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Abstract. At scales much longer than the deterministic predictability limits (about 10 days), the statistics of the atmosphere 9	
  
undergoes a drastic transition, the high frequency weather acts as a random forcing on the lower frequency macroweather.  In 10	
  
addition, up to decadal and centennial scales the equivalent radiative forcings of solar, volcanic and anthropogenic perturbations 11	
  
are small compared to the mean incoming solar flux. This justifies the common practice of reducing forcings to radiative 12	
  
equivalents (which are assumed to combine linearly), as well as the development of linear stochastic  models, including for 13	
  
forecasting at monthly to decadal scales. 14	
  
In order to clarify the validity of the linearity assumption and determine its scale range, we use last Millennium simulations, both 15	
  
with the simplified Zebiac- Cane (ZC) model and the NASA GISS E2-R fully coupled GCM. We systematically compare the 16	
  
statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one 17	
  
to 1000 years. We also compare the statistics to multiproxy temperature reconstructions. The main findings are: a) that the 18	
  
variability of the ZC and GCM models are too weak at centennial and longer scales, b) for longer than ≈50 years, the solar and 19	
  
volcanic forcings combine subadditively (nonlinearly) compounding the weakness of the response, c) the models display another 20	
  
nonlinear effect at shorter time scales: their sensitivities are much higher for weak forcing than for strong forcing (their 21	
  
intermittencies are different) and we quantify this with statistical scaling exponents.   22	
  

1. Introduction 23	
  

1.1 Linearity versus nonlinearity 24	
  

The GCM approach to climate modeling is based on the idea that whereas weather is an initial value problem, the climate is a 25	
  
boundary value problem (Bryson, 1997; Pielke, 1998). This means that although the weather’s sensitive dependence on initial 26	
  
conditions (chaos, the “butterfly effect”) leads to a loss of predictability at time scales of about 10 days, nevertheless averaging 27	
  
over enough “weather” leads to a convergence to the model’s “climate”. This climate is thus the state to which averages of model 28	
  
outputs converge for fixed atmospheric compositions and boundary conditions (i.e. control runs).  29	
  

The question then arises as to the response of the system to small changes in the boundary conditions: for example 30	
  
anthropogenic forcings are less than 2 W/m2, and at least over scales of several years, solar and volcanic forcings are of similar 31	
  
magnitude or smaller (see e.g. Fig. 1a and the quantification in Fig. 2). These numbers are of the order of 1% of the mean solar 32	
  
radiative flux so that we may anticipate that the atmosphere responds fairly linearly. This is indeed that usual assumption and it 33	
  



	
   2	
  

justifies the reduction of potentially complex forcings to overall radiative forcings (see Meehl et al., 2004 for GCM 34	
  
investigations at annual scales and Hansen et al., 2005 for greenhouse gases). However, at long enough scales, linearity   clearly 35	
  
breaks down, indeed starting with the celebrated “Daisy world” model (Watson and Lovelock, 1983), there is a whole literature 36	
  
that uses energy balance models to study the strongly nonlinear interactions/feedbacks between global temperatures and albedoes. 37	
  
There is no debate that temperature-albedo feedbacks are important at the multimillenial scales of the glacial- interglacial 38	
  
transitions.  While some authors (e.g. Roques et al., 2014) use time scales as short as 200 years for the critical ice-albedo 39	
  
feedbacks, others have assumed that the temperature response to solar and volcanic forcings over the last millennium are 40	
  
reasonably linear (e.g. Østvand et al., 2014; Rypdal and Rypdal, 2014), while Pelletier (1998) and Fraedrich et al., (2009) assume 41	
  
linearity to even longer scales. 42	
  

It is therefore important to establish the times scales over which linear responses are a reasonable assumption.  However, 43	
  
clearly even over scales where typical responses to small forcings are relatively linear, the response may be nonlinear if the 44	
  
forcing is – volcanic or volcanic- like, i.e. if it is sufficiently “spikey” or intermittent.    45	
  

1.2 Atmospheric variability: scaling regimes 46	
  

Before turning our attention to models, what can we learn empirically? Certainly, at high enough frequencies (the weather 47	
  
regime), the atmosphere is highly nonlinear. However, at about ten days, the atmosphere undergoes a drastic transition to a lower 48	
  
frequency regime, and this “macroweather” regime is potentially quasi- linear in its responses. Indeed, the basic atmospheric 49	
  
scaling regimes were identified some time ago - primarily using spectral analysis (Lovejoy and Schertzer, 1986; Pelletier, 1998; 50	
  
Shackleton and Imbrie, 1990; Huybers and Curry, 2006). However, the use of real space fluctuations provided a clearer picture 51	
  
and a simpler interpretation. It also showed that the usual view of atmospheric variability, as a sequence of narrow scale range 52	
  
processes (e.g. nonlinear oscillators), has seriously neglected the main source of variability, namely the scaling “background 53	
  
spectrum” (Lovejoy, 2014). What was found is that for virtually all atmospheric fields, there was a transition from the behavior 54	
  
of the mean temperature fluctuations scaling ( )Δ Δ Δ≈ HT t t  with 0>H  to a lower frequency scaling regime with 0<H 	
  at scales 55	
  

Δt >≈ 10 days; the macroweather regime. The trasntion scale of around 10 days, can be theoretically predicted on the basis of 56	
  
the scaling of the turbulent wind due to solar forcing (via the imposed energy rate density; see (Lovejoy and Schertzer, 2010; 57	
  
Lovejoy and Schertzer, 2013; Lovejoy et al., 2014). Whereas the weather is naturally identified with the high frequency 0>H  58	
  
regime and with temperature values “wandering” up and down like a drunkard’s walk, the lower frequency 0<H  regime is 59	
  
characterized by fluctuations tending to cancel out – effectively starting to converge. This converging regime is a low frequency 60	
  
type of weather, described as “macroweather” (Lovejoy, 2013; Lovejoy et al., 2014). For the GCM control runs, macroweather 61	
  
effectively continues to asymptotically long times; in the real world, it continues to time scales of 10-30 years (industrial) and 62	
  
50-100 years (pre-industrial) after which a new 0>H  regime is observed; it is natural to associate this new regime with the 63	
  
climate (see Fig. 5 of Lovejoy et al., 2013;, see also Franzke et al., 2013). Other papers analyzing macroweather scaling include 64	
  
Koscielny-Bunde et al., (1998); Eichner et al., (2003); Kantelhardt et al., (2006); Rybski et al., (2006); Bunde et al., (2005); 65	
  
Østvand et al., (2014); Rypdal and Rypdal, (2014); Fredriksen and Rypdal, (2015). 66	
  

The explanation for the “macroweather” to climate transition (at scale τc) appears to be that over the “macroweather” time 67	
  
scales - where the fluctuations are “cancelling” - other, slow processes which presumably include both external climate forcings 68	
  
and other slow (internal) land-ice or biogeochemical processes – become stronger and stronger. At some point ( τc ) their 69	
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variability dominates. A significant point where opinions diverge is the value of the global transition scale τc during the 70	
  

preindustrial Holocene; and the possibility that there are large regional variations in   during the Holocene so that Greenland 71	
  
ice core data may not be globally representative, see Lovejoy (2015a) for a discussion. 72	
  

1.3 Scaling in the numerical models 73	
  

There have been several studies of the low frequency control run responses of GCMs (Vyushin et al., 2004; Zhu et al., 2006; 74	
  
Fraedrich et al., 2009; Lovejoy et al., 2013; Fredriksen and Rypdal, 2015) finding that they are scaling down to their lowest 75	
  
frequencies. This scaling is a consequence of the absence of a characteristic time scale for the long-time model convergence; it 76	
  
turns out that the relevant scaling exponents are very small: empirically the GCM convergence is “ultra slow” (Lovejoy et al., 77	
  
2013) (section 3.4). Most earlier studies focused on the implications of the long – range statistical dependencies implicit in the 78	
  
scaling statistics. Unfortunately, due to this rather technical focus, the broader implications of the scaling have not been widely 79	
  
appreciated.    80	
  

More recently, using scaling fluctuation analysis, behavior has been put into the general theoretical framework of GCM 81	
  
climate modeling (Lovejoy et al., 2013). From the scaling point of view, it appears that the climate arises as a consequence of 82	
  
slow internal climate processes combined with external forcings (especially volcanic and solar - and in the recent period - 83	
  
anthropogenic forcings). From the point of view of the GCMs, the low frequency (multicentennial) variability arises exclusively 84	
  
as a response to external forcings, although potentially - with the addition of (known or currently unknown) slow processes such 85	
  
as land-ice or biogeochemical processes - new internal sources of low frequency variability could be included. Ignoring the 86	
  
recent (industrial) period, and confining ourselves to the last millennium, the key question for GCM models is whether or not 87	
  
they can reproduce the climate regime where the decline of the “macroweather” fluctuations ( 0<H ) is arrested and the increasing 88	
  

0>H  climate regime fluctuations begin. In a recent publication (Lovejoy et al., 2013), four GCMs simulating the last millennium 89	
  
were statistically analyzed and it was found that their low frequency variability (especially below (100 yrs)-1) was somewhat 90	
  
weak, and this was linked to both the weakness of the solar forcings (when using sunspot-based solar reconstructions with 0>H ), 91	
  
and – for strong volcanic forcings - with the statistical type of the forcing ( 0<H , Lovejoy and Schertzer, 2012a; Bothe et al., 92	
  
