the ‘delta method’

(additive) or ‘linear scaling’ (multiplicative), (Teutschbein and Seibert, 2012)) to sophisticated, non-

parametric approaches that aim to correct various statistical moments of the simulated distributions

such as quantile mapping approaches (Wood et al., 2004; Gudmundsson et al., 2012).

However, the application of bias correction implicitly requires that a range of assumptions are met,65

which might be questionable in many cases and are discussed in detail in Ehret et al. (2012). Most

importantly, the application of bias correction implicitly assumes that the statistical transformation

improves the simulated output time series (‘effectiveness’), whilst the signal of interest, e.g. the cli-

mate change signal or properties of the extremes, remains accurately detectable (‘reliability’). Those

assumptions are not always fulfilled since statistical bias correction methods are not based on physi-70

cal principles, but operate rather heuristically on an observed model-data mismatch. To this end, even

relatively simple methods that are designed to adjust ‘only’ simulated long-term monthly means to

observations (e.g. Hempel et al., 2013) lack a sound physical rationale to whether these adjustments

are to be made additively or multiplicatively. Further, the assumption of time invariant biases that

currently underlies state-of-the-art bias correction procedures (Christensen et al., 2008; Ehret et al.,75

2012) might be especially critical for century-long climate simulations spanning several degrees of

warming (Christensen et al., 2008; Buser et al., 2009) including changing land-atmosphere feedback

processes (Seneviratne et al., 2006). Recent studies have shown that this assumption is question-

able for future climate simulations (Maraun, 2012; Bellprat et al., 2013), and have made attempts to

address time-dependent biases.80

Furthermore, an adjustment of daily variability does not necessarily improve monthly statistics,

thus emphasizing the role of time scales at which bias correction is conducted (Haerter et al., 2011).

Lastly, if impact simulations are to be conducted with bias-corrected output of numerical climate

models, the multivariate correlation structure between climate variables deserves attention: Most

bias-correction schemes that are currently in use to simulate impacts have been suggested to correct85

each variable separately (Hempel et al., 2013) and hence dependencies between variables are of-

ten not retained. This is especially critical for assessments of extreme events and ‘compund events’

(Leonard et al., 2014), where inter-variable interactions, such as soil moisture-temperature feedbacks

might play an important role (Seneviratne et al., 2006). Although recent progress has been made to

derive bivariate bias correction schemes (Piani and Haerter, 2012; Li et al., 2014)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hoffmann and Rath, 2012; Piani and Haerter, 2012; Li et al., 2014) ,90

to the best of our knowledge currently no bias correction scheme retains a multivariate correlation

structure of a larger set of input variables for impact simulations.

In conclusion, accounting for biases in climate model output is crucial in order to produce credi-

ble climate model simulations. Nonethless, statistical transformations are to be applied with caution
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and the changes induced to the simulated statistical moments, multivariate dependencies and spatio-95

temporal patterns deserve considerable attention. Since the tails of statistical distributions are espe-

cially sensitive to changes in statistical moments such as the mean and variance (Katz and Brown,

1992), the latter holds in particular for assessments of extreme events and highlights the need for

physically consistent ways to alleviate climate model biases.

In this paper, we demonstrate how a physically consistent bias correction of a regional climate100

model ensemble might aid to better simulate climatic extreme events and impacts in the terrestrial

biosphere (see Fig. 1 for the methodological workflow of the paper).

First, we introduce a novel methodology to alleviate biases in the output of climate model en-

sembles that successfully circumvents major deficiencies of statistical bias correction (section 3): an

ensemble-based probabilistic resampling approach retains the physical consistency of the regional105

climate model output. This includes the preservation of the multivariate correlation structure, and

the procedure is shown to considerably improve the simulation of various statistical moments of the

simulated variables. Secondly, we assess contemporary temperature and precipitation extreme events

in Central Europe on monthly to seasonal time scales by comparing a widely used ‘standard’ sta-

tistical bias correction methodology (Hempel et al., 2013) with the original model simulations and110

the probabilistic resampling (section 4.1 and 4.2). This evaluation also focuses on the uncertainty

induced by different observational datasets used as a basis for any bias correction approach. Thirdly,

we explicitly test how differently corrected climatic data propagates into the simulation of impacts

on major component fluxes of terrestrial carbon (net ecosystem exchange (NEE), gross primary pro-

duction (GPP) and ecosystem respiration (Reco)) and water cycling (actual evapotranspiration, AET)115

in the terrestrial biosphere using a dynamic vegetation model (LPJmL, Section 4.3). To this end, we

demonstrate that different ways to deal with biases in climate simulations yield both qualitatively

and quantitatively different results regarding simulated impacts, which affect both central moments

of the distribution as well as extremes and variability.

2 Data120

2.1 Climate model simulations

In this study, regional climate model ensemble simulations spanning 26 years (1986-2011) with

approx. 800 ensemble members per year from the weather@home distributed computing platform

are investigated (Massey et al., 2014). The ‘atmosphere-only’ simulations were conducted over the

European region (identical to the EURO-CORDEX region Giorgi et al., 2009) using a regional model125

(HadRM3P) on a rotated grid nested into the global HadAM3P model. Both models share the same

model formulation and are described in Pope et al. (2000). The regional (global) simulations are

run with a spatial resolution of 0.44�x0.44� (1.875�x1.25�) with 19 vertical levels, and the temporal

resolution is set to 5 (15) minutes (Massey et al., 2014). The models are driven by observed sea
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surface temperatures and sea ice fractions, the observed composition of the atmosphere (greenhouse130

gases, aerosols) and anomalies in the solar cycle (Massey et al., 2014). To derive different ensemble

members, the initial conditions of the driving GCM are perturbed on 1st December of each 1-year

simulation (ibid.). For further analysis and bias correction, the ensemble simulations were remapped

to 0.5 � spatial resolution using a conservative remapping scheme (Jones, 1999).

Massey et al. (2014) demonstrate that the ensemble setup described above produces a realistic135

representation and statistics of European weather events, including the extremes for most seasons and

regions. However, despite these encouraging results, a relatively large mismatch remains between

the statistical distribution of the ensemble simulations and the observations in Northern hemisphere

summer, which holds for the means of simulated seasonal temperature and precipitation (Massey

et al., 2014) as well as for higher statistical moments, shown in the Supplement against the ERA-140

Interim reanalysis dataset (Dee et al., 2011). Especially in more continental parts of the European

model region, HadRM3P shows a pronounced hot and dry bias in simulated summer weather (Figs.

