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Responses to Reviewers #1 and #2 

First of all, we would like to thank the reviewers for their work. We found their comments helpful 

and we think they have given a contribution in increasing the quality of this paper. We have 

modified the manuscript addressing all the reviewers’ requirements and suggestions and we believe 

that the revised manuscript is much improved.Please see below our detailed reply to the reviewers’ 

comments. 
 

 

Responses to Reviewer #1 

[13/11/2015] 
 

General comment 
The paper “Observationally based analysis of land–atmosphere coupling” used the CM method to 

investigate the coupling relationships between soil moisture and precipitation, as well as other 

variables. It has some merits and presents interesting results, especially those linking EOF signals 

to external forcings such as ESNO and volcanic events. 

The scientific question proposed regarding to land-atmosphere coupling is worth investigating, but 

the key content discussed in the paper is the coupling of soil moisture and precipitation, which is far 

form enough to cover this topic. 

The authors did a lot of analysis, but unfortunately the paper is not well organized. Important 

information on method section is incomplete and makes it difficult to understand the following 

analysis and results. Overall, the presentation is not satisfactory and sometimes confusing. It lacks 

logic and as a reader I get lost in the too much descriptive details without a clear focus. Many key 

concepts like “variance” haven’t been clearly defined. And language and wording is another issue 

that has to be significantly improved for clarity and accuracy. Although a number of Tables/figures 

are provided, but many of them are not very useful, they feel less informative and even hard to 

understand. The authors need to carefully decide how to best present their results. 

It seems soil moisture does not paly a strong role as the authors claimed, because the variance of 

precipitation explained by soil moisture is less than 20%. Therefore, the influences of volcanic AOD 

as well as ENSO on PRE are relatively weak signals in general. More importantly, correlation does 

not necessarily mean causality or feedback, the author cited a lot of reference to explain their 

results, but there isn’t enough information to evaluate if their proposed explanations are plausible 

and credible. And these discussions are mixed together with results, distracting the flow of the 

paper. A separate and refined discussion could be much better than current layout. 

Datasets are not independent and are correlated/coupled to each other. For example, both ET and 

LAI are based on AVHRR. Perhaps due to this reason, precipitation forced by soil moisture is nearly 

equivalent to other (ET and LAI). And there are many coupling left unaccounted, e.g., soil moisture 

is forced by ET. 

Therefore, significant efforts have to be made by the authors to address those issues relating to 

presentation, organization and readability of the paper before publication. 
 

Response to general comment 
We’d like to thank the reviewer for the useful comments. We revised the manuscript by addressing 

all his/her recommendations and we think that the revised manuscript is now much improved. 
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The method section has been improved to include all the relevant information and definitions, as 

detailed in the answers to specific comments. 

The finding that, globally, 19% of precipitation (PRE) variance is forced by soil moisture (SM) 

indicates a significant contribution of SM on PRE variability, as also pointed out by Reviewer #2. 

Furthermore, locally, the ratio of PRE variance forced by SM is even larger and up to more than 

30% (Fig. 2 in the paper). The identification of such hotspot regions is in good agreement with 

Koster et al. (2000). 

We agree that correlation does not necessarily mean causality. The Coupled Manifold (CM) 

technique has been specifically designed to analyze covariation between climate fields considering 

both the local and remote forcing of one field to the other and has proved to be successful for the 

analysis of different climate fields, like precipitation, vegetation characteristics, sea surface 

temperature, and temperature over land (Alessandri and Navarra, 2008; Cherchi et al., 2007; Wang 

et al., 2011). To improve the robustness of the analysis we applied significance tests to the 

computation of the forced fields (following Cherchi et al., 2007). When discussing the feedbacks 

between the variables we combined the CM statistical results with a physical interpretation and 

literature results. We have improved the discussion of our results and how they are supported by 

literature in Section 4.1 (P9 L24-30 and P11 L3-7). Please see answer to minor comment 6 for more 

details on the advantage of CM with respect to other methods and 14 for the significance test 

applied in the computation of the forced fields. See also answer to general comment of Reviewer 

#2. 

All land-surface datasets (SM, evapotranspiration [ET], Leaf Area Index [LAI]) are satellite 

products independent on the PRE dataset, which is based on rain gauges. It is true that both ET and 

LAI products have been acquired by using the AVHRR sensor but the datasets have been produced 

by independent research groups which used completely different methodologies. The LAI product 

has been generated by applying a neural network algorithm (Zhu et al. 2013) on the NDVI satellite 

product. The ET dataset has been produced by using a modified Penman-Monteith approach (Zhang 

et al. 2010) and considering eddy covariance and meteorological data from the FLUXNET towers 

network. This has been reported and discussed in Section 2 of the revised manuscript (P4 L18-24). 

We are aware that there are interesting couplings which were not analyzed in this paper (for 

example, ET forcing on SM). Nevertheless, since SM has been recognized as the most important 

land-surface parameter affecting seasonal to interannual variability/predictability of precipitation 

(Koster et al., 2000; Zhang et al., 2008) we choose to focus the paper on the coupling between SM 

and PRE. Future papers will further address the specific coupling contribution with other fields. 

This has been added to Section 5 of the revised paper (P17 L3-7). 

 

 

Minor comments 

1) P1940 L2-3: Does the word “variance” here mean spatial or temporal variance? Need to 

specify. 

Thank you for the comment. It is temporal variance. Indeed, the CM technique is applied to the 

principal components (PC) of the variables which represent the seasonal-mean inter-annual 

anomalies. The sentence at P1940 L2-3 has been changed in the paper as follows (P1 L15-16): 

original: 

“The variance of soil moisture, vegetation and evapotranspiration over land has been recognized to 

be strongly connected to the variance of precipitation.” 

new: 

“The temporal variance of soil moisture, vegetation and evapotranspiration over land has been  

recognized to be strongly connected to the temporal variance of precipitation.” 
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2) L6: what does “memory” means here? I don’t get it. 

Thanks. The term “memory” refers here to the property of some variables characteristics of slowly 

varying components of the Earth system to display persistent anomalies induced by climatic events 

like ENSO or volcanic eruptions (Koster et al., 2000). Since slowly varying states of the land 

surface can be predicted weeks to months in advance, the response of the atmosphere to these land-

surface anomalies can contribute to seasonal prediction (Alessandri and Navarra, 2008). This 

explanation has been added to Section 1 of the revised paper. See response to comment 3. 

 

3) P1941 L11 Please explain “soil moisture memory”. 

Thanks for the suggestion. Please see response to point 2. The expression “soil moisture memory” 

has been used in literature (Koster et al., 2004; Ferranti and Viterbo, 2006). To better clarify the 

expression, the following phrase has been added to Section 1 of the revised manuscript (P2 L21-

25): 

“The term “soil moisture memory” refers here to the property of soil moisture to display persistent 

anomalies induced by climatic events like ENSO or volcanic eruptions. Since slowly varying states 

of the land surface can be predicted weeks to months in advance, the response of the atmosphere to 

these land-surface anomalies can contribute to seasonal prediction.” 

 

4) L22 “improvement” of what? 

Thanks. To clarify it, the phrase has been modified as following (P3 L3-4): 

original: 

“However, much of the improvement so far has been obtained over ocean” 

new: 

“However, much of the model improvements so far have been obtained over ocean...” 

 

5) P1942L9 what does “land variability” indicate here? 

The term “land variability” indicates here the seasonal-mean inter-annual variability of land-surface 

variables (SM, ET, LAI). The phrase has been modified in the text as follows (P3 L18-19): 

original: 

“The comprehensive dataset is analysed to characterize the land variability and...” 

new: 

“The comprehensive dataset is analysed to characterize the seasonal-mean inter-annual of land-

surface variables (SM, ET, LAI) and...” 

 

6) L13-L20 what is advantage of CM method compared to other methods? 

Thank you for the question. The following phrase has been added to Section 3 of the revised 

manuscript to explain the advantage of CM with respect to other methods (P6 L17-24): 

“There are two main advantages of the CM method. The first one is that, when applied to a couple 

of climate fields (i.e., PRE and SM), CM is able to separate one field (i.e., PRE) into two 

components: the first component (forced) is the portion of PRE variability that is connected to the 

SM variability, whereas the second (free) is the part of PRE that is independent from SM. 

Therefore, the CMT enables to find robust relations between fields in the presence of strong 

background noise. The second advantage is that the CM technique is able to detect both local and 

remote effects of the forcing variable. This is not possible with other methods such as SVD 

(Singular Value Decomposition).” 
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7) P1943 L4 It is strange for me to see the claim that those datasets are “state-of-art”. For 

example, there are many alternative precipitation, ET and LAI datasets and it is hard to say one is 

better than the other without rigorous comparison. The data used here are far from “state-of-art”. 

As far as I know, GLEAM ET and GLASS LAI are also high quality products. 

We agree with the reviewer that there exist other high quality datasets of ET, LAI and PRE. A 

rigorous comparison of recent land-surface datasets is well beyond the scope of our paper. We based 

the choice of the datasets for our analysis mainly on two criteria: 1) the period covered has to be as 

long as possible; 2) the spatial coverage has to be global. We have discussed this in Section 2 of the 

revised paper (P4 L10-12). In order to avoid confusion, in the revised manuscript we changed the 

term “state-of-the-art” with “high quality”. 

 

8) L20 Please briefly explain the gap filling procedure used. 