2013a,b; Zanchettin et al., 2013; see also Zanchettin et al., 2010 for the dynamics on centennial time scales).    93	
  

1.4 This paper 94	
  

The weakness of the responses to solar and volcanic forcings at multicentennial scales raises question a linearity question: is the 95	
  
response of the combined (solar plus volcanic) forcing roughly the sum of the individual responses? Additivity is often implicitly 96	
  
assumed when climate forcings are reduced to their equivalent radiative forcings and Mann et al., (2005) already pointed out that 97	
  
– at least - in the Zebiac-Cane (ZC) model discussed below that they are not additive. Here we more precisely analyze this 98	
  
question and quantify the degree of sub-additivity as a function of temporal scale (section 3.4). A related linear/nonlinear issue 99	
  
pointed out by Clement et al., (1996), is that due to the nonlinear model response, there is a high sensitivity to a small forcing 100	
  
and a low sensitivity to a large forcing. Systems in which strong and weak events have different statistical behaviors display 101	
  
stronger or weaker “clustering” and are often termed “intermittent” (from turbulence). When they are also scaling, the weak and 102	
  
strong events are characterized by different scaling exponents that quantify how the respective clustering changes with scale. In 103	
  
section 4, we investigate this quantitatively and confirm that it is particularly strong for volcanic forcing, and that for the ZC 104	
  

τc
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model the response (including that of a GCM), is much less intermittent, implying that the model strongly (and 105	
  
nonlinearly) smooths the forcing. 106	
  

In this paper, we establish analysis methodologies that can address these issues and apply them to model outputs that 107	
  
cover the the required range of time scales: Last Millenium model outputs. Unfortunately - although we consider the NASA 108	
  
GISS E2-R Last Millenium simulations, there seem to be no full Last Millenium GCM simulations that have the entire suite of 109	
  
volcanic only, solar only and solar plus volcanic forcings and responses, therefore we have use the simplified Zebiak-Cane 110	
  
model outputs published by Mann et al., (2005) (and even this lacked control runs to directly quantify the internal variability).    111	
  

Although the Zebiak –Cane model lacks several important mechanisms- notably for our purposes deep ocean dynamics - 112	
  
there are clearly sources of low frequency variability present in the model. For example, Goswami and Shukla, (1991) using 360 113	
  
year control runs found multidecadal and multicentennial nonlinear variability due to the feedbacks between SST anomalies, low 114	
  
level convergence and atmospheric heating. In addition, in justifying his Millenium ZC simulations, (Mann et al., 2005) 115	
  
specifically cited model centennial scale variability as a factor motivating their study.  116	
  

2. Data and analysis 117	
  

2.1 Discussion 118	
  

During the pre-industrial part of the last millennium, the atmospheric composition was roughly constant, and the earth’s orbital 119	
  
parameters varied by only a small amount. The main forcings used in GCM climate models over this period are thus solar and 120	
  
volcanic (in the GISS-E2-R simulations discussed below, reconstructed land use changes are also simulated but the 121	
  
corresponding forcings are comparatively weak and will not be discussed further). In particular, the importance of volcanic 122	
  
forcings was demonstrated by Minnis et al., (1993) who investigated the volcanic radiative forcing caused by the 1991 eruption 123	
  
of Mount Pinatubo, and found that volcanic aerosols produced a strong cooling effect. Later, Shindell et al., (2003) used a 124	
  
stratosphere-resolving general circulation model to examine the effect of the volcanic aerosols and solar irradiance variability on 125	
  
pre-industrial climate change. They found that the best agreement with historical and proxy data was obtained using both 126	
  
forcings. However, solar and volcanic forcings induce different responses because the stratospheric and surface influences in the 127	
  
solar case reinforce one another but in the volcanic case they are opposed. In addition, there are important differences in solar 128	
  
and volcanic temporal variabilities (including seasonality) that statistically link volcanic eruptions with the onset of ENSO events 129	
  
(Mann et al., 2005). Decreased solar irradiance cools the surface and stratosphere (Cracknell and Varotsos 2007, 2011; 130	
  
Kondratyev and Varotsos, 1995a,b). In contrast, volcanic eruptions cool the surface, but aerosol heating warms the sunlit lower 131	
  
stratosphere (Shindell et al., 2003; Miller et al., 2012). This leads to an increased meridional gradient in the lower stratosphere, 132	
  
but a reduced gradient in the tropopause region (Chandra et al., 1996; Varotsos et al., 1994, 2009). 133	
  

Vyushin et al., (2004) suggested that volcanic forcings improve the low frequency variability scaling performance of 134	
  
atmosphere-ocean models compared to all other forcings (see however the comment by Blender and Fraedrich, (2004), which 135	
  
also discusses earlier papers on the field e.g. Fraedrich and Blender, (2003); Blender and Fraedrich, (2004). Weber, (2005) used 136	
  
a set of simulations with a climate model, driven by reconstructed forcings in order to study the Northern Hemisphere 137	
  
temperature response to volcanic and solar forcing, during 1000-1850. It was concluded that the response to solar forcing 138	
  
equilibrates at interdecadal timescales, while the response to volcanic forcing never equilibrates due to the fact that the time 139	
  



	
   5	
  

interval between volcanic eruptions is typically shorter than the dissipation time scale of the climate system (in fact they 140	
  
are scaling so that eruptions occur over all observed time scales, see below).   141	
  

At the same time, Mann et al. (2005) investigated the response of El Niño to natural radiative forcing changes during 142	
  
1000-1999, by employing the Zebiak–Cane model for the coupled ocean–atmosphere system in the tropical Pacific. They found 143	
  
that the composite feedback of the volcanic and solar radiative forcing to past changes, reproduces the fluctuations in the 144	
  
variability of the historic El Niño records (e.g., Efstathiou et al., 2011; Varotsos 2013). 145	
  

Finally, as discussed below Lovejoy and Schertzer, (2012a) analysed the time scale dependence of several solar 146	
  
reconstructions Lean, (2000); Wang et al., (2005); Krivova et al., (2007); Steinhilber et al., (2009); Shapiro et al., (2011) and the 147	
  
two main volcanic reconstructions Crowley, (2000) and Gao et al., (2008), (referred to as “Crowley” and “Gao” in the following). 148	
  
The solar forcings were found to be qualitatively quite different depending on whether the reconstructions were based on 149	
  
sunspots or 10Be isotopes from ice cores with the former increasing with time scale and the latter decreasing with time scale. This 150	
  
quantitative and qualitative difference brings into question the reliability of the solar reconstructions. By comparison, the two 151	
  
volcanic reconstructions were both statistically similar in type; they were very strong at annual and sometimes multiannual scales 152	
  
but they quickly decrease with time scale ( )0<H  explaining why they are weak at centennial and millennial scales. We re-153	
  

examine these findings below. 154	
  

2.2 The climate simulation of Mann et al. (2005) using the Zebiak-Cane model 155	
  

Mann et al., (2005) used the Zebiak–Cane model of the tropical Pacific coupled ocean – atmosphere system (Zebiak and Cane, 156	
  
1987) to produce a 100-realization ensemble for solar forcing only, volcanic forcing only and combined forcings over the last 157	
  
millennium. Figure 1a shows the forcings and mean responses of the model which were obtained from: 158	
  
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/mann2005/mann2005.txt. No anthropogenic effects were included. Mann 159	
  
et al., (2005) modeled the region between ± 30o of latitude - by scaling the Crowley volcanic forcing reconstruction with a 160	
  
geometric factor 1.57 to take the limited range of latitudes into account. Figure 1b shows the corresponding GISS-E2-R 161	
  
simulation responses for three different forcings as discussed in Schmidt et al., (2013) and Lovejoy et al., (2013). Although these 162	
  
were averaged over the northern hemisphere land only (a somewhat different geography than the ZC simulations), one can see 163	
  
that the low frequencies seem similar even if the high frequencies are somewhat different. We quantify this below. 164	
  

3. Methods 165	
  

3.1 Comparing simulations with observations as functions of scale  166	
  

The ultimate goal of weather and climate modelling (including forecasting) is to make simulations ( )simT t  as close as possible 167	
  

to observations ( )obsT t . Ignoring measurement errors and simplifying the discussion by only considering a single spatial 168	
  

location (i.e. a single time series), the goal is to achieve simulations with ( ) ( )=sim obsT t T t . However, this is not only very ambitious 169	
  

for the simulations, even when considering the observations, ( )obsT t  is often difficult to evaluate if only because data are often 170	
  

sparse or inadequate in various ways. However, a necessary condition for ( ) ( )=sim obsT t T t  is the weaker statistical equality: 171	
  

( ) ( )=
d

sim obsT t T t  where “ =
d

” means equal in probability distributions (we can say that =
d
a b  if ( ) ( )Pr Pr> = >a s b s  where “Pr” 172	
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indicates “probability”). Although ( ) ( )=
d

sim obsT t T t  is only a necessary (but not sufficient) condition for 173	
  

( ) ( )=sim obsT t T t , it is much easier to empirically verify.   174	
  

Starting in the 1990s, with the advent of ensemble forecasting systems, the Rank Histogram (RH) method was proposed 175	
  