S1-S3 in the Supplement). However, note that the ensemble setup still captures the entire range

of the observed distribution (Fig. S1). In HadRM3P, these biases are likely related to an imperfect

parametrization of cloud processes in the model, leading to an overestimation of incoming solar145

radiation, which in turn triggers warm and dry summer conditions (R. Jones,
::::
2015,

:
pers. comm.)

that are further amplified by strong soil moisture-temperature coupling in the model (Fig. S4). In

this context, it is worthwhile to note that these biases are not a peculiarity of the regional climate

model employed in this study, but indeed hold for many dynamically downscaled regional climate

model simulations over Europe (Buser et al., 2009; Boberg and Christensen, 2012).150

2.2 Simulation of atmosphere-biosphere carbon and water fluxes

To assess terrestrial biosphere impacts of bias correcting regional climate simulations (see section

4.3), we simulate ensembles of atmosphere-biosphere fluxes of carbon (NEE, GPP, Reco) and wa-

ter (AET) using the Lund-Potsdam-Jena managed land scheme (LPJmL, Version 3.5, Sitch et al.,

2003; Bondeau et al., 2007), a state-of-the-art process-based dynamic global vegetation model that155

account
:::::::
accounts for human land use. We follow Schulze (2006) and Chapin III et al. (2006) in their

definition of major components of carbon cycling in terrestrial ecosystems: Gross primary produc-

tivity (GPP) denotes the vegetation’s gross photosynthetic uptake of carbon from the atmosphere,

whereas ecosystem respiration (Reco) is defined as the respiratory release of carbon by plants and

microbes in the ecosystem, i.e. including both (autotrophic) plant respiration and (heterotrophic) soil160

organic matter decomposition. Net ecosystem exchange (NEE) constitutes the net carbon flux from

the ecosystem to the atmosphere, i.e. the difference between Reco and GPP.

LPJmL simulates vegetation dynamics (growth, competition and mortality) and fully coupled cy-

cling of carbon (photosynthesis, autotrophic & heterotrophic respiration) and water (transpiration,

evaporation, interception, runoff) in terrestrial ecosystems and managed systems (Sitch et al., 2003;165
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Gerten et al., 2004; Bondeau et al., 2007). The model is driven with monthly or daily climatic input

data (temperature, precipitation, incoming shortwave radiation & net longwave radiation), atmo-

spheric carbon dioxide concentrations and soil texture. Vegetation structure in LPJmL is character-

ized by the fractional coverage of 11 plant functional types that differ in their bioclimatic limits and

ecophysiological parameters. Vegetation dynamics and competition are explicitly represented using170

a set of allometric and empirical equations and updated annually (Sitch et al., 2003).

GPP in LPJmL follows the process-oriented coupled photosynthesis and water balance scheme of

the BIOME3 model (Haxeltine and Prentice, 1996). Subsequently, autotrophic (growth and mainte-

nance) respiration is subtracted from GPP, and the net carbon uptake is allocated to plant compart-

ments based on a set of allometric constraints (Sitch et al., 2003). Ecosystem heterotrophic respira-175

tion depends on temperature and moisture in each litter and soil carbon pool; carbon decomposition

dynamics are simulated as first-order kinetics with specified decomposition rate in each pool (Sitch

et al., 2003). Water cycling in LPJmL has been improved by Gerten et al. (2004) and Schaphoff

et al. (2013), where actual evapotranspiration (the sum of evaporation, transpiration and intercep-

tion) is computed as a function from atmospheric demand and soil moisture supply. Phenology and180

photosynthesis-related parameters in the LPJmL version used in this paper have been optimized

against remote sensing observations for an improved simulation of natural vegetation greenness dy-

namics (Forkel et al., 2014), including the introduction of a novel phenology scheme.

LPJmL has been applied in a range of studies assessing ecosystem responses to anomalous cli-

matic conditions (Rammig et al., 2014; Van Oijen et al., 2014; Zscheischler et al., 2014b; Rolinski185

et al., 2015). Rolinski et al. (2015) argued that the model might be able to capture various ecosystem

physiological responses to climatic extreme events such as heat or drought through various path-

ways. These include a water stress response through reduced stomatal conductance, which in turn

decreases both photosynthetic carbon uptake and transpiration. Further, the model responds to very

high temperatures by a photosynthesis inhibition and increased respiration (Rammig et al., 2014).190

In this paper, we use the weather@home climate data to derive ensemble-based simulations of the

functioning of terrestrial ecosystems. LPJmL simulations are conducted in natural vegetation mode

(i.e. no human land use, fire or permafrost) in 0.5� spatial resolution and monthly time steps over

Central Europe. For each bias-corrected ensemble dataset, 2000 years of spinup to equilibrate soil

carbon pools were conducted, using randomly chosen years from the first 10 years of the HadRM3P195

ensemble. Subsequently, atmosphere-biosphere fluxes were simulated at the monthly time scale for

1986-2010 over Central Europe (see Fig. 1 for methodological workflow). This procedure was re-

peated five times to check that no carry-over effects from the randomized spinup affect simulated

biosphere-atmosphere carbon fluxes in the transient period. Since this was not the case, differences

in carbon and water fluxes and their extremes can be directly attributed to the bias correction of the200

climatic forcing in the transient period, and are analyzed in section 4.3.
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2.3 Observations

Any statistical assessment or correction method of biases requires reference datasets, and the qual-

ity of bias adjustment is thus restricted by the quality of observations or reanalysis data available

(Ehret et al., 2012; Hempel et al., 2013). Consequently, the sensitivity of ‘bias corrected’ model205

output to any given set of observations needs to be tested. In this study, a range of observational

datasets is used in order to characterize uncertainty induced by using different observations for bias

correction. In total, seven different temperature and precipitation datasets consisting of gridded ob-

servations/reanalysis were used
::::
(one

::
at

:
a
:::::
time)

:
for the univariate bias correction (section 4.2) and

are detailed in Table 1. The simultaneous correction of multiple variables for the impact simulations210

in the terrestrial biosphere presented in section 4.2 are conducted using ERA-Interim as reference

dataset (Dee et al., 2011, see table 1).

To conduct the sensitivity analysis of climatic extremes and associated biosphere impacts to the

type of bias correction applied, we select one focus region in Central Europe. This region roughly

encompasses Germany (47.5� 55.0�N, 6.0� 15.0�E, see e.g. Fig. S2a) and consists of temperate215

mid-latitude climate with maritime influence to the North-West and more continental characteristics

to the East. In addition, to sample local (i.e. grid cell scale) variability we test different bias correction

scheme on one single grid cell located in Central Germany (‘Jena pixel’, 50.75�N, 11.75�E).