Thanks. The procedure is described in Section 3 of the manuscript, as follows: 

“The LAI and SM datasets contain missing values, whose number and position significantly vary 

with time. The application of the CM algorithms requires that the number and position of the 

missing values is constant with time. Hence, if a NaN is present in a given grid-point at any time, 

then it requires to mark as NaN that grid point, thus losing a great amount of information. In order 

to keep as much information as possible from the data, we decided to replace the missing values 

with climatological values provided that their total number, considering a particular grid-point, does 

not exceed a given threshold. We selected different thresholds for SM and LAI in order to obtain as 

similar as possible spatial coverage of the two variables. The chosen threshold is 10 % for LAI and 

30 % for SM. The results are robust with respect to a ±10 % change of the threshold values.” 

The following sentence which points to the explanation is further added to Section 2 of the revised 

manuscript (P4 L31-32): 

“The gap filling procedure is described in Section 3.” 

 

9) L22 The use of model information weakens the previous claim that these observation data are 

independent of models. 

We agree with the reviewer that the observational datasets have been derived based on limitations 

and constraints. The use of model information for ET and PRE datasets is declared in Section 2. To 

clarify the point raised by the reviewer, we have modified the following sentence at the beginning 

of Section 2 of the revised manuscript (P4 L6): 

original: 

“...in order to make the analysis as much as possible independent from numerical model limitations 

and biases...” 

new: 

“...in order to make the analysis as much as possible independent from global circulation models 

limitations and biases...” 

 

10) Table 1. Better to add Ref for each dataset shown in the table; and spell out ET, LAI, GPCP etc. 

or explain them in notes. 

We appreciate the suggestion. In the revised manuscript we have recalled the dataset references in 

the table caption. We have also added the extended name of the datasets in caption. 

 

11) P1944 The authors at least need to describe the mathematical theory of CM (Eq. 1 and 2) and 

explain how it works to decompose a field into forced and free components. 

Thanks. The mathematical theory of CM is described in detail in the cited reference of Navarra and 

Tribbia (2005). In order to better explain the rationale of the CM method we added the following 

sentence to Section 3 of the revised manuscript (P5 L30-P6 L2): 

“A and B are found by solving the Procrustes minimization problem: 
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A=ZS'(SS')^-1       (3) 

B=SZ'(ZZ')^-1       (4)” 

Following equations have been renumbered accordingly. 

 

12) L18 what is CCA scaling? 

Thanks. CCA scaling is data scaled by the covariance matrices. This is now explained in Section 3 

of the revised manuscript, by changing the following sentence (P6 L5): 

original: 

“CCA scaling is applied to the Principal Components...” 

new: 

“CCA scaling (data scaled by the covariance matrices) is applied to the Principal Components...” 

 

13) Since Eq 3 and 4 are listed in method, the authors must explain their meanings. What are Zˆ and 

Sˆ? And I don’t understand why Eq 3 and 4 are needed here? 

We appreciate the suggestion. Z^ and S^ are the CCA-scaled variables. Please see also response to 

comment 12. Eqs. 3 and 4 are the mathematical expression of the CCA scaling. This has been 

specified in the revised manuscript by adding the following sentence in the revised manuscript (P6 

L10): 

“where Z^ and S^ are the CCA-scaled variables.” 

For further details on the CCA scaling technique we refer to Navarra and Tribbia (2005). 

 

14) P1945 L1-3. How to understand significance level for each element in A and B? 

Thanks. This has been better explained in the revised manuscript, by adding the following sentence 

(P6 L12-14): 

“As explained in Cherchi et al. (2007), after applying the CCA scaling, the elements of A and B are 

correlation coefficients and can be tested (with a significance test based on the Student t 

distribution) to reject the null hypothesis of being equal to zero.” 

The following sentence is further modified in the revised manuscript (P 6 L16): 

original: 

“...at the 1 % level significance level...” 

new: 

“...at the 1 % significance level...” 

 

15) L6-8 Why not to follow the common practice to define four seasons as JJA, SON, DJF and 

MAM? The incompatible definition for season would make this study incomparable with most other 

studies. 

Thanks for the comment. We chose this definition for seasons because most of the datasets we use 

start on January and with the DJF, MAM, JJA, SON stratification we would have had to discard the 

first incomplete winter season and because the JFM, AMJ, JAS, OND stratification has been used 

by Alessandri and Navarra (2008) in their CM study of vegetation and rainfall which we used to 

compare our results. We have discussed this by adding the following sentence in the revised 

manuscript (P6 L28-P7 L1): 

“The JFM, AMJ, JAS, OND stratification has been used by Alessandri and Navarra (2008) in their 

CM study of vegetation and rainfall which we will use to compare our results. 

 

16) L10-20. It seems this paragraph describes the gap filling method? 

Thanks. We now point to this paragraph in Section 2 of the revised manuscript. Please see response 

to comment 8. 
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17) L23 EOF is an important part for the analysis but has never been explained previously in the 

method section. 

Thank you for the suggestion. We have modified the sentence in the revised manuscript to include 

EOF definition (P7 L22-23): 

original: 

“interpretation of the EOF patterns” 

new: 

“...interpretation of the Empirical Orthogonal Functions (EOF) patterns (Bretherton et al., 1992)...” 

The following reference has been added to the revised manuscript (P18 L16-17): 
Bretherton, C. S., Smith, C., and Wallace, J. M.: An intercomparison of methods for finding coupled 

patterns in climate data. J. Climate, 5, 541-560, 1992. 

 

18) P1946 L3 Again, what is “variance” here? Is it temporal or spatial variance? 

Thanks for the comment. It is temporal variance. Please also see response to comment 1. 

 

19) L1-L14. It seems all these variables are coupled with each other in multiple ways, e.g., ET and 

LAI, LAI and SM, and ET and SM are correlated/interconnected but not analyzed here. According 

to Table 2, LAI and ET have similar role on PRE compared to SM. Despite PRE, LAI and ET are 

also important drivers for SM and may also accounts for a fraction of variance of SM. 

We agree with the reviewer that it would be interesting to analyze in detail the reciprocal forcings 

between ET and LAI, LAI and SM and ET and SM. Nevertheless, since SM has been recognized as 

the most important land-surface parameter affecting seasonal to interannual variability of 

precipitation (Koster et al., 2000; Zhang et al., 2008) we choose to focus the paper on the coupling 

between SM and PRE. We plan to write a follow-up paper that will further address the specific 

coupling contribution with other fields. This has been added to Section 5 of the revised paper (P17 

L3-7). 

 

20) P1947 L1-3 how to define transitional regions, are there any quantitative criteria for that? 

There are no unique quantitative criteria. Here we refer to the transition zones between very dry and 

very humid environments, where ET is very sensitive to SM, as individuated by Koster et al. 

(2000). This has been specified in Section 4.1 of the revised manuscript (P8 L22-23). 

 

21) Table 3 uses Rainfall but in the text that is PRE. The use of term must be consistent throughout 

the paper to avoid possible confusion. And NINO3 in the table should be explained. 

Thanks. We changed “rainfall” to “PRE” in table caption and we recalled in the caption the 

definition of the NINO3 index “(average of the Sea Surface Temperature in the tropical Pacific 

region 5◦ S–5◦ N, 210–270◦ E)”. 

 

22) L6 In table 2, SM only accounts for 17% variance of PRE, why EOF shows 48% of total 

variance in table 3? 

In table 2, SM accounts for 19% variance of PRE. In table 3, we list the variance explained by each 

mode of the PRE forced field. 48% is the variance explained by the first 3 modes of PRE forced by 

SM. This sentence has been added to the revised manuscript (P8 L26-28): 

“The variance explained by each mode of the PRE forced field is reported in Table 3.” 

 

23) L12 All data used including AOD should be descripted in method section. 

Thanks for the comment. We added a brief description of the AOD and SST datasets at the end of 

Section 2 of the revised manuscript, as also suggested also by Reviewer #2 (P5 L14-18): 

“In order to evaluate the effect of major volcanic eruptions on land-atmosphere coupling, we used 

the stratospheric Aerosol Optical Depth (AOD) at 550 nm, available from the NASA GISS  
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dataset (Sato et al., 1993). To evaluate the effect of ENSO, we compute the NINO3 index based on 

the HadISST 1.1 – Global sea-Ice coverage and Sea Surface Temperature (1870–present; Rayner et 

al., 2003) dataset.” 

The following reference has been added to the revised manuscript (P20 L19-20): 

Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric aerosol optical depth, 

1850-1990. J. Geophys. Res. 98, 22987-22994, 1993. 

 

24) I am confused by Table 3 and Table 4 that show different variance explained by PCs. 

Table 3 shows the variance explained by each EOF mode of the PRE component which is forced by 

SM. On the other hand, Table 4 reports the variance explained by each EOF mode of the whole 

original PRE field (that is, forced+free components). The sentence has been added to the revised 

manuscript (P9 L14-15). 

 

25) P1950 L18-24 and Table 5: How to understand “PRE forced by SM and ET(LAI)”. Do they 

mean PRE forced by SM is further decomposed into two parts - forced by ET and free? The 

corresponding text is not clear enough to correctly get the meaning. My understanding is that in 

this case, 17% x 20% = 3.4%, does it suggest only 3.4% PRE variance is explained by ET? ET and 

LAI are closely related especially in vegetated areas as the calculation of ET may have used LAI. 

This can be seen in the similar distribution of identified hotspots. 

Thanks for the comment. We modified the following sentence in the revised manuscript to clarify 

the procedure (P11 L32-P12 L1): 

original: 

“...we applied the CM technique between PRE forced by SM and ET (LAI)...” 

new: 

“...we further applied the CM technique between the components of PRE forced by SM and ET 

(LAI)...” 

We found that 19% of PRE variability is forced by SM (Table 2). On the other hand, ET explains 

20% of the variability of PRE forced by SM. We further added the following sentence to the revised 

paper (P12 L4-7): 

“It is important to note here that 19%x20%=3.8% represents only the ET forcing on PRE mediated 

by SM and not the whole ET forcing on PRE which is actually 18% (Table 2). At the same time, 

23% of the variance of PRE forced by SM is evaluated to be also forced by LAI, therefore the LAI 

forcing on PRE mediated by SM corresponds to 17%x23%=3.9%.” 

