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Abstract. A simple conceptual model for the global mean surface temperature (GMST) response to

CO2 emissions is presented and analysed. It consists of linear long-memory models for the GMST

anomaly response ∆T to radiative forcing and atmospheric CO2-concentration response ∆C to

emission rate. The responses are connected by the standard logarithmic relation between CO2 con-

centration and its radiative forcing. The model depends on two sensitivity parameters, αT and αC ,5

and two “inertia parameters,” the memory exponents βT and βC . Based on observation data, and

constrained by results from the Climate Model Intercomparison Project Phase 5 (CMIP5), the likely

values and range of these parameters are estimated, and projections of future warming for the pa-

rameters in this range are computed for various idealised, but instructive, emission scenarios. It is

concluded that delays in the initiation of an effective global emission reduction regime is the single10

most important factor that influences the magnitude of global warming over the next two centuries.

The highlight of this study is the simplicity and transparency of the conceptual model, which makes

it a useful tool for communicating the issue to non-climate scientists, students, policy-makers, and

the general public.

1 Introduction15

In spite of five comprehensive reports from the Intergovernment Panel on Climate Change (IPCC)

the perception of the threat of global warming to society remains highly diverse among the general

public, decision makers, and the scientific community at large. This is in stark contrast to the general

opinion among those who define themselves as climate scientists, where some studies suggest that as

much as 97 percent recognise human activity as a main driver of a main driver of global warming over20

the last century (Anderegg et al., 2010; Cook et al., 2013). What distinguishes the climate science

community from other scientists is the strong reliance among climate scientists on complex Earth

System Models (ESMs), that is, on Atmospheric-Ocean General Circulation Models (AOGCMs)

coupled to models that include biogeochemistry and cryosphere dynamics. The general skepticism

against this “model science" is not hard to understand. Models are complex beyond comprehension,25

different models are not independent but consist of many common modules, and parametrisations
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are empirical to an extent that makes it legitimate to question whether models are “massaged" to fit

observations. The important point here is not whether this perception of climate modelling is correct

or fair, but that the skepticism exists, and in many cases cannot be discarded as irrational.

The latest IPCC report from Work Group I on the climate system (IPCC AR5 WG1, 2013) con-30

tains a summary for policy makers that describes findings from observations and model studies

which many physical scientists find unconvincing, and is not very easy read for the general pub-

lic. The unconvincing part is the above mentioned excessive reliance on complex computer models.

Most scientists want to understand and to be convinced by simple fundamental principles matched

against clear-cut observations. Decision makers and the informed layman want to see simple, clear35

alternatives for the future; not a myriad of incomprehensible scenarios labelled by acronyms that

carry no meaning to non-experts.

From the Co-Chair of Work Group I a very readable and important paper on the “The Closing

Door of Climate Targets" (Stocker, 2013) was published alongside the IPCC AR5 report, intended

to demonstrate that as mitigation is delayed, climate targets formulated in international agreements40

become unattainable. The results were based on the physical assumption of a linear relationship be-

tween the cumulated carbon emissions and peak global warming in scenarios where the cumulative

emission is bounded. This relationship, and the constant of proportionality, were justified empir-

ically from numerical experiments performed on a large number of ESMs which incorporate the

global carbon cycle (Allen et al., 2009; Matthews et al., 2009). Some readers, however, will find it45

unsatisfactory that they have to “believe” the models in order to accept the conclusion of the paper.

As a former plasma physicist, who only relatively recently has taken up research in Earth-system

dynamics and climate science, I am often confronted with question from former colleagues of the

type: "For half a century we have tried to model the transport properties of a magnetically confined

plasma for controlled thermonuclear fusion, and we still haven’t succeeded very well, even though50

the physical system is infinitely simpler than the climate. Why do you think these horrendously

complex climate models perform any better? ”

A major motivation for the present paper is to find ways to communicate with, and gain support

from, the scientists who ask such questions. I do this by deriving results similar to those obtained in

Stocker (2013) in a more transparent manner, and without resorting to complex ESMs as the primary55

justification. The underlying assumptions are justified from observations, although supporting evi-

dence from AOGCMs are also discussed. The conceptual models of the temperature and atmospheric

carbon response are linear and simple enough to be understood by anyone with some background

in elementary calculus and ordinary differential equations. The scenarios explored are idealised and

the results presented in figures that should be comprehensible for readers without training in mathe-60

matics or physical sciences.

Sect. 2 describes and justifies the conceptual model. Sect. 3 presents projections for atmospheric

CO2 concentration and GMST for some idealised CO2 emission scenarios, one which is very close
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to the “business as usual” Representative Concentration Pathway 8.5 (RCP8.5) scenario employed

by the IPPC, and others which represent systematic emission reduction initiated at different times in65

the future. This section also discusses policy implications that may follow from these projections,

and i Sect. 4, summarises and concludes. Six appendices elaborate on the physical interpretation and

justification of the minimal model, and on some mathematical aspects that may appear as paradoxes.

This material is referred to appendices in order to avoid interruption of the logical flow that leads

to the main results. The Supplementary Material contains data files and a well-documented Mathe-70

matica notebook with routines that allow readers to replicate and extend all results presented in the

paper.

2 The conceptual model

A closed model for the evolution of the global mean surface temperature (GMST) could consist

of (i) a model for the GMST-anomaly response ∆T (t) to radiative forcing F (t), (ii), a model for75

the evolution of ∆C(t), given the CO2 emission history R(t), and (iii) a well established constitu-

tive relation between F (t) and ∆C(t). This paper proposes extremely simple, linear models for the

GMST-response (i) and the CO2-concentration response (ii). Each depends on two parameters char-

acterising the strength and the inertia (memory) of the response, respectively. In order to keep the

model sufficiently simple for a reader to be able to trace the connection between driver and response,80

and the effect of variation of model parameters, major simplifying assumptions are made. One is to

neglect all other radiative forcing than CO2. Although the main reason for this is to maintain sim-

plicity, it is justified by forcing estimates that conclude that the non-CO2 contributions tend to cancel

over the industrial period (IPCC AR5 WG1, 2013). Other important simplifications are linearity and

stationarity:85

Linearity. Global temperature has been found to respond quite linearly to forcing in general cir-

culation models (Meehl et al., 2004), and as long as the climate system is far from a major tipping

point, this linearity may also pertain to the response of atmospheric CO2 content to emissions. The

effect of space-time non-linearity is important primarily on variability on smaller than global scale.

On global scale the response function has an approximate power-law form that makes the system90

respond by a scale-invariant stochastic process to a white-noise driver. This scale-invariance is char-

acterised by a spectral exponent β which gives rise to a power-law tail in the response function

G(s)∼ sβ/2−1, where s is the time following an impulse in the forcing. The physical interpretation

of such a response is that the climate system consists of a number of different interacting sub-systems

with different response times. There will be a maximum response time and hence there will be a cut-95

off of the power-law tail in the response function for s larger than this maximal time constant. The

justification, interpretation and implication of this picture is further discussed in the appendices.
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Stationarity. The response functions are assumed to be translation invariant, i.e., G(t, t′) =G(t−
t′). This means that the GMST and the CO2 concentration respond the same way in a future climate

as they do now. For the GMST this is a reasonable assumption as long as the global general circula-100

tion pattern remains the same, i.e., as long as the climate system does not encounter a major tipping

point. Examples of such tipping points are the glacial-interglacial transitions, or the Dansgaard-

Oeschgher events during the last ice age (Bender, 2013). During the present interglacial period, the

Holocene, there was a similar tipping event about 8.2 kyr ago. These events are believed to be as-

sociated with sudden influx of freshwater into the Northern Atlantic from the North-American Lau-105

rentide ice sheet and associated changes in the overturning ocean circulation. A number of potential

tipping elements have been identified associated with global warming in the present Holocene cli-

mate (Lenton et al., 2013). Among these are complete disappearance of the Arctic sea ice, runaway

melting of the Greenland and West-Antarctic ice sheets, a radical change in the Atlantic thermoha-

line ocean circulation and the El Niño Southern Oscillation, shifts of the Indian and the West-African110

monsoons, and dieback of the Amazon and the boreal forests. Transitions associated with tipping el-

ements of these types can change significantly the global temperature response as well as the carbon

cycle response. Even in the absence of tipping points the stationarity assumption may be particularly

wrong for the CO2 concentration, where e.g., saturation effects in the ocean mixed layer and the land

biosphere may reduce fluxes in a future climate. It also neglects the coupling between sea surface115

temperature and the CO2 flux, which will reduce the flux into the ocean in a warmer climate. How-

ever, experiments with Carbon cycle models subject to sudden CO2 injections into the atmosphere

indicate that the response in the CO2 concentration can be described by a power-law response func-

tion. This response is not stationary in the sense that it will be the same for a new Carbon release in a

future climate, but it may give an adequate description of the response to the present global warming120

event. Further details are given in Sects. 2.1, 2.2 and the appendices.