3 Methods

In this section, we describe the different bias correction methods deployed in this study. First, a220

bias correction methodology for impact simulation
:::::::::
simulations that has been adopted widely is sum-

marized (Hempel et al., 2013). Second, we introduce the novel resampling-based bias correction

scheme and lastly the methodologies for evaluation are described.

3.1 Statistical Bias Correction

Hempel et al. (2013) presented a bias-correction that is designed to preserve long-term trends in225

simulated impacts and that has been used widely in simulating effects of climatic changes in different

sectors such as water, agriculture, ecosystems, health, coastal infrastructure, and agro-economy (see

Warszawski et al., 2014, for an overview).

The approach builds on earlier, conventional statistical bias correction schemes (Piani et al., 2010;

Haerter et al., 2011) and is based on linear transfer functions of the form230

x

cor

= a+ bx. (1)

Here, x and x

cor

represent the simulated and corrected climatic variable, a and b are coefficients to

be calibrated.
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In Hempel et al. (2013) the transfer function is applied additively (for temperature, i.e. b= 1),

such that235

a= T

obs

�T

mod

; (2)

where T

mod

and T

obs

represent the means of simulated and observed monthly temperatures, respec-

tively.

To account for positivity constraints for precipitation and radiation components, Hempel et al.

(2013) suggested a multiplicative adjustment of those variables (i.e. a= 0), such that240

b=
x

obs

x

mod

. (3)

These parametric transformations are applied on each grid cell and for each month separately to

account for potential temporal and spatial structure in the biases. By applying this transfer function,

long-term monthly means of the simulated distributions are matched with those in observations for

each grid cell (Hempel et al., 2013). In addition to adjusting monthly means, Hempel et al. (2013)245

also adjust daily variability about the monthly means, but (importantly) the year-to-year variability

at monthly time scales remains unchanged. In our present analysis, we follow this conventional bias

correction scheme for comparison and denote it by ‘ISIMIP’.

Furthermore, to isolate the effects of bias-correcting the full suite of impact variables (temper-

ature, precipitation and radiation) vs. correcting simulated precipitation only, we conduct impact250

simulations with a ‘precipitation only’ bias-corrected scenario (‘PRECIPCOR’).

3.2 A Novel Resampling-Based Ensemble Bias Correction Scheme

Conventional statistical bias correction methods have been criticized due to their physical inconsistency

and the non-preservation of dependency relationships between meteorological variables (Ehret et al., 2012) .

In this subsection, we introduce a novel ‘bias correction scheme’ suitable for ensemble simulations255

that retains the physical consistency and multivariate correlation structure of the model output. The

idea is to resample plausible ensemble members from a large ensemble simulation given the statis-

tical distribution of an observable meteorological metric (‘constraint’). The procedure is illustrated

using the weather@home ensemble described above.

The largest biases in the HadRM3P simulation occur in the summer season (JJA) over the Euro-260

pean model domain, where the model ensemble produces too frequent and too pronounced hot and

dry conditions (Massey et al., 2014). Importantly however, the ensemble spans the entire distribution

of observed summer conditions in most parts of Europe, i.e. some (but too few) ensemble members

produce relatively wet and cold summers. Therefore, our resampling-based correction approach is

designed to alleviate the representation of summer conditions in the model ensemble.265

The bias correction procedure consists of the following steps and is illustrated in Fig. 2:
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1. Define an observable meteorological metric that is poorly represented (‘biased’) in the model

ensemble. In this paper, we use summer mean temperatures over Central Europe, which are

relatively well-constrained in observational datasets.

2. Estimate the probability distribution function of the meteorological constraint from obser-270

vational datasets using e.g. a kernel density fit (f̂
obs

(x), see e.g. Fig. 22a
:
a, blue line for an

illustration), where x denotes the constraint. Here, we use a Gaussian kernel with reliable

data-based bandwidth selection (Sheather and Jones, 1991) fitted over the observed meteoro-

logical constraint for the period 1986-2011 in
::::
using

:
various observational datasets

:::
(one

::
at

::
a

::::
time).275

3. Estimate the probability distribution of the meteorological constraint in the model ensem-

ble using the same estimation procedure as above
::::
over

::
all

:::::::::
ensemble

::::::::
members

:::
and

:::
all

:::::
years

(f̂
mod

(x), see Fig. 2a, red line). The deviation between the red and blue line in Fig. 2a illus-

trates the temperature bias in the weather@home ensemble.

4. Derive a transfer function that maps any given quantile in the observations (q
obs,X

) to the re-280

spective quantile in the model ensemble (q
mod,X

, see Fig. 2b), such that q
mod,X

= TF (q
obs,X

)

using the fitted kernels f̂

obs

(x) and f̂

mod

(x) to determine empirical quantile functions. For

example, a ‘median temperature’ summer over Central Europe (approx. 17.2�C) would cor-

respond to the 50th percentile in the observations-based kernel (by definition). The transfer

function would then map the 50th percentile in f̂

obs

to the corresponding 20.4th percentile in285

f̂

mod

(i.e. average summer temperatures of 17.2� would correspond to the 20.4th percentile

in the model ensemble, see Fig. 2b). In this study, we use Cubic Hermite splines (Fritsch and

Carlson, 1980) to determine the transfer function shown in Fig. 2b.

5. Derive a new ‘bias-corrected’ ensemble (of sample size n) by randomly resampling n times

from f̂

obs :::::::
observed

::::::::::
percentiles

:::::::
(q

obs,X

) and retaining the ensemble member that corresponds290

to q

mod,X

as given by the transfer function
:::::::
(n= 800

:::
per

::::
year

::
in

:::
our

::::::
study).

Hence, the outlined procedure does not adjust any output variable in the model ensemble thus

preserving physical consistency, but rather selects plausible ensemble members. This procedure in-

variably leads to a reduction in the effective ensemble size: For example in the HadRM3P ensemble,

roughly the hottest 20% of simulations are effectively not chosen for the resampled ensemble since295

they are implausibly hot (Fig. 2a). However, an evaluation of the sample size in the bias corrected

ensemble shows that at least 4% of the ensemble simulations match any decile of observations (Fig.

