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In addition to reviewer comments, we have fixed a number of technical errors pointed out
by the editor. We have attached a “tracked changes” version of the manuscript to point
out our modifications.

Editor’s comments:

* Eq6: Your silent assumption is y(0)=0, correct? In case yes, please make it explicit.
This is now explicitly mentioned.

* pl4: 'all frequencies faster than' -> 'all frequencies lower than' ?

Yes, changed.

* pl15: How do you get phase lags of 90°/45° rather than 0° for D->0?

This was a mistake, and it should be as omega goes to infinity, not 0. This has been
fixed.

* Eq9: your integral to be replaced by \int_0t y(t') dt'?

We acknowledge the sloppy notation and have changed the variable inside the
integral.

* Line before Eql1: y=d to be replaced by 'y=d/(1+\tau s)'?
* Instead of Eqs 11+12 I receive from my top equation y = d / (1+\tau s +\beta eA{-sD}
K) which looks quite different from the authors' expression.

These comments stem from the fact that we had not made our description clear
when we were evaluating the full system, versus only the part of the system that
characterizes the input-output relationship (i.e., excluding noise). We have
addressed this more carefully, including additional sentences to make explicit which
case is being discussed throughout the manuscript, as well as modifying the notation
in the equations so there is no confusion.

* On p18 the authors are flipping back and forth with \omega carrying a unit vs being
unit-less. Please stick to the physicists' tradition of letting it carry its unit. Furthermore, in
the last line, there is a mistake with the unit of k_i .

We have added units to all instances of omega. We are unsure as to what our units
error is for k_i in the last line of this page, but the calculation is correct:



w_gc=k_i*beta, and w_gc is chosen to be 0.2 rad/yr, so k_i=0.2/beta.

* In Eq 14, I could derive the expressions in the following order #1 -> #3 -> #2. Please
check whether #2 is needed indeed.

In equation 14, the middle term is the direct interpretation of the quantities in the
first term. K=kp+ki/s=kp-i*ki/omega, so Im(K)=-ki/omega, and Re(K)=kp. The
third term then applies a trigonometric identity to the second term. Strictly
speaking, #2 isn’t necessary, but we feel that it is instructive to include (not every
reader has memorized trigonometric identities for arctangent).

*p 21: colon between Eql & Eq?2 is missing, merging both Eqs.

We have improved the spacing for this line so it is clear there are two equations.
*p23: k(y_2) > -k(y_2) ?

Yes, thanks for pointing that out.

* on p25 I am confused by the Symbol 'S'. Is this S different from the previous S or not?

Thanks for pointing this out. This should be a different symbol, so we now call it Z.

Reviewer #1
How did you choose the values of beta and D and tau in fig 37

These values were simply illustrative and (with the exception of the red lines, as
stated) not meant to represent any particular physical system. We have added a
clarification of this to the text.

Eq 13 why did you chose kp=ki*tau?

In looking at Equation 12, it would simplify the expression if one could make the
factor (1+s*tau) cancel. This is accomplished via kp=ki*tau.

p. 28 section 3.6 why did you choose kp/ki=2.5?

Choosing kp/ki=2.5 is approximately what one would get for this system from
equation 15, but in some sense, this is a design choice. Going through all of the
details as to why someone would increase or decrease kp from the values obtained
from equation 15 is a fairly detailed process requiring some experience in designing
control systems. We initially included such discussions and decided that it reduced
clarity so much that the extra precision added wasn’t worth confusing the reader.



However, we now realize that not saying anything at all seems strange, so we have
included a short note describing what we have just said here.

p- 31 section 3.7 why did you choose kp=ki for LO TO relationship?
See previous explanation.
p-36 Ist line Antarctic insolation reduction reaches minus 16%

The reduction reaches 16%. A reduction reaching minus 16% would be an increase
by 16%.

Tables 1 and 2: long term PIControl — how many years is long term? 5007
We realize this was misleading, because our simulations branched from a long-term

preindustrial control run (available through the CMIPS archive). We have removed
the phrase “long term”.

Reviewer #2

I think that the manuscript has considerably improved through the revision. And I only
have a few further concerns specified below.

The authors now discuss more carefully the implications of their proposed control
strategy for actually geoengineering the climate. This is in particular true for the
introduction. I'm still not fully happy of the discussion in the final section. The authors
still state that they had “demonstrated the ability to simultaneously manage multiple
climate criteria using the common approach of changing solar irradiance”. The common
approach is to reduce solar irradiance. In one of the examples (2x2 with the CESM) it is
clearly shown that the design goals can’t be reached by reducing solar irradiance. Why
not stating this very clearly instead of vaguely saying that “accomplishing the objectives
with physically achievable mechanisms [...] introduces additional complications”. In
particular as it is stated in the introduction now, that “it may not be possible to achieve all
objectives due to physical constraints”, it is nice to come back to this statement in the
conclusions with an example.

We agree with this point and have added the reviewer’s suggestion.

I had suggested to remove Fig. 1 because I thought it is a banality that more or less
reducing the irradiance would reduce the global temperature more or less. As the authors
have argued against it I looked at Fig. 1 a bit more carefully than in the first review. I
agree now that the Figure is interesting but in a very different sense which I think needs
further discussion. I would have guessed that a smaller reduction of solar irradiance (as in
the middle panel compare to the top panel) should increase the temperature almost
globally. While a reduction seems to be simulated in some areas (like Northern Africa or



the North Atlantic) in other regions (e.g. polar regions and tropical oceans) the opposite is
simulated. Am I missing something, here? If there is no error in my thinking or the
figures I’d consider this an interesting example for non-linearity which would render the
optimization difficult even with just one control parameter.

We agree with the reviewer that reducing irradiance will reduce global
temperature. If comparing the results to a high CO2 world, all panels would show
cooling, and we agree this is indeed a banality and doesn’t need to be illustrated.
However, we are comparing the results to a preindustrial control, meaning there
would indeed be some residuals, as are shown in the figure. The slight differences in
global mean temperature between the panels are not necessarily indicative of how
different the regional patterns will be due to circulation changes, feedbacks, and
other internal processes. However, the general latitudinal distribution of
temperature (i.e., the equator-to-pole temperature gradient) is predictable, which is
the purpose of this figure; indeed, the values of insolation reduction chosen for each
panel were based on linear scaling of the temperature response to insolation. The
reviewer has rightly pointed out something that we discuss repeatedly throughout
the manuscript: carefully choosing one’s objectives is important!

I’'m still not totally happy with the use of the references to Kalidindi et al. (2014), Ferraro
et al. (2014), and Niemeier et al. (2013). It sounds now like there was a consensus that
different SRM methods would produce only regionally different responses. However, the
latter two papers specifically argue also for global differences, even if one may consider
them relatively small.

This is a good point. We have modified our description accordingly: ¢...although
some global and regional effects, especially those due to stratospheric heating by the
aerosols, are likely to differ between the two methods...”

Apparently also the other reviewer doesn’t feel fully comfortable with reviewing the
large part of the paper (Section 3) dealing with the design of the feedback strategy which
albeit may seem the central part of this manuscript. It may hence be advisable to search
for a specialist in this area for such a review.

The editor has taken care of this for us.
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Abstract

Understanding the climate impacts of solar geoengineering is essential for evaluating its
benefits and risks. Most previous simulations have prescribed a particular strategy and
evaluated its modeled effects. Here we turn this approach around by first choosing example
climate objectives and then designing a strategy to meet those objectives in climate models.

There are four essential criteria for designing a strategy: (i) an explicit specification of
the objectives, (ii) defining what climate forcing agents to modify so the objectives are met,
(i) a method for managing uncertainties, and (iv) independent verification of the strategy in
an evaluation model.

We demonstrate this design perspective through two multi-objective examples. First,
changes in Arctic temperature and the position of tropical precipitation due to CO, increases
are offset by adjusting high latitude insolation in each hemisphere independently. Second,
three different latitude-dependent patterns of insolation are modified to offset CO»-induced
changes in global mean temperature, interhemispheric temperature asymmetry, and the
equator-to-pole temperature gradient. In both examples, the “design” and “evaluation” mod-
els are state-of-the-art fully coupled atmosphere—ocean general circulation models.

1 Introduction

Geoengineering describes a set of technologies designed to offset some of the effects of
anthropogenic climate change by deliberately intervening in the climate system. There are
many proposed methods of solar geoengineering (methods of geoengineering that reduce
incident shortwave radiation at the surface; all subsequent discussions of geoengineering
specifically refer to solar geoengineering). Some of the most studied include introducing
a layer of reflective sulfate aerosols into the stratosphere or brightening marine low clouds
(e.g., Crutzen, 2006; Latham, 1990; NAS, 2015).

Many of the ongoing efforts in solar geoengineering research involve climate model sim-
ulations designed to ascertain the expected climate effects of various scenarios of geoengi-
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neering (e.g., Kravitz et al., 2011, 2013b, 2015a). Many simulations focus on uniformly re-
ducing solar irradiance or imposing a particular spatial pattern of forcing from stratospheric
aerosols or cloud brightening. However, the expected climate effects depend not only on the
amount of geoengineering, but also on the spatial pattern; both of these are, at least in part,
design choices. Furthermore, the objectives of geoengineering may involve balancing multi-
ple criteria, such as maintainting Arctic temperature without disrupting tropical precipitation
(an example we explore below).

As an example, one of the results from geoengineering that is repeatedly discussed is
that offsetting the global mean radiative forcing from a CO, increase by reducing total solar
irradiance would result in an overcooling of the tropics and an undercooling of the poles
(Govindasamy and Caldeira, 2000). This is largely due to the fact that CO, concentration
is more or less evenly distributed in climate models, so CO, forcing has a much weaker
latitude dependence than forcing from solar irradiance (Taylor et al., 2011). Kravitz et al.
(2013a) showed that this pattern of temperature response is robust across all 12 models
that simulated GeoMIP experiment G1, in which the radiative forcing from an abrupt quadru-
pling of the CO, concentration was offset by solar reduction (Kravitz et al., 2011). However,
Fig. 1 illustrates that overcooling of the tropics and undercooling of the poles (top panel)
is not a foregone conclusion, even if only one degree of freedom is varied — the amount of
total solar irradiance reduction. One could easily reduce insolation less than in G1 so that
no large region is overcooled (middle panel) or reduce insolation more than in G1 so that
there is no residual warming (bottom panel).

Figure 1 provides a simple illustration that many of the climate effects of geoengineering
are design choices, presuming the ability to actually impose changes with specific charac-
teristics. As such, statements about the climate effects of geoengineering in general are ill-
posed; such statements require the context of specific climate objectives and an approach
designed to meet them. A handful of studies have explored this idea of meeting climate
objectives other than the oft-studied global mean temperature reduction. Ban-Weiss and
Caldeira (2010) explored changes in the latitude of the solar geoengineering pattern and
found that doing so could better offset the residual temperature changes in a G1-like exper-
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iment. MacMartin et al. (2013) explored modifying insolation by latitude and season; they
found that doing so greatly increased the range of achievable climates through insolation
reduction, both globally and on a regional basis.

Climate model simulations suggest that many of the proposed methods of conducting
solar geoengineering are likely to have both commonalities and differences in their climate
effects (Crook et al., 2015; Kalidindi et al., 2014; Niemeier et al., 2013). Here we use the
common idealized representation of reducing solar irradiance. This has been shown to be
similar in global mean near-surface effects to simulations of stratospheric sulfate aerosols
(Kalidindi et al., 2014), although regienat-effects—and-some global and regional effects,
especially those due to stratospheric heating by the aerosols, are likely to differ between
the two methods (Ferraro et al., 2014; Niemeier et al., 2013). In the present work, we re-
duce insolation as a function of latitude; while these exact patterns may not be achievable,
the general characteristics of those patterns are broadly consistent with the types of varia-
tions that could be achieved via other means of geoengineering (e.g., stratospheric sulfate
aerosols). Augmenting the discussion to other proposed methods of solar geoengineering
adds additional degrees of freedom (for example, stratospheric aerosols include altitude
and possibly particle composition as additional adjustable parameters), but these methods
also include additional complications (e.g., atmospheric circulation imposes constraints on
achievable latitudinal dependence). We discuss some of these issues in Sect. 6.