2.1 The temperature response

The simplest physics-based model of the GMST-response is the zero-dimensional, linearised energy

balance model (EBM);

d

dt
∆T =− 1

τT
∆T +

S

τT
F. (1)125

Here τT is the time constant for relaxation of the temperature anomaly, and S is the climate sensi-

tivity. The model is often denoted the Budyko-Sellers model and first proposed by Budyko (1969)

and Sellers (1969). A simple derivation can be found in Rypdal (2012), where it is also pointed out

that it is impossible to find a single time constant that describes adequately the response to forcing

on all time scales. The reduction to a linear model from the nonlinear EBM with the full Stefan-130

Boltzmann radiation law is found in Appendix E. This model is not only used for reproducing the

global temperature to known (deterministic) forcing, but can also be formulated as a stochastic dif-
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ferential equation by introducing a noise component to the forcing F (t), representing the stochastic

energy flux from atmospheric weather systems to the ocean and land surface (Rypdal and Rypdal,

2014). The solution to this equation can be written as a convolution integral135

∆T (t) =

t∫
0

GT (t− t′)F (t′)dt′, (2)

with an exponential response function

GT (t) = (S/τT )exp(−t/τT ). (3)

The temperature response to a purely stochastic forcing, i. e., F (t) is represented as a Gaussian white

noise, is an Ornstein-Uhlenbeck stochastic process. In discrete time, this corresponds to a first-order140

autoregressive (AR(1)) process. If Eq. (1) provides an adequate description, with F (t) separated into

a deterministic and a white-noise component, then the residual obtained after subtracting the deter-

ministic response from the observed annual GMST record should be a realisation of an AR(1) pro-

cess. The time constant and the climate sensitivity can be determined by a maximum-likelihood esti-

mation, and in Rypdal and Rypdal (2014) they were estimated to τ ≈ 4.3 yr, and S ≈ 0.32 Km2W−1.145

However, the sensitivity obtained is lower than obtained from climate models, the fast response to

volcanic eruptions is higher than in the observed record, and the residual does not conform well with

an AR(1) process. Rypdal and Rypdal (2014) demonstrated that the residual is better described by a

model for persistent, fractional Gaussian noise (fGn). Such a noise can be produced by Eq. (2) if the

exponential response function is replaced by a power-law function150

GT (t) = αT t
βT /2−1, (4)

where the memory exponent βT is in the interval 0< βT < 1. It can be shown that this process has a

power spectral density on the form∼ f−βT , where f is the frequency (Beran, 1994). Hence, βT = 0

corresponds to white noise, while increasing βT signifies increasing degree of memory (or persis-

tence) in the process. In this response model it replaces the time constant τT of the simple EBM.155

The parameter αT replaces the climate sensitivity S. In Rypdal and Rypdal (2014) the magnitude

of the parameters αT and βT were estimated from the instrumental GMST record, revealing rather

strong persistence, βT ≈ 0.75. Similar values were also found in multiproxy data for the Northern

Hemisphere, and in Østvand et al. (2014) they were found in data from a number of millennium-long

AOGCM simulations. The long power-law tail in the response function may be interpreted as an ef-160

fect of thermal exchange between the surface (e.g., the ocean mixed layer) and other components

of the climate system with higher heat capacity (e.g., the deep ocean). A two-layer ocean energy

balance model yields for instance a response function with two exponentials with different time con-

stant. In Geoffroy et al. (2013) such a two-layer model was compared to transient simulations of

AOGCMs following an abrupt increase in CO2 forcing, and the two time constants estimated from165
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these data were typically 1-2 yr and 1-2 centuries, respectively. In Rypdal et al. (2015) it was shown

that a power-law response provides an even better fit to the tail of the transient AOGCM-solutions,

but the memory exponent is lower (βT ≈ 0.35) than found from the residuals in observations and

AOGCM simulations with historical forcing. One way of reconciling these conflicting results is to

assume that the forcing noise is not white, but rather a persistent noise which gives a contribution170

to the βT observed in the residuals. Details are shown in Appendix D. On the other hand, it will

be pointed out in Sect. 3 that the Computer Model Intercomparison Project Phase 5 (CMIP5) in

the RCP8.5 CO2 concentration scenario yields results consistent with βT = 0.75. Since this implies

some uncertainty with respect to the correct value of βT for the temperature response I shall in Sect. 3

present projections for the values βT = 0.35 and βT = 0.75, assuming that βT is likely within this175

interval.

The significance of the inertia, or long-range memory (LRM), in the temperature response for

GMST projections is illustrated in Fig. 1. Panel (a) shows the estimated GMST response to forcing

scenario consisting of the anthropogenic forcing in the period 1880 – 2010 as presented in Hansen

et al. (2011), linearly projected to 2200 AD with the same mean growth rate as the the RCP8.5180

scenario in the period 2010 – 2100 AD (Meinshausen et al., 2011), and is shown as the blue curve

in Fig. 1b. The blue and red curves in Fig. 1a are the responses according to the power-law response

models with βT = 0.35, and βT = 0.75, respectively. The projection for an instant response (τT → 0,

leading to ∆T (t)→ SF (t)) is also shown as the limit of zero inertia. Also shown as a light blue

curve is the instrumental GMST record as given by Brohan et al. (2006). These projections have185

been obtained by computing the integral
∫ t

0
αT (t− t′)(βT /2−1)F (t′)dt′ with the specified βT and

then estimating αT by regressing to the observed GMST record for the period 1880 – 2010 AD.

The climate sensitivity S for the instantaneous response has also been found by regressing SF (t)

to the instrumental data, and is found to be S ≈ 0.48 Km2W−1, which corresponds to 1.8 K for a

doubling of CO2 concentration. The rising warming projected for increasing βT is a manifestation190

of the thermal inertia in parts of the climate system with high heat capacity that exchange heat with

the surface, and makes the surface temperature respond more slowly. The higher surface warming in

the distant future due to this inertia is a manifestation of “the warming in the pipeline" (Hansen et

al., 2011; Rypdal, 2012).

The blue forcing path shown in Fig. 1b is an idealised “business as usual" (BAU) scenario. Beyond195

2100 AD there is every reason to believe that there will be a saturation of the rising trend, even in

the absence of active mitigation policies. In the RCP8.5 this takes place gradually during the 22nd

and first half of the 23rd century. This figure also shows some idealised scenarios where the BAU is

modified by mitigation action. One possible type of action is the sudden reduction of emission that

will stabilise the forcing at the level at the time of action. In the real world such an action from one200

year to another is not possible, but it may be considered an approximation of certain annual reduction

over a period of a decade. For instance, 40% emission reduction can be achieved by annual emission
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reduction of 5% over a decade. In Fig. 1b forcing scenarios for this type of mitigation action are

illustrated for three different years of onset of the action; 2030, 2070, and 2110 AD. The year 2030

gives the world fifteen years to prepare the action. Year 2070 leaves the problem to those who are205

born today, i.e., to the next generation. Year 2110 leaves it to unborn generations.