 

26) P1951 The analysis in the second paragraph is very difficult to follow! And I don’t quite 

understand the explanations that linking ET to AOD. 

We have added the following sentence in Section 4.2 (P12 L21-25): 

“Here we take the physical fields corresponding to the first three modes of variability of PRE forced 

by SM and further decompose them to extract the parts of each mode that is forced by ET and LAI, 

respectively. This analysis allows to figure out how ET and LAI contribute to each component of 

PRE forced by SM which has been identified to be linked to external climate forcing (volcanic 

eruptions, ENSO and a trend).” 

Eventually, we apply the CM to find the components of PRE forced by ET and LAI, respectively 

(Table 7) and we show that we can find the same link with external climate forcings in the EOFs. 

This confirms the robustness of the signals we found in the EOFs of PRE forced by SM and the 

lagged correlation with AOD shown in Table 7 indicates that ET and LAI contribute to extend the 

land-surface “memory” of the volcanic eruptions. In the case of ET, we found that this variable 

explains 21% of the variance of the first mode of PRE forced by SM (linked to AOD). Volcanic 

signal is found also in the third PC of PRE forced by ET, indicating a mediation role of ET in the 

response of PRE forced by SM to volcanic eruptions. 
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27) The direction of triangles in Figure 7 is almost indistinguishable without zooming. 

Thanks for the comment. We have improved Figs. 7, 8, 9a,b by using larger markers. 

 

new Fig. 7. 
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new Fig. 8. 

 



10 

 
new Fig. 9. 
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Responses to Reviewer #2 

[05/01/2016] 
 

General comment 
The manuscript “Observationally based analysis of land–atmosphere coupling” by Catalano et al. 

has analysed the covariation between satellite derived observationally based monthly precipitation, 

soil moisture, evapotranspiration and leaf area index using the coupled manifold technique, which 

considers both the local and remote forcing of one field to the other. This generalized linear method 

is used to assess the reciprocal forcing of seasonal mean land surface variables and precipitation 

anomalies over land. 

This is an interesting study providing new insights on the understanding of the land surface 

atmosphere feedbacks by quantifying the linear coupling between the land surface variables and the 

climate. The finding that 19% of the inter-annual variability of the precipitation over continental 

areas is forced by the SM variation is useful new information. The analysis also reveals that the 

dominant components of the SM forced precipitation variability are the volcanic eruptions and 

ENSO. 

However the finding using the stratospheric AOD estimates that the aerosol emitted during the 

volcanic eruptions has the effect of reducing the intensity of precipitation over areas of wet climate 

is not well supported by the cited references, for example, the statement on page 1948, line 6 

referring to Alessandri et al., (2012) and the discussion in page 1948, line 6 “the negative signal 

over India may indicate a suppression of the monsoon linked to the effects of the aerosol released 

during major eruptions according to Iles et al. (2013)” contradicts IIes et al. finding that HadCM3 

precipitation response to volcanic eruptions exhibit drying in monsoon regions except India. The  

finding that the second dominant component of the precipitation variability forced by SM indicates 

positive precipitation anomalies over South India related to the positive phase of ENSO also need to 

be clarified as most of the previous research has found reduced precipitation over India during 

ENSO years. 

The data gaps in the satellite derived SM and LAI are replaced at many grid points with  

climatological values for applying the CM technique. Figure 1 shows that the seasonal cycle of the 

percentage of number of grid points replaced globally for SM ranges from 28 to 48%. It is 

suggested that a figure can be added with the grid point locations using climatological SM values 

marked so that how much the missing SM data has influenced the major findings of this study can 

be discussed and highlighted in the abstract. 

Overall the paper is well written, structured and referenced. The abstract reflect the content of the 

paper and provide a clear and complete summary. I recommend its publication after the minor 

issues mentioned above are addressed. 

 

Response to general comment 
We would like to thank the reviewer for the useful comments. We followed all the reviewer 

recommendations and we think the discussion in the revised paper is now much improved. 

We have changed the discussion of the effect of the aerosol on precipitation on page 1948 to make it 

consistent with the literature cited (P9 L24-30). 

Original: 

“In particular, the negative signal over India may indicate a suppression of the monsoon linked to 

the effects of the aerosol released during major eruptions according to Iles et al. (2013).” 

new: 

“In particular, according to Joseph and Zeng (2011) and Iles et al. (2013), the negative signal over 

the monsoon regions may indicate a suppression of the monsoon linked to the effects of the  aerosol 

released during major eruptions. Furthermore, differently from our results and other observational 
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(Trenberth and Dai, 2007) and modelling (Joseph and Zeng, 2011) studies, the HadCM3 results of 

Iles et al. (2013) showed a wetting signal over India during the summer season (although not 

significant in the observational dataset they used).” 

With respect to the relation between the second mode of variability and ENSO, we are grateful to 

the Reviewer for having evidenced this interesting negative feedback. We have added the following 

sentence in the revised manuscript (P11 L3-7): 

“Most previous research showed reduced precipitation over India during ENSO years (Ropelewski 

and Halpert, 1989; Trenberth et al., 1998). The positive anomalies of PRE forced by SM over South 

India related to the positive phase of ENSO evidence an interesting negative feedback of the land-

surface on the effect of ENSO on the rainfall over India.” 

 

The following new reference has been added to the revised manuscript (P19 L13-14): 

Joseph, R., and Zeng, N.: Seasonally modulated tropical drought induced by volcanic aerosol, J. 

Clim., 24(8), 2,045–2,060, doi:10.1175/2009JCLI3170.1, 2011. 

 
As suggested, in order to better evaluate and discuss how the missing SM data has influenced the 

major findings of the study we have added a panel in Fig. 1 with a map of the percentage of SM 

missing data for each grid point. We recall here that all grid points with a percentage of missing 

number larger than 30% have been discarded (white areas in Fig. 1b). The following sentence has 

been added to Section 2 (P5 L8-10): 

“Fig. 1b shows the percentage of SM missing data for each grid point. All grid points with a 

percentage of missing number larger than 30% (white areas in Fig. 1b) have not been considered in 

the analysis.” 

The following sentence has been further added to Section 3 (P7 L12-19): 

“As shown in Fig. 1b, the areas more affected by the replacement of SM missing values (30% of 

values replaced by climatology) are North-East Europe, East coast of Central-South America, East 

China and Korea. Since the replacement of missing values with climatology reduces time 

variability, the coupling in these regions may be underestimated as a consequence. We note that 

these gap-filled regions do not correspond to transition zones between wet and dry climates (Koster 

et al. 2000). Therefore, they are not expected to display a strong coupling between SM and PRE and   

to significantly affect the main results of present study.” 
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new Fig. 1. 

 

 

Minor comments 

 
1) P1947;L13: Please provide details of the stratospheric AOD dataset with relevant references in 

the Dataset section. 

Thanks for the comment. We added a brief description of the AOD and SST datasets in Section 2 of 

the revised manuscript (P5 L14-18). See also answer to minor comment 23 of Reviewer #1. 
 
2) P1948;L1 and P1949;L12: Replace “horizontal” with “spatial”. 
Thanks. Changed as suggested in the revised manuscript. 

 
3) P1948;L26: The description of the HadISST dataset may be moved to the Dataset section. 

Done. Thanks for the suggestion. Please see also response to comment 1. 
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Abstract 14 

The temporal variance of soil moisture, vegetation and evapotranspiration over land has been 15 

recognized to be strongly connected to the temporal variance of precipitation. However, the 16 

feedbacks and couplings between these variables are still not well understood and quantified. 17 

Furthermore, soil moisture and vegetation processes are associated to a memory and therefore 18 

they may have important implications for predictability. 19 

In this study we apply a generalized linear method, specifically designed to assess the 20 

reciprocal forcing between connected fields, to the latest available observational datasets of 21 

global precipitation, evapotranspiration, vegetation  and soil moisture content. For the first 22 

time a long global observational dataset is used to investigate the spatial and temporal land 23 

variability and to characterize the relationships and feedbacks between land and precipitation. 24 

The variables considered show a significant coupling among each other. The analysis of the 25 

response of precipitation to soil moisture evidences a robust coupling between these two 26 

variables. In particular, the first two modes of variability of the precipitation forced by soil 27 

moisture appear to have a strong link with volcanic eruptions and ENSO cycles, respectively, 28 
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and that these links are modulated by the effects of evapotranspiration and vegetation. It is 1 

suggested that vegetation state and soil moisture provide a biophysical memory of ENSO and 2 

major volcanic eruptions, revealed through delayed feedbacks on rainfall patterns. The third 3 

mode of variability reveals a trend very similar to the trend of the inter-hemispheric contrast 4 

in SST and appears to be connected to greening/browning trends of vegetation over the last 5 

three decades. 6 

 7 

1 Introduction 8 

Soil moisture (SM) is an important variable of the climate system, playing an important role 9 

in the feedbacks between land-surface and atmosphere. SM is important in determining 10 

climate variability at a wide range of temporal and spatial scales and controls hydrologic and 11 

energy cycles (Seneviratne et al., 2010; Dirmeyer, 2011). Soil moisture-precipitation 12 

feedbacks have been investigated at the global (Koster et al., 2004; Koster et al., 2009) and 13 

the regional (Pal and Eltahir, 2003; Hohenegger et al., 2009) scale through numerical 14 

simulations. Recent observational studies focused on local land-atmosphere coupling 15 