(Anderson, 1996) as a simple nonparametric test of ( ) ( )=
d

sim obsT t T t , and this has led to a large literature, including recently 176	
  

Bothe et al., (2013a, b). From our perspective there are two limitations of the RH method. First, it is non-parametric so that its 177	
  

statistical power is low. More importantly, it essentially tests the equation ( ) ( )=
d

sim obsT t T t  at a single unique time scale/resolution. 178	
  

This is troublesome since the statistics of both ( )simT t  and ( )obsT t  series will depend on their space-time resolutions; recall 179	
  

that averaging in space alters the temporal statistics, e.g. 5o×5o data are not only spatially, but also are effectively temporally 180	
  
smoothed with respect to 1o×1o data. This means that even if ( )simT t  and ( )obsT t  have nominally the same temporal resolutions 181	
  

they may easily have different high frequency variability. Possibly more importantly - as claimed in Lovejoy et al., (2013) and 182	
  

below - the main difference between ( )simT t  and ( )obsT t  may be that the latter has more low frequency variability than the 183	
  

former, and this will not be captured by the RH technique which operates only at the highest frequency available. This problem 184	
  
is indirectly acknowledged, see for example the discussion of correlations in Marzban et al., (2011). The potential significance of 185	
  
the low frequencies becomes obvious when 0>H  for the low frequency range. In this case – since the series tends to “wander”, 186	
  
small differences in the low frequencies may translate into very large differences in RH, and this even if the high frequencies are 187	
  
relatively accurate.     188	
  

A straightforward solution is to use the same basic idea – i.e. to change the sense of equality from deterministic to 189	
  

probabilistic (“ = ” to “ =
d

”) – but to compare the statistics systematically over a range of time scales. The simplest way is to 190	
  

check the equality ( ) ( )siΔ Δ Δ Δ=
d

m obsT t T t  where ΔT is the fluctuation of the temperature over a time period Δt (see the discussion 191	
  

in Lovejoy and Schertzer, (2013) box 11.1). In general, knowledge of the probabilities is equivalent to knowledge of (all) the 192	
  
statistical moments (including the non-integer ones), and for technical reasons it turns out to be easier to check 193	
  

( ) ( )siΔ Δ Δ Δ=
d

m obsT t T t  by considering the statistical moments.  194	
  

3.2 Scaling Fluctuation Analysis 195	
  

In order to isolate the variability as a function of time scale Δt, we estimated the fluctuations ( )Δ ΔF t  (forcings, W/m2), 196	
  

( )Δ ΔT t (responses, K). Although it is traditional (and often adequate) to define fluctuations by absolute differences 197	
  

( ) ( ) ( )Δ Δ Δ= + −T t T t t T t , for our purposes this is not sufficient. Instead we should use the absolute difference of the means from 198	
  

t to Δ / 2+t t  and from Δ / 2+t t  to Δ+t t . Technically, the latter corresponds to defining fluctuations using Haar wavelets rather 199	
  
than “poor man’s” wavelets (differences). In a scaling regime, the fluctuations vary with the time lag in a power law manner:  200	
  

Δ φΔ= HT t                                                               (1)                     201	
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where φ is a controlling dynamical variable (e.g. a dynamical flux) whose mean φ  is independent of the lag Δt  (i.e. 202	
  

independent of the time scale). This means that the behaviour of the mean fluctuation is Δ Δ< >≈ HT t  so that when 0>H , on 203	
  
average fluctuations tend to grow with scale whereas when 0<H , they tend to decrease. Note that the symbol “H” is in honour of 204	
  
Harold Edwin Hurst (Hurst, 1951). Although in the case of quasi-Gaussian statistics, it is equal to his eponymous exponent, the 205	
  
H used here is valid in the more general multifractal case and is generally different. 206	
  

Fluctuations defined as differences are adequate for fluctuations increasing with scale ( )0>H . When 0>H , the rate at 207	
  

which average differences increase with time lag Δt  directly reflects the increasing importance of low frequencies with respect 208	
  
to high frequencies. However, in physical systems the differences tend to increase even when 0<H . This is because correlations 209	
  

( ) ( )Δ+T t t T t  tend to decrease with the time lag Δt  and this directly implies that the mean square differences ( )( )2Δ ΔT t  210	
  

increase (mathematically, for a stationary process: ( ) ( ) ( )( ) ( ) ( )( )22 2Δ Δ Δ 2 Δ= + − = − +T t T t t T t T T t t T t . This means that when 211	
  

0<H , differences cannot correctly characterize the fluctuations. For 0<H  the high-frequency details dominate the differences 212	
  
and prevent these differences to decrease with increasing scale Δt .   213	
  

The Haar fluctuation which is useful for -1<H<1 is particularly easy to understand since with proper “calibration” in 214	
  
regions where 0>H , its value can be made to be very close to the difference fluctuation, while in regions where 0<H , it can be 215	
  
made close to another simple to interpret “anomaly fluctuation”. The latter is simply the temporal average of the series over a 216	
  
duration Δt  of the series with its overall mean removed (in Lovejoy and Schertzer, 2012b this was termed a “tendency” 217	
  
fluctuation which is a less intuitive term). In this case, the decrease of the Haar fluctuations for increasing lag Δt  characterizes 218	
  
how effectively averaging a (mean zero) process (the anomaly) over longer time scales reduces its variability. Here, the 219	
  
calibration is affected by multiplying the raw Haar fluctuation by a factor of 2 which brings the values of the Haar fluctuations 220	
  
very close to both the corresponding difference and anomaly fluctuations (over time scales with 0>H , 0<H  respectively). This 221	
  
means that in regions where 0>H , to good accuracy, the Haar fluctuations can be treated as differences whereas in regions where 222	
  

0<H  they can be treated as anomalies. While other techniques such as Detrended Fluctuation Analysis (Peng et al., 1994) 223	
  
perform just as well for determining exponents, they have the disadvantage that their fluctuations are not at all easy to interpret 224	
  
(they are the standard deviations of the residues of polynomial regressions on the running sum of the original series). Indeed, the 225	
  
DFA fluctuation function is typically presented without any units. 226	
  

Once estimated, the variation of the fluctuations with time scale can be quantified by using their statistics; the qth order 227	
  
structure function ( )ΔqS t  is particularly convenient: 228	
  

( ) ( )Δ Δ Δ= q
qS t T t                                                                (2)  229	
  

where “ ” indicates ensemble averaging (here, we average over all disjoint intervals of length Δt ). Note that although q can 230	
  

in principle be any value, here we restrict to q>0 since divergences may occur – indeed for multifractals, are expected - for q<0). 231	
  

In a scaling regime, ( )ΔqS t  is a power law: 232	
  

( ) ( ) ( ) ( ) ( )ξΔ Δ Δ Δ ;  ξ= ∝ = −q q
qS t T t t q qH K q

             
 (3) 233	
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where the exponent ( )ξ q  has a linear part qH and a generally nonlinear and convex part ( )K q  with ( )1 0=K . ( )K q  234	
  

characterizes the strong non Gaussian, multifractal variability; the “intermittency”. Gaussian processes have ( ) 0=K q . The root-235	
  

mean-square (RMS) variation ( )1/22 ΔS t  (denoted simply ( )ΔS t  below) has the exponent ( ) ( )ξ 2 / 2 2 / 2= −H K . It is only when 236	
  

the intermittency is small ( ( ) 0≈K q ) that we have ( ) ( )ξ 2 / 2 ξ 1≈ =H . Note that since the spectrum is a second order statistic, we 237	
  

have the useful relationship for the exponent β of the power law spectra: ( ) ( )β 1 ξ 2 1 2 2= + = + −H K  (this is a corollary of the Wiener-238	
  

Khintchin theorem). Again, only when ( )2K  is small do we have the commonly used relation β 1 2≈ + H ; in this case, 0>H , 0<H  239	
  

corresponds to β 1> , β 1<  , respectively. To get an idea of the implications of the nonlinear ( )K q , note that a high q value 240	
  

characterizes the scaling of the strong events whereas a low q characterizes the scaling of the weak events (q is not restricted to 241	
  
integer. The scalings are different whenever the strong and weak events cluster to different degrees, the clustering in turn is 242	
  
precisely determined by another exponent - the codimension - which is itself is uniquely determined by ( )K q . We return to the 243	
  

phenomenon of “intermittency”, in section 4, it is particularly pronounced in the case of volcanic forcings.  244	
  
Figure 2a shows the result of estimating the Haar fluctuations for the solar and volcanic forcings. The solar reconstruction 245	
  

that was used is a hybrid obtained by “splicing” the annual resolution sunspot based reconstruction (Fig. 2b, top; back to 1610, 246	
  
although only the more recent part was used by Mann et al. (2005) with a 10Be based reconstruction (Fig. 2b, bottom) at much 247	
  
lower resolution (≈ 40-50 yrs). In Fig. 2a, the two rightmost curves are for two different 10Be reconstructions; at any given time 248	
  
scale, their amplitudes differ by nearly a factor of 10 yet they both have Haar fluctuations that diminish with scale ( 0.3≈ −H ). 249	
  