The GMST projections for these scenarios are shown in Fig. 1c,d for the lower and higher mem-

ory exponents βT . Under the low-inertia assumption in the temperature response (βT = 0.35) the

unmitigated forcing scenario in Fig. 1a yields approximately two degree of warming every 40 yr

throughout the 21st century, and even higher rate of warming in the 22nd century. After stabilisation210

of the atmospheric CO2 concentration, the temperature will continue to rise about one degree Cel-

cius by the year 2200 AD, independent on when this stabilisation takes place. This one degree of

additional warming is the “warming in the pipeline." Under the high-inertia assumption (βT = 0.75)

the warming rate is approximately 30% higher, and the warming in the pipeline is about a 100%

higher. The high-inertia projection with mitigation action in 2110 AD is very close to the multi-215

model mean RCP8.5 projection (Meinshausen et al., 2011), suggesting some consistency between

this simple global temperature response model and the models employed by the IPCC in the CMIP5

project.

Fig. 1c,d suggest that the two-degree Celcius target is unlikely to be attained by rapid stabilisation

of atmospheric CO2 concentration, if this action is started later than 2030 AD. If radical action is220

postponed until the GMST has passed the two-degree limit, it is likely that the global temperature

will exceed three degrees by 2100 AD, and if action is postponed till the end of this century our

descendants may experience a world that is 5 – 8 degrees warmer than before industrialisation.

2.2 The atmospheric CO2 response

The dominant driver of climate change throughout the 20th century and beyond is anthropogenic225

radiative forcing, and in the 21st century, CO2 forcing is expected to be the main anthropogenic

driver. However, while AOGCMs traditionally have been driven by prescribing the atmospheric CO2

concentration, the policy relevant quantity is the CO2 emission rate. The main factor that determines

future CO2 forcing in a given emission scenario is the rate at which CO2 is washed out of the

atmosphere. This is where the carbon-cycle models incorporated in the ESMs become important. The230

model uncertainty is high, but they suggest the existence of a hierarchy of time scales, just as we have

found in the temperature response (Joos et al., 2011). This hierarchy is not immediately apparent

from the instrumental data records, but there is some indirect evidence, as will be demonstrated

below. However, let us first consider a primitive model with only one response time scale, analogous

to the simple EBM given by Eq. (1) for the surface temperature. In this model we assume that the235

Carbon flux out of the atmosphere is proportional to the anomaly ∆C of atmospheric Carbon content

relative to the preindustrial concentration C0. This assumption follows from a Taylor expansion to

first order of the Carbon flux I(∆C) = (1/τc)∆C+. . . around the preindustrial equilibrium I(C0) =
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0. The primitive equation for this perturbation is then

d

dt
∆C =− 1

τC
∆C +R, (5)240

where τC is the time constant for relaxation of CO2 concentration to the preindustrial equilibrium.

A first-order estimate of τC can be made from the estimates of the global carbon budget (Le Quéré

et al., 2014). The annual carbon emission in the period 1960 – 2010 grew almost linearly from 4

GtC/yr to 11 GtC/yr. We can solve Eq. (5 ) for this period with R= [4 + (7/50)] t GtC/yr in terms

of τC and the initial atmospheric Carbon inventory anomaly, ∆C1960. The conversion factor from245

concentration in ppm to GtC in total Carbon content is 2.12 (Le Quéré et al., 2014), which yields

∆C1960 = (315−280)×2.12≈ 74 GtC if we assume a CO2 concentration of 315 ppm in 1960 and

preindustrial concentration 280 ppm. The preindustrial Carbon content, corresponding to 280 ppm,

was C0 ≈ 594 GtC. This solution reproduces very well the observed evolution of the atmospheric

CO2 content in this period if one chooses τC = 33 yr, as shown in Fig. 2a, and suggests that ∆C(t)250

is described by the response function,

∆GC(t) = (r/τC)exp[−t/τC ]. (6)

A calibration factor r has been introduced here because this response function is certainly too sim-

plistic. For instance, Taylor expansion to first order does not take into account saturation of carbon

flux into the ocean, which will invoke a much longer response time governed by biogeochemical255

processes of transport of Carbon from the mixed layer into the deep ocean. If we fix τc at value

higher than 33 yr, r can be estimated by a simple, linear regression to the historic CO2 concentration

record. For τC = 33 yr such regression yields of course r ≈ 1, but for τC ≥ 300 yr it yields r ≈ 0.5.

This means that the “effective emission rate” in Eq. (5) is is reduced to rR(t). The natural interpreta-

tion is that approximately half of the emitted CO2 is almost instantly removed from the atmosphere260

and the remainder has a lifetime of centuries, maybe millennia, i.e., that the response occurs on one

fast and one slow time scale. Model studies, however, may suggest a hierarchy of time scales for

the CO2 concentration response. The large model comparison study of Joos et al. (2011) reveals a

non-exponential tail in the response to a pulse of emitted CO2. Fig. 2b shows that the multimodel

mean is very well approximated by a power-law of the form265

GC(t) = αCt
βC/2−1, (7)

with βC ≈ 1.6. This power-law response suggests the simple, linear response model

∆C(t) =

t∫
0

GC(t− t′)R(t′)dt′, (8)

where the emission rate R(t) may contain a stochastic contribution, giving rise to a stochastic com-

ponent to ∆C. This stochastic component of ∆C is shown in Fig. 2c, as the residual obtained after270
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subtracting a quadratic, polynomial fit to the Muana Lua record (the anthropogenic trend) and the

seasonal variation. The power spectral density of this residual is shown in Fig. 2c, and indicates that

the spectrum is consistent with a power law with spectral index βC ≈ 1.6 on time scales longer than

a few years. The short duration of the record precludes accurate estimates of βC from the spectrum,

but it lends some support to the power-law response model with memory exponent in the range275

1< βC < 2.

2.3 The constitutive relation

A simple relation between CO2 concentration anomaly and its radiative forcing is (Myhre et al.,

1998),

F = 5.35 ln(1 + ∆C/C0) Wm−2. (9)280

Given an emission scenario R(t), Eq. (8) can be used to compute ∆C(t) and from Eq. (9) one

obtains F (t). Finally this forcing is applied in Eq. (2) to compute ∆T (t).

3 Projections

3.1 Emission scenarios

Fig. 3 shows six different CO2 emission scenarios. The baseline (unmitigated) scenario is the blue285

curve, which is an exponential fitted through the actual emission rates in 1960 and in 2010 AD.

Interpreted as CO2 equivalents of all well-mixed greenhouse gases it is close to the RCP8.5 emission

scenario up till 2070, but is higher after this time, since the RCP8.5 emission rates saturate between

2070 and 2100. At 2030, 2070, and 2110 AD two types of mitigation action are considered. One

where emissions are reduced by 1% per yr (50% reduction over 70 yr) and one with 5% per yr290

(50% reduction over 13.5 yr). The former is considered politically and economically feasible (Stern,

2007), the latter is at the limit of what is possible without total disruption of the world economy

(Elzen et al., 2007). The scenarios are similar to those considered by Stocker (2013), although they

are prescribed from 1880 AD, not from the present day. This is important for the response models

employed here, since inertia (long memory) effects from the historical period of global emissions295

and warming influence the future projections.

3.2 Projections of CO2 concentration

Atmospheric CO2 concentrations ∆C(t) for the emission scenarios described in Fig. 3 are shown

in Fig. 4. They are computed from Eq. (8), using the emission scenarios of Fig. 3, and subsequently

estimating r by regressing to the historic ∆C(t) record. Fig. 4a shows the corresponding concentra-300

tion scenarios estimated from the exponential response kernel with τc = 33 yr. Few climate scientists
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believe that atmospheric, anthropogenic CO2 are eliminated as fast as this, but it is interesting to ex-

amine, since this is still claimed by some “global warming skeptics” (Solomon, 2008). In Fig. 4b

and Fig. 4d the same scenarios are shown, assuming τc = 300 yr and τc =∞, respectively. Here

r ≈ 0.5, i.e., 50% of the emitted CO2 immediately removed from the atmosphere and the rest de-305

caying exponentially with e-folding time τC . Fig. 4c employs the power-law response kernel with

βC = 1.6. Fig. 4b and Fig. 4c are almost identical, indicating that immediate removal of half of the

emitted CO2, followed by an exponential decay with τC = 300 yr, has almost the same effect as a

long-memory (power-law) response with βC = 1.6.