(Santanello et al., 2009). However, a comprehensive observational study at the global scale of 16 

the SM precipitation (PRE) coupling has never been performed. As shown by several 17 

modelling studies, it is over transition zones between wet and dry climates that a strong 18 

coupling between soil moisture and precipitation can be clearly identified and it is over these 19 

regions that “soil moisture memory” can most probably contribute to subseasonal and longer 20 

climate predictions (Koster et al., 2004; Ferranti and Viterbo, 2006). The term “soil moisture 21 

memory” refers to the property of soil moisture to display persistent anomalies induced by 22 

climatic events like ENSO or volcanic eruptions. Since slowly varying states of the land 23 

surface can be predicted weeks to months in advance, the response of the atmosphere to these 24 

land-surface anomalies can contribute to seasonal prediction. TNevertheless, the large 25 

discrepancies among model results evidence the need of observational analysis of soil 26 

moisture-precipitation feedbacks (Seneviratne et al., 2010). The observational study by 27 

Alessandri and Navarra (2008) clearly identified a link between rainfall and land surface-28 

vegetation variability indicating an important delayed feedback of the land surface to the 29 

precipitation pattern. In this regard, a mechanism by which vegetation may provide delayed 30 

memory of El Niño and La Niña events is identified. 31 
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Predictability of climate at seasonal and longer time scales stems from the interaction of the 1 

atmosphere with slowly varying components of the climate system such as the ocean and the 2 

land surface (Shukla and Kinter, 2006). However, much of the model improvements so far 3 

haves been obtained over ocean, where extensive availability of observations allowed model 4 

progresses and reliable application of assimilation techniques (Rosati et al., 1997; Alessandri 5 

et al., 2010; Alessandri et al., 2011). In contrast, forecasts performance over land is 6 

substantially weaker compared to the ocean (Wang et al., 2009; Alessandri et al., 2011). Since 7 

most of the applications of climate predictions would serve economic interests that are land-8 

based, there is an urgent need to improve climate forecasts over land. Long-term 9 

improvements in understanding land-climate interactions and feedbacks over land must come 10 

from the enhancement of the description of the physical processes on the basis of dedicated 11 

process studies and observational databases. This can be suitably pursued firstly by analysing 12 

the newest available satellite-derived observational datasets that can lead to a better 13 

understanding and quantification of land surface-atmosphere feedbacks. The better knowledge 14 

will then help us to conceive improved systems for the simulation of climate and for the 15 

improvement of its prediction at seasonal and possibly longer time scales. Here a global array 16 

of relevant up-to-date state-of-the-arthigh quality datasets is acquired, harmonized and 17 

analysed. The comprehensive dataset is analysed to characterize the seasonal-mean 18 

interannual land variability of land-surface variables and to improve understanding of the 19 

relationship and feedbacks between land and climate. The analysis method is based on the 20 

Coupled Manifold (CM) technique (Navarra and Tribbia, 2005) which has been specifically 21 

designed to analyse covariation between fields considering both the local and remote forcing 22 

of one field to the other. The CM has proved to be successful for the analysis of different 23 

climate fields, like precipitation, vegetation characteristics, sea surface temperature, and 24 

temperature over land (Alessandri and Navarra, 2008; Cherchi et al., 2007; Wang et al., 25 

2011). Recently, the CM technique has been also applied to investigate the relationship 26 

between surface temperature and electricity demand in summer (De Felice et al., 2014). By 27 

taking advantage of the new global array of relevant up to date state-of-the-arthigh quality 28 

datasets, the present work substantially extends the analysis previously performed by 29 

Alessandri and Navarra (2008) and, for the first time, it includes SM and evapotranspiration 30 

(ET) feedbacks on PRE. 31 

This paper is organized as follows: the observational datasets are described in Section 2. 32 

Section 3 describes the analysis method and gives a brief introduction of the CM technique. 33 
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Section 4 presents the results. Summary and discussion of the main results of this study are 1 

given in Section 5. 2 

 3 

2 The observational datasets 4 

The datasets used for this study are all observationally based, in order to make the analysis as 5 

much as possible independent from global circulationnumerical model limitations and biases. 6 

State-of-the-artHigh quality up-to-date observational datasets of precipitation (PRE, from the 7 

Global Precipitation Climatology Project [GPCP]), Evapotranspiration (ET, from University 8 

of Montana), soil moisture (SM, from European Space Agency [ESA]) and Leaf Area Index 9 

(LAI, from Boston University) have been acquired and prepared. The selection of the datasets 10 

is based mainly on two criteria: 1) as long as possible period covered; 2) global spatial 11 

coverage. The observed monthly PRE dataset is described in Adler et al. (2003). ET values 12 

are satellite-based estimates from the Global Inventory Modeling and Mapping Studies 13 

[GIMMS] and MODIS (Zhang et al., 2010). The SM dataset (Liu et al., 2011, 2012) is the 14 

most complete record of this variable, based on active and passive microwave satellite 15 

sensors. The LAI dataset (Zhu et al., 2013) is a long-term global data set resulting from the 16 

application of a neural network algorithm to the NDVI3g product from GIMMS satellite data. 17 

All land-surface datasets (SM, ET, LAI) are satellite products independent on the PRE 18 

dataset, which is based on rain gauges. Despite both ET and LAI products have been acquired 19 

by using the AVHRR sensor, the datasets have been produced by independent research groups 20 

which used completely different methodologies. The LAI product has been generated by 21 

applying a neural network algorithm on the NDVI satellite product while the ET dataset has 22 

been produced by using a modified Penman‐Monteith approach including eddy covariance 23 

and meteorological data from the FLUXNET towers network. The time period, depending 24 

from the availability of the datasets, is 24 years (1983-2006) for ET and 29 years (1982-2010) 25 

for the other variables. Original datasets come with various sampling frequencies, ranging 26 

from daily to monthly. See Table 1 for a summary of the characteristics of the retrieved 27 

datasets. 28 

The data have been pre-processed and prepared for the subsequent analysis (Table 1). The 29 

pre-processing included space and time averaging, analysis of the spatial coverage and gap 30 

filling in order to minimize the effect of undefined values (hereinafter NaN). The gap filling 31 

procedure is described in Section 3. ET and PRE datasets are observational products merged 32 
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with model information and so do not contain NaNs. Instead, LAI and SM are affected by 1 

data gaps and present significant seasonal variation of the spatial coverage. Fig. 1a reports the 2 

seasonal cycle of the percentage of NaN values for LAI (full line) and SM (dashed line). Both 3 

variables show better spatial coverage during the summer season (June, July, August, 4 

September). On the other hand, mostly because satellite-based estimates of LAI and SM are 5 

unreliable in presence of snow cover (Zeng et al., 2013), during the winter season the 6 

coverage reduces substantially. The SM dataset derives from blending passive and active 7 

microwave satellite retrievals. Fig. 1b shows the percentage of SM missing data for each grid 8 

point. All grid points with a percentage of missing number larger than 30% (white areas in 9 

Fig. 1b) have not been considered in the analysis. Over regions characterized by particularly 10 

dense vegetation and high canopies, both satellite products are unable to provide reliable 11 

estimates (Liu et al., 2012). Conversely, non-vegetated areas are associated to NaN values in 12 

the LAI dataset. 13 

In order to evaluate the effect of major volcanic eruptions on land-atmosphere coupling, we 14 

used the stratospheric Aerosol Optical Depth (AOD) at 550 nm, available from the NASA 15 

GISS dataset (Sato et al., 1993). To evaluate the effect of ENSO, we compute the NINO3 16 

index based on the HadISST 1.1 – Global sea-Ice coverage and Sea Surface Temperature 17 

(1870–present; Rayner et al., 2003) dataset. 18 

 19 

3 The Analysis Method 20 

The CM technique (Navarra and Tribbia, 2005) seeks linear relations between two 21 

atmospheric fields Z and S (that in general are assumed to be rectangular matrices) of the 22 

kind: 23 

𝑍 = 𝑍𝑓𝑜𝑟 + 𝑍𝑓𝑟𝑒𝑒 = 𝐴𝑆 + 𝑍𝑓𝑟𝑒𝑒,    (1) 24 

𝑆 = 𝑆𝑓𝑜𝑟 + 𝑆𝑓𝑟𝑒𝑒 = 𝐵𝑍 + 𝑆𝑓𝑟𝑒𝑒,    (2) 25 

The subscript ()for indicates the component of the field forced by the other variable 26 

(hereinafter forced manifold), while ()free indicates the free manifold. The free manifold 27 

contains the effects of nonlinearities. The linear operators A and B express the link between Z 28 

and S. A expresses the effect of S on Z, while B represents the effect of Z on S. In general, A 29 

and B are different. A and B are found by solving the Procrustes minimization problem: 30 
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𝐴 = 𝑍𝑆′(𝑆𝑆′)−1,      (3) 1 

𝐵 = 𝑆𝑍′(𝑍𝑍′)−1,      (4) 2 

Following Navarra and Tribbia (2005), the technique is applied to the principal components 3 

of Z and S, therefore the coefficients of the linear operators A and B express the relations 4 

between the modes of the two variables. CCA scaling (data scaled by the covariance matrices) 5 

is applied to the Principal Components (PCs) of the variables before solving the Procrustes 6 

problem: 7 

𝑍̂ = (𝑍𝑍′)−1 2⁄ ,         (53) 8 

𝑆̂ = (𝑆𝑆′)−1 2⁄ ,         (64) 9 

where 𝑍̂ and 𝑆̂ are the CCA-scaled variables. Please refer to Navarra and Tribbia (2005) for 10 

further details of the CM technique. 11 

As explained in Cherchi et al. (2007), after applying the CCA scaling, the elements of A and 12 