Figure 2b (top) clearly shows the qualitative difference with “wandering” ( 0>H , sunspot based) and Fig. 2b (bottom), the 250	
  
cancelling ( 0<H , 10Be based) solar reconstructions (Lovejoy and Schertzer, 2012a). In the “spliced” reconstruction used here, 251	
  
the early 10Be part (1000-1610) at low resolution was interpolated to annual resolution; the interpolation was close to linear so 252	
  
that we find 1≈H  over the scale range 1-50 yrs, with the 0<H  part barely visible over the range 100-600 years (roughly the 253	
  
length of the 10Be part of the reconstruction). 254	
  

The reference lines in Fig. 2a have slopes -0.4, -0.3, 0.4 showing that both solar and volcanic forcings are fairly accurately 255	
  
scaling (although because of the “splicing” for the solar, only up until ≈200-300 yrs) but with exactly opposite behaviours: 256	
  
whereas the solar fluctuations increase with time scale, the volcanic fluctuations decrease with scale. For time scales beyond 257	
  
200-300 yrs, the solar forcing is stronger than the volcanic forcing (they “cross” at roughly 0.3 W/m2).   258	
  

3.3 Linearity and nonlinearity 259	
  

There is no question that - at least in the usual deterministic sense - the atmosphere is turbulent and nonlinear. Indeed, the ratio of 260	
  
the nonlinear to the linear terms in the dynamical equations – the Reynolds number - is typically about 1012. Due to the smaller 261	
  
range of scales, in the numerical models it is much lower, but it is still ≈ 103 to 104. Indeed it turns out that the variability builds 262	
  
up scale by scale from large to small scales so that - since the dissipation scale is about 10-3 m - the resulting (millimetre scale) 263	
  
variability can be enormous; the statistics of this buildup are quite accurately modelled by multifractal cascades (see the review 264	
  
Lovejoy and Schertzer, 2013, especially ch. 4 for cascade analyses of data and model outputs). The cascade based Fractionally 265	
  
Integrated Flux model (FIF, Schertzer and Lovejoy, 1987) is a nonlinear stochastic model of the weather scale dynamics, and can 266	
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be extended to provide nonlinear stochastic models of the macroweather and climate regimes (Lovejoy and Schertzer, 267	
  
2013, ch. 10). 268	
  

However, ever since Hasselmann, (1976), it has been proposed that sufficiently space-time averaged variables may 269	
  
respond linearly to sufficiently space-time averaged forcings. In the resulting (low frequency) phenomenological models, the 270	
  
nonlinear deterministic (high frequency) dynamics act as a source of random perturbations; the resulting stochastic model is 271	
  
usually taken as being linear. Such models are only justified if there is a physical scale separation between the high frequency 272	
  
and low frequency processes. The existence of a relevant break (at 2- 10 day scales) has been known since Panofsky and Van der 273	
  
Hoven, (1955) and was variously theorized as the “scale of migratory pressure systems of synoptic weather map scale” (Van der 274	
  
Hoven, 1957) and later as the “synoptic maximum” (Kolesnikov and Monin, 1965). From the point of view of Hasselman-type 275	
  
linear stochastic modelling (now often referred to as “Linear Inverse Modelling (LIM)”, e.g., Penland and Sardeshmuhk, (1995); 276	
  
Newman et al., (2003); Sardeshmukh and Sura, (2009)), the system is regarded as a multivariate Ornstein-Uhlenbeck (OU) 277	
  

process. At high frequencies, an OU process is essentially the integral of a white noise (with spectrum βω− h with hβ 2= ), 278	
  

whereas at low frequencies it is a white noise, (i.e. βω− l  with β 0=l ). In the LIM models, these regimes correspond to the 279	
  
weather and macroweather, respectively. Recently Newman, (2013) has shown predictive skill for global temperature hindcasts 280	
  
is somewhat superior to GCM’s for 1-2 year horizons.   281	
  

In the more general scaling picture going back to Lovejoy and Schertzer, (1986), the transition corresponds to the lifetime 282	
  
of planetary structures. This interpretation was quantitatively justified in (Lovejoy and Schertzer, 2010) by using the turbulent 283	
  
energy rate density. The low and high frequency regimes were scaling and had spectra significantly different than those of OU 284	
  
processes (notably with 0.2<βl <0.8) with the two regimes now being referred to as “weather” and “macroweather” (Lovejoy and 285	
  
Schertzer, 2013). Indeed, the main difference with respect to the classical LIM is at low frequencies. Although the difference in 286	
  
βl  may not seem so important, the LIM value β 0=l , (white noise) has no low frequency predictability whereas the actual values 287	
  

0.2< βl <0.8 (depending mostly on the land or ocean location) corresponds to potentially huge predictability (the latter can 288	
  

diverge as βl  approaches 1). A new “ScaLIng Macroweather Model” (SLIMM) has been proposed as a set of fractional order (but 289	
  
still linear) stochastic differential equations with predictive skill for global mean temperatures out to at least 10 years (Lovejoy et 290	
  
al., 2015; Lovejoy, 2015b). However, irrespective of the exact statistical nature of the weather and macroweather regimes, a 291	
  
linear stochastic model may still be a valid approximation over significant ranges. 292	
  
These linear stochastic models (whether LIM or SLIMM) explicitly exploit the weather/macroweather transition and may have 293	
  
some skill up to macroweather scales perhaps as large as decades. However, at long enough time scales, another class of 294	
  
phenomenological model is often used, wherein the dynamics are determined by radiative energy balances. Energy balance 295	
  
models focus on slower (true) climate scale processes such as sea ice – albedo feedbacks and are generally quite nonlinear, being 296	
  
associated with nonlinear features such as tipping points and bifurcations (Budyko, 1969). These models are typically zero or one 297	
  
dimensional in space (i.e. they are averaged over the whole earth or over latitude bands) and may be deterministic or stochastic 298	
  
(see Nicolis, 1988 for an early comparison of the two approaches). See Dijkstra, (2013) for a survey of the classical deterministic 299	
  
dynamical systems approach as well as the more recent stochastic “random dynamical systems” approach, (see also Ragone, et 300	
  
al., 2014). Although energy balance models are almost always nonlinear, there have been several suggestions that linear energy 301	
  
balance models are in fact valid up to millennial and even multimillennial scales.  302	
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Finally, we could mention the existence of empirical evidence of stochastic linearity between forcings and 303	
  
responses in the macroweather regime. Such evidence comes for example, from the apparent ability of linear regressions to 304	
  
“remove” the effects of volcanic, solar and anthropogenic forcings (Lean and Rind, 2008). This has perhaps been quantitatively 305	
  
demonstrated in the case of anthropogenic forcing where use is made of the globally, annually averaged CO2 radiative forcings 306	
  
(as a linear surrogate for all anthropogenic forcings). When this radiative forcing was regressed against similarly averaged 307	
  
temperatures, it gave residues with amplitudes ±0.109K (Lovejoy, 2014a) which is almost exactly the same as GCM estimates of 308	
  
the natural variability (e.g., Laepple et al., (2008)). Notice that in this case the identification of the global temperature globeT  as 309	
  

the sum of a regression determined anthropogenic component ( anthT ) with residues as natural variability ( natT ) is in fact only 310	
  

a confirmation of stochastic linearity (i.e. = +
d

globe anth natT T T ). Since presumably the actual residues would have been different 311	
  

if there had been no anthropogenic forcing. Indeed, when the residues were analysed using fluctuation analysis, it was only their 312	
  
statistics that were close to the pre-industrial multiproxy statistics. 313	
  

3.4 Testing linearity: the additivity of the responses 314	
  

We can now test the linearity of the model responses to solar and volcanic forcings. First consider the model responses (Fig. 3a). 315	
  
Compare the response to the volcanic only forcing (green) curve; with the response from the solar only forcing (black). As 316	
  
expected from Fig. 2a, the former is stronger than the latter up (until centennial scales) reflecting the stronger volcanic forcing. 317	
  
At scales Δ 100≈>t  yrs however, we see that the solar only has a stronger response, also as expected from Fig. 2a. Now 318	
  
consider the response to the combined volcanic and solar forcing (brown). Unsurprisingly, it is very close to the volcanic only 319	
  
until Δ 100≈t  yrs; however at longer time scales, the combined response seems to decrease following the volcanic forcing 320	
  
curve; it seems that at these longer time scales the volcanic and solar forcings have negative feedbacks so that the combined 321	
  
response to solar plus volcanic forcing is actually less than for pure solar forcing, they are “subadditive”.   322	
  

In order to quantify this we can easily determine the expected solar and volcanic response if the two were combined 323	
  
additively (linearly). In the latter case, the solar and volcanic fluctuations would not interfere with each other, and since these 324	
  
forcings are statistically independent, the responses would also be statistically independent, the response variances would add.   325	
  

A linear response means that temperature fluctuations due to only solar forcing ( )( )Δ ΔsT t  and only volcanic forcing 326	
  

( )( )νΔ ΔT t  would be related to the temperature fluctuations of the response to the combined solar plus volcanic forcings 327	
  

( )( ),νΔ ΔsT t  as: 328	
  

( ) ( ) ( ),ν νΔ Δ Δ Δ Δ Δ= +s sT t T t T t                              (4) 329	
  

This is true regardless of the exact definition of the fluctuation: as long as the fluctuation is defined by a linear operation on the 330	
  
temperature series any wavelet will do. Therefore, squaring both sides and averaging (“ ”) and assuming that the fluctuations 331	
  

in the solar and volcanic forcings are statistically independent of each other (i.e., ( ) ( )νΔ Δ Δ Δ 0=sT t T t ), we obtain: 332	
  