The unmitigated concentration scenarios (blue curves) are almost the same in all models, and are310

very similar to the RCP8.5 scenario up to 2100AD. This is because the calibration factor r adjusts

the scenario to fit the historic record. However, the evolution after mitigation action has started varies

considerably between the models. The overly optimistic model in Fig. 4a, where τC = 33 yr, predicts

that the concentration starts declining a few decades after emission reduction has started, whereas in

the other scenarios concentration continues to rise beyond 2200 AD in the 1% reduction scenarios.315

The scenario corresponding to the red full curves in Fig. 4b or Fig. 4c correspond closely to the full

RCP8.5 scenario.

3.3 Projections of the GMST

The forcing F (t) for the various concentration scenarios is computed from Eq. (9), and inserted

into Eq. (2) to obtain the temperature evolution. Fig. 5 shows results for the concentration scenarios320

obtained from the exponential CO2 concentration model with τC = 33 yr and the power-law model

with βC = 1.6, considering these to represent low- and high-inertia ends of the CO2 response. For

each of these cases, low- and high-inertia ends (βT = 0.35 and βT = 0.75) of the GMST response

are presented in the figure.

The projections for the high-inertia combination βC = 1.6, βT = 0.75 shown in Fig. 5d is the one325

that is most consistent with multi-model CMIP5 projections in the RCP8.5 scenario. As mentioned

in Sect. 3.2, the red curve in Fig. 4c is close to the RCP8.5 CO2-concentration pathway, and the

corresponding GMST response shown by the red curve in Fig. 5d is close to the multimodel-mean

GMST response given in Fig. 6 of Meinshausen et al. (2011). The high-end inertia (βT = 0.75)

for GMST response is also more consistent with analysis of instrumental records and multiproxy330

reconstructions of GMST (Rypdal et al., 2015) and millennium-long simulations of intermediate

and high complexity (Østvand et al., 2014). The high-end inertia for the CO2-response is also more

consistent with complex Carbon-cycle models, and the long-memory nature of the residual Mauna

Lua record, as shown in Fig. 2d.
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3.4 Policy implications335

The range of the projections corresponding to given emission scenarios presented in Fig. 5a – d is

much wider than the uncertainty of scientific knowledge reflected in the climate science literature.

But it may give an indication of the doubts which are quite common outside the climate science

community. Among these are the belief that CO2 is removed from the atmosphere within decades

(Solomon, 2008), and that the GMST relaxes to a new radiative equilibrium within a few years340

after a sudden perturbation of radiative forcing (Schwartz, 2007). Fig. 5a presents projections which

follow from these perceptions. Interestingly, the unmitigated projections up to 2110 AD (blue curves)

are almost identical in all panels in Fig. 5. Hence, the inertia in the responses has little influence

on the unmitigated response to the BAU emission scenario and uncertainty about the magnitude

of the inertia parameters does not contribute much to uncertainty in the response to this scenario.345

Uncertainty in these parameters mainly plays a role for the projected effect of the emission reduction

after action has been taken, as can be observed by comparing Fig. 5a and Fig. 5d. The effect of

emission reduction is considerably greater under the optimistic low-inertia assumptions, but in all

circumstances, delayed mitigation action increases the GMST in 2200 AD by 1-2 degrees for every

40 yr of delay.350

One implication from this observation is that the global warming optimists have little reason for

their optimism, since even the projections in Fig. 5a imply that the two-degree climate target will

not be attained unless a radical and consistent emission reduction regime is initiated within a few

decades from now. If this mitigation regime is delayed and initiated one generation later even the

optimistic projections indicate that the temperature will peak close to 3 degrees during the next355

century, and postponing yet another generation will let the temperature to rise beyond 4 degrees. If

emission reductions are raised to the absolute pain threshold of 5% per yr, the peak temperature will

not change much, but the temperature will come down faster after action has been initiated.

Under the more pessimistic, and presumably more realistic, circumstances presented in Fig. 5b

and Fig. 5d the two-degree target is attainable only if extremely radical reductions (5% per yr) are360

initiated within the coming two decades. Since such a strong emission reduction regime probably

is politically infeasible, this target most likely is unattainable, and the globe will warm 3-7 degrees

before the end of next century. Where the GMST will end within this range will essentially depend

on the time it takes before radical global emission reductions is implemented. Hence, the slow socio-

economic response may turn out to be the most detrimental of all inertia effects which threaten to365

aggravate global warming.

4 Conclusions

It has been demonstrated that an extremely simple model for the global temperature response and the

elimination of excess CO2 from the atmosphere is all that is needed to make reasonable projections
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of global temperature under idealised emission scenarios. The model contains only four parameters;370

characterising sensitivities and inertia in the temperature and CO2 responses, respectively. All pa-

rameters can be estimated from observation data, although some constraining from high-complexity

ESMs is useful. The model can be used as a pedagogical tool for students and scientists with some

knowledge of elementary calculus, and projections can easily be produced under emissions scenarios

different from those presented here.375

The simplicity of the model may be perceived as an insult to “real” climate modellers, but as

long as one deals only with global quantities, simplicity does not necessarily mean lack of accuracy.

Global temperature has been found to respond quite linearly to forcing in general circulation models

(Meehl et al., 2004), and as long as the climate system is far from a major tipping point, this linearity

may also pertain to the response of atmospheric CO2 content to emissions. Under linearity and380

stationarity assumptions these two quantities are fully described in terms of their respective response

functions, whose form can be postulated from basic physical principles and parameters estimated

from observation.

For the policy makers of the world it is crucial to know to what extent an economically and politi-

cally painful mitigation scenario can be expected to be effective in constraining global warming. The385

analysis presented here confirms the main conclusion drawn by Stocker (2013); the greatest threat

against the stability of the global climate is the inability of humankind to respond in time.

Acknowledgements. This work was funded by project no. 229754 under the the Norwegian Research Council

KLIMAFORSK programme.

Appendix A: Response to step forcing for one-box model390

The linearised one-box model has the form

C1
dT1

dt
=− T1

Seq
+F. (A1)

Here T1 is the perturbation of the mixed-layer temperature from an imagined equilibrium and F is

the forcing relative to that equilibrium. C1 is the heat capacity per square meter of the mixed layer,

and the term T1/Seq is the linearised expression for the intensity of the outgoing long-wave radiation

(OLR). It is determined by the (linearised) Stefan-Boltzmann (SB) law and the effective emissivity

of the atmosphere, which also contains the effects of fast feedbacks. The nonlinear version and the

linearisation procduure is described in Appendix E. If a new equilibrium is attained with the forcing

F we have

Seq =
T1

F
,

which makes it natural to name Seq the equilibrium climate sensitivity. It is determined from the SB

constant and the effective atmospheric emissivity, i.e., it is totally determined by the atmosphere.
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The response function (Greensfunction: the response to F = δ(t)) for the one-box model is

G(t) =
1

C1
e−t/τ1H(t), where τ1 = C1Seq,

and H(t) is the Heaviside unit step function. The response to a step-function forcing F (t) =H(t)

is,

T1(t) =

t∫
−∞

G(t− t′)dt′ = Seq(1− e−t/τ1). (A2)395

Appendix B: Response to step forcing for two-box model

The recent work by Geoffroy et al. (2013) shows that a two-exponentials response can be fitted very

well to a number of 150 yr AOGCM runs with step-function forcing. This raises the question whether

the power-law LRM-response representation is really only an inaccurate expression of a a response

with two exponential time scales, or vice versa. There is also an issue of whether the AOGCMs400

really capture the true scaling properties of the observed response. The two-box model couples the

mixed layer to the deep ocean temperature T2 through a simple heat conduction term

C1
dT1

dt
= − 1

Seq
T1−κ(T1−T2) +F (B1)

C2
dT2

dt
= κ(T1−T2).

where C2 is the heat capacity of the deep ocean and κ is a heat conductivity. In the limit C2� C1,405

the Greens-function for T1(t) correct to lowest order in the small parameter C1/C2, is very simple

and transparent;

G(t) =

(
Str
τtr

e−t/τtr +
Seq −Str

τeq
e−t/τeq

)
H(t), (B2)

The reponse to a step-function forcing; F =H(t) then becomes

T1(t) = Str(1− e−t/τtr ) + (Seq −Str)(1− e−t/τeq ), (B3)

where we have introduced some new parameters,

Str =
Seq

1 +κSeq
, τtr = C1Str, τeq =

C2Seq
1−Str/Seq

. (B4)

These parameters replace the heat capacities C1,2 and the heat coupling constant κ, whose physical410

meaning is easy to grasp, but hard to measure directly. The meaning of the new parameters is ap-

parent if we consider the response to a step-function forcing. Since C1/C2� 1 we have τtr� τeq ,

and for t� τeq the response is completely dominated by the first term in equation (B3), and hence

relaxes exponentially with the transient time constant τtr to the new quasi-equilibrium Str, which
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is denoted the transient climate sensitivity. However, when t approaches τeq the second term comes415

into play, and there is a new delayed response with time constant τeq giving relaxation to the full

radiative equilibrium Seq .