Our primary motivation in this study is to introduce a design perspective that can be used
to more systematically evaluate some of the potentials and limitations of geoengineering.
We do this by exploring two examples of geoengineering strategies designed to meet spe-
cific, multifaceted goals. For any strategy, achieving multifaceted goals can be accomplished
via following a certain set of criteria:

1. an explicit definition of specific objectives of geoengineering;

2. determination of the particular degrees of freedom to be modified to meet the objec-
tives;

3. a strategy for meeting the objectives in the presence of uncertainty;
4

TodeJ UoISSNoSI(] 1odeJ UOISSNOSI(] 1odeJ UoIsSnosI(]

TodeJ UOISSNOSI(]



4. verification of the designed strategy in a different evaluation model.

The examples we choose (Sect. 2) are not necessarily indicative of any particular objec-
tive that might be chosen, if there were ever a decision to engage in geoengineering in
the future. Our purpose is simply to illustrate how, given an objective for geoengineering,
a strategy to meet that objective might be designed.

Implicitly included in these four criteria is that it is necessary to determine the feasibility
of the objectives. It may not be possible to achieve all objectives due to physical constraints
on the climate system. Moreover, the space of possible climates may be further narrowed
by technological limitations. As an example, it is not clear how stratospheric transport can
be controlled, which may limit the spatial distribution of radiative forcing that is achievable
via geoengineering with stratospheric sulfate aerosols. Our analyses inherently include the
assumption that the radiative forcing is achievable.

In a system in which the relationships between adjustable climate parameters and the
desired pattern of radiative forcing are well-characterized, one could optimize the relative
contributions of the parameters such that the desired climate objectives are approximately
met. This was the approach taken by Ban-Weiss and Caldeira (2010) and MacMartin et al.
(2013), for example. In practice, even independent of uncertainties in the ability to achieve
the desired climate system changes, there are substantial uncertainties in both the radiative
forcing exerted by a change in insolation and the climate response to that radiative forcing
(Stocker et al., 2013). In addition, the climate response is dependent upon the particular
forcing agent; this concept was defined as efficacy by Hansen et al. (2005). Because cli-
mate models imperfectly represent the dynamical behavior of the real climate system and
because climate observations are sparse, many of the uncertainties associated with un-
derstanding radiative forcing and climate response are difficult to reduce. Therefore, any
deployment of solar geoengineering would require a method of managing these uncertain-
ties to ensure that the chosen objectives of geoengineering are met as well as possible
even in the presence of uncertainty.

One method of managing uncertainties is to use explicit feedback, in which geoengineer-
ing is regularly adjusted based on the observed climate state and how far it is from the
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chosen objectives (Jarvis and Leedal, 2012; MacMartin et al., 2014b). Such techniques
are well developed in the field of control theory (see Astrom and Murray (2008) for a more
thorough explanation). The use of explicit feedback has been demonstrated for several ob-
jectives, including reducing total solar irradiance to meet an objective defined in terms of
global mean temperature (MacMartin et al., 2014b; Kravitz et al., 2014), reducing total so-
lar irradiance to limit the rate of temperature change (MacMartin et al., 2014a), or injecting
sulfur dioxide into the Arctic stratosphere to limit sea ice loss (Jackson et al., 2015). All of
these previous studies involved modifying a single climate system feature (amount of solar
geoengineering) to achieve a single climate objective. In all subsequent discussions, we re-
fer to potentially modifiable climate system parameters as degrees of freedom in achieving
climate objectives.

Although these past studies were instrumental in developing applications of explicit feed-
back for geoengineering, their applicability is limited in that they do not address the potential
for multifaceted geoengineering goals. Offsetting multiple independent features of climate
change requires modifying multiple simultaneous degrees of freedom. Ensuring that those
climate objectives are met in the presence of uncertainty requires explicit feedback. The
present study is the first to combine these two aspects, illustrating some of the potentials
and limitations associated with designing geoengineering strategies.

Addressing Criterion 4 requires a two-stage process, as was illustrated by Kravitz et al.
(2014). We illustrate this procedure and explore its consequences using two independently
developed models designed to simulate Earth’s climate. These models are imperfect ap-
proximations of Earth and of each other. The explicit feedback strategy is first analyzed in
a design model: in this model, numerous tests are permitted to fully characterize the dy-
namics of the climate system with and without coupling to the explicit feedback. After the
strategy is designed, it is then implemented in an evaluation model; this verifies that the
strategy does not depend on a highly-accurate description of the dynamics of the design
model, as the dynamics will not be identical between the design and evaluation models.
For the design model, we use the Community Earth System Model (CESM) 1.0.2 (Hurrell
et al., 2013), a fully coupled atmosphere—ocean general circulation model (AOGCM) that
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participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al.,
2012). For the evaluation model, we use the Goddard Institute for Space Studies (GISS)
ModelE2 (Schmidt et al., 2014), another fully coupled AOGCM that participated in CMIP5.
This two-model approach captures the fact that in a real deployment, the situation would re-
quire designing a model-based strategy that works in actual deployment. Of course, these
two models may not represent the differences between models and reality. Nevertheless,
this process is both illustrative and provides additional confidence beyond a demonstration
in which the strategy was designed and implemented in the same model. If there were
ever a deployment of geoengineering, the design process would presumably incorporate
information from a wide range of climate models.

We illustrate the design approach through two examples; one regionally-focused and the
other globally-focused, described in Sect. 2. Section 3 describes in detail the procedure for
designing a feedback algorithm, including a discussion of “system identification” simulations
used to estimate the relevant dynamics of the design model. The results from the design
and evaluation models for the two examples are discussed in Sects. 4 and 5. Section 6
includes a discussion of the present study, including some of the differences in this process
if one were studying stratospheric aerosols or marine cloud brightening rather than using
idealized latitude-dependent solar reductions.

2 Strategy

Here we illustrate the nature of geoengineering as a design problem through two exam-
ples, which we will call 2 x 2 and 3 x 3, indicating the number of inputs (degrees of freedom
that are modified) and outputs (climate objectives). The first of these examples focuses
on countering Arctic warming that would occur under CO5, increases (a regional objective)
while seeking to minimize shifts in tropical precipitation that would occur due to both CO,
increases and if only high-latitude Northern Hemisphere insolation was adjusted (Haywood
et al., 2013). The second design problem considers a more global perspective on geoengi-
neering, but rather than only considering global mean temperature, the feedback design
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compensates for both the relative overcooling of the tropics (or undercooling of the poles)
apparent in Fig. 1a and the temperature difference between the two hemispheres that can
in turn lead to shifts in tropical precipitation (largely characterized by the Intertropical Con-
vergence Zone, or ITCZ). In both cases we evaluate strategies in the presence ofa 1 % yr—!
increase in the CO, concentration (abbreviated 1pctCO2).

The 2 x 2 case is motivated by Arctic warming, which is a strong driver of Arctic sea
ice loss (Serreze et al., 2007), permafrost thaw (e.g., Schaefer et al., 2011), and other
impacts (e.g., Bintanja and Selten, 2014). Arctic insolation reductions could offset some
Arctic warming (Caldeira and Wood, 2008; Robock et al., 2008; MacCracken et al., 2013;
Tilmes et al., 2014; Jackson et al., 2015), but only cooling the Arctic would tend to shift
the ITCZ toward the warmer hemisphere (e.g., Broccoli et al., 2006). Concomitant changes
in Antarctic insolation are unlikely to substantially affect Arctic temperature but could be
used to offset the changes in tropical precipitation caused by CO, and Arctic insolation
reductions.

More concretely, the two inputs in the 2 x 2 system are changes in Arctic insolation and
Antarctic insolation (Fig. 2a), where for the former we choose insolation reductions from
60—-90° N, and for the latter, 60-90° S. (This choice is neither “optimal” in any sense, nor
necessarily achievable, but sufficient to illustrate the design strategy.) One of the outputs is
change in Arctic temperature, defined as an area-weighted average of surface air tempera-
ture in the region spanning the Arctic (66 2/3—90° N); this is affected by changes in Arctic
insolation and is relatively unaffected by changes in Antarctic insolation. The other output
characterizes the latitudinal displacement of zonally averaged precipitation P by defining
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a precipitation centroid (y):
T, PrpdA

[T, PdA

X~ (1)

where 1) is latitude (integration over [—7,7] is the entire latitude range of 90° S to 90° N). A
is area-weighted latitude, i.e.,

/2

dA = cos(¢)dy = A = / cos() dip = 2.

—7/2

A quantitative representation of the dynamic relationships between the inputs and outputs,
known as the influence matrix, is given in Sect. 3.6.

The 3 x 3 case considers a more global objective. An increase in CO, would increase
global mean temperature (abbreviated 7). The Northern Hemisphere would warm more
under CO; increases than the Southern Hemisphere (Kang et al., 2015), which influences
ITCZ location and tropical precipitation patterns (e.g., Marshall et al., 2014). Also, because
of the various mechanisms associated with poleward heat transport and polar amplification
(e.g., Holland and Bitz, 2003), high latitudes would warm more than low latitudes. Reducing
total solar irradiance could offset changes in Ty, but due to the different latitudinal patterns
of CO, warming and insolation reduction, there would still be residual changes in both the
differential Northern vs. Southern Hemisphere warming and the equator-to-pole tempera-
ture gradient (Fig. 1, see also Caldeira and Wood, 2008; Kravitz et al., 2013a). However,
these residual patterns could be offset by choosing different patterns of insolation reduction
beyond a globally-uniform reduction.

As metrics for these, we define 77 and 7> as the linear and quadratic meridional-
dependence of zonal-mean temperature 7'(1)):
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/2

To=+ / T(4)dA
—7/2
/2

T =— / T(y)sinydA 2
—7/2
/2

T = / T(zp)%(?)sinzw _1)dA.

—7/2

These equations are defined by the projection of T'(1)) onto the first three Legendre poly-
nomial functions (constant, linear, and quadratic) of sin(v), abbreviated Lo, L1, and L;
(Fig. 2b):

Lo=1
L1 =sin(v) 3)
Ly = %(3sin2(¢) —1).

These correspond to the first three terms of a polynomial expansion of the zonal-mean
temperature. Similarly, we define the inputs as a a reduction in insolation with latidudinal
dependence Lg, L1, and Lo; these are similar basis functions to those used by Ban-Weiss
and Caldeira (2010) and MacMartin et al. (2013). For simplicity, we subsequently refer to
the three patterns of solar reduction given in Fig. 2b as Lg, L1, and L,. Additional terms
could be considered, but there is a clear physical mechanism underlying the influence be-
tween these three inputs and three outputs; we discuss the importance of this physical
linkage in Sect. 6. Note that changes in Ly were conducted by all models participating in
GeoMIP experiment G1 described previously (Kravitz et al., 2011). The functions in Eq. (3)
10
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are orthogonal, which will be useful in designing feedback strategies (discussed further in
Sect. 3.4).

All of these simulations are conducted using the method of explicit feedback, as described
by MacMartin et al. (2014b) and Kravitz et al. (2014, 2015b). Section 3 below is devoted to
a discussion of how one determines a feedback algorithm that will effectively meet these
goals.