2c and 2d, in an unbiased ensemble exactly 10% of ensemble simulations would match each decile

of observations), corresponding to an effective sample size of at least approx. 1000 model years (=

ensemble members) per decile of observations (Fig. 2c
:
d).300
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In conclusion, the outlined approach to bias correction is conceptually similar to earlier ideas

of assigning weights to different regional climate model projections based on each model’s perfor-

mance in order to derive probabilistic multi-model projections (Piani et al., 2005; Collins, 2007;

Knutti, 2010; Christensen et al., 2010). However, instead of a weight assignment specific ensem-

ble members are selected and combined into a new ensemble using the statistical distribution of305

observed meteorological constraints.

3.3 Analysis Methodology

In section 4.1 the outlined bias correction method is evaluated for the simulation of temperature,

rainfall and radiation using standard evaluation metrics such as seasonal mean values and interannual

variability. Further, we evaluate soil moisture coupling in the original and bias corrected ensemble310

against reanalysis data and upscaled observations by computing the correlation between summer

mean temperatures and the mean latent heat flux following Seneviratne et al. (2006).

Moreover, we analyze empirical return times of the original and bias-corrected ensembles that

are derived by plotting each ensemble value against its rank both for climatological extremes (sec-

tion 4.2: monthly summer temperatures and cumulative summer rainfall) and simulated ecosystem-315

atmosphere annual fluxes of water and carbon (section 4.3).

To further understand discrepancies between the bias-corrected ensemble simulations and ob-

served climate extremes (section 4.2), we characterize the tails of simulated and observed variables

by extreme value theory (Coles, 2001). Hence, generalized extreme value distributions (GEV) are

derived from monthly temperature and precipitation in a procedure similar to Sippel et al. (2015a),320

i.e. by resampling block-maxima in randomly concatenated 10-year sequences of ensemble data and

fitted to a GEV model using generalized maximum likelihood estimation. In observational data, only

a relatively small sample size is available (mostly 1901-2014 only) that is additionally plagued by

non-stationarity and does not match the period in which ensemble simulations are available (1986-

2011). Hence, for monthly temperatures we subtract the trend and seasonal cycle from the original325

time series using Singular Spectrum Analysis (von Buttlar et al., 2014), and subsequently resample

(monthly) summer temperature anomalies (for the whole time series) by adding a trend and seasonal

cycle component drawn randomly from the period of available ensemble simulations (1986-2011
:
,

::::
each

:::::::::::
observational

::::::
dataset

::
is
::::::::
analysed

:::::::::
separately). Approximate stationarity was assumed for sea-

sonal precipitation, and hence no further adjustments were made. Lastly, GEV models were fitted to330

the observations following the procedure as described above.

4 Results

This section is structured as follows: First, we evaluate the bias correction procedure both for resam-

pling based on an area mean and grid cell based constraint. Second, climate extreme statistics and
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their sensitivity to bias correction schemes are investigated (section 4.2). More specifically, the prob-335

abilistic resampling scheme introduced in sect. 3.2 is evaluated against a conventional bias correction

scheme (Hempel et al., 2013, , section 3.1) and compared against the uncorrected simulations and

different observational datasets. Third, we illustrate how biases and their ‘correction’ propagate into

climatic impacts exemplified by simulations ecosystem water and carbon fluxes in Central European

natural vegetation.340

4.1 Evaluation of Resampling Bias Correction

An evaluation of the distribution of variables in the resampled ensemble in Central Europe shows that

it not only improves the simulation of seasonal mean temperatures (which it does by construction),

but also yields considerable improvements to the simulation of rainfall and radiation components

(Fig. 3). This suggests that these biases are related to specific synoptic situations in summer, justi-345

fying to apply the bias correction approach to summer months. Hence, the multivariate covariance

structure between temperature, precipitation and radiation as simulated by HadRM3P appears to be

well represented in the model simulations posterior to the updating procedure given the reanaly-

sis/observational data. Moreover, while this procedure also improves the simulation of summer tem-

peratures and precipitation on a monthly time scale, virtually no changes in the ensemble statistics350

are induced to non-summer months (Fig. S1), indicating that the time scales of temporal decorrela-

tion are short enough for a successful application of the resampling procedure (Fig. S1). However,

while conventional statistical bias correction following Hempel et al. (2013) adjusts monthly means

of the distributions of precipitation and radiation (by construction), changes are induced by the mul-

tiplicative adjustment to the width and shape of the distribution, including its tails (Fig. 3, see also355

section 4.2).

An evaluation of the resulting spatial patterns of the resampling bias correction shows that the

representation of the simulated statistical distributions of temperature and precipitation are consider-

ably improved in Central Europe (area mean constraint) and across the entire European model region

(single grid cell constraints, Figs. S2-S3). Remarkably, this holds not only for seasonal averages, but360

also for higher statistical moments such as the inter-decile range (Figs. S2-S3).

Furthermore, we test the representation of land-atmosphere coupling in the original and resampled

model ensemble by investigating the correlation strength between summer mean temperatures (T)

with latent heat (LE) fluxes following Seneviratne et al. (2006). The original HadRM3P ensemble

shows strong water limitation of evapotranspiration in summer (negative correlation between LE365

and T) for most temperate and Mediterranean European regions, thus overestimating soil moisture

control compared to reanalysis data and upscaled observations (Fig. S4). In the resampled ensemble,

land-atmosphere coupling remains strongly soil moisture controlled in the Mediterranean regions,

but reduces in temperate European regions, resulting in spatial patterns that resemble those of land-

atmosphere coupling in ERA-Interim (Fig. S4). The latter finding indicates that the procedure of370
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eliminating implausible ensemble members also yields an improved representation of physical pro-

cesses such as land-atmosphere coupling in the resampled ensemble.

4.2 Sensitivity of Climatic Extremes to Bias Correction

4.2.1 Summertime temperature extremes

Summertime monthly extreme temperatures are shown in Fig. 4 as a spatial average for the study375

region located over Central Europe and for an illustrative and randomly chosen grid cell (‘Jena grid

cell’).