B are correlation coefficients and can be tested (with a significance test based on the Student t 13 

distribution) to reject the null hypothesis of being equal to zero. To improve the robustness of 14 

the analysis, each element of the A and B matrices has been verified to be different from zero 15 

at the 1% level significance level, following the method proposed by Cherchi et al. (2007). 16 

The CM has two main advantages compared to other methods. The first one is that, when 17 

applied to a couple of climate fields (i.e., PRE and SM), CM is able to separate one field (i.e., 18 

PRE) into two components: the first component (forced) is the portion of PRE variability that 19 

is connected to the SM variability, whereas the second (free) is the part of PRE that is 20 

independent from SM. Therefore, the CM technique enables to find robust relations between 21 

fields in the presence of strong background noise. The second advantage is that the CM 22 

technique is able to detect both local and remote effects of the forcing variable. This is not 23 

possible with other methods such as SVD (Singular Value Decomposition). 24 

In the present analysis the CM technique has been applied to the seasonal-mean inter-annual 25 

anomalies computed with the data. The climatological seasonal cycle has been removed and 26 

the data have been stratified using the seasons: JFM (January-February-March), AMJ (April-27 

May-June), JAS (July-August-September) and OND (October-November-December). The 28 

JFM, AMJ, JAS, OND stratification has been used by Alessandri and Navarra (2008) in their 29 
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CM study of vegetation and rainfall which we will use to compare our results. The trends are 1 

kept for their relevance as possible indicators of climate change. 2 

The LAI and SM datasets contain missing values, whose number and position significantly 3 

vary with time. The application of the CM algorithms requires that the number and position of 4 

the missing values is constant with time. Hence, if a NaN is present in a given grid-point at 5 

any time, then it requires to mark as NaN that grid point, thus losing a great amount of 6 

information. In order to keep as much information as possible from the data, we decided to 7 

replace the missing values with climatological values provided that their total number, 8 

considering a particular grid-point, does not exceed a given threshold. We selected different 9 

thresholds for SM and LAI in order to obtain as similar as possible spatial coverage of the two 10 

variables. The chosen threshold is 10% for LAI and 30% for SM. The results are robust with 11 

respect to a ±10% change of the threshold values. As shown in Fig. 1b, the areas more 12 

affected by the replacement of SM missing values (30% of values replaced by climatology) 13 

are North-East Europe, East coast of Central-South America, East China and Korea. Since the 14 

replacement of missing values with climatology reduces time variability, the coupling in these 15 

regions may be underestimated as a consequence. We note that these gap-filled regions do not 16 

correspond to transition zones between wet and dry climates (Koster et al., 2000). Therefore, 17 

they are not expected to display a strong coupling between SM and PRE and to significantly 18 

affect the main results of present study. 19 

Since the main interest of the work is on the land-surface, the ocean values are masked out 20 

from the PRE dataset. A preliminary analysis (not shown) revealed that their inclusion 21 

resulted in a more difficult interpretation of the Empirical Orthogonal Functions (EOF) 22 

patterns (Bretherton et al., 1992), due to the interaction of phenomena on different space and 23 

time scales which are not connected to land variables. 24 

 25 

4 Results 26 

The CM technique has been applied to analyse the reciprocal forcing between PRE and the 27 

observed surface variables (SM, ET, LAI). The global-scale reciprocally forced temporal 28 

variances between PRE and the land surface variables is reported in Table 2. 19% of the PRE 29 

variability is forced by SM. On the other hand, 17% of the SM variance appears to be forced 30 

by PRE. 18% of the variability of PRE is forced by ET and 14% of the variance of ET is 31 

forced by PRE. Considering the coupling between PRE and LAI, 17% of the variance of PRE 32 
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appears to be forced by LAI and 14% of the variability of LAI is forced by PRE. All the 1 

variance ratios in Table 2 are significant at the 1% level. The chance of coincidentally getting 2 

as high or higher ratios has been tested by means of a Monte Carlo bootstrap method (1000 3 

repetitions). 4 

Since SM is the most important land-surface parameter affecting seasonal to interannual 5 

variability/predictability of precipitation (Koster et al., 2000; Zhang et al., 2008), the coupling 6 

between SM and PRE will be analyzed in detail in the following. 7 

4.1 Reciprocal forcing between PRE and SM seasonal-mean anomalies 8 

Fig. 2 shows the ratio of the forced/total variance over land. The ratio of SM variance forced 9 

by PRE is in panel a, while panel b shows the ratio of PRE variability which is accounted for 10 

by the SM variability. For each grid point, the null hypothesis of coincidentally getting as 11 

high or higher variance ratios has been tested using a Monte Carlo bootstrap method (1000 12 

repetitions). The regions where the ratio values are not significantly different from zero at the 13 

1% level are dotted. The observed SM variability appears to be intensely forced by PRE over 14 

the Sahel and Central-eastern Africa, South Africa, Middle East, the semi-arid region of 15 

Central West Asia, Indian Peninsula, Argentina, Eastern Brazil and Australia. Note that, due 16 

to the limitations of the satellite estimates discussed in Section 2, large areas in Russia and the 17 

Amazon basin are not covered in the SM dataset. The larger observed effects on PRE due to 18 

SM inter-annual variability (Fig. 2b) occur in East Brazil, La Plata basin, Sahel, Asian boreal 19 

forests, Middle East, Pakistan, Indonesia, northern and eastern Australia. Most of these 20 

regions correspond to transition zones between dry and wet climates, where evaporation is 21 

highly sensitive to soil moisture (Koster et al., 2000). Here we refer to the transition regions 22 

between very dry and very humid environments, as individuated by Koster et al. (2000). 23 

By using the CM technique (described in Section 3), the seasonal-mean PRE anomalies are 24 

separated into forced and free components, where forced and free refers to the influence of the 25 

SM variation. The variance explained by each mode of the PRE forced field is reported in 26 

Table 3. The EOF analysis shows that the first three components of the variability of the 27 

forced PRE field together account for 48% of total variance (Table 3). The first two PCs does 28 

not display trends while the third PC is dominated by a clear trend, as will be discussed later. 29 

The first mode of variability of the forced PRE field explains 26% of the total variance. The 30 

corresponding principal component displays two significant peaks at years 1983 and 1992 31 
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(Fig. 3a). The PC is significantly correlated (maximum correlation coefficient equal to 0.56 at 1 

lag 0) to the stratospheric Aerosol Optical Depth (AOD), available from the NASA GISS 2 

dataset. AOD peaks in correspondence of the two major eruptions of the period: 1983 (El 3 

Chichon) and 1992 (Pinatubo). The peaks in the AOD time series correspond to those of the 4 

forced PRE PC1, suggesting that this mode of variability is related to changes in the solar 5 

radiation at the ground, confirming that absorption and reflection of solar radiation by aerosol 6 

are particularly effective in reducing the hydrological cycle. The fast response of the 7 

precipitation anomalies to the radiation change induced by large tropical volcanic eruptions is 8 

in agreement with the results of the lag-correlation analysis by Gu and Adler (2011), who 9 

found 0 time lag between stratospheric aerosol signal and PRE. The lagged correlations of 10 

PC1 and AOD (Fig. 3b) show that significant (at 5% level) correlations endure up to about 2 11 

years after the aerosol peak (i.e: behind the autocorrelation period of AOD itself; Fig. 3b 12 

dashed line). This result indicates that SM may provide a memory of the major volcanic 13 

eruptions for PRE. Table 4 shows the variance explained by each EOF mode of the whole 14 

original PRE field (that is, forced+free components). The link between PRE and volcanic 15 

eruption signal is evident also in the first mode of variability of the total rainfall field as 16 

confirmed by the correlation of the corresponding PC (explaining 10% of total PRE variance) 17 

with AOD (Table 4). 18 

Fig. 3c shows the horizontal spatial pattern of the first EOF of the PRE anomalies forced by 19 

the SM. A clear negative signal is present over areas characterized by a wet climate (Amazon 20 

basin, India and Indonesia). In these regions the stratospheric aerosol emitted during the 21 

volcanic eruptions has the effect of reducing the intensity of the hydrological cycle 22 

(Alessandri et al., 2012) with a consequent reduction of SM, PRE and continental discharge 23 

(Trenberth and Dai, 2007). In particular, according to Joseph and Zeng (2011) and Iles et al. 24 

(2013), the negative signal over India the monsoon regions may indicate a suppression of the 25 

monsoon linked to the effects of the aerosol released during major eruptions according to Iles 26 

et al. (2013). Further, differently from our results and other observational (Trenberth and Dai, 27 

2007) and modelling (Joseph and Zeng, 2011) studies, the HadCM3 results of Iles et al. 28 

(2013) showed a wetting signal over India during the summer season (although not significant 29 

in the observational dataset they used). On the other hand, over transition zones (U.S. Great 30 

Plains, Argentina, Middle East) the dimming effect may result in reduced evapotranspiration 31 

during the hot/dry season which drives an increase of SM (Wild et al., 2009). During the 32 

following cool/wet season, the enhanced SM can induce a lagged increase of the portion of 33 
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PRE forced by SM. That can explain the increased PRE over transition areas. On the other 1 

hand, the reduction of PRE over South Asia monsoon region and the enhancement of PRE 2 

over the semi-arid areas of Central West Asia is consistent with the monsoon-desert 3 

mechanism (Rodwell and Hoskins, 1996; Cherchi et al., 2014): the reduction of radiation 4 

caused by the stratospheric aerosol drives a reduction of convection over monsoon regions 5 

and a consequent reduction of PRE over South Asia therefore abating Rossby wave induced 6 

subsidence over Middle East and East Mediterranean (Cherchi et al., 2014). 7 

The second PC of PRE forced by SM, explaining 14% of total variance, is dominated by a 8 

large scale oscillation (Fig. 4a). The corresponding principal component (full line) displays an 9 

high correlation coefficient of 0.60 with the NINO3 index (average of the Sea Surface 10 