3 Designing a multivariate feedback strategy
3.1 Overview and motivation

While the previous section introduced the idea of choosing multiple spatial degrees of free-
dom to balance multiple criteria, this section is concerned with how to choose the amplitude
of each of these degrees of freedom as a function of time so that the desired climate ob-
jectives are met despite uncertainty. With perfect climate models, this process would be
straightforward, but in actuality, the amount of each degree of freedom would need to be
continually adjusted in response to observations, increasing or decreasing as appropriate to
avoid under- or over-compensating relative to specified goals. This adjustment in response
to observations is a feedback process, and is an essential element of any plausible geo-
engineering deployment strategy. With proper design, this adjustment process will converge
to the chosen objectives for a wide range of uncertainty in the expected climate response.

Feedback design (design of the explicit feedback algorithm) requires some information
about the system response to an input. This information is provided by the design model,
and feedback is then used to bridge the gap between the modeled response and the real-
world response if this design were implemented.

Specifying exactly what information is needed to design the feedback algorithms is not
immediately obvious. We begin this section with a discussion of dynamic modeling for feed-
back design (Sect. 3.2), followed by a brief introduction to the design of the feedback algo-
rithm (Sect. 3.3), focused primarily on single-input single-output (SISO) design. The main
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focus of this paper involves balancing multiple criteria using multiple degrees of freedom;
this multivariate feedback will be designed using sequential closure of SISO feedbacks, in-
troduced in Sect. 3.4. The discussion of feedback algorithm design motivates what model
information is needed to determine the input/output relationships for each example. This
information is obtained through “system identification” simulations, described in Sect. 3.5.
Sections 3.6 and 3.7 then describe both the input/output system identification and multi-
variate feedback design for the 2 x 2 and 3 x 3 examples, respectively. Further details on
feedback algorithm design for geoengineering can be found in MacMartin et al. (2014b);
an accessible text covering feedback design more broadly is Astrém and Murray (2008).
A reader only interested in the results and not the design of the feedback algorithms can
skip to Sect. 4. All simulations and analyses in this section are conducted with the design
model CESM 1.0.2.

3.2 Dynamic modeling for feedback design

The feedback algorithm defines the rule by which the “input” (e.g., solar reduction) is ad-
justed in response to observations of the “output” (e.g., difference between measured and
desired global mean temperature). The design of this algorithm starts with a dynamic model
of the input/output behavior of the system. This dynamic model does not describe how the
entire climate state responds to a perturbation in the input signal, but specifically the re-
sponse of the output signal. We use the term dynamic to indicate that this model includes
transient behavior and not just the equilibrium response. We assume that this process can
be reasonably approximated by a linear relationship, and that nonlinear effects are small
enough that they are managed by the feedback algorithm, which provides robustness to
uncertainty. As we will show later, this assumption is not detrimental to meeting our chosen
objectives, although it is potentially problematic for other objectives (Sect. 6).

A general linear dynamic input/output relationship can be described by a convolution
equation in the time-domain. However, many of the expressions we wish to evaluate are
greatly simplified when expressed in the frequency domain, because convolution is replaced
by multiplication, and coupled differential equations in the time-domain become algebraic
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relationships in the frequency domain. A time-domain equation f(¢), where t is time, can
be represented in the frequency domain via the Laplace Transform:

o

F(s)= / e St f(t)dt (4)

0

where s = 1w, and w is (angular) frequency.

In illustrating feedback design guidelines in the next subsection, it is convenient to con-
sider a first-order linear (i.e., first-order autoregressive) description of the input—output re-
lationship, including a time-delay D. This is the simplest non-trivial dynamical system. Al-
though we would not necessarily expect this system to match the dynamics of the actual
climate system at all frequencies, it is sufficient for illustration. With y(¢) as the climate out-
put signal (e.g., temperature change) and u(t) as the input signal (e.g., solar reduction),
then

Ty = —y(t) + Pu(t — D) +d(t) (5)

for some coefficient 5, where 7 is an e-folding time constant (as used here, in years) and y
indicates the time derivative of y. Including an explicit time delay of D years is necessary
here as our simulations adjust forcing for the next year based on the average climate out-
put over the previous year; each of these choices contributes on average a half-year delay
(MacMartin et al., 2014b). In addition to the response to u(t), the signal y(¢) will also include
effects both from natural variability and from anthropogenic climate change; these are cap-
tured above through the exogenous input d(t). With-For the purposes of characterizing the

input-output response, we eliminate sources of variability in output that are not associated

with the input (i.e., noise) by setting d = O{to-characterize-the-inputfoutputresponse)then-.
Then for an abrupt change in the input w(t) from zero to one at time ¢ = 0, #{#)-y,(t) (where

the subscript indicates that noise is not included) for ¢ > D is given by
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yu(t+D) = B(1—e7 V7). (6)
where y(0) = 0.

Taking the Laplace transform of Eq. (6) and dividing by the Laplace transform of the input
u(t), the response 4, to the input u can equivalently be characterized in the frequency

domain as #{s)==6G{s)u{s)y,(s) = G(s)u(s) through the transfer function

B
1+4+s71

G(s)=e %P (7)
where again d(s) is omitted in this expression, as the transfer function describes only the

changes in output that are linearly related to changes in input.
At any frequency w, the complex number G(s) = G(iw) can be described by its magni-

tude |G (iw)|| and phase ¢(G(iw)) = tan=(Im(G)/Re(G)). Note that because ||e~*P|| =
1, the time delay adds phase lag but does not change the magnitude. The magnitude and
phase of G(iw) are shown for several parameter values in Fig. 3, providing a graphical rep-
resentation of the frequency response of the transfer function (also called a Bode plot). Red

lines are roughly consistent with the relationship identified between Arctic insolation and

Arctic temperature in the 2 x 2 design example that follows in subsequent sections. Differ-
ent values of 8 scale the magnitude at all frequencies but do not change the phase. The

time constant 7 determines the range of frequencies over which the system response is
quasi-static (roughly the same magnitude as the equilibrium response, indicated by the flat
part of the curves in Fig. 3). 7 is an e-folding timescale, so the quasi-static response is ap-
proximately characterized by all frequencies faster-lower than 1/(37) radyr—!. The phase
contribution from the term 1+ s7 in the denominator transitions from zero to —90°, con-
tributing —45° at frequency w = 1/7. Time delay contributes substantial phase lag at high
frequencies.

A semi-infinite diffusion model has been shown by MacMynowski et al. (2011) to more
accurately capture the response of the global mean temperature to a uniform solar reduction
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in the HadCMB3L general circulation model; this information was used by MacMartin et al.
(2014b) to design feedback strategies. The corresponding transfer function is

Ba
1+ (STd)1/2

where the subscript d indicates the diffusion model. Figure 4 compares the first order
linear model with 5 =0.447, 7 =1.946, D =1 (these values are used in describing the
2 x 2 case in Sect. 3.6) and the semi-infinite diffusion model where we choose 54 = 0.732,
74 = 4.063, and D =1 to give the same magnitude and phase of the transfer function at
w=0.2radyr~!. The value of 84 = 0.732 corresponds to an equilibrium climate sensitiv-
ity of 2.71 °C, which is similar to the climate sensitivity of HadCM3L (MacMynowski et al.,
2011). A value of 7 = 4.063 years corresponds to a rise time to 1 /e of the equilibrium value
of 6.339 years (MacMynowski et al., 2011). This is somewhat less than the value obtained by
MacMynowski et al. (2011) (Fig. 3), but this value is not unreasonable in characterizing the
frequency response of climate models in general (Caldeira and Myhrvold, 2013). As would
be expected from Egs. (7) and (8), the first order linear model with no time delay asymptotes
to a phase lag of 90° as w—9w — oo, and the semi-infinite diffusion model asymptotes to
45°. For reasons that will be clear in the next subsection, designing feedback strategies
does not require knowledge of the system dynamics at all frequencies. Figure 4 illustrates
that there are multiple possible system representations that could have the same transfer
function magnitude and phase at a single frequency.

Gd — e—sD

(8)

3.3 Single-input, single-output (SISO) feedback design

We now consider the design of the feedback algorithm, using the model in Eq. (7) for illustra-

tion. As was done by MacMartin et al. (2014b) and Kravitz et al. (2014, 2015b), we choose

proportional-integral control. This choice (or its augmented counterpart of proportional-

integral-derivative control) is ubiquitous in control theory and is a standard “first attempt”

when designing a feedback algorithm. As we will show, proportional-integral control is suf-

ficient for our purposes. In the continuous time domain, proportional-integral control is rep-
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resented as

u(t) = — k() — ki / %ty (tg) dig ©)
0

where kj, and k; are the proportional and integral gains, respectively, collectively called con-
trol gains. The negative sign associated with y(¢) is included by convention. y(t) represents
the departure of the system state (e.g., temperature) from the reference point at any given
time, that is, the goal is to minimize y. Taking the Laplace transform, this can be represented
in the frequency domain as u(s) = —K(s)y(s) through the transfer function

kps + k;

K(s)=kp+ki/s= (10)

The full system is now described in the frequency domain by y(s) = G(s)u(s) +d(s);

where-d-deseribesthe-partof4-; again, G(s) (the transfer function) describes the portion of
the output y(s) that is related to the input u(s), and d(s) is the noise, or the part of y(s) that

is due to sources other than the input «u(s) (e.g., climate change and natural variability);
and-our—. The feedback algorithm is described by u(s) = —K(s)y(s). In the absence of
feedback (K (s) = 0) then y = d. With feedback,

1
= d(s). 11
The characteristics of the system with feedback thus depend only on the product G(s) K (s).
This product is referred to as the loop transfer function; with the simple model in Eq. (7) and
proportional-integral control, its frequency response is the product of Equations 7 and 10:
B kps+k
1+ sT s

These two equations illustrate a substantial advantage of working in the frequency domain,
as the equivalent time-domain formulation would be much more complicated and would
provide less insight.

G(s)K(s) =e D* (12)
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There are three critical observations: (1) at very low frequencies (w < wgc Where wqc is
a fixed value defined below), G(iw) K (iw) is large for any non-zero G(s). This means that
feedback achieves the goal of maintaining y(s) small, and further, that it is not necessary
to know the dynamics of the climate at low frequencies to successfully design a feedback
algorithm. (2) At very high frequencies (w > wyc), G(iw)K (iw) is small, and thus y(s) is
unchanged by the feedback; again, it is not necessary to know the dynamics of the climate
at very high frequencies because there is no significant input signal at high frequencies.
(3) If at some frequency w we had G(iw)K (iw) = —1, then the system would be unstable
(an unbounded response to a disturbance at that precise frequency), and if G(iw)K (iw)
is close to —1 at some frequency, then the coupled feedback system results in amplifying
d(s) at that frequency. The key take-away from this final observation is that K (s) should be
designed to manage the characteristics of the loop transfer function at frequencies where
the magnitude of G(iw) K (iw) is close to unity.

The frequency where the magnitude ||G(iw) K (iw)|| = 1 is called the loop crossover fre-
quency, denoted wgyc. This is approximately equal to the bandwidth of the system, which
describes how rapidly the feedback loop responds to differences between the observed
and desired states, with 1/wy; being roughly the time-constant for system convergence
(see Fig. 7). At this frequency, the distance from the point —1 in the complex plane can
be characterized by the phase margin, defined as the difference between the phase of
G(iwge) K (iwge) and —180°, which we denote ®pn; this quantity approximately character-
izes the closest distance between G(iw)K (iw) and —1 for any frequency. Small phase
margin implies a lack of robustness to uncertainty in the model G(s). Note that since the
feedback operates on the observed (or simulated in our case) climate signal, it will act
not only on the climate response to anthropogenic greenhouse gases, but also on natu-
ral climate variability. Small phase margin also implies high amplification of natural climate
variability at frequencies near wy (see Eq. 11), with oscillatory “ringing” in the time-domain
response (Fig. 7; also see MacMartin et al., 2014b). Phase margin thus both gives an indi-
cation of how robust the system is to modeling errors and how much amplification there is
of natural variability.
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With proportional-integral control, the control gains %; and &, are design parameters;
their choice is related to the bandwidth and the phase margin. A higher choice of bandwidth
(faster convergence time) typically makes it more difficult to achieve a desired phase mar-
gin. Feedback design thus inherently involves trade-offs. Somewhat arbitrarily, we aim for
a convergence time-constant of roughly 5 years, corresponding to wgyc ~ 0.2 rad yr~L, which
is chosen as a reasonable trade-off to give fast enough convergence without excessive
response to natural variability nor unacceptable robustness. We discuss the trade-offs in
more detail at the end of this subsection.