The location, slope and shape of the lines in the return time plots shown in Fig. 4 reveal that the

tails of simulated monthly temperature extremes are highly sensitive to the type of bias correction

applied, both for a regional average and a single grid cell: Uncorrected simulations overestimate both380

location and scale (i.e. slope of the line in the return time plot) of positive temperature anomalies

in summer, while this is not the case for anomalously cold summer months (Fig. 4). An additive

adjustment of monthly means (orange lines in Fig. 4, Hempel et al., 2013) preserves slope and

shape of the tail, i.e. preserves the year-to-year variability of simulated monthly temperatures (and

biases therein) in the ensemble. Note that this procedure cannot account for the asymmetry between385

the upper and lower tail of simulated monthly temperatures - i.e. the offset correction leads to an

overcorrection of cold months, whereas the statistics of the hot tails improve only marginally. This

is confirmed by a statistical extreme value analysis (Figs. S5-S6): The temperature offset approach

adjusts only the location of the GEV yielding spurious artefacts in the (originally well simulated)

cold tail, whilst not accounting fully for the upper tail due to the aforementioned asymmetries. This390

is a fundamental drawback of using linear parametric transfer functions, i.e. even if the variability

of the simulated distributions would have been adjusted along with the means (see e.g. Sippel and

Otto, 2014), the outlined ‘asymmetry’ issue would not necessarily improve. On the other hand, the

probabilistic resampling procedure alters both the location and slope of the lines in the return time

plot, where resampling based on a spatial average as well as on a grid cell constraint yield rela-395

tively similar representations of the tails. An evaluation of the extreme value statistics shows that the

probabilistic procedure indeed considerably improves the statistical characteristics of the simulated

tails in the ensemble compared to (long-term) observations (Figs. S5-S6). To this end, resampling

the original ensemble changes location and scale of the extreme value distributions, but the shape

parameter of the tails remain effectively unchanged. Some caution is required due to the relatively400

scarce availability of observed monthly mean temperatures (i.e. 1901-2014), which induces consid-

erable uncertainties to the parameters of the fitted GEV distributions (Figs. S5-S6). Moreover, the

different time periods of observations and ensemble simulations (1986-2011) impede a direct ‘eval-

uation’ of the bias correction. Nonetheless, this indicative comparison yields very promising results

of bias-correcting without invasive changes to the simulated statistical distribution.405
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Lastly, our analysis shows that any bias correction based on a single grid-cell level induces some

uncertainty due to the choice of observational dataset. This is an important issue to consider if impact

model simulations on a grid cell scale are to be conducted, whereas regional averages are not as

strongly affected. Fig. 4 shows that resampling the ensemble based on a spatial average constraint

reduces this uncertainty as compared to adjusting monthly means or resampling on a grid cell scale.410

4.2.2 Summertime rainfall extremes

We extend the analysis of the previous paragraph to investigate how resampling based on a tem-

perature constraint alters the representation of summer precipitation in a large ensemble simulation.

The original HadRM3P simulated summer seasons are too dry in average over Central Europe (Fig.

S2), which is largely due to a much too dry lower tail (Fig. 5), whilst simulated heavy monthly415

precipitation matches relatively well the available observational data (Fig. 5).

The tails of simulated (cumulative) seasonal precipitation are sensitive to bias correction. As

above, the plots in Fig. 5 illustrate that a statistical adjustment of the means can be detrimental

to statistics of extremes and variability. For instance, scaling monthly means to match observations

(Hempel et al., 2013) leads to an inflation of very wet seasons that are physically implausible given420

the observations (Fig. 5, orange lines). Likewise, the (biased) dry tail in HadRM3P improves only to

a very limited extent if the scaling approach is used. The extreme value analysis (Fig. S6) shows that

the multiplicative adjustment changes both location and scale of the tail distribution - and that both

parameters are not necessarily improving (indeed often deteriorating, see e.g. scale parameters in

Fig. S6) by applying a simple statistical bias correction. However, resampling based on a tempera-425

ture constraint yields a new ensemble, in which the simulation of both tails has improved (Fig. 5, Fig.

S6). Only minor changes have been induced to the (well-simulated) wet tail, whilst the previously

strongly biased dry tail has considerably improved (Fig. 5, Fig. S6), indicating that temperature-

based resampling as deployed here successfully separates ‘plausible’ ensemble members from the

(unrealistic) hot and dry members. The extreme value analysis shows that resampling largely alters430

the location of the simulated distribution of seasonal rainfall extremes, whilst the scale and shape of

the tails remain largely unchanged.

To conclude, it was shown that resampling based on a univariate observations-based tempera-

ture constraint improves the simulation of rainfall variability and extremes by teasing out ensemble

members that are implausibly hot and dry in our case study region.435

4.3 The impact of bias correction on simulated ecosystem water and carbon fluxes

In this subsection, we present HadRM3P-LPJmL ensembles of simulated fluxes of carbon and water

and discuss bias correction methods with a focus on the extreme tails of the simulated distributions.

Further, we investigate the sensitivity of the simulated carbon fluxes to an accurate representation of

rainfall in the climatic input data.440
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Annual mean fluxes across the large ensemble of NEE, GPP, Reco, and AET are shown in Table 2

for the 1986-2010 period for each bias correction and the control simulation. Conventional statistical

bias correction that matches monthly means of the HadRM3P ensemble exactly to those of the ERA-

Interim control climate simulation yields differences in fluxes of �6.6%, �7.5% and �4.7% for

GPP, Reco and AET, respectively. Note that differences in the resampled HadRM3P ensemble are445

less pronounced (�4.2%, �4.5%, and �2.0%, respectively), although no attempt has been made

to adjust the statistical properties of the model output. Those differences in simlated annual mean

fluxes are related to higher statistical moments of the statistical distributions and shown in Fig. 6.

To this end, simulated GPP, NEE, and AET show strong asymmetry in their simulated distribu-

tions (Fig. 6): Negative anomalies in GPP and AET are much more pronounced than positive ones;450

this holds also for NEE but with an inverted sign (ecosystem carbon release corresponds to positive

fluxes). However, the simulation of these extremes is highly sensitive to bias correction, where the

lower tails of GPP and AET in the original and statistically bias corrected ensemble strongly over-

estimate reductions in carbon and water flux. In contrast, negative GPP and AET anomalies in the

resampled ensemble (corresponding to positive ones in NEE) exhibit a much less pronounced lower455

tail and asymmetry and agree well with the control simulations.

For example, a positive anomaly in NEE corresponding to a 30-year return period exceeds +200

g C m�2 year�1 in the conventionally bias corrected simulations and the original ensemble, whereas

such an anomaly in the resampled ensemble hardly reaches +150 g C m�2 year�1 (Fig. 6b) roughly

corresponding to an empirical 30-year return event in the ERA-Interim control simulations. Similar460

arguments can be made for negative anomalies in annual GPP and annual AET (Fig. 6). The different

tails of the simulations occur because the original meteorological ensemble implies large hot and dry

biases in summer, inducing negative anomalies in ecosystem-atmosphere carbon and water cycling.