Temperature in the tropical Pacific region 5S–5N, 210–270E; dashed line) at lag 2 (significant 11 

at the 1% level), indicating that EOF2 represents the portion of the rainfall forced by SM that 12 

is related to the El Niño Southern Oscillation (ENSO; Philander, 1989) variability. The 13 

HadISST 1.1 - Global sea-Ice coverage and Sea Surface Temperature (1870-Present; Rayner 14 

et al., 2003) dataset has been used to compute the NINO3 index. The second mode of forced 15 

PRE response due to SM variability appears to be lagged by one to several seasons with 16 

respect to the ENSO phase (Fig. 4b), with the strongest correlations with the NINO3 index 17 

two seasons after the maximum El Niño or La Niña intensity and significant correlations 18 

enduring until the lag 5 season (i.e: behind the autocorrelation period of ENSO itself; Fig. 5b 19 

dashed line). The results indicate that the effects related to ENSO in the SM may induce a 20 

delayed forcing on PRE. Therefore, SM appears to provide a biophysical memory of ENSO 21 

on the global precipitation pattern. The signal of ENSO can also be evidenced in the second 22 

mode of variability of the total rainfall field as indicated by the correlation of the 23 

corresponding PC (explaining 5% of total PRE variance) with NINO3 (Table 4). Again, the 24 

lag at which maximum correlation is attained is the same (lag 2) as in the forced field but the 25 

correlation coefficient is 0.60 for the forced field and 0.43 for the total PRE field. 26 

The horizontal spatial pattern of the second EOF of the PRE anomalies forced by SM (Fig. 27 

4c) displays the signature of the tripole pattern over south America typical of ENSO 28 

teleconnections (Ropelewski and Halpert, 1989). Similarly, negative PRE anomalies are 29 

shown over Brazil, South Africa, North India and Indochina, displaying the land surface 30 

feedback to the reduced rainfall related to the positive phase of ENSO there (Trenberth et al., 31 

1998). On the other hand, positive precipitation anomalies characterize the West and East 32 
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Coasts of North America, Central America, the dry and semi-arid region of North Venezuela, 1 

La Plata basin, Horn of Africa, Sahel, Europe, Central and East Asia, South India and the East 2 

Coast of Australia. Most previous research showed reduced precipitation over India during 3 

ENSO years (Ropelewski and Halpert, 1989; Trenberth et al., 1998). The positive anomalies 4 

of PRE forced by SM over South India related to the positive phase of ENSO evidence an 5 

interesting negative feedback of the land-surface on the effect of ENSO on the rainfall over 6 

India. 7 

The third PC of the PRE forced by the SM, explaining 8% of forced variance, displays a trend 8 

(Fig. 5a) corresponding to a clear signal of increasing precipitation over the Sahel, South-East 9 

Europe, Central Asia, North-East Asia, the Great Plains of North America, Nordeste and the 10 

Northern part of South America (Fig. 5b). The trend of increasing precipitation is particularly 11 

strong over the Sahel where, according to Hagos and Cook (2008), it can be related to a 12 

warming of the northern tropical Atlantic Ocean which, through a modification of the 13 

associated cyclonic circulation, enhances moisture transport over the region. In contrast, a 14 

decrease of precipitation is evident over most of the Southern Hemisphere (SH), North West 15 

Russia, East Russia, North India, China and West US, showing a north-south polarity of the 16 

precipitation trend. The above trend pattern strongly resembles the trend pattern of global 17 

rainfall annual mean anomalies described by Munemoto and Tachibana (2012, hereinafter 18 

MT12). The authors associated this North-South polarity to a relatively larger warming of the 19 

Northern Hemisphere (NH) compared to the SH that characterized the last three decades 20 

starting from the early 1980s. MT12 found that the trend of the SST corresponds to an 21 

increase of the specific humidity in the NH with respect to SH that enhances (reduces) 22 

precipitation in the NH (SH). Although the focus of MT12 is on the Sahel region, the authors 23 

defined a global index, the North South SST (NS-SST) polarity index, which successfully 24 

captures the global signal of the precipitation trend. The NS-SST index is defined as the area 25 

averaged NH SST annual mean anomalies minus the SH SST anomalies. The NS-SST index 26 

(computed from HadISST), normalized by its standard deviation, and its trend are plotted in 27 

Fig. 5a. Note that here the NS-SST index is computed from the seasonal mean anomalies 28 

instead of the annual mean anomalies used in MT12, nonetheless the trend is not affected. 29 

4.2 Mediation effects of ET and LAI on the coupling between PRE and SM 30 

To investigate how the coupling between rainfall and soil moisture is mediated by 31 

evapotranspiration and vegetation we further applied the CM technique between the 32 
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component of PRE forced by SM and ET (LAI), obtaining the component of PRE forced by 1 

SM which is also forced by ET (LAI). As summarized in Table 5, 20% of the inter-annual 2 

variability of the PRE anomalies forced by the SM is estimated to be globally forced by the 3 

ET variation. It is important to note here that 19%x20%=3.8% represents only the ET forcing 4 

on PRE mediated by SM and not the whole ET forcing on PRE which is actually 18% (Table 5 

2). At the same time, 23% of the variance of PRE forced by SM is evaluated to be also forced 6 

by LAI, therefore the LAI forcing on PRE mediated by SM corresponds to 17%x23%=3.9%. 7 

Fig. 6a shows the ratio of the variance of PRE forced by the SM which is also forced by the 8 

ET with respect to the total forced rainfall variance. Fig. 6b shows the same plot but for the 9 

LAI. The “hotspots” in Fig. 6a are similar to those found in Fig. 2b over Sahel, Horn of 10 

Africa, East Europe, Asian boreal forests, Central Asia, West Coast of the US, East Brazil and 11 

La Plata basin. This indicates that in all these regions the link between PRE and SM is at least 12 

in part mediated by ET. Not surprisingly, the same regions also display a link with vegetation 13 

(Fig. 6b). Furthermore, vegetation appears to significantly affect rainfall variability over the 14 

semi-arid regions that are not dependent on ET such as Central West Asia, South-East Africa, 15 

South-East Asia and West Australia, suggesting that in these regions the SM forcing on PRE 16 

is mediated by vegetation state (e.g. stress of vegetation will affect PRE there). 17 

To analyse how the response of PRE forced by SM to climate events and the trend are 18 

mediated by ET (LAI), we applied the CM technique between each of the physical fields 19 

corresponding to the first three modes of variability of PRE forced by the SM and ET (LAI). 20 

Here we take the physical fields corresponding to the first three modes of variability of PRE 21 

forced by SM and further decompose them to extract the parts of each mode that is forced by 22 

ET and LAI, respectively. This analysis allows to figure out how ET and LAI contribute to 23 

each component of PRE forced by SM which has been identified to be linked to external 24 

climate forcing (volcanic eruptions, ENSO and trend). Overall, considering the global land, 25 

21% of the variance displayed by the first mode (linked to volcanic eruptions) of PRE forced 26 

by the SM is forced by the ET and 27% by LAI (Table 6). As for the second mode (connected 27 

to ENSO), 38% of the variance is forced by ET and 36% by LAI. Concerning the third mode 28 

(displaying a trend), 31% of the variance is forced by ET and 29% is forced by LAI. Rainfall 29 

variability forced by the ET and LAI decomposed through EOF analysis is reported in Table 30 

7. Interestingly, the third PC of the PRE forced by the ET (explaining 7% of the forced 31 

variance) is correlated with AOD, with a maximum correlation coefficient of 0.41 at lag 6. 32 



 13 

Analogously, the second PC of the PRE anomalies forced by the LAI (explaining 10% of the 1 

forced variance) is correlated with AOD, with a maximum correlation coefficient of 0.41 at 2 

lag 3, suggesting that both ET and vegetation contribute to provide memory of volcanic 3 

eruptions, modulating at longer scales the effect of the SM forcing on PRE. The first PC of 4 

PRE forced by ET (explaining 30% of the forced variance) is found to be significantly 5 

correlated with the NINO3 index with a correlation coefficient of 0.52 at lag 0. The first PC 6 

of PRE forced by LAI (explaining 27% of the forced variance) also has a maximum 7 

correlation coefficient of 0.67 at lag 0 with the NINO3 index, indicating that vegetation acts 8 

as the mediator at longer scales of the signal between SM and PRE. This result is consistent 9 

with the relationship found by Alessandri and Navarra (2008) between precipitation forced by 10 

vegetation (NDVI) and ENSO and with the delayed vegetation response to ENSO signal 11 

found by Zeng et al. (2005). All the above correlation coefficients passed a significance test at 12 

1% level. 13 

To determine the regions where the mediating effects of ET and LAI have the larger influence 14 

on the coupling with respect to the stratospheric volcanic eruptions, the first mode of 15 

variability of PRE forced by the SM has been correlated with the total components of PRE 16 

forced by the ET and LAI. The correlation coefficients are shown in Fig. 7a for PRE forced 17 

by the ET and Fig. 7b for PRE forced by the LAI. Only the regions where correlations passed 18 

a significance test at 5% level are shaded. Black upward (white downward) triangles denote 19 

areas with positive (negative) values of the first EOF of the PRE anomalies forced by the SM 20 

(Fig. 3c). The correlations are positive almost everywhere (i.e. the effects of both ET and LAI 21 

tend to amplify the response of rainfall to large volcanic eruptions) and the patterns are very 22 

similar for ET and LAI, indicating that the feedback of ET may be linked to the stress of 23 

vegetation consequent to the effect of volcanic eruptions on radiative forcing. Large values 24 