We now outline a process for determining choices for &, and k; that yield convergence
to the desired climate objectives for the system despite uncertainty in G(s). For several
choices of k; and k,, the Bode plots in Fig. 5 provide graphical representations of the fre-
quency response of the loop transfer function, characterized by the magnitude (upper panel)
and phase (lower panel) of the complex number G(iw) K (iw) as a function of frequency w.
The loop crossover frequency wyc ~ 0.2 rad yr~1 is indicated by dashed lines in Fig. 5.

First consider a pure integral control (k, = 0, black line in Fig. 5). At low frequencies
(w < 1rad yr—1), pure integral control means that G(s) K (s) is large, so the feedback loop
results in good “performance” in the sense of the chosen variable meeting its specified
objective. Higher values of k; lead to higher bandwidth (larger values of wyc) and faster
convergence (smaller values of 1/wgyc). However, the integral term adds 90° phase lag from
the phase of 1/(iw). With pure integral control, the phase margin can thus be poor due to
the combined phase lag from the time delay and the system dynamics (recall that the factor
7s+ 1 in the denominator leads to 90° phase lag at high frequencies).

Adding the proportional gain %, (red line in Fig. 5) increases the phase margin. For ex-
ample, from Eq. (12), choosing k, = 7k; results in

G(s)K(s) = kiﬁée_Ds. (13)

With no delay (D = 0), this would have 90° phase margin, no amplification of natural climate

variability, and a bandwidth wgc = £;3. As noted previously, to achieve a convergence time-

constant of roughly 5 years, we choose wgyc ~ 0.2 rad r—! and thus choose k; = 0.2/3. This
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choice for k; and &, corresponds to the blue lines in Fig. 5. With one year time delay (D = 1),
this gives a phase margin of /2 —wgycD or 79°. Decreasing the proportional gain (k, < 7k;)
would reduce the response to high-frequency climate variability, making the signals w(t)
less “noisy”, but would also reduce the phase margin.

We now provide a more detailed recipe for determining control gains for a particular
application. Let My = ||G(iwgc)|| and ®gc = ¢(G(iwgc)) be the magnitude and phase of
the system at frequency wqc rad yr~! (note that b4 < 0, as the output lags the input). The
additional phase added by proportional-integral control at frequency wyc is

o1 (Im(E (iwge)) \ L g ki _ T _1 [(wgck

For pure integral control (k, =0), ®, = —m/2, which is the previously discussed addition
of 90° of phase lag from the integral term. Addition of a non-zero proportional gain adds
phase lead to this term. Let &, be the desired phase margin (a choice). Then by definition,
Ppm = Pge — 7/2 +tanY(wgckp/ki) + 7. Then

k; s
by = tan (®om - > - Oge). (15)

We choose ki such that the loop transfer function gain is unity at wye, i.e., 1=
|| G (iwge) K (iwge) || = Mge \/kg + (ki/wgc)?. Solving, the desired value of ; is then

1 Ppom — = — Pgc ) 1
e / \/ +tan< | Ppm > gc (16)

Then by Eq. (15), &, is also determined.

Note that Egs. (15) and (16) only require information about the magnitude and phase at
the loop crossover frequency wgc. This means that we can design “system identification”
simulations (Sect. 3.5) in our design model using a sinusoidal input signal at the desired
crossover frequency to estimate the magnitude and phase of the input/output response at
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just that single frequency. This is also the reason why the first-order linear model is a suffi-
cient description of system dynamics for designing the feedback algorithm, as no assump-
tion needs to be made regarding the dynamics at frequencies away from wgc. A semi-infinite
diffusion model (for example) that has the same magnitude and phase at wgyc will require the
same feedback gains to achieve the same bandwidth and phase margin. As such, knowing
the model form is not essential for designing the feedback algorithm.

However, the model form does influence characteristics such as amplification of natural
variability at frequencies away from wy. and convergence behavior. Figure 6 shows the
sensitivity functions of the first order linear and semi-infinite diffusion models, defined as

1
T 1+ G(8)K(s)

From Eq. (11), this is the ratio of the system response to disturbances with and with-
out the feedback, and applies both to slow variations in anthropogenic radiative forcing
for which geoengineering is intended to compensate, as well as natural variability as dis-
cussed by MacMartin et al. (2014b). At low frequencies, ||S(iw)|| < 1, consistent with the
feedback algorithm maintaining the desired climate outcome independent of slow changes
in greenhouse-gas concentrations. At high frequencies, G(iw) is small so ||S(iw)|| ~ 1. In
between, there will be frequencies where ||S(iw)|| > 1, meaning natural variability is ampli-
fied at those frequencies. While understanding the system response at a single frequency is
sufficient to design a feedback algorithm, knowledge of the system response across a wider
range of frequencies would be requried to fully understand how the system would react to
natural variability. The time-domain convergence characteristics can be obtained from the
inverse Laplace transform of S(s). The predicted response is shown in Fig. 7 for both the
first-order and semi-infinite diffusion models, and is relatively similar, with e-folding conver-
gence rate in both cases of roughly 1/wq.. Knowledge of the system response at this one
frequency is thus sufficient for understanding the time-domain convergence in response to
differences between the desired and actual climate outcomes. This figure illustrates how
little information is actually needed about the system to enable design of a feedback strat-
egy that converges. Of course, in any actual deployment, it would be preferable to estimate
20
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the full frequency-dependent input/output response from climate models in order to fully
characterize the expected behavior. Understanding both climate system natural variability
and how the imposed geoengineering affects different modes of variability is particularly
important for detection and attribution of the climate effects of geoengineering.

Tradeoffs between convergence timescale and amplification of natural variability are
choices in designing a feedback algorithm. Higher bandwidth leads to faster convergence
and tighter management of the specified climate objectives. However, at higher frequen-
cies, the system response has greater phase lag (see Fig. 5), and thus a higher bandwidth
makes it more difficult to achieve a desired phase margin. Typically, in engineering appli-
cations, a phase margin of 60° is considered sufficient to avoid excessive amplification
of natural variability (this gives ||.S(iwgc)|| = 1, though [|S(iw)|| may exceed unity at other
frequencies). The other reason for ensuring adequate phase margin is that the estimated
dynamics of the input/output response in the design model may not match the actual dy-
namics (or here, the dynamics of the evaluation model). We also have additional error here
in estimating the design model response because of the influence of natural variability for
the relatively short simulations used. For these reasons, phase margins larger than 60° are
useful. A third consideration not noted earlier is that of the response of the input signal u to
natural variability:

Noting that S(iw) is always near unity at high frequencies, the response of the input signal to
natural variability is determined by K (s) at high frequencies. Using a proportional-integral
controller, then at high frequencies, K(s) ~ k. Hence, increasing k, to improve phase
margin comes at a cost of the resulting input signal responding to high-frequency natural
variability, that is, a “noisy” year-to-year variation in the amount of geoengineering. We do
not claim that our choices herein give the best trade-off between these various factors,
although we have endeavored to choose reasonable values.
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3.4 Multi-input, multi-output (MIMO) feedback design

The discussion thus far has focused on a single-input, single-output, or SISO feedback
algorithm case. However, both of our design examples (Sect. 2) are multivariate, that is,
y and u are vectors related by a matrix-valued transfer function G(s). In both examples,
the dimension of y and u are the same so that G(s) is a square matrix. It is also essen-
tial that G(s) be of full-rank, as otherwise there would be no choice of input u that could
simultaneously drive every output in y to its desired value.

If G(s) is diagonal, then the SISO feedback design approach above can be applied di-
rectly. In this case, the multivariate goal simply corresponds to a set of decoupled SISO
problems where each input variable only influences a single output variable. If G(s) is
diagonally-dominant, so that each input mostly influences only one corresponding out-
put variable, then stability is still guaranteed even if the off-diagonal coupling is ignored.
A third, more general case that is relevant to both of our design examples is where G(s) is
approximately triangular. For example, while high-latitude Northern Hemisphere insolation
reduction influences both Arctic temperature and the precipitation centroid, high-latitude
Southern Hemisphere insolation reduction only has a significant influence on the precip-
itation centroid, and hence this input/output system is roughly triangular. Note that while
all complex-valued square matrices are triangularizable (e.g., by Gaussian elimination), the
transformation for arbitrary G(s) will in general be frequency-dependent, and the ability to
triangularize G(s) may not necessarily be useful. If G(s) is not nearly triangular nor readily
triangularizable, then more complicated feedback design approaches will be required than
are described herein.
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As an illustrative example of how to design a multivariate feedback algorithm, we consider
the following 3 x 3 system in which the influence matrix M is triangular:

Y1 mi1; 0O 0 U1
Yo | =] moa1 ma O up | - (18)
Y3 m31 M32 M33 u3

Although notation is omitted, all entries in Eq. (18) are frequency-dependent. From this
representation, we note that y; = mi1u1, i.e., y1 is only influenced by changes in a single
input. Therefore, designing a feedback strategy to converge to a desired value for y; only
requires adjustments of a single input, using observations of a single output (Sect. 3.3).
Next, y» = moi1ui +moous. However, u; is already determined by the previous relationship.
One could adjust u, only in response to changes in y», but this neglects the known informa-
tion about the effect of w1 on y,. A better strategy is to choose +y=—{mor /o yr—++H{y)
up = —(mo1/mo)ur — k where the feedback function k(y) is again a SISO relation-
ship: uy both responds to observed changes in y» and “corrects” for anticipated changes in
yo that are caused by u;. Similarly, y3 = ms3i1u1 + mspus + m3susz, where u; and up have
already been determined. Therefore, the problem of Multiple-Input, Multiple-Output (MIMO)
feedback can be reduced to a set of SISO algorithms. This procedure is called sequential
loop closure.

3.5 System identification

As was mentioned in Sect. 3.1, the goal of system identification is to estimate the transfer
function matrix G(s) that describes the linear frequency—dependent relationship between
the vector of inputs w and vector of outputs y sufficiently well to design a feedback al-
gorithm and characterize its expected behavior. As noted before, the form y(s) = G(s)u(s)
assumes that any nonlinearities (higher-order terms in the Taylor expansion) are sufficiently
small that they do not present significant difficulties for feedback convergence. The matrix
G(s) is estimated in the design model by introducing a signal w(¢) and observing y(t). This
can be done separately for each input signal, and the estimated responses of the outputs
23

TodeJ UoISSNoSI(] 1odeJ UOISSNOSI(] 1odeJ UoIsSnosI(]

TodeJ UOISSNOSI(]



to those inputs is then determined. There are several possible choices of input signal that
could be useful in characterizing the dynamic behaviour of the system.