These biases are not accounted for by conventional statistical bias correction but they are alleviated

if an ensemble resampling scheme is used (see previous subsection). However, this is remarkable465

because monthly means of precipitaton in PRECIPCOR and ISIMIP are identical to the control

climate simulation, which highlights the importance to consider statistical moments beyond the mean

for impact simulations.

However, note that the positive tails of GPP and AET are not as strongly affected. Furthermore,

ecosystem respiratory fluxes show a relatively lower sensitivity to bias correction (i.e. to hot and dry470

summer conditions).

Further, we investigate whether different bias correction schemes induce different sensitivities of

LPJmL simulated carbon fluxes to rainfall. Here, the relationship between a growing season rain-

fall proxy (April-September rainfall sums) and annual NEE is characterized using piecewise linear

regression (Fig. 7a-d). Fig. 7e shows that LPJmL simulated annual NEE responds to rainfall in a475

roughly similar way across different bias correction schemes, which highlights the need of an accu-

rate representation of precipitation in climate impact simulations in the terrestrial biosphere. How-

14



ever, characterizing the annual NEE response for each quantile of the rainfall distribution shows

that the resampled rainfall distribution (PROBCOR) leads to a less negative NEE response to rain-

fall (larger slopes in Fig. 7f), whereas a dry summer tail (in the ORIG, ISIMIP, and PRECIPCOR480

simulations) yields a generally stronger NEE response (more negative sloped in Fig. 7f).

In conclusion, different bias correction methods induce different statistical properties of simu-

lated ecosystem-atmosphere fluxes of carbon and water. This affects the variability and skewness of

NEE, GPP and AET simulations (as shown in Fig. 6), where hot and dry biases in summer imply a

disproportional reduction in carbon and water fluxes in climatically ‘unfavourable’ years. Conven-485

tional statistical bias correction cannot account for this issue, whereas the novel probabilistic bias

correction schemes alleviates those biases to a very large extent.

5 Discussion

In this paper, we have introduced a novel ensemble-based resampling bias correction approach that

retains the physical consistency and multivariate correlation structure of regional climate model out-490

put. The
:::::::
approach

::::
thus

:::::
relies

::
on

::
a

::::::::
physically

:::::::::
consistent

::
set

::
of
:::::::
climate

:::::
model

::::::::::
simulations

:::
(i.e.

:::::::
closure

::
of

:::::
water

:::
and

::::::
energy

:::::::::
balances).

::::
The methodology is conceptually similar to earlier approaches de-

signed to constrain future probabilistic climate predictions based on observational constraints (Piani

et al., 2005; Collins, 2007). Its application has been shown in this paper to yield considerably im-

proved simulations of weather and climate extremes. Remarkably, the improvement holds for vari-495

ables that have not been constrained upon (i.e. constraining on seasonal mean temperatures improves

the representation of mean and extreme precipitation), which indeed emphasizes the importance to

bias correct in a physically meaningful way.

Furthermore, simple but widely used statistical bias correction methodologies (e.g. Hempel et al.,

2013) have been evaluated with respect to the effect on the representation of weather and climate ex-500

tremes on monthly to seasonal time scales. These methods cannot account for biases associated with

e.g. specific synoptic situations that result in biases in higher statistical moments of the simulated

distributions, which indeed emphasizes the importance to bias correct in a physically meaningful

way. We demonstrated that this shortcoming of conventional methodologies can be detrimental to

statistics of weather and climate extremes and their variability. Although more
:::::
More sophisticated505

statistical bias-correction schemes (see Gudmundsson et al., 2012, for an overview)
:::
that

:
might have

an improved skill in rectifying biases in higher statistical moments (such as e.g. asymmetries in sim-

ulated distributions) have not been explicitly tested in this study
:
.
::::::::
However, the fundamental question

of how physical consistency can be preserved after bias correction (Ehret et al., 2012), including

multivariate dependencies between variables, remains elusive. Therefore non-linear and nonpara-510

metric bias correction techniques (Gudmundsson et al., 2012) might potentially improve statistics

of extreme events if a large enough sample of observations is available, but cannot retain physi-
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cal consistency (Sippel and Otto, 2014) and may ultimately fall short for correcting a set of input

variables.

To this end, we have explicitly simulated an ensemble of ecosystem-atmosphere fluxes of carbon515

and water using a state-of-the-art biosphere model (LPJmL) in order to test the sensitivity to bias

correction. Similarly to above, we find that bias correction induces strong effects on the representa-

tion of extremes and variability in carbon and water fluxes (section 4.3). Mechanistically, the stark

contrast between the bias correction schemes can be traced back to the sensitivity of the LPJmL

model to dry conditions (see e.g. Rammig et al., 2014; Rolinski et al., 2015): NEE, GPP and AET in520

Central Europe are to a large extent driven by the availability of rainfall in the growing season, except

for wet conditions, under which the relationship levels off (Fig. 7). Bias correction strongly affects

the variability and extremes of rainfall (as shown above), thus inducing pronounced asymmetries in

simulated water and carbon fluxes (Fig. 7f, Fig. 6). Therefore, our results highlight the importance

to account not only for biases in the mean but also for higher moments in the climatic input in order525

to generate robust insights into the past, present and future climate impacts. Our results demonstrate

that physically consistent bias correction schemes might be preferable for this task. Moreover, it has

been shown recently that climatic drivers exert multivariate controls on ecosystem responses such

as phenology and vegetation greenness dynamics (Forkel et al., 2015), therefore accurate ecosys-

tem impact simulations requires bias correction schemes that preserve the correlation structure of530

climatic data.