From comparing the terms −T1/Seq and −κ(T1−T2) in Eq. (B) we observe that κSeq measures

the ratio between the heat flux into the deep ocean and the OLR at the early stage of the response,

i.e., when T2 is still close to zero. From Eq. (B4) we have that the part of the sensitivity caused by

the slow response from interaction with the deep ocean is

Seq −Str = (κSeq)Str.

Hence, it appears that κSeq is an important parameter. If κSeq� 1 the inclusion of the deep ocean

has little effect on the relaxation to equilibrium. If κSeq ' 1 or larger the slow response leads to a

significant rise of the temperature after the transient equilibrium has been attained. The fast and the

slow time constants are always well separated if C1� C2 since

τtr
τeq

=
C1

C2

κSeq
(1 + kSeq)2

≤ C1

4C2
.

Appendix C: Response to step forcing in LRM model and GCMs

The LRM-scaling response function GT (t) = αT t
βT /2−1 yields a response T ∼ tβT /2 to a step in

the forcing at time t= 0, while a linearly growing forcing yields a response T ∼ tβT /2+1. Since420

the forcing is logarithmic in the CO2 concentration the latter corresponds to exponentially growing

concentration. Climate-model runs with linearly growing forcing are of course more realistic than

step-function runs, but both have been conducted as part of the CMIP5 project. Examples are 150 yr

long simulations of the GISS-E2-H model with a sudden quadrupling of the CO2-concentration

(Fig. 6a) and a 1% per yr increase in the CO2-concentration (Fig. 6b). A fit of the LRM-scaling425

response T ∼ tβT /2 to the GISS-model result in Fig. 6a yields βT ≈ 0.32, and the solution is shown

as the red curve in the figure. The solution of the form T ∼ tβT /2+1 is shown as the red curve in

Fig. 6b. The fit to the tail of the step-function response looks good up to the 150 yr duration of the

simulation, but the divergence of the solution as t→∞ indicates that the power-law tail with βT > 0

is unrealistic for sufficiently large times. There exist few AOGCM simulations that investigate the430

response to such idealised forcing on millennium time scale. In Hansen et al. (2011) some figures

with results of such runs are given. Fig. 6c is an adaptation of Fig. 3 in Hansen et al. (2011), which

shows a 2000 yr long run of the GISS ModelE-R, and Fig. 6d shows a plot of the function ctβT /2+1

with β = 0.32. It demonstrates that at least this particular AOGCM exhibits the power-law tail in the

temperature response on time scales up to two millennia.435

Note that the βT ≈ 0.32 obtained for the LRM-model on long time scales is smaller than the

βT ≈ 0.75 estimated from the spectra of the residual of the instrumental data after the response

to the deterministic forcing has been subtracted (Rypdal and Rypdal, 2014). If we produce such
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residuals by subtracting the red curves from the GISS-model curves in Fig. 6a,b the result looks like

a fractional Gaussian noise (fGn) with spectral exponent β ≈ 0.65. As mentioned in Sect. 2.1 an fGn440

xβ(t) characterised by the spectral exponent β is produced by the convolution integral Eq. (2) in the

main manuscript if the response kernel is G(t)∼ tβ/2−1 and the forcing function F (t) is a white

Gaussian noise x0(t) (white noise is an fGn with β = 0). In other words we have,

xβ(t) =

∞∫
−∞

t′β/2−1H(t− t′)x0(t′)dt′, (C1)

whereH(t) is the unit step function. By using the convolution theorem for the Fourier transform it is445

easily shown (Rypdal et al., 2015) that if F (t) is an fGn with spectral exponent βF , and the response

function has exponent βT , then the convolution will produce an fGn with β = βT +βF ;

xβ(t) =

∞∫
−∞

t′βT /2−1H(t− t′)xβF
(t′)dt′. (C2)

In Rypdal et al. (2015) it was suggested that the discrepancy between the spectral exponent β of

residuals in observed and simulated GMST records could be explained by assuming some long-range450

memory (βF > 0) in the stochastic forcing. It was pointed out there that this LRM could even be

present in the CO2-forcing, since some recent studies indicate strong spatiotemporal heterogeneity

in the atmospheric CO2 concentration which might give rise to a fluctuating global component of

the global CO2-forcing with long-memory properties.

Appendix D: Two-box vs. LRM fitting to GCM results455

Geoffroy et al. (2013) have fitted the two-box model to 16 runs of 150 yr length to step-function

forcing. There are four fitting parameters, and the fits are generally good. There is, however, a wide

scatter in the fitting parameters between the different models, which may be an indication of overfit-

ting. In Fig. 7 the surface tempeature solution to the two-box model

T1(t) = [Str(1− exp(−t/τtr)) + (Seq −Str)(1− exp(−t/τeq))]F4×CO2
, (D1)460

and to the LRM model

T1(t) = ctβT /2F4×CO2
, (D2)

have been fitted to simulation results for the GMST of climate models with step-forcing, F (t) =

F4×CO2
H(t). Here F4×CO2

≈ 8.61 Wm−2 is the forcing associated with a quadrupling of the atmo-

spheric CO2 concentration. The fitting parameters obtained are given in Table 1.465

The LRM-model in general gives a poorer fit on the short time scales. This is not surprising, since

the LRM-response ctβT /2 has an infinite derivative at t= 0. However, a much better approximation

is obtained if we fit the LRM model only in the interval (0,100) months, but then βT is raised to
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Model τ1 (months) τ2 (months) Str (Km2/W) Seq (Km2/W) c βT

GISS-E2-H 26 663 0.29 0.46 0.14 0.32

BNU-ESM 46 729 0.46 0.69 0.21 0.33

CCSM4 49 4.1× 1010 0.33 3.9× 106 0.10 0.40

CNRM_CM5 38 390 0.37 0.58 0.20 0.31

MPI-ESM-LR 34 1061 0.46 0.75 0.20 0.33
Table 1. Parameters estimated by fitting Eqs. (D1) and (D2) to the climate model responses to an abrupt qua-

drupling of atmospheric CO2 shown in Fig. 7. The table shows the parameters obtained by the Mathematica

routine FindFit.

approximately 0.75. If we implement a four-parameter model with one power-law (βT ≈ 0.75) up

to 100 months and another (βT ≈ 0.35) for t > 100 months, we obtain fits comparable to the two-470

exponential model. There is a wide scatter in the model parameters for the two-box model. Note

particularly the huge values for τeq and Seq for the CCSM4 model. The long time-scale tail is not

captured by a reasonable exponential, but is well approximated by a reasonable power-law. On the

other hand, the scatter in the LRM-model parameters is small. All this indicates that the two-box

model may suffer from overfitting in some cases.475

When projections are limited to 2200 CE there is no practical difference between using a power-

law response kernel (the LRM model) and the two-exponential kernel (the two-box model). This is

illustrated in Fig. 8, where we compute the response for the exponential CO2-concentration model

with τC = 33 yr and the two-box model parameters corresponding to the GISS-E2-H model and the

CNRM_CM5 models, respectively. The parameters for the two models differ significantly, but the480

projections are almost identical. Morever, they are very similar to the projections in Fig. 5a, where

the temperature response is produced by the LRM-model with τC = 33 yr and βT = 0.35. This

demonstrates that the mathematical divergence of the solution Eq. (D2) for a step-function forcing

has little impact on the projection up to 2200 CE for the forcing scenarios considered here. The

advantage of the power-law kernel is that it provides a more parsimonious description (fewer fitting485

parameters) which provides a more precise parameter estimation.