A step input perturbation is quite common in climate science, e.g., the abrupt4xCO2 sim-
ulation in CMIP5 (Taylor et al., 2012) in which the CO, concentration is abruptly quadrupled
from its preindustrial value. While these have been used to estimate system dynamics (e.g.,
Caldeira and Myhrvold, 2013), one limitation is that the input signal is heavily-weighted to-
wards low-frequencies: the Laplace transform of a step input is H(s) = 1/s. While this input
contains information about all frequencies, the signal-to-noise ratio can be poor at higher
frequencies and may require averaging multiple ensemble members.

An alternative is to use single-frequency sinusoidal input signals, as was done by
MacMynowski et al. (2011). Evaluating the response to a broad range of input frequencies
can be computationally expensive. However, as was discussed in Sect. 3.3, a feedback
algorithm can be designed with a characterization of the system response at a single fre-
quency. If the system is approximately linear, then after transient system behavior subsides,
the output y(¢) will also be sinusoidal at the same frequency. This typically requires two full
periods to be simulated; using the example of wg = 0.2rad yr~! as in Sect. 3.3 would re-
quire a (2)(27/0.2) =~ 63 year simulation to characterize the system response at that single
frequency. Then choosing gains &, and &; so that the desired loop crossover frequency and
phase margin are obtained requires two pieces of information: the magnitude of y relative
to the input u and the phase-shift between y and w. If a first-order response is assumed,
the parameters 8 and 7 in Eq. (7) can be determined, although this is not strictly necessary
to design a feedback algorithm.

Another alternative is to input a band-limited signal, which is useful for characterizing
system behavior over a small range of frequencies; this can be helpful if the different input—
output relationships have different timescales of response. This method has an advantage
over step-response simulations, in that the input signal is not heavily weighted toward some
frequencies at the expense of others. This has a disadvantage as compared to sinusoidal
inputs, in that the input signal is more distributed, resulting in lower signal-to-noise ratios.
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If the loop crossover frequency falls within the quasi-static response of the system, then
a sinusoidal input and a band-limited input will yield similar information.

Natural climate variability limits the accuracy of estimating the transfer function in simu-
lations. Errors can be estimated from the frequency-dependent signal-to-noise ratio (SNR)
denoted S{w); where-S2Z(w), where Z? is the variance due to the input divided by the vari-
ance that would have occurred without the input. The error in estimating transfer function
magnitude and phase can be related to the SNR as

op(iw) = [1/Z(w)][|G(iw)]|

og(iw) ~tan"t[1/Z(w)]. (19)

The SNR can be estimated from a control run with no input, or for a sufficiently long
time-series can be estimated as in MacMartin and Tziperman (2014) from the coherence
F2 =521 +-5212 = 72 /(1 + Z?) (the fraction of the total output variance that is associ-
ated with the input). For single-sinusoid input signals used below, we estimate the SNR at
the frequency of the input signal from the output variance averaged over nearby frequen-
cies. With two full periods at wgc simulated, projecting the output time-series onto sinusoids
at wge/2 and 3wgc/2 gives estimates for how large the output signal might have been in the
absence of the input signal.

3.6 2 x 2 design example

Our characterization of the 2 x 2 system begins with a series of step response simulations
and is followed by a set of sinusoidal response simulations. This is sufficient for us to design
a control algorithm that sufficiently meets the prescribed climate objectives.

For the step response simulations, beginning from a stable preindustrial control run, in-
solation over the Arctic or Antarctic was abruptly reduced by 2, 4, 8, and 12 %; the results
from these simulations are summarized in Fig. 8. The choice of 12 % was informed by sim-
ulations performed by MacCracken et al. (2013), and lower magnitudes were chosen to test
linearity of the climate response and the noise threshold. Linearity is illustrated in Fig. 9,
showing that the precipitation centroid (Eqg. 1) is a robust metric for our purposes.
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These simulations can already inform the influence matrix for this particular case. Reduc-
tions in Arctic insolation reduce Arctic temperature and shift tropical precipitation southward.
Reductions in Antarctic insolation shift tropical precipitation northward but do not discernibly
affect Arctic temperatures. Therefore, using notation to suppress any potential time or fre-
quency dependence, we can write the influence matrix as

TArctic A0 SArctic
[ X ] B [ —-£ 1 ] [ Shantarctic ] (20)

where Tarciic denotes Arctic temperature change, x denotes shifts in the meridional-centroid
of zonal-mean precipitation (Eq. 1; positive northward), Sarciic denotes adjustments in Arctic
insolation, Santarctic denotes adjustments in Antarctic insolation, and A, &, and n are posi-
tive functions of, as of yet, undetermined form. As noted above, this particular system is
inherently triangular.

The step-response results can be fit to the functional form in Eq. (6). However, the ex-
ponential fits in Fig. 8 are relatively poor and can only be done for the highest amplitude of
step response, partly due to a large amount of high frequency variability. This is an inherent
problem with step response simulations, as the input signal contains nonzero content at all
frequencies. Nevertheless, they are useful in that they provide confidence that a first order
linear model captures the system behavior sufficiently to design a control algorithm.

To circumvent these shortcomings, it is useful to complement the step response infor-
mation with sinusoidal input signals. Beginning from a preindustrial control run, insolation
over the Arctic or Antarctic was reduced according to the function u(t) = 0.12sin(27/wt).
The amplitude 0.12 was chosen simply because the step response with a 12 % amplitude
appeared to give a good signal, and the step response did not show any evidence of sub-
stantial nonlinearity.

Figure 10 shows the sinusoidal response of the system for an input signal with a pe-
riod of 107 years, corresponding to w = 0.2 rad yr—!. From these simulations, the influence
matrix can be computed via the amplitude ratio (the gain ratio of the output signal to the
input signal) and the phase shift (the difference in phase lag between the output and input
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signals). If G(s) is the 2 x 2 transfer function representing the input—output relationships in
the system, then the results from the sinusoidal input simulations give

o 0 o 0 o _ o
1G(0.23) = 0.447°C/% 0.047°C/% 27 30 ]

0.030°/%  0.028°/% ¢(G(0'2i)):[4go 3g° (21)

Consistent with physical understanding of the system, the top-right entry of the magnitude
matrix is small and is ignored for the purpose of designing a feedback algorithm. Assum-
ing the first-order linear model described by Eq. (7), also note that part of the phase lag
is due to the inherent dynamics of the system, and part is due to the half-year time delay
introduced by annual averaging. At this frequency, D = 0.5 introduces a phase lag of ap-
proximately 6°, which is incorporated into the estimates of phase lag in Eq. (21). While the
system identification simulation varies the input continuously and only introduces D = 0.5,
our feedback implementations update the input and hold it constant for the following year,
introducing another half-year delay and an extra 6° phase lag at w = 0.2rad yr—! on top of
the estimate in Eq. (21).

From visual inspection of Figs. 10 and 11, it is clear that climate system noise can result
in errors in the sinusoidal fits, which can introduce errors into estimates of the transfer
functions. MacMartin and Tziperman (2014) discuss how to calculate the estimation error
in the transfer function; we repeat the salient equations here.

Based on calculations of SNR (Eq. 19), the standard deviations of the estimation error in
G at the loop crossover frequency wyc = 0.2 rad yr~1 are

. [0.029 0.027 [ 4 300
JM(O'zz)_[o.oog 0.007] %(G(O‘zz))_[no 13°]'

One standard deviation of the errors in magnitude are between 7 and 31 % of the values

given in Eq. (21) (excluding the top right entry), and one standard deviation of the errors

in phase are between 13 and 25 % (with the exception of the top right entry). Kravitz et al.

(2014) showed that the feedback algorithm considered there was robust to at least 50 %

error in magnitude, and we choose a sufficient phase margin below to accommodate the
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maximum phase error of ~ 17°. Therefore, we conclude that any potential errors in the fits
are unlikely to substantially affect the feedback design.

From Eq. (21), the time-constant g and the timescale 7 in Eq. (7) can be computed. For
example, the relationship between Sarctic and Tarctic can be described by g = 0.447 and
7 =1.946. These values differ somewhat from the best-fit values obtained from the step
response simulations, potentially due to difficulties with the step-response system identi-
fication introduced by high frequency variability, or due to the first-order linear model not
adequately describing the dynamics. In principle, additional simulations could improve esti-
mates of these parameters, but as we showed in Sect. 3.3, this is not necessary for design-
ing a successful feedback algorithm.

Following the procedure described in the previous sections, we first choose SISO feed-
back gains to adjust high-latitude Northern Hemisphere forcing in response to deviation
in Arctic temperature from the desired value. Choosing k,/ki = 2.5 adds 27° phase lead
from the proportional term (tan=1(2.5 x 0.2); Eq. 16). (k,/ki = 2.5 is_approximately the

same value that one would obtain Equation 15, but it is not identical. Changing k, changes
the phase margin; to some extent, these are design choices.) Then by Eq. (15), choosing

k; = 0.4 gives the desired crossover frequency of wgc = 0.2rad yr~L. These choices result
in a phase margin of 84°.

As described in Sect. 3.4, the high-latitude Southern-hemisphere forcing Santarciic can be
adjusted both in response to changes in the precipitation centroid x and in response to
the expected change in x due to Sariic. We again choose ky/ki = 2.5, although because
the system itself has slightly greater phase lag than the Arctic temperature response to
Arctic insolation changes, this choice will lead to lower phase margin. The value of k; that
yields wgc ~ 0.2rad yr~1 is 6.4, which we round to k; = 6; then ko = 15. Although better
performance would be achieved by also adjusting Santarciic in direct response to changes in
Sarctic, We neglect this here, as the adjustment only in response to changes in x results in
acceptable performance.
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Thus in summary, we have

t
SArctic - 0-4/(TArctic,ref - TArctic) dt + (TArctic7ref - TArctic) (23)
0
t
SAantarctic = 6/(Xref - X) dt + 15(Xref - X)~ (24)

0
(Although it is abuse of notation, integrals are used instead of sums for clarity.)

3.7 3 X 3 design example

We now consider system identification and feedback design for the 3-input, 3-output de-
sign example described in Sect. 2, where the inputs are Lo, L1, and L, patterns of so-
lar reduction (Fig. 2b), and the outputs are the corresponding projections of zonal-mean
temperature: global-mean (7j), a linear dependence on sine of latitude that captures inter-
hemispheric asymmetry (71), and a quadratic dependence on sine of latitude that captures
equator-to-pole temperature gradients (73). The first (SISO) entry in this 3 x 3 problem is
the same input/output system for which feedback was designed in earlier work (MacMartin
et al., 2014b; Kravitz et al., 2014), based on an extensive frequency-domain system identi-
fication of the HadCM3L general circulation model (MacMynowski et al., 2011).

Similarly to Eq. 20, we can write the influence matrix for the 3 x 3 problem as

TO moo 0 0 LO
Ty | =| mio min O Ly (25)
T, Mmoo M21 M2 Ly

This system is also inherently triangular.

We characterize the system response solely through sinusoidal input signals, as shown
in Fig. 11. As in the 2 x 2 design example, the system is naturally nearly-triangular. A glob-
ally uniform solar reduction leads to changes in all three output measures — global mean
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temperature, as well as the linear and quadratic meridional dependence. A (zero-mean)
solar reduction that is linear with the sine of latitude has minimal influence on global mean
temperature, but influences both the linear and quadratic terms in the zonal-mean temper-
ature. As in the 2 x 2 example in Sect. 3.6, there is an implicit 6-month time-delay in the
plotted simulation output from the annual-averaging, corresponding to a 6° phase delay at
this frequency.

The best estimate of the magnitude and phase of the input/output response at w =
0.2radyr lis

066 - - 38 - -
IG(0.2i)| = | 0.13 0.15 - #(G(0.2i))=| 22 20 — |. (26)
0.07 0.03 0.03 60 —12 10

where dashes in the matrices indicate that the estimate is indistinguishable from error (see
Eq. 27 below) and does not have a strong physical connection.