( ) ( ) ( )2 2 2
,ν νΔ Δ Δ Δ Δ Δ= +s sT t T t T t           (5) 333	
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The implied additive response structure function ( ) ( ) ( )( )1/22 2
νΔ Δ Δ Δ Δ= +sS t T t T t  is shown in Fig. 3b along with 334	
  

the ratio of the latter to the actual (nonlinear) solar plus volcanic response (top: ( ) ( )( ) ( )
1/2 1/22 2 2

ν ,νΔ Δ Δ Δ Δ Δ+s sT t T t T t ). It can be 335	
  

seen that the ratio is fairly close to unity for time scales below about 50 yrs. However beyond 50 yrs there is indeed a strong 336	
  
negative feedback between the solar and volcanic forcings. This is seen more clearly in Fig. 3c which shows that at Δ 400≈t  337	
  
years, that the negative feedback is strong enough to reduce the theoretical additive fluctuation amplitudes by a factor of ≈ 2 (the 338	
  
fall-off at the largest Δt  is probably an artefact of the poor statistics at these scales). It should be noted that in addition to 339	
  
linearity, the latter holds assuming statistical independence (top curve in Fig. 3c) of the solar and volcanic forcing. For 340	
  
comparison, the bottom curve in Fig. 3c illustrates the results obtained when analyzing the series constructed by directly 341	
  
summing the two response series (instead of assuming statistical independence). It is clearly seen that the basic result still holds 342	
  
but it is a little less strong (a factor of ≈ 1.5). The reason for the difference is that the cancellation of the cross terms assumed by 343	
  
statistical independence is only approximately valid on single realizations, especially at the lower frequencies where the statistics 344	
  
are worse (even on a single realization, at any given scale - except the very longest - there are several fluctuations so that there is 345	
  
still some averaging). 346	
  

The calculations above ignored the model’s internal variability, this was considered small due to the averaging over 100 347	
  

realizations of the ZC model with the same forcings: the internal is expected to largely cancel out.  While it is true that a 348	
  

definitive answer to this requires running the model in “control mode” so as to capture only the internal variability (as was done 349	
  

in for the GISS model, see Fig. 4), there are nevertheless several reasons why the internal variability is almost certainly smaller 350	
  

than the response due to the forcings: 351	
  

i) We can get a typical order of magnitude of the internal variability from the GISS model, Fig. 4; we see that for a 352	
  

single realization - without averaging over 100 realizations as in Fig. 3a – that the typical centennial variability is  ≈ 353	
  

±0.05K and decreasing with a power law with exponent  ≈ ξ(2) / 2 ≈ -0.2.  After averaging for 100 realizations, we 354	
  

expect this to decrease by (100)0.5 =10, i.e. to ± 0.005K.  This is much smaller than the centennial scale variability 355	
  

of the ZC responses in Fig. 3a (from the graph, these are about ≈ ± (10-1.2) / 2 ≈ ± 0.03K. 356	
  

ii) We can use the fact that a) the observed responses are upper bounds on the internal variability and b) that the 357	
  

internal variability must decrease with scale (otherwise the model’s climate diverges rather than converges for long 358	
  

times.  Exponents near the GISS vale ξ(2) / 2 ≈ -0.2 are common, see e.g. Lovejoy et al., (2013).  From Fig. 2, we 359	
  

see that the ZC solar response at ≈ 20 years is ± 0.03K, so this is an upper bound for the internal variability at all 360	
  

scales longer than ≈ 20 years.  However, over the range ≈ 50-500 years (relevant for the subadditivity conclusion), 361	
  

the solar response variability is considerably larger than this noise value: from the graph, ≈  ± (10-0.8) / 2 ≈ ± 0.08K. 362	
  

We conclude that it is unlikely that the internal variability is strong enough to account for the results. 363	
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In the ZC model, all forcings are input at the surface so that here the subadditivity is due to the differing 364	
  
seasonality, fluctuation intensities and spatial distributions of the solar and volcanic forcings. In the GISS-E2-R GCM 365	
  
simulations, the response to the solar forcing is too small to allow us to determine if it involves a similar solar-volcanic negative 366	
  
feedback (Fig. 4). In GCMs with their vertically stratified atmospheres or the real atmosphere, non additivity is perhaps not 367	
  
surprising given the difference between the solar and volcanic vertical heating profiles. If such negative feedbacks are 368	
  
substantiated in further simulations, it would enhance the credibility of the idea that current GCMs are missing critical slow 369	
  
(multi centennial, multi millennial) climate processes. No matter what the exact explanation, non additivity underlines the 370	
  
limitations of the convenient reduction of climate forcings to radiative forcing equivalents. It also indicates that at scales longer 371	
  
than about 50 yrs energy budget models must nonlinearly account for albedo-temperature interactions (i.e. that linear energy 372	
  
budget models are inadequate at these time scales, and that albedo-temperature interactions must at least be correctly 373	
  
parametrized). 374	
  

Also shown for reference in Fig. 3a are the fluctuations for three multiproxy estimates of annual northern hemisphere 375	
  
temperatures (1500-1900; pre-industrial, Moberg et al., 2005; Huang, 2004; Ljungqvist, 2010, the analysis was taken from 376	
  
Lovejoy and Schertzer, 2012c). Although it should be borne in mind that the ZC model region (the Pacific) does not coincide 377	
  
with the proxy region (the northern hemisphere), the latter is the best model validation available. In addition, since we compare 378	
  
model and proxy fluctuation statistics as functions of time scale, the fact that the spatial regions are somewhat different is less 379	
  
important than if we had attempted a direct year by year comparison of model outputs with the multiproxy reconstructions.   380	
  

In Fig. 3a, we see that the responses of the volcanic only and the combined volcanic and solar forcings fairly well 381	
  
reproduce the RMS multiproxy statistics until ≈ 50 yrs; however at longer time scales, the model fluctuations are substantially 382	
  
too weak – roughly 0.1 K (corresponding to ±0.05 K) and constant or falling, whereas at 400 yr scales, the RMS multiproxy 383	
  
temperature fluctuations are ≈ 0.25 K (±0.125) and rising. Indeed, in order to account for the ice ages, they must continue to rise 384	
  
until ≈ 5 K (±2.5 K) at glacial-interglacial scales of 50 – 100 kyrs, (the “glacial-interglacial window”: according to paleodata, 385	
  
this rise continues in a smooth, power law manner with 0>H  until roughly 100 kyrs, see Lovejoy and Schertzer, 1986, Shackleton 386	
  
and Imbrie, 1990 Pelletier, 1998, Schmitt et al., 1995, Ashkenazy et al., 2003, Huybers and Curry, 2006, and Lovejoy et al., 387	
  
2013). 388	
  

In Fig. 4, we compare the RMS Haar fluctuations from the ZC model combined (volcanic and solar forcing) response 389	
  
with those from simulations from the GISS-E2-R GCM with solar only forcing and a control run (no forcings, black; see 390	
  
Lovejoy et al., (2013) for details; the GISS-E2-R solar forcing was the same as the spliced series used in the ZC simulations). 391	
  
We see that the three are remarkably close over the entire range; for the GISS model, this indicates that the solar only forcing is 392	
  
so small that the response is nearly the same as for the unforced (control) run. The ZC combined solar and volcanic forcing is 393	
  
clearly much weaker than the pre-industrial multiproxies (dashed blue, same as in Fig. 3a). The reference line with slope -0.2 394	
  
shows the convergence of the control to the model climate; the shallowness of the slope (-0.2) implies that the convergence is 395	
  

ultra slow. For example, fluctuations from a 10 yr run control run are only reduced by a factor of ( ) 0.210 / 3000 3− ≈  if the run is 396	
  

extended to 3 kyrs.  397	
  
Finally, in Fig. 5, we compare the responses to the volcanic forcings for the Zebiak-Cane model and for the GISS-E2-R 398	
  

GCM for two different volcanic reconstructions (Gao et al., 2008), and Crowley, 2000) (the reconstruction used in the ZC 399	
  
simulation). For reference, we again show the combined ZC response and the preindustrial multiproxies. We see that the GISS 400	
  
GCM is much more sensitive to the volcanic forcing than the Zebiak-Cane model; indeed, it is too sensitive at scales Δ 100<≈t , 401	
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but nevertheless becomes too weak at scales Δ 200≈>t  years. Indeed, since the volcanic forcings continue to 402	
  
decrease with scale, we expect the responses to keep diminishing with scale at larger Δt . 403	
  

Note that the spatial regions covered by the ZC simulation, the GISS outputs and the multiproxy reconstructions are not 404	
  
the same. For the latter, the reason is that there is no perfectly appropriate (regionally defined) multiproxy series whereas for the 405	
  
GISS outputs, we reproduced the structure function analysis from a published source. Yet, the differences in the regions may not 406	
  
be so important since we are only making statistical comparisons. This is especially true since all the series are for planetary 407	
  
scale temperatures (even if they are not identical global sized regions) and in addition, we are mostly interested in the fifty year 408	
  