Appendix E: Divergences, causality and initial conditions

IfG(t) is a power law the integral over prehistory t ∈ (−∞,0) may lead to paradoxes, such as diver-

gences of the integral. The solution to the paradox is to interpret the power-law as an approximation,

for instance to a superposition of exponential response kernels. For a white-noise forcing this cor-490

responds to an aggregation of Ornstein-Uhlenbeck (OU) processes, which are known to have the

potential to produce a process that is a very good approximation to a fractional Gaussian noise (fGn)

up to the time scale corresponding to the OU process with the greatest correlation time (Granger,

1980).
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The scaling properties on scales of decades and longer arise from the heat transport within the495

oceans. This transport exhibits a maximum response time, which will provide an upper (exponen-

tial) cut-off of the power-law response function, but the characteristic time of this cut-off may be

centuries or millennia. Fraedrich and Blender (2003) state in their abstract: “Scaling up to decades

is demonstrated in observations and coupled atmosphere-ocean models with complex and mixed-

layer oceans. Only with the complex ocean model the simulated power laws extend up to centuries.”500

If we don’t treat the power-law as an approximation we have to deal with the divergences of the

integral

∆T (t) =

t∫
−∞

G(t− t′)F (t′)dt′, (E1)

where G(s) = sβT /2−1. If we consider the unit step-function forcing F (t) =H(t), and βT 6= 0, the

integral is505

∆T (t) = lim
ε→0+

t∫
ε

(t− t′)βT /2−1 dt′ = lim
ε→0+

t∫
ε

sβT /2−1 ds= lim
ε→0+

2

βT
(tβT /2− εβT /2). (E2)

Clearly ∆T (t) diverges as t→∞ if βT > 0, but it also diverges if βT < 0 (as ε→ 0+). For βT = 0

there is a logarithmic divergence in both limits.

For physically meaningful results the βT > 0 case requires some sort of cut-off (e.g., an exponen-

tial tail) for sufficiently large t, and the βT < 0 case requires an elimination of the strong singularity510

of G(s) at s= 0. A shown in Appendix D, AOGCMs in the CMIP5 ensemble with step function

forcing indicate a power-law response for large s at least up to 150 yr (and the GISS-E2-R model

up to 2000 yr) with βT ≈ 0.35, so βT > 0 is the case of interest for the global temperature response.

The AOGCMs are also well approximated by an exponential response in the limit s→ 0 (for s up to

a few years), so an exponential truncation in this high-frequency limit is also appropriate.515

The truncation of the power-law kernels is a physical, and not a technical mathematical issue. It

is an approximation to a hierarchy of exponential responses. With this interpretation the divergences

evaporate. Below is a more detailed outline of this philosophy in an energy-balance context. Let

us take as a starting point the simple zero-dimensional EBM before linearisation of the Stefan-

Boltzmann law;520

C
dT

dt
=−εσST 4 + I(t), (E3)

where T is surface temperature in Kelvin, C is an effective heat capacity per area of the Earth’s sur-

face, σS is the Stefan-Boltzmann constant, ε is an effective emissivity of the atmosphere, and I(t) is

the incoming radiative flux density at the top of the atmosphere. Let I0 = I(0) be the initial incom-

ing flux, F (t) = I(t)− I0 is the radiative forcing, Teq = (I0/εσS)1/4 is the equilibrium temperature525

at t= 0, ∆T (t) = T (t)−Teq is the temperature anomaly measured relative to the initial equilibrium
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temperature, and ∆T0 = ∆T (0) is this anomaly at t= 0. Note that F here is the perturbation of the

radiative flux with respect to the initial flux I0 and not with respect to the flux εσST 4
0 that would

be in equilibrium with the initial temperature T0. The linearised EBM for the temperature change

relative to the temperature Teq (the one-box model) is530

d∆T

dt
=−ν∆T +F(t), ∆T (0) = ∆T0, (E4)

where ν = 4εσST
3
eq/C,F(t) = F (t)/C. By definitionF(0) = [I(0)−I0]/C = 0. This is Eq. (1) and

Eq. (A1) with slightly different notation. The solution to the initial value problem (i.v.p.) Eq. (E4),

with the initial condition ∆T (0) = ∆T0, takes the form

∆Ti.v.p. =

t∫
0

G(t− t′)F(t′)dt′+ ∆T0e
−νt, (E5)535

where G(s) = exp(−νs). The generalisation to a linear, causal response model, where G(s) is

not necessarily exponential, involves extending the integration domain in Eq. (E5) to the interval

(−∞, t);

∆Tr.m.(t) =

t∫
−∞

G(t− t′)F(t′)dt′. (E6)

From the initial condition ∆T (0)r.m. = ∆T0 Eq. (E6) yields,540

∆T0 =

0∫
−∞

G(−t′)F(t′)dt′. (E7)

For exponential response G(s) = exp(−νs) it is easy to verify that ∆Ti.v.p.(t) = ∆Tr.m.(t), and

Eq. (E7) yields the following relation between the initial temperature anomaly and the forcing F(t)

for t ∈ (t,0);

∆T0 =

0∫
−∞

eνt
′
F(t′)dt′. (E8)545

For the exponential response there is no “divergence issue” in Eq. (E6). Neither is there such an issue

for the two-exponential solution to the two-box model (Geoffroy et al., 2013). An “N -box model”

exhibits a response function for the temperature in each box which is a superposition of exponentials;

G(s) =
∑N
i=1 ai exp(−νis). For the surface (mixed layer) box the temperature anomaly takes the

form550

∆Tr.m.(t) =

N∑
i=1

aie
−νit

t∫
−∞

eνit
′
F(t′)dt′. (E9)

On the other hand, the N -box initial value problem has solution of the form

∆Ti.v.p.(t) =

N∑
i=1

aie
−νit

t∫
0

eνit
′
F(t′)dt′+

N∑
i=1

bie
−νit, (E10)
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where the coefficients bi are linearly related to the initial temperatures of each box; bi =
∑N
j=1MijT0j .

The condition T̃i.v.p.(t) = T̃r.m.(t) now yields the relations between the initial temperatures and the555

prehistory of the forcing;

N∑
j=1

Mij∆T0j = ai

0∫
−∞

eνit
′
F(t′)dt′ for i= 1, . . . ,N. (E11)

With a white-noise forcing F(t) the Eq. (E4) is the Itô stochastic differential equation (in physics

often called the Langevin equation). The solution is the Ornstein-Uhlenbeck (OU) stochastic process,

which in discrete time corresponds to the first-order autoregressive (AR(1)) process. The power560

spectral density of this process is essentially a Lorentzian, which means that the high-frequency

(f � ν) part of the spectrum has the form ∼ f−2, and the low-frequency part ∼ f0. This means

that if the climate response were well described by a one-box EBM we could use a power-law

response model with βT ≈ 2 on time scales much shorter than the correlation time τc = ν−1. On

these time scales the stochastic process exhibits the characteristics of a Brownian motion (Wiener565

process), which is a self-similar process with spectral index β = 2. This process is non-stationary,

and hence suffers from the divergences that we are worried about. But even though the Brownian

motion diverges, the OU-process does not, because of the flattening of the spectrum for f � ν.

Both observation data and AOGCMs indicate that the one-box EBM is inadequate, but the con-

siderations above are equally valid for an N -box model, for which the white-noise forcing gives570

rise to an aggregation of OU-processes with different νi. Such an aggregation is known to be able

to produce a process with approximate power-law spectrum with 0< β < 2 on time scales τ < ν−1
min

(Granger, 1980).