The phase estimates include a half year of time delay due to annual averaging. Climate
variability clearly introduces uncertainty in these estimates, particularly for the small ele-
ments (Fig. 11); as such, the bottom-middle entry of the phase lag matrix is taken to be
zero. The upper triangular entries of the transfer function matrix are indistinguishable from
zero, consistent with physical understanding of the system, and are left blank. Note from
Fig. 1 in MacMartin et al. (2014b) that at this frequency, the corresponding (1,1) entry
for the HadCM3L general circulation model had a gain of 0.6 and a phase of 30° (36° if
including a half-year time delay), which is very similar to the results here.

Performing the same error calculations as in Sect. 3.6 yields Eq. (27):

0.030 - - 3 - -
on(0.2i)=| 0.039 0.022 - oc,(02i)=| 17 8 - |. (27)
0.016 0.013 0.018 13 24 30

The errors in magnitude (1o0) for the lower triangle are ~ 4% for the 1 x 1 sub-case, up to
30 % for the 2 x 2 sub-case, and up to 59 % for the full 3 x 3 case. As in the 2 x 2 case, no
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error in EqQ. (27) is going to substantially impact the performance of the feedback design,
although the large phase uncertainty in the final entry leads us to choose a larger phase
margin than we might otherwise.

We first choose feedback gains to adjust globally-uniform solar reduction to maintain
global-mean temperature, corresponding to the (1,1) entry of the system dynamics matrix.
Again, note that there is a one-year time-delay introduced by averaging over the previous
year before making a decision and holding that decision fixed for an entire year; at a fre-
quency of 0.2rad yr~1, this yields a phase lag of approximately 11.4°, only half of which is
included in Eq. (26). Thus with zero proportional gain, choosing k; = 0.2/0.7 (after round-
ing) would give a loop crossover frequency of 0.2 rad yr—! and a 48° phase margin. This low
phase margin would yield significant amplification of natural variability at high frequencies
and could lead to additional problems if the evaluation model dynamics are not the same
as those of the design model. A proportional gain k£, = k; adds 11.3° degrees phase at
frequency w = 0.2 (tan—1(0.2)), for a total phase margin of roughly 60°. (The phase margin,
and hence Fkp, is a design choice; as noted earlier, 60° is a reasonable choice.) Decreas-
ing k; by the factor /1 + (1 x 0.2)2 compensates for the increase in gain at 0.2rad yr—!
due to the proportional gain, and thus maintains the desired loop crossover frequency of
0.2radyr~1. Thus, k; =0.2/0.7/4/1+ (1 x 0.2)2 ~ 0.28.

If the system were diagonal, the additional degrees of freedom could be similarly adjusted
with just a rescaling of both k; and k, by the inverse of the diagonal elements of ||G(0.2:)||;
this would maintain the same loop cross-over frequency for each degree of freedom, and the
expected phase margin would be slightly higher for the remaining degrees of freedom. While
this approach would converge, better performance can be achieved by using the knowledge
of the coupling described by the off-diagonal elements, as described in Sect. 3.4. (Note that
the sign of the effect of a uniform solar reduction on all three degrees of freedom is confident
from physical principles; the influence of L; on 75 is less obvious.) Thus, the Multiple-Input,
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Multiple-Output (MIMO) feedback design for this problem can be summarized as:

t
ALg=0.28 / (To — T ref) dt + 0.28 (To — T ret) (28)
0
t
AL; = —ALy+1.3 / (Ty — Tt ret) dt + 1.3(Ty — T res) (29)
0
t
AL, =—06AL; —1.4ALo+3.9 / (To — To ref) dt +3.9 (T — T et)- (30)
0

(As in Egs. 28 and 24, integrals are used instead of sums for clarity.)

4 Results from the 2 x 2 case

We now proceed with an evaluation of the effectiveness of our designed feedback algo-
rithms.

Figure 12 shows results for the 2 x 2 case in the design model (CESM) with no feed-
back (1pctCO2; black lines), only adjusting Arctic insolation to modify Arctic temperature
(abbreviated “Arctic Only”; blue lines), and the full 2 x 2 case (red lines). The feedback
algorithm does an excellent job of meeting the specified climate objectives, with total root-
mean-square (RMS) differences from the objectives given in Table 1. Because the feedback
algorithm adjusts every year, this strategy is not designed to remove one-year timescale de-
viations from the objectives. Arctic insolation reductions in both the Arctic Only case and
the full 2 x 2 case are approximately linear with CO, forcing and reach approximately 14 %
by the end of the 70 year simulation, a similar magnitude to that used in the system iden-
tification simulations. In the Arctic Only case, the precipitation centroid y shifts southward
relative to the 1pctCO2 simulation, as expected, but does not return to the baseline value.
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It is not obvious a priori whether the amount of Arctic insolation reduction that returns Arctic
temperature would over- or under-compensate the CO,-induced shift in the precipitation
centroid, and indeed the two models used here show different behavior in this respect.

Because of the net northward shift with only Arctic insolation reductions, bringing the
precipitation centroid southward actually requires an increase in Antarctic insolation in this
model. (The feedback algorithm was not given any information regarding feasibility of the
applied radiative forcing; there is no known method of modifying shortwave radiation be-
tween 60 N and 90°N, let alone how to increase downward radiative flux in this region.)
As might be expected from the results in Fig. 10, the magnitude of increase in Antarctic
insolation in any particular year is on average greater than the magnitude of decrease in
Arctic insolation. This is clearly not representative of choices that would be made in an ac-
tual geoengineering implementation, but serves as a useful demonstration of multivariable
feedback in part because this behavior is model-specific. The GISS results below show
that the effectiveness of the feedback algorithm in this case is not dependent on whether
Arctic-only insolation over- or under-compensates the CO»-shift in precipitation.

Figure 12 illustrates that (in the design model) the feedback algorithm works as designed,
meeting the objectives as specified. However, it is valuable to explore the resulting cli-
mate in more detail, as it informs the complexity of defining objectives for geonengineering.
Figure 13 provides more spatial detail for the results in Fig. 12. The 1pctCO2 simulation
results in widespread warming, with temperature amplification at high latitudes and an in-
crease in global precipitation. In the Arctic Only simulation, most of the land mass in the
Arctic remains slightly warmer than in the preindustrial control run, and the ocean regions
are cooled, resulting in no average warming over the Arctic region. Tropical precipitation
is shifted southward as compared to the 1pctCO2 case. (See Appendix A for mechanistic
explanations of tropical precipitation shifts.) In the full 2 x 2 simulation, the Arctic is cooled,
again with a land-ocean contrast, and the Antarctic is warmed more; these results are con-
sistent with those of Fig. 12. Tropical precipitation is shifted farther South than in the Arctic
Only simulation and is slightly strengthened, but there is substantial drying north of the
equator relative to baseline. Overall, although the feedback algorithm is effective at meeting
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the specified objectives, there are residual changes in precipitation (Fig. 13) for which the
design does not account. Additional degrees of freedom would be required to offset these
local changes as well, assuming there exist such degrees of freedom.

Figure 14 shows changes in the seasonal cycle of precipitation and the centroid x for the
design model. All simulations show an increase in tropical precipitation, which is consistent
with increased CO, concentration (e.g., Held and Soden, 2006). Precipitation patterns in
the 1pctCO2 simulation show an increase in Northern Hemisphere precipitation in months
commonly associated with the summer monsoon, consistent with understood mechanisms
governing monsoon changes (e.g., May, 2004). The centroid y is shifted northward as com-
pared to the preindustrial climatology in nearly all months (with the exception of boreal late
spring), especially in the boreal winter when the ITCZ is at its most southward position. In
the Arctic Only simulation, the position of y is restored quite well except in the boreal win-
ter, which may be expected, as there is essentially no change in Arctic insolation during the
polar winter. There is also a reduction in boreal winter/spring precipitation in the Northern
Hemisphere subtropics due to a decrease in precipitable water (not shown). The full 2 x 2
simulation shows that even though the mean position of x is restored, the seasonal cycle
is not, with precipitation slightly too far north in boreal winter and too far South in boreal
summer. Other than the increase in tropical precipitation, the only large anomaly in pre-
cipitation is in the Southern Hemisphere subtropics during austral autumn, consistent with
a warmer Southern Hemisphere and enhanced Australian monsoon precipitation (Lau and
Wu, 1999). According to these results, restoration of the mean position of tropical precipi-
tation would not require the same feedback design as restoration of the seasonal cycle of
tropical precipitation.

Given sufficient simulation time, the results above with the design model could have been
achieved without feedback simply by estimating the model sensitivities to forcing from CO,
and both patterns of solar reduction, computing the amount of each pattern that would
achieve the objectives, and conducting multiple simulations if necessary to get the cor-
rect answer. However, while that approach would demonstrate what might be achievable
with perfect knowledge, it would not demonstrate a viable implementable strategy. The true
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power of using feedback to adjust the input degrees of freedom is demonstrated by using
the exact same algorithm to also achieve acceptable performance in the evaluation model
which, up to this point, has not been exercised at all in developing the strategy. Figure 15
shows the results from implementation of the feedback design in GISS ModelE2, the “eval-
uation” model. The magnitude of change of Arctic temperature and shift in x are notably
smaller for 1pctCO2 than in the design model, consistent with previous evaluations of the
differences in general behavior between the two models (Kravitz et al., 2014). Regardless,
the feedback algorithm still does an excellent job at meeting the objectives; RMS differ-
ences are listed in Table 1 next to the results from CESM. The Arctic-Only simulation shows
a more southward value of x than in the 1pctCO2 simulation, similar to CESM; the full 2 x 2
case results in better performance on this objective than the Arctic Only case.

The required reduction in Arctic insolation to achieve the Arctic temperature goal is ap-
proximately 7 %, or about half of the required value for CESM. Unlike the design model,
achieving the goal for x requires a reduction in Antarctic insolation (Arctic-only reductions
very slightly over-compensate rather than under-compensate the centroid shift due to CO,
alone). This result indicates that as long as the sign of the response is understood (i.e.,
that insolation reduction in one hemisphere will tend to shift tropical precipitation away from
that hemisphere), the feedback algorithm is robust to substantial uncertainties in the de-
tails of the response, which is indeed the entire point of using feedback. However, as the
results in Fig. 16 show, the residual climate effects may differ, depending upon the different
model-dependent spatial patterns of response to forcing. Accounting for the residuals would
require modifying additional degrees of freedom that are known to modify the temperature
and precipitation patterns in Fig. 16. This may or may not be possible; there is likely a
practical limit (which has not yet been discovered) to what is achievable by geoengineering.

Like the results for CESM (Fig. 13), the 1pctCO2 simulation in GISS results in widespread
warming, with Arctic amplification and an acceleration of the hydrological cycle. The Arctic
Only simulation is similarly effective at reducing Arctic temperature change, although with
many of the changes over land as well as ocean. In the full 2 x 2 case, both poles are cooled,
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consistent with the changes in insolation in Fig. 15. Tropical precipitation is enhanced in all
three simulations, consistent with an increase in CO».

Figure 15 indicates that the change in the precipitation centroid y is fairly well compen-
sated in the Arctic Only case, suggesting that the reductions in Antarctic insolation are not
strictly necessary to achieve the specified objectives. Moreover, Antarctic insolation reduc-
tion reaches 16 % by the end of the simulations, whereas Arctic insolation reduction reaches
only 7 %. (Explanations of these results are provided in Appendix A.)

Overall, we have demonstrated the ability to successfully design a 2 x 2 feedback algo-
rithm for the case we have investigated here. In doing so, we met all four criteria outlined
in the introduction, including a multi-model assessment of the feedback algorithm, demon-
strating that the designed algorithm is robust to inter-model differences. In the next section,
we follow the same investigations for the 3 x 3 design case.