(and longer) statistics which may be quite similar. 409	
  

4. Intermittency: a multifractal trace moment analysis 410	
  

4.1 The Trace moment analysis technique 411	
  

In the previous sections we considered the implications of linearity when climate models were forced separately with two 412	
  
different forcings compared with the response to the combined forcing; we showed that the ZC model was subadditive. However, 413	
  
linearity also constrains the relation between the fluctuations in the forcings and the responses. For example at least since the 414	
  
work of Clement et al., (1996), in the context of volcanic eruptions, it has been recognized that the models are typically sensitive 415	
  
to weak forcing events but insensitive to strong ones, i.e. they are nonlinear, and Mann et al., (2005) noticed this in their ZC 416	
  
simulations.    417	
  

In a scaling regime, both forcings and responses will be characterized by a hierarchy of exponents (i.e. the function ( )ξ q  418	
  

in Eq. 3 or equivalently by the exponent H and the function ( )K q ), the differences in the statistics of weak and strong events are 419	
  

reflected in these different exponents; high order moments (large q) are dominated by large fluctuations and conversely for low 420	
  
order moments. The degree of convexity of ( )K q  quantifies the degree of these nonlinear effects (indeed, how they vary over 421	
  

time scales Δt ). Such “intermittent” behaviour was first studied in the context of turbulence (Kolmogorov, 1962; Mandelbrot, 422	
  
1974).   423	
  

In order to quantify this, recall that if the system is linear, the response is a convolution of the system Green’s function 424	
  
with the forcing, in spectral terms it acts as a filter. If it is also scaling, then the filter is a power law: ω−H  where ω is the 425	
  
frequency, (mathematically, if ( )≤ ωT  and ( )≤ ωF  are the Fourier transforms of the response and forcing, for a scaling linear 426	
  

system, we have: ( )≤ ( )≤ω ω ω−∝ HT F  such a filter corresponds to a fractional integration of order H). In terms of fluctuations this 427	
  

implies: ( ) ( )Δ Δ Δ Δ Δ= HT t t F t  (assuming that the fluctuations are appropriately defined). Therefore, by taking qth powers of both 428	
  

sides and ensemble averaging, we see that in linear scaling systems we have: ( ) ( )ξ ξ= +T Fq qH q  (c.f. eq. (3) with ( )ξT q  and 429	
  

( )ξF q  the structure function exponents for the response and the forcing respectively). If ( )ξT q  and ( )ξF q  only differ by a term 430	
  

linear in q, then ( ) ( )=T FK q K q , so that if over some regime, we find empirically ( ) ( )≠T FK q K q  (i.e. the intermittencies are 431	
  

different), then we may conclude that that the system is nonlinear (note that this result is independent of whether the linearity is 432	
  
deterministic or only statistical in nature).  433	
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Let us investigate the nonlinearity of the exponents by returning to Eq. (1), (2) and (3) in more detail. Up until 434	
  
now we have studied the statistical properties of the forcings and responses using the RMS fluctuations e.g. we have used the 435	
  

following equation but only for the value 2=q : 436	
  

( ) ( ) ( ) ( )ξ
λΔ Δ φ Δ Δ ;  ξ′∝ = = −q qq qHT t t t q qH K q

 
 (6) 437	
  

(see Eq. (1)) the exponent ( )K q  (implicitly defined in (3)) is given explicitly by: 438	
  

( )
λ

τ
φ Δ ;  

Δ′ = effK qq t
t

 (7) 439	
  

where τeff  is the effective outer scale of the multifractal cascade process, φ gives rise to the strong variability and λ′  is the 440	
  

cascade ratio from this outer scale to the scale of interest Δt .   441	
  

If the driving flux φ was quasi-Gaussian, then ( ) 0=K q , ( )ξ =q qH  and the exponent ( )ξ 2 2 β 1= = −H  would be 442	
  

sufficient for a complete characterization of the statistics. However geophysical series are often far from Gaussian, even without 443	
  
statistical analysis, a visual inspection (the sharp spike” of varying amplitudes, see Fig. 1a) of the volcanic series makes it 444	
  
obvious that it is particularly extreme in this regard. We expect - at least in this case - that the ( )K q  term will readily be quite 445	
  

large (although note the constraint ( )1 0=K  and the mean of φ (the 1=q  statistic) is independent of scale). To characterize this, 446	
  

note that since ( )1 0=K , we have ( )ξ 1 = H  and then use the first two derivatives of ( )ξ q  at 1=q  to estimate the tangent (linear 447	
  

approximation) to ( )K q  near the mean ( )1C  and the curvature of ( )K q  near the mean characterized by α. This gives  448	
  

( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 1 ξ 1

α 1 / 1 ξ 1 / ξ 1

′ ′= = − ⎫⎪
⎬′′ ′ ′′ ′= = − ⎪⎭

C K H

K K H
 (8) 449	
  

The parameters 1C ,	
   α  are particularly convenient since – thanks to a kind of multiplicative central limit theorem - there 450	
  

exist multifractal universality classes (Schertzer and Lovejoy, 1987). For such universal multifractal processes, the exponent 451	
  
function ( )K q  can be entirely (i.e. not only near 1=q ) characterized by the same two parameters:  452	
  

( ) ( )1 ;  0 α 2
α 1

∝= − ≤ ≤
−
CK q q q  (9) 453	
  

In the universality case (9), it can be checked that the estimate in (8) (near the mean) is satisfied so that 1C ,	
   α  454	
  

characterize all the statistical moments (actually, (6), (7) are only valid for < cq q ; for > cq q , the above will break down due to 455	
  

multifractal phase transitions; the critical cq  is typically >2, so that here we confine our analyses to 2≤q  and do not discuss the 456	
  
corresponding extreme - large q  - behaviour). 457	
  

A drawback of the above fluctuation method for using ( )ξ q  to estimate ( )K q  (6) is that if 1C  is not too big, then for the 458	
  

low order moments q , the exponent ( )ξ q  may be dominated by the linear (qH) term, so that the multifractal part ( )( )K q  of the 459	
  

scaling is not too apparent. A simple way of directly studying ( )K q  is to transform the original series so as to estimate the flux φ  460	
  

at a small scale, essentially removing the ( )qH  part of the exponent. It can then be degraded by temporal averaging and the 461	
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scaling of the various statistical moments - the exponents ( )K q  - can be estimated directly. To do this, we divide (1) by 462	
  

its ensemble average so as to estimate the normalized flux at the highest resolution by: 463	
  

′ϕ = ϕ
ϕ

= ΔT
ΔT

 (10) 464	
  

where the ensemble average (“ ”) is estimated by averaging over the available data (here a single series), and the fluctuations 465	
  

Δt  are estimated at the finest resolution (here 1 yr).   466	
  
 467	
  
 468	
  
4.2 Trace moment analysis of forcings, responses and multiproxies  469	
  

We now test (7); for convenience, we use the symbol λ  as the ratio of a convenient reference scale – here the length of 470	
  
the series, τ 1000=ref  yrs to the resolution scale Δt  (for some analyses, 400 yrs was used instead, see the captions in Fig. 6). In 471	
  

an empirical study, the outer scale τeff is not known a priori, it must be empirically estimated; denote the scale at which the 472	
  

cascade starts by λ′  473	
  
Starting with (7), the basic prediction of multiplicative cascades is that the normalized moments φ′  (10) obey the generic 474	
  

multiscaling relation: 475	
  

( ) ( )
( ) ( )

 
λ

τ τ τλ λφ λ ;  λ ;  λ
Δ λ Δ λ τ

⎛ ⎞⎛ ⎞′ ′ ′= = = = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

K qK q
eff eff refK qq

eff
eff eff eff

M q
t t

 (11) 476	
  

We can see that τeff  can readily be empirically estimated since a plot of 10Log M  versus 10Log λ  will have lines (one for 477	
  

each q , slope ( )K q ) converging at the outer scale λ λ= eff  (although for a single realisation such as here, the outer scale will 478	
  

be poorly estimated since clearly for a single sample (series) there is no variability at the longest time scales, there is a single 479	
  
long-term value that generally poorly represents the ensemble mean). Figure 6a shows the results when ΔT  is estimated by the 480	
  
absolute second difference at the finest resolution. The solar forcing (upper right) was only shown for the recent period (1600-481	
  
2000) over which the higher resolution sunspot based reconstruction was used, the earlier 1000-1600 part was based on a (too) 482	
  
low resolution 10Be “splice” as discussed above, see Fig. 2b. In the solar plot (upper left), but especially in the volcanic forcing 483	
  
plot (upper right), we see that the scaling is excellent over nearly the entire range (the points are nearly linear) and in addition, 484	
  
the lines plausibly “point” (i.e. cross) at a unique outer scale λ λ= eff  which is not far from the length of the series, see Table 485	
  

1 for estimates of the corresponding time scales. From these plots we see that the responses to the volcanic forcing “spikiness” 486	
  
(intermittency) are much stronger than to the corresponding responses to the weaker solar “spikiness”. The model atmosphere 487	
  
therefore considerably dampens the intermittency, but in addition this effect is highly nonlinear so that the intermittency of the 488	
  
combined volcanic and solar forcing (bottom left) is actually a little less than the volcanic only intermittency (bottom right). 489	
  
Table 1 gives a quantitative characterization of the intermittency strength near the mean, using the 1C  parameter. 490	
  