(up to 0.6) are seen over Central US, North West Brazil, La Plata basin, West Central Asia, 25 

Horn of Africa, South Africa, the Asian monsoon region, Indonesia and Australia. Over these 26 

regions evapotranspiration and vegetation activity are radiation limited (Seneviratne et al., 27 

2010). Nevertheless, while over some regions (Southern part of North America, La Plata 28 

basin, Middle East, West Central Asia and Horn of Africa) ET and LAI contribute to an 29 

increase of rainfall, over other regions (Norther South America, South Africa, Indian 30 

monsoon region, Australia) they contribute to rainfall reduction. As discussed in Section 4.1, 31 

over most of the SH (apart from La Plata basin and Horn of Africa) and the Asian monsoon 32 

region there is a reduction of precipitation that can be associated to the dimming effect and 33 
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the consequent reduction of the hydrological cycle. In humid regions the rainfall reduction 1 

can stress vegetation and may reduce its growth with effects lasting up to one  year (Wang et 2 

al., 2011b). On the other hand, over most of the arid and semi-arid regions (Middle East, West 3 

Central Asia), the reduced evapotranspiration during past seasons induced by the dimming 4 

effect may increase SM and therefore attenuate the stress on vegetation. This, in turn, has a 5 

positive effect on precipitation. 6 

The point-by-point correlation coefficient between the second mode of variability (related to 7 

ENSO) of PRE forced by the SM and the total fields of PRE forced by the ET and PRE forced 8 

by the LAI is shown in Fig. 8 on panel a and b, respectively. The sign of the feedback 9 

between PRE and SM is indicated by the second EOF of PRE forced by the SM overlaid to 10 

the plot. Large positive correlations up to 0.6 are found globally over most of the land areas. 11 

ET has a positive feedback on the increase of precipitation over the West Coast of US, the dry 12 

and semi-arid region of North Venezuela, La Plata basin, Sahel, North Europe, India, Central 13 

and East Asia and the South-East Coast of Australia. Still a positive feedback is present over 14 

Brazil, South Africa and Indochina but in this case ET leads to further reduction of PRE. A 15 

negative feedback of ET is seen over Mexico. In this region the positive ENSO phase induces 16 

wet and cool conditions (Trenberth et al., 1998) associated to an increase of PRE forced by 17 

SM that is contrasted by a reduction of ET. As for vegetation, it contributes to rainfall 18 

enhancement over East and West Coasts of the US, La Plata basin, North Europe, Horn of 19 

Africa, the semi-arid region of West Central Asia and East Asia. Conversely, vegetation 20 

mediates precipitation reduction over Brazil, South Africa and Indochina. 21 

Fig. 9 shows the point-by-point correlation coefficient between the third mode of variability 22 

of PRE forced by the SM (displaying a linear trend, see Fig. 5) and the total fields of PRE 23 

forced by the ET (Fig. 9a) and PRE forced by the LAI (Fig. 9b) with the third EOF of PRE 24 

forced by the SM overlaid on it. The feedback of ET on this mode of variability of PRE is not 25 

significant over most of the NH. A positive effect of ET is seen over the semi-arid regions of 26 

the SH but while over Sahel ET mediates an increase of rainfall, over Bolivia and Australia 27 

ET leads to further reduction of PRE (Fig. 9a). On the other hand, ET has a negative feedback 28 

over the humid region of Tanzania where it contrasts the reduction of PRE. The pattern of the 29 

feedback of LAI (Fig. 9b) is very different from that of ET. Overall, the vegetation has a 30 

positive feedback on the rainfall anomaly pattern forced by the SM. In particular, large 31 

correlations up to 0.6 are seen over the Sahel, East Coast of the US, West South America, 32 
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East Europe, Tropical South Africa, West Central Asia, Asian boreal forests, Central and East 1 

Asia, the Indian monsoon region and East Australia. The strong signal over the Sahel is in 2 

agreement with Zeng et al. (1999) and Kucharski et al. (2013) who found that vegetation 3 

feedback amplifies rainfall response to the SST variations on the decadal scale. LAI mediates 4 

rainfall enhancement over the Sahel, East Coast of the US, Europe, the semi-arid region of 5 

West Central Asia and the Indian monsoon region. Conversely, vegetation contributes to a 6 

reduction of PRE over most of the SH (in particular over South America, South Africa and 7 

East Australia), the West Coast of the US and East Asia. Fig. 9c shows the linear vegetation 8 

trend over the period 1982-2010. Only areas where trend passed a significance test at the 5% 9 

level are shown. Significant positive (greening) trend is seen in large parts of the NH (the East 10 

Coast of the US, Sahel, Europe, West Central Asia, India and Asian boreal forests). A 11 

negative vegetation trend (browning) appears over the West Coast of the US, West South 12 

America, the tropical region of South Africa and East Asia. The greening/browning trends in 13 

Fig. 9c are consistent with those found by de Jong et al. (2013). A comparison of panels b and 14 

c of Fig. 9 evidences that most of the areas characterized by a positive trend of rainfall 15 

anomalies are associated to a greening trend of vegetation while areas displaying a decrease 16 

of PRE are regions associated to a browning trend. Therefore, the response of rainfall 17 

anomalies forced by the SM to the inter-hemispheric SST trend appears to be coupled to a 18 

greening/browning trend of vegetation activity. Furthermore, the third PC of PRE forced by 19 

LAI displays a trend similar to that of the NS-SST index, analogously to the third PC of PRE 20 

forced by SM, while no trends are found in the first five PCs of PRE forced by ET. 21 

 22 

5 Conclusions 23 

A global array of relevant up-to-date state-of-the-arthigh quality datasets (soil moisture, 24 

evapotranspiration, leaf area index and precipitation) is acquired, harmonized and analysed. 25 

For the first time a long comprehensive global observational dataset is used to characterize the 26 

land variability as a function of the space and time scales and to improve understanding of the 27 

relationships and feedbacks between land and climate. By applying the Coupled Manifold 28 

technique on the seasonal-mean inter-annual anomalies, the relationship and the coupling 29 

between the acquired surface variables is assessed  considering all the seasons. 30 

The analysis shows a considerable degree of reciprocal forcing and coupling in the land 31 

surface variables considered. The reciprocal forcing with precipitation is particularly strong 32 
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for the soil moisture, with 19% of the inter-annual variability of the precipitation over 1 

continental areas that are forced by the SM variation. Conversely, 17% of the SM variance is 2 

forced by PRE. 3 

The PRE forced by the SM is dominated by a prominent decadal-scale drying, initiated by the 4 

perturbation of the abrupt Mt. Pinatubo eruption. In 1991, the PC1 of the dominant forced 5 

mode of PRE shows an abrupt decrease and the negative anomaly continues increasing in the 6 

subsequent years until 1994. It is only after 1995 that the rainfall starts to slowly recover 7 

towards the pre-eruption levels. In 1997, the signal sums-up with that of ENSO. It appears 8 

that the persistence of the negative SM anomalies leads to increasing stress conditions for the 9 

vegetation, thus leading to a larger ET response at longer time-lags after the perturbing event. 10 

Our interpretation is that the persistence of the negative SM anomalies provides the memory 11 

of the initial perturbing event and our analysis indicate that, through this mechanism, the 12 

effect of Mt. Pinatubo eruption can last for several years and its memory appears to extend 13 

and sum to the following 1997-1998 El Niño event. The second PC of the PRE forced by the 14 

SM displays a large-scale oscillation correlated to ENSO variability with significant 15 

correlations enduring behind the autocorrelation period of ENSO itself and up to more than 16 

one year lag. This indicates that ENSO effects on SM induce a delayed forcing on PRE. The 17 

third PC of the PRE forced by the SM is dominated by a trend, positive over most of the NH 18 

and negative over most of the SH. This trend appears to be related to the inter-hemispheric 19 

SST contrast to which corresponds an increase of the specific humidity in the NH with respect 20 

to the SH that enhances (reduces) precipitation and SM in the NH (SH). 21 

The combined analysis of the PRE modes related to the external climate forcings (volcanic 22 

eruptions, ENSO, SST trend) and the rainfall forced by ET and LAI evidences the role of ET 23 

and LAI as the mediators between SM forcing and rainfall. In particular, it appears that both 24 

ET and LAI tend to provide a positive feedback on PRE over most of the regions, 25 

contributing to further enhance or reduce rainfall depending on the regions of the globe, with 26 

large differences between wet, transition and semi-arid climates. Nevertheless, the response to 27 

ENSO is characterized by a negative feedback of ET over regions where the positive ENSO 28 

phase induces wet and cool conditions (i.e. Mexico). 29 

It is important to note that the coupling with SM revealed by the present analysis has to be 30 

considered an underestimation of the real coupling, due to the incomplete cover of the SM 31 
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dataset. Nevertheless, the present investigation identifies the regions characterized by a strong 1 

coupling and suggests most possible mechanisms linking the considered variables. 2 

Since SM has been recognized as the most important land-surface parameter affecting 3 

seasonal to interannual variability of precipitation (Koster et al., 2000; Zhang et al., 2008) the 4 

present paper focused on the coupling between SM and PRE. Detailed analysis of the 5 

reciprocal forcing between ET and LAI, LAI and SM and ET and SM will be the subject a 6 

future paper that will further address the specific coupling among land-surface variables. 7 

 8 

Data availability 9 

Evapotranspiration dataset available from the Numerical Terradynamic Simulation Group 10 

(NTSG) of the University of Montana. Web: http://www.ntsg.umt.edu/project/et 11 

Leaf Area Index dataset available from the Department of Earth & Environment of Boston 12 