5 Results from the 3 x 3 case

Figure 17 shows results in the design model for the 3 x 3 case, where 1 x 1 (black lines)
indicate only modifications of Lg to offset changes in Ty, 2 x 2 (blue lines) indicate modifi-
cations of Ly and L; to offset changes in Ty and 77, and 3 x 3 (red lines) indicates the full
3 x 3 case as described in Sect. 2. Implementation of feedback in CESM shows excellent
performance for the objectives being managed in each of these cases, and relatively poorer
performance for any objectives not being managed in a particular case (e.g., ATj for the
1 x 1 case). RMS values of departures from the specified goals are given in Table 2.
Reductions in Ly (a uniform insolation reduction) increase in magnitude approximately
linearly with CO» concentration, which is consistent with previous results (the 1 x 1 case is
effectively the same as GeoMIP experiment G2; Kravitz et al., 2011; Jones et al., 2013). The
gradual reduction in L keeps global mean temperature roughly constant, but cooling tends
to be greater in the Northern Hemisphere than in the Southern Hemisphere. Maintaining
the interhemispheric temperature gradient in the 2 x 2 simulation requires an increase in
L1 in this model, which increases Northern Hemisphere insolation and decreases South-
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ern Hemisphere insolation relative to applying Lo alone (i.e., less reduction in Northern
Hemisphere insolation and more in the south; see Fig. 18). Even with these two patterns of
change, the poles remain warmer than the equator, requiring an insolation reduction in L,
(Fig. 19).

In Fig. 17, the 2 x 2 sub-case and the full 3 x 3 case have an initial increase in L1, followed
by a slow asymptote toward no net change in L;. This indicates that changes in Ly and Ly
primarily affect processes on two different timescales. Initially, the interhemispheric tem-
perature gradient is driven by processes associated with a land-sea contrast, in large part
because the Northern Hemisphere has more land than the Southern Hemisphere. After a
few years, the land-ocean temperature contrast remains relatively constant (Lambert et al.,
2011), and a large driver of interhemispheric temperature gradient is Arctic amplification
(Holland and Bitz, 2003). These different timescales are reflected in the results of Fig. 17.
The value of AL; reaches a maximum after 9—10 years; the associated e-folding timescale
is therefore 2—3 years, which is consistent with known timescales of land surface feedbacks
(Andrews et al., 2009). After this time period, interhemispheric temperature differences are
largely due to greater Arctic temperature increases than Antarctic increases. These differ-
ences are effectively suppressed by reductions in Ly and L,, so smaller changes in L; are
needed to restore T; to its objective. Reductions in Ly and L, would be effective at offset-
ting changes in T3 early in the simulation as well, but such modifications would also result
in departures of Ty and T from their respective objectives.

Figure 19 shows the effectiveness of the different patterns of solar reduction on the pat-
tern of temperature changes. As has been discussed previously (e.g., Kravitz et al., 2013a),
an increase in CO, causes warming everywhere with polar amplification, and a decrease
in Lo will result in “overcooling” of the tropics and “undercooling” of the poles, with more
residual temperature change in the Arctic than the Antarctic. The 2 x 2 case still has over-
cooling of the tropics and undercooling of the poles, but the temperature residuals at the
poles have smaller interhemispheric disparity. In the full 3 x 3 case, these residuals are re-
duced substantially on average, although the results in Fig. 19 show differential effects over
land and ocean. In principle, additional degrees of freedom might be included to correct
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for additional residuals (again, assuming such degrees of freedom exist), but using three
degrees of freedom is quite effective at removing most large temperature changes due to
CO; increases.

Figure 18 shows results for CESM that are consistent with the above descriptions. For
the 1 x 1 sub-case, because the CO, concentration gradually increases over the course of
the simulation, insolation reduction must also increase to offset global mean temperature
changes.

Early in the 2 x 2 sub-case, CO, warming calls for a reduction in Lo, which results in
negative values of 77 in CESM, i.e., Northern Hemisphere cooling is greater than South-
ern Hemisphere cooling, whereas countervailing Arctic amplification from increased CO; is
not yet large enough to offset this cooling pattern. The net effect is a change in the inter-
hemispheric temperature gradient, resulting in a negative value of 71, so L; must increase
to compensate. Thus, early in the 2 x 2 sub-case, there is a net reduction in insolation in
the Southern Hemisphere, and net changes are small in the Northern Hemisphere. Later
in the simulation, both CO, increases and Lg reductions are larger in magnitude. As has
been seen in previous simulations of geoengineering (e.g., Kravitz et al., 2013a), this com-
bination of forcing results in greater net warming in the Northern Hemisphere than in the
Southern Hemisphere, so the previously seen increase in L is less than at the beginning
of the simulation.

For the full 3 x 3 case, the net polar warming and tropical cooling that occurs in the 2 x 2
sub-case leads to changes in 75, which are compensated by reductions in L,. An increase
in L7 results in Arctic warming and Antarctic cooling, but the Arctic warming is amplified by
the mechanisms involved in Arctic amplification, resulting in a net increase in 715, requiring
a decrease in L, to compensate. As can be seen in the results for GISS ModelE2, some of
the net effects are model-dependent, i.e., it is not obvious whether a CO, increase and an
Lo decrease will result in positive or negative 1.

Because the objectives of the 3 x 3 design case were framed solely in terms of tempera-
ture, it might be expected that changes due to CO, in other fields would not be compensated
as well by this particular design. Figure 20 shows these residuals for precipitation changes.
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In all three geoengineering cases, precipitation residuals are strongly reduced as compared
to the 1pctCO2 simulation, consistent with previous results (e.g., Tilmes et al., 2013). Ta-
ble 3 shows changes in global mean precipitation and y as compared to the preindustrial
control simulation. All feedback sub-cases show a decrease in global mean precipitation,
overcompensating the increase caused by CO,, as well as a southward shift in x relative to
1pctCO2 that is not enough to compensate for the northward shift due to increased CO».

All of the GISS results (Fig. 21) show that the Ty goal is met quite well by all three sub-
cases. In GISS ModelE2, reductions in Lg also result in small net changes in 11, so in the
2 x 2 sub-case and the full 3 x 3 case, the feedback algorithm does not call for large changes
in L1. As can be seen in Fig. 22, by the end of the simulation, there is a slight equator-to-
pole temperature difference, for which the feedback algorithm compensates by calling for
reductions in L,. Figure 22 shows that the full 3 x 3 case is quite effective at offsetting many
temperature changes throughout the globe. The residual precipitation changes (Fig. 23)
look qualitatively similar to those of the CESM simulations. Global mean changes in precip-
itation are of the same sign and similar magnitude to the CESM results. The northward shift
in x due to CO,, is smaller than in CESM, and the feedback here slightly overcompensates
rather than undercompensates this shift.

6 Discussion and conclusions

Geoengineering is not a binary decision of “on” or “off”. Rather, if it is ever deployed, mul-
tiple separate degrees of freedom could be adjusted to simultaneously meet multiple ob-
jectives. Climate models can be used to predict the response of multiple “output” variables
in response to multiple “input” variables, but the actual climate response will not be identi-
cal. For this reason, the radiative forcing introduced by geoengineering would need to be
adjusted in response to the observed climate outcomes; this feedback process compen-
sates for uncertainty between models and reality. Here we have demonstrated this design
process, and in particular the ability to simultaneously adjust multiple patterns of radiative
forcing in response to multiple observed climate variables. Using a two-model approach
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with separate design and evaluation models is essential for demonstrating that the feed-
back process results in a strategy that is not overly dependent on the specific details of an
individual model but is instead robust across models.

We reiterate two key points. First, attempts to generically characterize the climate effects
of solar geoengineering are ill-posed, because these effects depend both upon the spe-
cific technology used and the objectives. There is a broad range of potentially achievable
climates, each with its associated impacts on society (such as effects on water scarcity or
agriculture). Second, by demonstrating a multivariable feedback strategy to adjust multiple
distinct spatial patterns of radiative forcing, and demonstrating that a strategy designed in
one model can meet defined objectives in a separate evaluation model, this work reinforces
previous research, suggesting that an accurate climate model is not necessarily required to
implement solar geoengineering (Kravitz et al., 2014), even when balancing multiple climate
objectives.

As we stated in Sect. 1, determining the objectives of the solar geoengineering efforts is
an important first step. In our examples, we chose straightforward, unambiguous objectives,
such as returning some aspects of climate back to a preindustrial baseline state. As was
noted in Sections 4 and 5, each case had residuals for which the feedback algorithm did
not control (e.g., the seasonal position of the precipitation centroid in the 2 x 2 case or any
precipitation pattern in the 3 x 3 case). These effects are somewhat independent of the
objectives for which we did control, so modifying them would require additional degrees
of freedom, assuming such degrees of freedom could be found. Furthermore, if we had
performed the 3 x 3 design case against (for example) an RCP8.5 scenario in which we
were attempting to prevent global mean temperature change from exceeding 2 °C above its
preindustrial value, there is flexibility as to what the goals of the other two design criteria (L1
and L) ought to be. One potential goal would be to maintain whatever temperature pattern
there was in 2020. Another would be to cut the warming rate in half in the Arctic. There are
numerous other potential specifications, each with potentially different feedback algorithm
designs; carefully specifying the problem to be solved is crucial.

There are two obvious directions for future research.
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First, what are the limits to such a strategy? We have intentionally chosen a small num-
ber of objectives and chosen corresponding input variables where the physical relationship
between inputs and outputs is well understood, so the input/output response is likely to
be similar between different models, as well as between models and reality. Increasing the
number of adjusted patterns of radiative forcing and the number of different climate ob-
jectives is likely at some point to be limited by uncertainty. Put more bluntly, one cannot
necessarily control 100 different climate fields in 100 regions just because a model says
it's possible. While feedback provides robustness, some knowledge is required about the
input/output dynamics; if not even the sign of the relationship is known, for example, then it
is challenging to design an algorithm that converges. This is where the role of clear physical
mechanisms becomes crucial: in the absence of mechanisms, it is not known whether any
discovered input/output relationships are robust on the timescales of interest, or if a mecha-
nism is known to have highly nonlinear behavior, linear feedback may not be effective even
with large expenditure of effort on feedback design. Furthermore, even if some complicated
strategy converged to a slightly better solution than a simpler one, natural variability may
limit the ability to detect that difference on societally-relevant timescales, let alone attribute
those changes to geoengineering. Understanding the boundaries of what is achievable, as
well as what robust conclusions can be obtained about any particular strategy, are open
questions that require further research.

Second, we have demonstrated the ability to simultaneously manage multiple climate cri-
teria using the common approach of changing solar irradiance, here as a function of latitude.
Accomplishing the objectives with physically achievable mechanisms, such as with strato-
spheric aerosols or marine cloud brightening, introduces additional complications-—, even
in Antarctic insolation (i.e., it may not be possible to achieve all objectives due to physical
constraints). For example, in the case of stratospheric aerosols, one could choose both the
latitude and altitude of injection. However, (i) this does not give arbitrary ability to influence
the resulting latitudinal dependence of aerosol optical depth or radiative forcing, (ii) the
resulting radiative forcing patterns cannot be adjusted instantaneously, and (iii) the rela-
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tionship between injection parameters and spatial patterns of radiative forcing introduces
additional uncertainty, in no small part due to model-dependent results and insufficient vali-
dation of models as compared to reality. Using our methodology with stratospheric aerosols
requires two distinct steps. One is to characterize the relationship between injection pa-
rameters (e.g., altitude, latitude, season) and distributions of aerosol radiative forcing. The
second is determining the relationship between that radiative forcing and climate effects.
Each of these steps has substantial uncertainties, and overcoming these uncertainties to
meet climate objectives by using stratospheric aerosols (again, assuming those objectives
are even achievable, independent of the ability of feedback to meet those objectives) would
require a separate feedback process for each step. Marine cloud brightening would intro-
duce further challenges and opportunities from the spatial heterogeneity of radiative forcing
in both latitude and longitude, as well as the potentially rapid temporal response. This is
intimately tied to the above mentioned area of research: feedback is essential for managing
some of these uncertainties, but there are limits to what feedback can achieve.