Lovejoy et al. (2013) specifically argue that volcanic forcing may have a scaling exponent βF ≈
0.4, and hence the convergence criterion β = βT+βf < 1 then requires βT < 0.6. One remark to this575

is that the above discussion shows that the β < 1 criterion is not necessary on time scales shorter than

τ < ν−1
min. However, observation indicates that β < 1, so this does not invalidate their argument. More

important is that in recent papers the response to volcanic forcing has been subtracted from both

instrumental and multiproxy reconstruction data Rypdal and Rypdal (2014) and from millennium-

long AOGCM simulations (Østvand et al., 2014), and the residuals have been analysed for β without580

finding a detectable influence of the volcanic forcing on β. The same is seen by comparing control

runs of the AOGCMs with those driven by volcanic forcing (Østvand et al., 2014).

The importance of including the prehistory of the energy-flux imbalance when deriving projec-

tions for future change can be illustrated by considering a prehistory consisting of volcanic forcing

FV (t) only. The particular feature of volcanic forcing is that it consists of a succession of negative585

spikes in the radiation flux. If we assume that the time t= 0 is in a period with no volcanic forcing

we can for illustration think of the forcing as a succession of negative forcing events of short dura-

tion, randomly distributed in time with typically longer waiting times between events than durations.

Let us further assume that the climate response is so slow that G(t) varies by a small amount over
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the mean waiting time. Hence, there exists time intervals of duration ∆t which are short enough for590

G(t) to be nearly constant over the interval, but long enough to have a sufficient number of large

volcanic eruptions to estimate a mean volcanic forcing FV . This assumption is not very good in

practice, but let us use it for illustration. Under this assumption we can approximate the integral

t1+∆t/2∫
t1−∆t/2

G(t− t′)FV (t′)dt′ ≈G(t− t1)

t1+∆t/2∫
t1−∆t/2

FV (t′)dt=G(t− t1)FV ∆t, (E12)

and hence from Eq. (E6) the temperature anomaly due to the volcanic forcing is595

∆TV (t) = FV

t∫
−∞

G(t− t1)dt1 = FV

∞∫
0

G(s)ds
def
= −∆Tvolc. (E13)

This result is meaningful only if the integral
∫∞

0
G(s)ds is finite, i.e., if power-law response kernels

are properly truncated. The obvious, but still interesting, observation is that volcanic forcing keeps

the temperature, when averaged over the time scale ∆t, on a constant level Teq−∆Tvolc, i.e., the

time-averged temperature is ∆Tvolc lower than the temperature at which the climate system is in600

equilibrium during times with no volcanic forcing.

Assume some additional (e.g., anthropogenic) forcing FA(t), for which FA = 0 for t≤ 0. Then

the total temperature anomaly for t > 0 would be

∆T (t) = ∆TV (t) + ∆TA(t) =−∆Tvolc +

t∫
0

G(t− t′)FA(t′)dt′, (E14)

implying that the temperature starts changing in response to this forcing from a non-equilibrium605

initial state. However, the statistics of volcanic forcing is more challenging than assumed above,

and one has to consider the possibility of long periods with zero forcing, longer than the largest

temperature relaxation time reflected in the response function G(t). If such a quiet period starts at

time tq , then the temperature for t > tq is

∆T (t) = FV

∞∫
t−tq

G(s)ds+

t∫
0

G(t− t′)FA(t′)dt′, (E15)610

and since the integral over the tail ofG(s) is assumed to be finite (there exists a maximum relaxation

time constant τmax) the first term on the right of Eq. (E15) will vanish if t > tq + τmax. In other

words, if the time of observation has been preceded by a very long period of weak volcanic forcing

the additionally forced temperature change may be unaffected by the non-equilibrium imposed by

volcanic forcing. If we consider, as another example, that “normal” volcanic forcing is resumed at615

t= 0 after a pause of length |tq|> τmax, then ∆T according to Eq. (E15) grows from zero towards

the expression in Eq. (E14) as t grows beyond tmax. Hence, during the transient period t ∈ (0, τmax)

there may be a volcanic cooling that counteracts anthropogenic warming, provided there has been

long pause in volcanic forcing preceding the era of anthropogenic forcing.

20



The discussion made here serves to illustrate that the non-equilibrium of the radiative flux balance620

at t= 0 may influence the subsequent temperature evolution, and that volcanic forcing may be the

source of such an imbalance. Knowledge about the of the history of volcanic forcing in the time

interval (−τmax, t) can be helpful in assessing the influence of volcanic forcing on the long-term

temperature evolution in the anthropocene. In the present paper the implicit assumption has been

made that Eq. (E14) is valid, i.e., that there is no long pause in volcanic forcing in the period ex-625

tending from 1880−τmax to 2200 CE. Hence this forcing only represents a constant downshift of the

temperature. This assumption may deserve closer scrutiny.

Appendix F: Non-stationarity of the CO2 response

In Sect. 2.2 we found (by comparing Figs. 4b and 4c that the LRM CO2 response with βC = 1.6

gives approximately the same evolution of CO2 concentration up to 2200 CE as a response where630

50% of the emitted CO2 is absorbed by the surface almost immediately and the remainder decays ex-

ponentially with a time constant τC = 300 yr. This is analogous to the situation with the temperature

response, where where an LRM response gives very similar results as a two-exponential response

with appropriate fitting of model parameters (see Appendix D). The most important difference is

that the βC-parameter is larger than unity. A step-function emission rate R(t) =H(t) will give rise635

to a CO2 concentration that grows like (2αT /βC)tβC/2. This non-stationarity (divergence) of the

response as t→∞ is reasonable, since the surface will not be able to absorb a sufficient fraction of

the constantly emitted CO2 to establish a new equilibrium. The exponential response kernel Eq. (6),

on the other hand yields the response r[1− exp(−t/τC)] to the step forcing. This implies establish-

ment of a new equilibrium CO2-concentration after t� τC . This has little consequence as long as640

we consider projection only up to 2200 CE (and τC ≈ 300 yr). On millennium time scale we have

the positive ice-age feedback, by which warming may lead to net release of CO2 to the atmosphere,

and hence lead to continuing growth of CO2 concentration. It is assumed to be important in the trig-

gering of glacial-interglacial transitions, although it is not very well understood. On time scales of

hundreds of kyr we have the negative Carbon weathering-cycle feedback that will eventually lead to645

a Carbon cycle equilibrium. The most interesting feature of this feedback in the present context is

that it suggests that the anthropogenic global warming event may last for such a long time in absence

of effective Carbon sequestration measures (Archer, 2010).

A more problematic non-stationarity of the Carbon-cycle response arises from stochastic forcing.

In this case the power-law response function will give rise to a fractional Brownian motion (fBm)650

with power-spectral index βC ≈ 1.6. This is a non-stationary stochastic process in the sense that the

variance increases with time as tβC−1, which is not physically reasonable for sufficiently large t.

Here we may be saved by an exponential cut-off of the power-law tail, but this requires some sort

of negative Carbon-cycle feedback. It is difficult to assess the magnitude of the natural stochastic

21



component of the CO2 emission rate. If it small enough the weathering-cycle feedback may do the655

job.
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Figure 1. (a): Light blue curve is the instrumental GMST for 1880 – 2010 AD. Black curve is the instantaneous

response to the linearly extrapolated forcing scenario shown in panel (b). Blue curve is the response according to

the model Eq. (2) with βT = 0.35, and the red curve with βT = 0.75. (b): The blue curve is a linearly projected

forcing to 2200 AD with the same mean growth rate as the the RCP8.5 scenario in the period 2010 – 2100 AD.

The brown curve is the stabilisation of this forcing in 2030 AD, the blue curve in 2070 AD, and the red curve

in 2110 AD. (c): GMST responses to the forcing scenarios in (b) with βT = 0.35. Colours correspond to those

in (b). (d): Same as in (c), but with βT = 0.75.
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Figure 2. (a): Blue curve shows the atmospheric CO2 concentration as measured by the Mauna Lua observatory.