It is interesting at this stage to compare the intermittency of the ZC outputs with those of the GISS-E2-R GCM (Fig. 6b) 491	
  
and with multiproxy temperature reconstructions (Fig. 6c). In Fig. 6b, we see that the GISS-E2-R trace moments rapidly die off 492	
  
at large scales (small λ ) so that the intermittency is limited to small scales to the right of the convergence point. In this Figure, 493	
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we see that the lines converge at 10Log λ 1.1 1.5≈ −  corresponding to τeff in the range roughly 10–30 yrs. Since the 494	
  

intermittency builds up scale by scale from large scales modulating smaller scales in a hierarchical manner, and since this range 495	
  
of scales is small, the intermittency will be small. The partial exception is for the upper right plot which is for the GISS-E2-R 496	
  
response to the large Gao volcanic forcing (recall that the ZC model uses the weaker, Crowley volcanic reconstruction whose 497	
  
response is strongly intermittent, see Fig. 6b, the upper left plot). This result shows that contrary to the ZC model whose 498	
  
response is strongly intermittent (highly non Gaussian) over most of the range of time scales, the GISS-E2-R response is nearly 499	
  
Gaussian implying that the (highly non Gausssian) forcings are quite heavily (nonlinearly) damped. 500	
  

This difference in the model responses to the forcing intermittency is already interesting, but it does not settle the question 501	
  
as to which model is more realistic. To attempt to answer this question, we turn to Fig. 6c which shows the trace moment 502	
  
analysis for six multiproxy temperature reconstructions over the same (pre-industrial) period as the GISS-E2-R model (1500-503	
  
1900; unlike the ZC model, the GISS-E2-R included anthropogenic forcings so that the period since 1900 was not used in the 504	
  
GISS-E2-R analysis). Statistical comparisons of nine multiproxies were made in ch. 11 of Lovejoy and Schertzer, (2013), (for 505	
  
reasons of space, only six of these are shown in Fig. 6c) where it was found that the pre 2003 multiproxies had significantly 506	
  
smaller multicentennial and lower frequency variability than the more recent multiproxies used as reference in Fig. 4 and 5. 507	
  
However, Fig. 6c shows that the intermittencies are all quite low (with the partial exception of the Mann series, see the upper 508	
  
right plot). This conclusion is supported by the comparison with the red curves. These indicate the generic envelope of trace 509	
  
moments of quasi-Gaussian processes for 2≤q  it shows how the latter converge (at large scales, small λ , to the left) to the 510	
  

flat ( )( )0=K q  Gaussian limit. We see that the actual lines are only slightly outside this envelope showing that they are only 511	
  

marginally more variable than quasi-Gaussian processes.    512	
  
The comparison of the GISS-E2-R outputs (Fig. 6b) with the multiproxies (Fig. 6c) indicates that they are both of low 513	
  

intermittency and are more similar to each other than to the ZC multiproxy statistics. One is therefore tempted to conclude that 514	
  
the GISS-E2-R model is more realistic than the ZC model with its much stronger intermittency. However this conclusion may be 515	
  
premature since the low multiproxy and GISS intermittencies may be due to limitations of both the multiproxies and the GISS-516	
  
E2-R model. Multicentennial and multimillenial scale ice core analyses displays significant paleotemperature intermittency (517	
  

1 0.05 0.1≈ −C , Schmitt et al., 1995 see the discussion in ch. 11 of Lovejoy and Schertzer, 2013) so that the multiproxies may be 518	
  
insufficiently intermittent. 519	
  

5. Conclusions 520	
  

From the point of view of GCM’s, climate change is a consequence of changing boundary conditions (including composition), 521	
  
the latter are the climate forcings. Since forcings of interest (such as anthropogenic forcings) are typically of the order of 1% of 522	
  
the mean solar input the responses are plausibly linear. This justifies the reduction of the forcings to a convenient common 523	
  
denominator: the “equivalent radiative forcing”, a concept which is useful only if different forcings add linearly, if they are 524	
  
“additive”. An additional consequence of linearity is that the climate sensitivities are independent of whether the fluctuations in 525	
  
the forcings are weak or strong. Both consequences of linearity clearly have their limits. For example, at millennial and longer 526	
  
scales, energy balance models commonly discard linearity altogether and assume that nonlinear albedo responses to orbital 527	
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changes are dominant. Similarly, at monthly and annual scales, the linearity of the climate sensitivity has been 528	
  
questioned in the context of sharp, strong volcanic forcings.  529	
  

In view of the widespread use of the linearity assumption, it is important to quantitatively establish its limits and this can 530	
  
best be done using numerical climate models. A particularly convenient context is provided by the Last Millennium simulations, 531	
  
which (in the preindustrial epoch) are primarily driven by the physically distinct solar and volcanic forcings (forcings due to land 532	
  
use changes are very weak). The ideal would be to have a suite of the responses of fully coupled GCM’s which include solar 533	
  
only, volcanic only and combined solar and volcanic forcings and control runs (for the internal variability) so that the responses 534	
  
could be evaluated both individually and when combined. Unfortunately, the optimal set of GCM products are the GISS E2-R 535	
  
millennium simulations with solar only and solar plus volcanic forcing and a control run (this suite is missing the volcanic only 536	
  
responses). We therefore also considered the outputs of a simplified climate model, the Zebiac-Cane (ZC) model (Mann et al., 537	
  
2005) for which the full suite of external forcing response was available.  538	
  

Following a previous study, we first quantified the variability of the forcings as a function of time scale by considering 539	
  
fluctuations. These were estimated by using the difference between the averages of the first and second halves of intervals Δt  540	
  
(“Haar” fluctuations). This definition was necessary in order to capture the two qualitatively different regimes, namely those in 541	
  
which the average fluctuations increase with time scale ( )0>H  and those in which they decrease with scale ( )0<H . Whereas the 542	
  

solar forcing was small at annual scales, it generally increased with scale. In comparison, the volcanic forcing was very strong at 543	
  
annual scales but rapidly decreased, the two becoming roughly equal at about 200 yrs. By considering the response to the 544	
  
combined forcing we were then able to examine and quantify their non-additivity (nonlinearity). By direct analysis (Fig. 3b, c), it 545	
  
was found that in the ZC model, additivity of the radiative forcings only works up until roughly 50 yr scales; at 400 yr scales, 546	
  
there are negative feedback interactions between the solar and volcanic forcings that reduce the combined effect by a factor of ≈ 547	
  
1.5 - 2. This “subadditivivity” makes their combined effects particularly weak at these scales. Although this result seems 548	
  
statistically robust for the ZC Millenium simulations, until the source of the nonlinearity is pin-pointed and the results 549	
  
reproduced with full-blown coupled GCM’s, they must be considered tentative (the conclusions would also be strengthened if 550	
  
ZC control runs output were available to estimate the internal variability), many more simulations with diverse forcings are 551	
  
needed to completely settle the issue.. 552	
  

In order to investigate possible nonlinear responses to sharp, strong events (such as volcanic eruptions), we used the fact 553	
  

that if the system is linear and scaling, then the difference between the structure function exponents ( )( )ξ q  for the forcings and 554	
  

responses is itself a linear function of the order of moment q  (moments with large q  are mostly sensitive to the rare large 555	
  
values, small q  moments are dominated by the frequent low values). By using the trace moment analysis technique, we isolated 556	
  

the nonlinear part of ( )ξ q  (i.e. the function ( )K q ) which quantifies the intermittent (multifractal, highly non-Gaussian) part of the 557	
  

variability (associated with the “spikiness” of the signal). Unsurprisingly we showed that the volcanic intermittency was much 558	
  
stronger than the solar intermittency, but that in both cases, the model responses were highly smoothed, they were practically 559	
  
nonintermittent (close to Gaussian) hence that the model responses to sharp, strong events were not characterized by the same 560	
  
sensitivity as to the more common weaker forcing events. 561	
  

By examining model outputs, we have found evidence that the response of the climate system is reasonably linear with 562	
  
respect to the forcing up to time scales of 50 yrs at least for weak (i.e. not sharp, intermittent) events. But the sharp, intermittent 563	
  
events such as volcanic eruptions that occasionally disrupt the linearity at shorter time scales, become rapidly weaker at longer 564	
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and longer time scales (with scaling exponent 0.3≈ −H ). In practice, linear stochastic models may therefore be valid 565	
  
from over most of the macroweather range, from ≈ 10 days to over 50 years. However, given their potential importance, it would 566	
  
be worth designing specific coupled climate model experiments in order to investigate this further.   567	
  
 568	
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Tables: 756	
  

Table 1. The scaling exponent estimates for the forcings and ZC model responses.   757	
  

 Forcings Responses Control Runs 

 Solar Volcanic Solar Volcanic Combined GISS ECHAM5 

H 0.40 -0.21 0.031 -0.17 -0.15 -0.26 -0.4 

C1 0.095 0.48 0.022 0.054 0.038 <0.01 <0.01 

α 1.04 0.31 1.82 2.0 2.0 
_ _ 

ξ(2)/2 0.33 -0.47 -0.01 -0.28 -0.23 <0.01 <0.01 

β 1.66 0.06 0.98 0.44 0.54 
0.47 0.2 

τeff 630 yrs 300yrs 100yrs 100 yrs 250 yrs 
_ _ 

 758	
  

Table 1 shows the scaling exponent estimates for the forcings and ZC model responses. For the solar (forcing and response), only 759	
  
the recent 400 yrs (sunspot based) series were used, for the others, the entire 1000 yrs range was used, see figure 6a. The RMS 760	
  
exponent was estimated from Eq. (6), (9): H was estimated from the Haar fluctuations, α , 1C  were estimated from the trace 761	
  
moments (Fig. 6a). Note that the external cascade scales are unreliable since they were estimated from a single realization. The 762	
  
control runs at the right are for the GISS-E2-R model discussed in the text and (ECHAM5) from the fully coupled COSMOS-763	
  