University. Web: http://sites.bu.edu/cliveg/datacodes/ 13 

Soil Moisture dataset available from the European Space Agency (ESA) Climate Change 14 

Initiative (CCI). Web: http://www.esa-soilmoisture-cci.org/ 15 

Precipitation dataset available from the Global Precipitation Climatology Project (GPCP). 16 

Web: http://precip.gsfc.nasa.gov/ 17 

Aerosol Optical Depth dataset available from the National Aeronautics and Space 18 

Administration (NASA) Goddard Institute for Space Studies (GISS). Web: 19 

http://data.giss.nasa.gov/modelforce/strataer/ 20 

Sea Surface Temperature dataset available from the Hadley Centre for Climate Prediction and 21 

Research (2006): Met Office HadISST 1.1 (Global sea-Ice coverage and Sea Surface 22 

Temperature). Web: http://catalogue.ceda.ac.uk/uuid/facafa2ae494597166217a9121a62d3c 23 
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Table 1. Evapotranspiration (ET) [Zhang et al., 2010], Leaf Area Index (LAI) [Zhu et al., 1 

2013], Soil Moisture (SM) [Liu et al., 2011, 2012], Precipitation (PRE) [Adler et al., 2003] 2 

Ddatasets characteristics. 3 

 ET LAI SM PRE 

type satellite satellite satellite gridded from rain gauges 

version - 1.0 0.1 2.2 

producer University of Montana Boston University ESA GPCP 

Spatial 

resolution 

(original) 

1° x 1° 8 km x 8 km 0.25° x 0.25° 2.5° x 2.5° 

Spatial 

resolution 

(after pre-

processing) 

1° x 1° 0.5° x 0.5° 0.5° x 0.5° 2.5° x 2.5° 

Temporal 

frequency 

(original) 

monthly 15-days daily monthly 

Temporal 

frequency 

(after pre-

processing) 

seasonal seasonal seasonal seasonal 

units W m-2 m2 m-2 m3 m-3 mm d-1 

period 1983-2006 1982-2010 1979-2010 1979-2010 

 4 

  5 
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Table 2. Ratios of the global-scale forced and free variance with respect to the total variance 1 

resulting from the application of the CM technique between PRE and SM, ET and LAI. 2 

 Forced Free 

SM 0.17 0.83 

PRE 0.19 0.81 

ET 0.14 0.86 

PRE 0.18 0.82 

LAI 0.14 0.86 

PRE 0.17 0.83 

 3 

  4 
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Table 3. Rainfall PRE variability forced by the SM decomposed through EOF analysis. Each 1 

line displays the EOF explained variance (column 2) and the corresponding PC correlation 2 

with relevant climatic indices (column 3). AOD is the Stratospheric Aerosol Optical Depth. 3 

NINO3 index is defined as the average of the Sea Surface Temperature in the tropical Pacific 4 

region (5◦ S–5◦ N, 210–270◦ E). Here the maximum PC correlation is reported considering 5 

lagged correlations in the range -16 to +16. Only the correlation coefficients significant at 1% 6 

level are reported. 7 

 Variance explained Correlation with climate indices 

PC 1 0.26 0.56 (AOD) at lag 0 (significant in the range: -4/+7) 

PC 2 0.14 0.60 (NINO3) at lag 2 (significant in the range: 0/+5) 

PC 3 0.08 - 

PC >4 <0.07 - 

 8 

9 
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Table 4. Total rainfall variability decomposed through EOF analysis. Each line displays the 1 

EOF explained variance (column 2) and the corresponding PC correlation with relevant 2 

climatic indices (column 3). Here the maximum PC correlation is reported considering lagged 3 

correlations in the range -16 to +16. Only the correlation coefficients significant at 1% level 4 

are reported. 5 

 Variance explained Correlation with climate indices 

PC 1 0.10 0.41 (AOD) at lag 0 (significant in the range: -2/+2) 

PC 2 0.05 0.43 (NINO3) at lag 2 (significant in the range: +1/+4) 

PC >3 <0.04 - 

 6 

  7 
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Table 5. Ratios of the global-scale forced and free variance with respect to the total variance 1 

resulting from the application of the CM technique between PRE forced by SM and ET, LAI. 2 

 Forced Free 

PRE forced by SM (forced by ET) 0.20 0.80 

PRE forced by SM (forced by LAI) 0.23 0.77 

  3 
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Table 6. Ratios of the global-scale forced variance over the total variance resulting from the 1 

application of the CM technique between the first three modes of PRE forced by SM and the 2 

total fields of ET and LAI. 3 

 ET LAI 

PRE forced by SM mode 1 0.21 0.27 

PRE forced by SM mode 2 0.38 0.36 

PRE forced by SM mode 3 0.31 0.29 

  4 
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Table 7. Rainfall variability forced by the ET and LAI decomposed through EOF analysis. 1 

Each line displays the EOF explained variance (column 2) and the corresponding PC 2 

correlation with relevant climatic indices (column 3). Here the maximum PC correlation is 3 

reported considering lagged correlations in the range -16 to +16. Only the correlation 4 

coefficients significant at 1% level are reported. 5 

 Variance explained Correlation with climate indices 

PRE forced by ET   

PC 1 0.30 0.52 (NINO3) at lag 0 (significant in the range: -2/+2) 

PC 2 0.13 - 

PC 3 0.07 0.41 (AOD) at lag 6 (significant in the range: +3/+10) 

PC >4 <0.05 - 

PRE forced by LAI   

PC 1 0.27 0.67 (NINO3) at lag 0 (significant in the range: -2/+2) 

PC 2 0.10 0.41 (AOD) at lag 3 (significant in the range: 0/+5) 

PC 3 0.09 - 

PC >4 <0.06 - 

  6 
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Figure 1. (a) Global mean missing values in the time series (in %): LAI (full), SM (dashed). 1 

(b) Map of the percentage of SM missing data for each grid point. 2 

  3 



 32 

 1 

 2 

Figure 2. Ratio of the forced variance to the total variance. (a) The fraction of SM variance 3 

forced by PRE. (b) The fraction of PRE variance forced by the SM. Dots are placed over areas 4 

covered by the forced variable dataset but where variance ratio values did not pass a 5 

significance test at the 1% level. 6 
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Figure 3. (a) First normalized PC of the PRE anomalies forced by the SM (full line and filled 3 

circles), after cutoff low-pass filtering at 2 year-1 frequency. Dashed line (and cross marks) 4 

stands for the normalized stratospheric Aerosol Optical Depth (AOD). Lines stand for 5-years 5 

exponential moving average while marks represent each single season. (b) Lagged 6 

correlations between AOD and PC1 of the forced PRE. The dashed curve is the 7 

autocorrelation function of the AOD. Marks indicate significance at the 5% level. (c) First 8 

EOF of the forced PRE. Arbitrary units.  9 
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Figure 4. (a) Second normalized PC of the PRE anomalies forced by the SM (full line and 3 

filled circles). Dashed line (and cross marks) stands for the normalized NINO3 index. Lines 4 

stand for 3-seasons running means while marks represent each single season. (b) Lagged 5 

correlations between NINO3 index and PC1 of forced PRE. The dashed curve is the 6 

autocorrelation function of the NINO3 index. Marks indicate significance at the 5% level. (c) 7 

Second EOF of the forced PRE. Arbitrary units. 8 

9 
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Figure 5. (a) Third normalized PC of the PRE anomalies forced by the SM (full line and filled 3 

circles). Dashed line (and cross marks) stands for the normalized NS-SST index. Lines stand 4 

for 3-seasons running means while marks represent each single season. Coloured lines 5 

represent the trends (red for the PC, blue for the NS-SST index). (b) Third EOF of the forced 6 

PRE . Arbitrary units. 7 
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Figure 6. Ratio of the forced variance to the total variance. (a) The fraction of PRE variance 3 

forced by the SM which is also forced by the ET. (b) The fraction of PRE variance forced by 4 

the SM which is also forced by the LAI. Dots are placed over areas where variance ratio 5 

values did not pass a significance test at the 1% level. 6 
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Figure 7. Point-by-point correlation of the first mode of variability of PRE forced by SM with 2 

(a) the total fields of PRE forced by ET and (b) the PRE forced by LAI. Data have been 3 

filtered using a cutoff low-pass filter at 1 year frequency. Only areas where correlations 4 

passed a significance test at the 5% level are shown. Black upward (white downward) 5 

triangles denote areas with positive >0.01 (negative <-0.01) values of the first EOF of the 6 

PRE anomalies forced by the SM (Fig. 3c). 7 

  8 



 39 

1 

 2 



 40 

 1 

Figure 8. Point-by-point correlation of the second mode of variability of PRE forced by SM 2 

with (a) the total fields of PRE forced by ET and (b) the PRE forced by LAI. Data have been 3 

filtered using a cutoff low-pass filter at 1 year frequency. Only areas where correlations 4 

passed a significance test at the 5% level are shown. Black upward (white downward) 5 

triangles denote areas with positive >0.01 (negative <-0.01) values of the second EOF of the 6 

PRE anomalies forced by the SM (Fig. 4c). 7 
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Figure 9. Point-by-point correlation of the third mode of variability of PRE forced by SM on 3 

the total field of (a) PRE forced by ET and (b) PRE forced by LAI. (c) Magnitude of the LAI 4 

change over 1982-2010, quantified using a linear model under the assumption of monotonic 5 

change. Data have been filtered using a cutoff low-pass filter at 1 year-1 frequency. Only 6 

areas where correlations (panels a-b) and trend (panel c) passed a significance test at the 5% 7 

level are shown. Black upward (white downward) triangles denote areas with positive >0.01 8 

(negative <-0.01) values of the third EOF of the PRE anomalies forced by the SM (Fig. 5b). 9 
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