The red curve is the concentration computed from Eq. (5) with τC = 33 yr, ∆C1960 = 74 GtC (corresponding

to an anomaly of 315-280=35 ppm), and C0 = 594 GtC (corresponding to 280 ppm). (b): Black curve is the

multimodel mean CO2 response to a pulse of emitted CO2 as given in Joos et al. (2011). The red, dashed curve

is a least-square fit of a function of the form αCt
βC/2−1 with the estimated βC ≈ 1.6. (c): The residual Mauna

Lua signal after subtracting the quadratic polynomial and seasonal trends. (d): The power spectral density of

the residual in (c) estimated by the periodogram presented in a log-log plot. The blue, dashed line has negative

slope βC = 0.85, and the red, dashed line βC = 1.6.
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Figure 3. Blue curve is carbon emission rate R(t) scenario obtained by fitting the exponential S0 exp(gt)

to the emission rate 4 GtC/yr in 1960 and 11 GtC/yr in 2010 AD. The full, brown, orange, and red curves

are the subsequent R(t) after initiation of 1% reduction of emission rate per year. The dashed curves are the

corresponding rates with 5% reduction per year.
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Figure 4. Projections of CO2 concentration under the emission scenarios in Fig. 3 using the modelling explained

in Sect. 2. The colours correspond to those in Fig. 3. (a): τC = 33 yr. (b): τC = 300 yr. (c): βC = 1.6. (d):

τC =∞.
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Figure 5. (a): The evolution of the GMST for the CO2 concentration scenarios shown in Fig. 4a and Fig. 4c.

(a): τC = 33 yr and βT = 0.35. (b): βC = 1.6 and βT = 0.35. (c): τC = 33 yr and βT = 0.75. (d): βC = 1.6

and βT = 0.75.
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4 Climate response function

Climate response to human and natural forcings can be sim-
ulated with complex global climate models, and, using such
models, it has been shown that warming of the ocean in re-
cent decades can be reproduced well (Barnett et al., 2005;
Hansen et al., 2005; Pierce et al., 2006). Here we seek a sim-
ple general framework to examine and compare models and
the real world in terms of fundamental quantities that eluci-
date the significance of the planet’s energy imbalance.
Global surface temperature does not respond quickly to a

climate forcing, the response being slowed by the thermal
inertia of the climate system. The ocean provides most of
the heat storage capacity, because approximately its upper
100m is rapidly mixed by wind stress and convection (mix-
ing is deepest in winter at high latitudes, where mixing occa-
sionally extends into the deep ocean). Thermal inertia of the
ocean mixed layer, by itself, would lead to a surface temper-
ature response time of about a decade, but exchange of water
between the mixed layer and deeper ocean increases the sur-
face temperature response time by an amount that depends
on the rate of mixing and climate sensitivity (Hansen et al.,
1985).
The lag of the climate response can be characterized by

a climate response function, which is defined as the fraction
of the fast-feedback equilibrium response to a climate forc-
ing. This response function is obtained from the temporal re-
sponse of surface temperature to an instantaneously applied
forcing, for example a doubling of atmospheric CO2. The
response function for GISS modelE-R, i.e., the GISS atmo-
spheric model (Schmidt et al., 2006) coupled to the Russell
ocean model (Russell et al., 1995), is shown in Fig. 3. The
Russell ocean model conserves water and salt mass, has a
free surface with divergent flow, uses linear upstream scheme
for advection, allows flow in and out of 12 subresolution
straits, and is used here with 13 layers at 4� ⇥ 5� resolution.
The coupled modelE-R has been characterized in detail via
its response to many forcings (Hansen et al., 2005b, 2007).
About 40 percent of the equilibrium response is obtained

within five years. This quick response is due to the small
effective inertia of continents, but warming over continents
is limited by exchange of continental and marine air masses.
Only 60 percent of the equilibrium response is achieved in a
century. Nearly full response requires a millennium.
Below we argue that the real world response function is

faster than that of modelE-R. We also suggest that most
global climate models are similarly too sluggish in their re-
sponse to a climate forcing and that this lethargy has impor-
tant implications for predicted climate change. It would be
useful if response functions as in Fig. 3 were computed for all
climate models to aid climate analysis and intercomparisons.
Also, as shown in the next section, the response function can
be used for a large range of climate studies.
Held et al. (2010) show global temperature change ob-

tained in 100-yr simulations after instant CO2 doubling for

 
Fig. 1.  Climate forcings employed in this paper.  Forcings through 2003 (vertical line) are the same as 
used by Hansen et al. (2007), except the tropospheric aerosol forcing after 1990 is approximated as -0.5 
times the GHG forcing.  Aerosol forcing includes all aerosol effects, including indirect effects on clouds 
and snow albedo.  GHGs include O3 and stratospheric H2O, in addition to well-mixed GHGs.These data 
are available at http://www.columbia.edu/~mhs119/EnergyImbalance/Imbalance.Fig01.txt 
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Fig. 3. Climate response function, R(t), i.e., the fraction of equi-
librium surface temperature response for GISS climate model-ER,
based on the 2000 yr control run E3 (Hansen et al., 2007). Forcing
was instant CO2 doubling with fixed ice sheets, vegetation distribu-
tion, and other long-lived GHGs.

the Geophysical Fluid Dynamics Laboratory (GFDL) cli-
mate model, a model with equilibrium sensitivity 3.4 �C for
doubled CO2. Held et al. (2010) and Winton et al. (2010)
draw attention to and analyze two distinct time scales in the
climate response, a quick partial climate response with char-
acteristic time about 5 yr and a slow warming on century time
scales, which they term the “recalcitrant” component of the
climate response because it responds so sluggishly to change
of the climate forcing. This decomposition provides useful
insights that we will return to in our later discussion. The
GISS modelE-R yields a similar response, as is more appar-
ent with the higher temporal resolution of Fig. 4a.
Climate response time depends on climate sensitivity as

well as on ocean mixing. The reason is that climate feed-
backs come into play in response to temperature change, not
in response to climate forcing. On a planet with no ocean
or only a mixed layer ocean, the climate response time is
proportional to climate sensitivity. However, with a realistic
ocean that has exchange between the mixed layer and deeper
ocean, the longer response time with higher sensitivity also
allows more of the deep ocean heat capacity to come into
play.
Hansen et al. (1985) show analytically, with ocean mix-

ing approximated as a diffusive process, that the response
time increases as the square of climate sensitivity. Thus a cli-
mate model or climate system with sensitivity 4 �C for dou-
bled CO2 requires four times longer to approach equilibrium
compared with a system having climate sensitivity 2 �C for
doubled CO2.
The response function in Fig. 3 is derived from a climate

model with sensitivity 3 �C for doubled CO2. When the re-
sponse function of other models is evaluated, it would be
most useful if the equilibrium climate sensitivity were also
specified. Note that it is not necessary to run a climate model

Atmos. Chem. Phys., 11, 13421–13449, 2011 www.atmos-chem-phys.net/11/13421/2011/
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Figure 6. (a): LRM response model fit c1tβT /2 (red) to the GISS-E2-H model response to an abrupt quadrupling

of atmospheric CO2 (grey). The fit yields βT = 0.32. (b): The LRM-reponse model solution c2tβT /2+1 with

βT = 0.32 (red) and the GISS-E2-H model response to a 1 % per yr increase in atmospheric CO2-concentration.

(c): The 2000 yr response to a doubling of CO2 in GISS ModelE-R as taken from Figure 3 in Hansen et al.

(2011). (d) Response to the same forcing in the LRM model with βT = 0.32.
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Figure 7. Blue curves: Fit of the two-exponential response to the climate model responses to an abrupt quadru-

pling of atmospheric CO2 concentration. Red curves: Fit of the LRM-scaling response. The expressions fitted

are found in the caption of Table 1 and the coefficients estimated are shown in this table.
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Figure 8. (a): The evolution of the GMST according to the two-box solution Eq. (D1) for the CO2 concentration

scenarios shown in Fig. 4a and Fig. 4c. (a): τC = 33 yr and and the two-box parameters for the GISS-E2-H given

in Table 1. (b): τC = 33 yr and and the two-box parameters for the CNRM_CM5 model given in Table 1.
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