ASOB Millenium long term simulations based on the Hamburg ECHAM5 model for 800–4000AD. 764	
  
  765	
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Figures	
  and	
  Captions:	
  766	
  

	
  767	
  

Figure 1a. Top graph: The radiative forcings RF (top, W/m2) and responses T(K) from 1000-2000 AD for the Zebiak–Cane 768	
  
model, from Mann et al., (2005), integrated over the entire simulation region. The forcings are reconstructed solar (brown), solar 769	
  
blown up by a factor 5 (orange) and volcanic (red). For the solar forcing (top series), note the higher resolution and wandering 770	
  
character for the recent centuries – this part is based on sunspots, not 10Be.   771	
  
Bottom graph: The responses are for the solar forcing only (top), volcanic forcing only (middle) and both (bottom); they have 772	
  
been offset in the vertical for clarity by 2.5, 1.5, 0.5K, respectively.  773	
  
 774	
  
 775	
  
 776	
  
 777	
  
 778	
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  779	
  

Figure 1b. GISS-ER-2 responses averaged over land, the northern hemisphere at annual resolution. The industrial part since 780	
  
1900 was excluded due to the dominance of the anthropogenic forcings. The solar forcing is the same as for the ZC model, it is 781	
  
mostly sunspot based (since 1610). The top row is for the solar forcing only, the middle series is the response to the solar and 782	
  
Crowley reconstructed volcanic forcing series (i.e. the same as used in the ZC model); the bottom series uses the solar and 783	
  
reconstructed volcanic forcing series from Gao et al., (2008). Each series has been offset in the vertical by 1K for clarity (these 784	
  
are anomalies so that the absolute temperature values are unimportant). 785	
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 788	
  

Figure 2a. The RMS Haar fluctuation ( )ΔS t  for the solar and volcanic reconstructions used in the ZC simulation for lags Δt from 789	
  

2 to 1000 years (left). The solar is a “hybrid” obtained by “splicing” the sunspot-based reconstruction (Fig. 2b, top) with a 10Be 790	
  
based reconstruction (Fig. 2b, bottom). The two rightmost curves are for two different 10Be reconstructions (Shapiro et al., 2011; 791	
  
Steinhilber et al., 2009). Although at any given scale, their different assumptions lead to amplitudes differing by nearly a factor 792	
  
of 10, their exponents are virtually identical and the amplitudes diminish rapidly with scale. 793	
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 796	
  

Figure 2b. A comparison of the sunspot derived Total Solar Irradiance (TSI) anomaly (top, used in the ZC and GISS simulations 797	
  
back to 1610, 0.4≈H ) with a recent 10Be reconstruction (bottom, total TSI - mean plus anomaly - since 7362 BC, see Fig. 2a for 798	
  
a fluctuation analysis, 0.3≈ −H ) similar to that “spliced” onto the sunspot reconstruction for the period 1000-1610. We can see 799	
  
that the statistical characteristics are totally different with the sunspot variations “wandering” ( )0>H  whereas the 10Be 800	
  

reconstruction is “cancelling” ( )0<H . The sunspot data were for the “background” (i.e. with no 11 year cycle, see Wang et al., 801	
  

2005 for details), the data for the 10Be curve were from Shapiro et al., (2011).  802	
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 805	
  

 806	
  

Figure 3a. The RMS Haar fluctuations of the Zebiak−Cane (ZC) model responses (from an ensemble of 100 realizations) with 807	
  
volcanic only (green, from the updated Crowley reconstruction), solar only (black, using the sunspot based background (Wang et 808	
  
al., 2005), and both (brown). No anthropogenic effects were modelled. Also shown for reference are the fluctuations for three 809	
  
multiproxy series (blue, dashed, from 1500-1900, pre-industrial, the fluctuations statistics from the three series were averaged, 810	
  
this curve was taken from Lovejoy and Schertzer, 2012b). We see that all the combined volcanic and solar response of the model 811	
  
reproduces the statistics until scales of ≈ 50-100 years; however at longer time scales, the model fluctuations are substantially too 812	
  
weak – roughly 0.1K (corresponding to ±0.05K) and constant or falling, whereas at 400 yr scales, the temperature fluctuations 813	
  
are ≈0.25K (±0.125) and rising. 814	
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 816	
  

 817	
  
 818	
  
Figure 3b. A comparison of the RMS fluctuations of the ZC model response to combined solar and volcanic forcings (brown, 819	
  
bottom, from Fig. 3a), with the theoretical additive responses (black, bottom) as well as their ratio ( /additive actualS S  black, top). 820	
  
The additive response was determined from the root mean square of the solar only and volcanic only response variances (from 821	
  
Fig. 3a): additivity implies that the fluctuation variances add (assuming that the solar and volcanic forcings are statistically 822	
  
independent). We can see that after about 50 years, there are strong negative feedbacks, the solar and volcanic forcings are 823	
  
subadditive, see Fig. 3c for a blow up of the ratio. 824	
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(c)828	
  

 829	
  

Figure 3c. An enlarged view of the ratio of the linear to nonlinear responses (from Fig. 3b). The top curve assumes for the 830	
  
combined forcing, the linearity of the response and statistical independence of the solar and volcanic forcings, whereas the 831	
  
bottom curve assumes only that the combined response to the forcing is linearuses the actual response to the combined forcings. 832	
  
The maximum at around 400 yrs (top curve) corresponds to a factor ≈ 2 (≈1.5, bottom curve) of negative feedback between the 833	
  
solar and volcanic forcings. The decline at longer durations (Δt’s the single 1000 yr fluctuation) is likely to be an artefact of the 834	
  
limited statistics at these scales. 835	
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 838	
  

 839	
  

Figure 4. A comparison of the Zebiak-Cane (ZC) model combined (volcanic and solar forcing) response (thick brown) with 840	
  
GISS-E2-R simulations with solar only forcing (red) and a control run (no forcings, black), the GISS structure functions are for 841	
  
land, northern hemisphere, reproduced from Lovejoy et al., (2013).  842	
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 844	
  

 845	
  

 846	
  

Figure 5. A comparison of the volcanic forcings for the ZC model (bottom green) and for the GISS-E2-R GCM for two different 847	
  
volcanic reconstructions (Gao et al., 2008, and Crowley, 2000) (top green curves, reproduced from Lovejoy et al., 2013). Also 848	
  
shown is the combined response (ZC, brown) and the preindustrial multiproxies (dashed blue).    849	
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 852	
  
Figure 6a. Analysis of the fluxes/cascade structures of the ZC forcings (top row) and ZC temperature responses (middle, bottom 853	
  
rows); the normalized trace moments (Eq. (11)) are plotted for q = 2, 1.9, 1.8, 1.7, 1.6, …0.1. Upper left is solar forcing (last 400 854	
  
yrs only, mostly sunspot based), upper right is volcanic, middle left, solar response (last 400 yrs), middle right (volcanic 855	
  
response), lower left, response to combined forcings (last 1000 yrs). Note that all axes are the same except for volcanic. For the 856	
  
solar, only the last 400 yrs were used since this was reconstructed using the more reliable sunspot based method. The earlier 10Be 857	
  
based reconstruction had relatively poor resolution and is not shown. Since the volcanic variability was so dominant, for the 858	
  
combined response (bottom left) the entire series was used. The red points and lines are the empirical values, the blue lines are 859	
  
regressions constrained to go through a single outer scale point, see eq. (11). In comparing the different parts of the figure, note 860	
  
in particular i) the log-log linearity for different statistical moments, ii) the fact that the lines for different moments reasonably 861	
  
cross at a single outer scale, and iii) the overall amplitude of the fluctuations – for example by visually comparing the range of 862	
  
the q = 2 moments (the top series) as we move from one graph to another. 863	
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 865	
  

 866	
  
Figure 6b. The above shows the responses for the GISS-E2-R simulations (northern hemisphere, land, 1500-1900), λ 1=  867	
  
corresponds to 400 yrs. The upper left is for the response to the Crowley reconstructed volcanic forcings (same as used in the ZC 868	
  
simulations, not the change in the vertical scale), the upper right for the Gao reconstructed volcanic forcings and the lower left is 869	
  
for the solar only (mostly sunspot based, same as used in the ZC simulations).   870	
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 881	
  

Figure 6c. Trace moment analysis of six annual resolution multiproxies, J = Jones, Ma = Mann 98, B = Briffa, C = Crowley, Mo 882	
  
= Moberg, H = Huang, the curves are reproduced with permission from figure 11.8, of Lovejoy and Schertzer, (2013), where full 883	
  
details and references are given. All were for the pre-industrial period 1500-1900 AD; λ 1=  corresponds to 400 yrs. The curve 884	
  
shows the generic convergence of the envelope of curves to a quasi-Gaussian process, the proximity of the curve to the envelope 885	
  
indicates that with the possible exception of the Mann curve, the intermittency is low. 886	
  