However, several limitations of the present methodology should be discussed: First, probabilis-

tic resampling based on a regional observational constraint cannot account for biases on very large

regional or continental scales if the biases show a spatially or temporally heterogenous structure or

gradients. In the latter case, resampling-based bias correction could lead to spurious artefacts in the535

spatio-temporal structure of the bias-corrected model domain. Secondly
:::::
Hence, a careful evaluation

of the ensemble resampling approach has to be made - particularly with a focus on the spatial and

temporal extent of the constraint and the resampled ensemble: A trade-off exists between resampling

on small domains (e.g. grid-cell based) that is sensitive to the choice of observational dataset, and

very large domains that might be prone to a spatio-temporal bias structure. Thirdly, the applicability540

of bias correction methods for future projections is currently unclear, since previous studies have

shown that biases in climate projections (e.g. for the 21st century) are unlikely to be stationary

(Ehret et al., 2012; Maraun, 2012) . However, an application of the resampling approach to future

projections similarly to the current practice of statistical bias correction (Hempel et al., 2013, e.g.) would

be straightforward, i.e. based on a calibration using present or past conditions. Lastly, the resampling545

approach
::::::::
Secondly,

:::
the

:::::::::
resampling

::::::::
approach requires relatively large ensemble sizes to be effective:

in order to plausibly cover the climate space in any particular location, the simulated ensemble

should cover the entire observed distribution. However, this condition does not necessarily restrict

resambling-based bias correction methods to large ensembles
::::::::
ensemble

:
simulations: For example,
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under the assumption of ergodicity for a given time period, resampling shorter time periods (e.g.550

single years) from smaller ensembles such as CORDEX regional simulations (Giorgi et al., 2009)

would provide a promising topic for further study.
::
In

:::
this

:::::::
context,

:::
the

::::::::::
applicability

::
of

:::
the

::::::::::
resampling

:::::::::::
methodology

:::::
would

:::::::
depend

::
on

:::
the

:::::::::
remaining

::::::::
effective

::::::
sample

::::
size

::::
after

:::
the

::::::::::
resampling

::::
step.

::::
The

::::
latter

::
is

::
a

:::::::
function

::
of

:::
the

::::::
biases

::
in

:::
the

:::::
model

::::
and

:::
the

:::::::
number

::
of

::::::::
ensemble

::::::::
members

::::::::
available,

::::
and

::::
could

:::
be

:::::
tested

::
in

::
an

:::::::::
evaluation

::::
step

:::::::
similarly

::
to
::::
Fig.

:::
2d.

:::::::
Thirdly,

:::
the

::::::::::
applicability

::
of

::::
bias

:::::::::
correction555

:::::::
methods

:::
for

:::::
future

:::::::::
projections

::
is
::::::::
currently

:::::::
unclear,

::::
since

::::::::
previous

::::::
studies

::::
have

::::::
shown

:::
that

::::::
biases

::
in

::::::
climate

:::::::::
projections

::::
(e.g.

:::
for

:::
the

:::
21st

:::::::
century)

:::::
might

:::
not

:::
be

::::::::
stationary

:::::::::::::::::::::::::::::
(Ehret et al., 2012; Maraun, 2012) .

::::::::
However,

::
an

::::::::::
application

::
of

:::
the

::::::::::
resampling

::::::::
approach

::
to

::::::
future

:::::::::
projections

::::::::
similarly

::
to

:::
the

:::::::
current

::::::
practice

:::
of

::::::::
statistical

:::
bias

:::::::::
correction

:::::::::::::::::::::::::::
(Hempel et al., 2013, e.g.) would

::
be

::::::::::::::
straightforward,

:::
i.e.

:::::
based

::
on

:
a
::::::::::

calibration
::::
using

:::::::
present

::
or

::::
past

:::::::::
conditions.

::::::
Lastly,

::
a

::::
clear

:::::::::
distinction

:::::::
between

::::
bias

:::::::::
correction560

:::
and

::::::::
statistical

::::::::::
downscaling

::
is

::::::
crucial

::::::::::::::
(Maraun, 2013) :

:::::
While

:::
the

:::::::::
resampling

::::
bias

::::::::
correction

::
is

:::::::
designed

::
to

::::::
account

:::
for

:::
the

:::::::
former,

::
no

:::::::
attempt

::
of

::::::::
statistical

::::::::::
downscaling

:::
or

:::::::
bridging

:::
any

:::::
scale

::::::::::
mismatches

::
is

::::
made

::::::::::::::::::::::::::::::::::::::::::
(see, e.g. Maraun, 2013, for a detailled discussion) .

:

Notwithstanding these limitations however, we show the usefulness of the novel bias correction

scheme that might be a useful and physically consistent alternative to conventional statistical bias565

correction as long as global and regional dynamical climate models suffer from pertinent biases.

6 Conclusions

In this paper, we introduced a novel bias correction method that retains physical consistency and

the multivariate correlation structure of the climate model output based on an ensemble resampling

approach. We showed that such an approach strongly improves570

a) statistics of weather and climate extreme events, and

b) the simulation of climate impacts such as ecosystem-atmosphere fluxes of carbon and water,

including extremes and variability therein.

The methodology could be readily taken up in probabilistic event attribution studies that deploy

large ensembles simulations (see Stott et al., 2013, for an overview) in order to more realistically575

describe the statistics of (changing) extreme events.

Furthermore, detecting and attributing the impacts of climatic variability and extremes on hydro-

logical and socio-ecological systems has emerged as a highly topical research area (Stone et al.,

2009, 2013), including demonstrated interest by stakeholders across various sectors (Schiermeier,

2011; Stott and Walton, 2013; Sippel et al., 2015b). To this end, our study showed that it is crucial580

to account for higher statistical moments in biased climatic input data, and to correct climatic biases

in a physically consistent way. Therefore, our methodology could be taken up by the climate impact

modelling community to reduce climate forcing biases to a very large extent without requiring any

modifications to the climate model output.
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Probabilistic attribution of extreme weather

A potential way to assess extreme events:
� run large climate model ensemble simulations (> 1000 for any

period) and analyse the (small) probabilities of extreme events
� allows to make statements how changing climatic drivers alters

the occurence frequency of extremes
� e.g. the ‘Fraction of attributable risk’: far = p1�p0

p1 = 1 � p0
p1

(p0: probability of an event to occur in a system in reference state, p1: probability of an event in
a forced state, see e.g. Allen (2003), Nature, 421, 891-892)

weather@home.net+
� Distributed

climate modelling
� Further details:

climatepredic-
tion.net/weatherathome

� Figure: Courtesy
to Mitchell Black

Sebastian Sippel 13.11.2014 4 / 8

Figure 1. Methodological workflow of the study. (a) Generation of regional climate model simulations using

a large ensemble modelling framework (climateprediction.net/weatherathome). (b) Adjustment of biases in

the regional climate model’s output. (c) Assessment of weather and climate extreme events. (d) Ensemble

simulation of ecosystem-atmosphere fluxes of carbon and water using the LPJmL model.
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Figure 2. Illustration of ensemble-based resampling methodology. (a) Empirical cumulative density function of

JJA mean temperatures over Central Europe in ERA-Interim. The non-parametric fit to the cumulative density

using a Gaussian kernel for observations and the model ensemble are shown by the blue and red lines, respec-

tively. (b) A transfer function between the observed and modelled distribution is derived using Cubic Hermite

splines. (c,)
:::::::::::::
Quantile-quantile

::::
plot

::
for

:::
the

::::::
original

:::
and

::::::::
resampled

:::::::
ensemble

:::
for

:::
the

:::
JJA

:::::::::
temperature

::::::::
constraint.

:
(d) Fraction of original ensemble members in percentile bins of the observed distribution (blue line in (a)), i.e.

‘effective ensemble size’ after resampling.
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Figure 3. Evaluation of the resampling bias correction methodology for the study area in Central Europe for (a)

temperature, (b) precipitation, (c) incoming short-wave radiation, and (d) incoming long-wave radiation.
::::
Both

::::
sides

::
of

::::
each

::::
violin

:::
are

:::::::::
constructed

::
as

::::::
rotated,

::::::::
equal-area

:::::
kernel

::::::
density

::::::::
estimates,

:::
and

:
a
:::::::
standard

::::::
boxplot

::
is

::::
drawn

:::::
inside

::::
each

:::::
violin.
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Figure 4. Return times of hot (a,c) and cold (b,d) temperature extremes in summer (JJA) in the original re-

gional model simulations (‘ORIG’), in the resampled ensemble (‘PROBCOR’) and the mean-adjusted ensemble

(‘ISIMIP’). Plots are shown as spatial averages over Central Europe (top panels) and for an illustrative grid cell

(?Jena?, bottom panels). Black dots in each plot indicate empirical return times estimated from observations

taken from 7 different datasets that were used for bias correction.
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Figure 5. Return times of wet (a,c) and dry (c,d) rainfall extremes in summer (JJA) in the original regional model

simulations (‘ORIG’), in the resampled ensemble (‘PROBCOR’) and the mean-adjusted ensemble (‘ISIMIP’).

Plots are shown as spatial averages over Central Europe (top panels) and for an illustrative grid cell (‘Jena pixel’,

bottom panels). Black dots in each plot indicate empirical return times estimated from observations taken from

7 different datasets that were used for bias correction.
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Figure 6. LPJmL simulated distributions of ecosystem-atmosphere carbon and water fluxes for Central Euro-

pean natural vegetation for each bias correction scheme. Each row shows the simulated distribution and the

upper and lower tail of NEE (a,b,c), GPP (d,e,f), Reco (g,h,i) and AET (j,k,l), respectively.
::::::
(a,d,g,j)

::::
Both

::::
sides

:
of
::::

each
:::::
violin

:::
are

:::::::::
constructed

::
as

::::::
rotated,

::::::::
equal-area

:::::
kernel

:::::
density

::::::::
estimates,

:::
and

:
a
:::::::
standard

::::::
boxplot

::
is

:::::
drawn

::::
inside

::::
each

:::::
violin.
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Figure 7. (a-d) Kernel density plots of the sensitivity of simulated annual NEE to growing season rainfall in

LPJmL under four different bias correction schemes. Grey dots denote ERA-Interim control simulations in

each plot, black lines indicate piecewise linear regressions. (e) Piecewise linear regression relations for each

bias correction scheme. Shaded colours indicate confidence intervals (5-95th percentile of piecewise linear

regression derived by bootstrapping). (f) Distribution of linear regression slopes (dNEE / dRainfall) between

regularly spaced quantiles of the rainfall distribution for each bias correction scheme,
::::::
shown

:
as
:::::

violin
::::
plots.
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Table 1. Datasets used for bias correction and evaluation.

Name of dataset Climate vari-

ables

Domain & Orig.

Resolution

Provider & Reference

Berkeley Earth Observations

(gridded experimental)

Tair Europe, 0.25�,

monthly, 1850-

2012

http://www.berkeleyearth.org, Rohde

et al. (2013)

Climate Research Unit (CRU),

High-resolution gridded

datasets

Tair, Precip. Global, 0.5�,

monthly, 1901-

2012

Climate Research Unit, http://www.

cru.uea.ac.uk/cru/data/hrg/, Harris et al.

(2014)

CRUNCEP Tair, Precip.,

SWdown,

LWdown

Global, 0.5�, daily,

1948-2012

http://dods.extra.cea.fr/data/p529viov/

cruncep/readme.htm

Global Precipitation Climatol-

ogy Centre monthly precipita-

tion (GPCC)

Precip. Global, 0.5�,

monthly, 1901-

2012

Global Precipitation Climatology

Center (GPCC), http://gpcc.dwd.de/,

Schneider et al. (2014)

E-OBS gridded dataset Tair, Precip. Europe, 0.5�, daily,

1951-2014

European Climate Assess-

ment & Dataset (ECA&D),

http://www.ecad.eu, Haylock et al.

(2008)

ERA-Interim, Version 2

(ERAI)

Tair, Precip.,

SWdown,

LWdown, LE

Global, ⇡ 0.7�, 6-

hourly, 1979-2014

European Centre for Medium Range

Weather Forecasts (ECMWF),

http://apps.ecmwf.int/datasets/data/

interim-full-daily/, Dee et al. (2011)

Model Tree Ensembles LE Global 0.5�,

monthly, 1982-

2011

MPI Biogeochemistry Jena, Jung et al.

(2011)

WATCH-harmonized (WFD-

harmonized)

Tair, Precip.,

SWdown,

LWdown

Europe, 0.5�, daily,

1901-2012

MPI Biogeochemistry Jena, Weedon

et al. (2011); Beer et al. (2014)

WATCH ERA-Interim

(WFDEI)

Tair, Precip.,

SWdown,

LWdown

Global, 0.5�, daily,

1979-2012 EU-WATCH, ,

Weedon et al. (2011)
:::::::::::::::

Weedon et al. (2014)
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Table 2. Annual mean ecosystem-atmosphere water and carbon fluxes simulated by LPJml.

Bias Correction Method NEE (g C m�2

a�1)

GPP (g C m�2 a�1) Reco (g C m�2

a�1)

ET (mm a�1)

HadRM3P-ORIG �26.5 1206.4 1179.9 501.5

HadRM3P-PROBCOR �30.3 1295.8 1265.5 525.9

HadRM3P-ISIMIP �31.6 1262.3 1230.7 525.2

HadRM3P-PRECIPCOR �38.2 1263.2 1225.0 511.2

ERAI-CONTROL �28.4 1353.3 1324.8 536.7
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