Appendix A

The position of the ITCZ, a large determining factor in the position of x (Eqg. 1), is effectively
determined by the magnitude of cross-equatorial atmospheric energy transport (Kang et al.,
2008). Following the discussion of Donohoe et al. (2013), cross-equatorial atmospheric
energy transport (AT) is

AT = —[B] — [4] (A1)

where B is the total flux of energy into the atmospheric column (including all net top-of-
atmosphere radiative components, surface radiative components, and turbulent compo-
nents), A is the net storage of energy in the atmosphere, and brackets indicate a spatial
integral over the Northern Hemisphere. A is the time derivative of column-integrated moist
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static energy, i.e.,

Ps
/ ¢,T + LyqdP (A2)
0

_d |1
Cdt | g

where p, denotes surface pressure, P is pressure (Pa), g = 9.81 ms—2 is acceleration due
to gravity, ¢, = 1004 J kg~ K~1 is the specific heat at constant pressure, T is temperature
(K), L, = 2.5x10° J kg~! is the latent heat of vaporization of water, and q is specific humidity
(kg kg1). (Note that the term zg normally present in the definition of moist static energy has
been removed, as the gravitational potential of the atmosphere as a whole is assumed to
not change.) Positive values of AT indicate northward transport of energy by the atmosphere
across the equator.

Figure 24 shows annually-averaged timeseries of AT for the 2 x 2 design case. The values
in this figure are consistent with the results in Fig. 12: the full 2 x 2 simulation is effective
at restoring the position of the precipitation centroid because it approximately equilibrates
the cross-equatorial energy transport. The Arctic Only simulation shows promise in stabi-
lizing cross-equatorial energy transport at a new steady-state value, whereas the 1pctCO2
simulation has a continuing negative trend, representing further northward shifts of tropi-
cal precipitation, accompanied by more southward energy transport to compensate for the
hemispheric energy imbalance.

Fig. 25 shows cross-equatorial heat transport for the GISS ModelE2 simulations. The
annually averaged timeseries of change in AT were quite noisy, so both the raw timeseries
and ordinary least-squares regression on those timeseries are shown. Because any trends
in the timeseries are small, R? values are also predictably small, and none of the regres-
sions is statistically robust; nevertheless, these results can give an indication of physical
mechanisms explaining system behavior. The 1pctCO2 simulation shows heat transport
into the Southern Hemisphere that steadily increases in magnitude throughout the simula-
tion, consistent with the results from CESM and with expectations. The Arctic Only simula-
tion shows overcompensation, in that the increasingly large Arctic cooling to compensate
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for CO, warming actually results in net heat transport into the Northern Hemisphere. To
offset this change in cross-equatorial heat transport, the full 2 x 2 case calls for Antarctic
cooling, which returns cross-equatorial heat transport to the “correct” direction. Due to the
poor regression fits, it is difficult to comment on the relative magnitudes of cross-equatorial
heat transport and whether the full 2 x 2 case actually returns AT to preindustrial values.
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Table 1. Root mean square (RMS) differences in Arctic temperature (°C) and x (Eq. 1; degrees
latitude) from the temperature and latitude objectives. Values are calculated over the entire 70 year
simulation as the RMS of interannual deviations from the feng-term-preindustrial control (piControl)

IodeJ uorssnosi(J

mean.

Arctic temperature X
CESM  piControl 0.60 0.17
1pctCO2 3.37 0.59
Arctic Only 0.70 0.38
2% 2 0.70 0.17
GISS  piControl 0.41 0.11
1pctCO2 1.77 0.17
Arctic Only 0.43 0.09
2x2 0.40 0.09
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Table 2. Root mean square (RMS) differences in Ty, 11, and 15 (see Sect. 2 for definitions) for all
of the simulations in the 3 x 3 design case. All units are in °C. Values are calculated over the entire
70 year simulation as the RMS of interannual deviations from the leng-term—preindustrial control

IodeJ uorssnosi(J

(piControl) mean.

To T T
CESM piControl 0.14 0.04 0.04
1pctCO2 1.34 0.16 0.24
1x1 0.19 0.19 0.14
2 X2 0.18 0.08 0.16
3x3 0.20 0.08 0.05
GISS  piControl 0.08 0.05 0.03
1pctCO2 146 0.28 0.17
1x1 0.13 0.06 0.06
2 X2 0.13 0.05 0.05
3x3 0.13 0.06 0.04
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Table 3. Residual changes in global mean precipitation (P) and the precipitation centroid (x; Eq. 1)
for all of the simulations in the 3 x 3 design case. Changes are compared to the preindustrial control
simulation. Units for P are in mmyr~!, and units for y are in degrees latitude. Reported values are

IodeJ uorssnosi(J

averages over years 61—70 of simulation.

P X

CESM  1pctCO2 29 0.81
1x1 —22 0.57

2 %2 —23 0.66

3x3 —-16 0.73

GISS  1pctCO2 21 0.25
1x1 —-20 —-0.03

2x2 —-19 -0.14

3x3 —-17 -0.08
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Figure 1. These three panels show that the “canonical” temperature response to offsetting global
mean temperature increases from CO, (an abrupt quadrupling of the CO, concentration from its
preindustrial value) with total solar irradiance reduction (top panel; e.g., Govindasamy and Caldeira,
2000; Kravitz et al., 2013a) still involves a degree of freedom, in that the resulting temperature pat-
tern depends upon the amount of solar reduction. The middle panel shows the temperature response
if total solar irradiance is reduced such that the mean tropical temperature does not represent an
overcooling. The bottom panel shows the temperature response if total solar irradiance is reduced
such that the mean polar temperature does not represent an undercooling. Values above each
panel indicate the percentage reduction in total solar irradiance. All simulations were conducted with
CESM and represent an average over years 11-20 of simulation.
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Figure 2. The degrees of freedom that were modified in the two cases considered here, referred to
as 2 x 2 (left panel) and 3 x 3 (right panel). In the 2 x 2 case, Arctic and Antarctic insolation (shaded
regions) are modified to minimize changes in Arctic temperature and the latitude of the precipitation
centroid due to increasing CO, (see Sect. 2 for details). In the 3 x 3 case, the three patterns of
insolation reduction illustrated here are modified to minimize changes in global mean temperature,
the inter-hemispheric temperature gradient, and the equator-to-pole temperature gradient caused
by increasing CO, (see Sect. 2).
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Figure 3. Bode plot showing the frequency response of the transfer function G(s) = e=*P3/(1+s7)
for various values of 3, 7, and D. The top panel shows the magnitude of the frequency response
|G(s)||, and the bottom panel shows the phase ¢ = tan=*(Im(G(s))/Re(G(s))). 5 only affects mag-
nitude, D only affects phase, and 7 affects both. The red lines approximately correspond to the
estimated response of Arctic temperature to Arctic insolation reduction in the 2 x 2 design example.
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Figure 4. Bode plot (as in Fig. 3) comparing the first order linear model (ARX(1); Eq. 7) and a semi-
infinite diffusion model (SD; Eq. 8). Values for ARX(1) are 3 = 0.447, 7 = 1.946, and D = 1.0. Values
for SD are 843 = 0.732, 7, = 4.063, and D = 1.0. Values are chosen so that the magnitude and phase
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Figure 5. As in Fig. 4 but for the loop transfer function G(s)K (s) for values of control gains k; and
ko, used in the 2 x 2 case. Plots are shown for the first order linear model (ARX(1)) and the semi-
infinite diffusion model (SD). Grey dashed lines indicate a loop crossover frequency of wy; = 0.2,
corresponding to the frequency where ||GK|| = 1. &, denotes the phase margin (Sect. 3.3; the
distance between the curves and a phase lag of 180°) for two cases with and without proportional
gain k,. Pure integral gain adds 90° of phase lag, which can be partially compensated by adding
proportional gain.
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Figure 6. Magnitude of the sensitivity function S(s) = (1+ G(s)K(s))~! for the first order linear
model (ARX(1)) and semi-infinite diffusion model (SD). Model parameters are the same as in Figs. 4
and 5, and K(s)=1.0+0.4/s. Black horizontal line indicates ||.S(s)||=1; values above this line
indicate amplification at that frequency, and values below this line indicate attenuation. Grey vertical

line indicates the loop crossover frequency wge = 0.2 rad yr—L.
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Figure 7. Time domain response of the first-order linear (ARX(1); Eq. 6) and the semi-infinite dif-
fusion model (SD; inverse Laplace transform of Eq. 8) due to a step change in radiative forcing at
t = lyear. Parameter values for the models are the same as in the text and the caption of Fig. 4.
Dashed lines show the open-loop response, and solid lines show the closed-loop response with
k;=10.4 and k, = 1.0.
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Figure 8. Step responses for the 2 x 2 design case. Step perturbations in the Arctic (top row panels)
and Antarctic (bottom row panels) were 2, 4, 8, and 12 % of total solar irradiance in those regions.
Performing a best fit with an exponential function (Eqg. 6) to the 12 % step response results yields
£ =0.5and 7 = 2.410, plus a half year of time delay due to annual averaging.
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Figure 9. Linear regression over the precipitation centroid (x; Eq. 1) results from all of the step
response simulations. Regressions were performed over the average values of x over years 11-30
of simulation.  is approximately linear with perturbation amplitude.
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Figure 10. Results from the sinusoidal perturbations in the 2 x 2 design case. Input signal was
u(t) = 0.12sin(0.2¢), where 0.12 corresponds to a maximum amplitude of 12 % reduction or increase
in solar irradiance in the region, and 0.2 radyr—! is the chosen bandwidth (Sect. 3.3). Results are
summarized in Eq. (21).
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Figure 11. Results for the sinusoidal perturbations in the 3 x 3 design case. Inputs (Lo, L1, L>)
and outputs (7p,71,77) are described in Sect. 2. Input signal was u(t) = 0.01sin(0.2¢), where 0.01
corresponds to a maximum amplitude of 1 % reduction or increase in the pattern of insolation change
(Eq. 3), and 0.2 rad yr—! is the chosen bandwidth (Sect. 3.3). Results are summarized in Eq. (26).
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Figure 12. Results for the 2 x 2 case in the design model. Black lines indicate the 1pctCO2 simu-
lation. The feedback algorithm adjusts Arctic and Antarctic insolation (bottom left and bottom right
panels, respectively) to offset these changes, returning Arctic Temperature (top left panel) and (for
the 2 x 2 case) the precipitation centroid (y, Eq. 1); top right panel) to the dashed grey lines. Blue
lines indicate simulations in which only Arctic insolation is adjusted. Red lines indicate the full 2 x 2
case.
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Figure 13. Maps of temperature change (left column; degrees C) and precipitation change (right
column; mm day—!) for the 2 x 2 case in the design model. Changes are calculated from the average
of a preindustrial control simulation. Top panel corresponds to a 1pctCO2 simulation, middle row
indicates simulations in which only Arctic insolation is adjusted, and bottom row indicates the full
2 x 2 case. All panels are averages over the last ten years of a 70 year simulation.
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(@) 1pctCu2
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Figure 14. Climatology of percent change (with respect to piControl) in total precipitation (shad-
ing; %) and shift in the precipitation centroid (y, Eg. 1); symbols) for the 2 x 2 case in the design
model. Top panel corresponds to 1pctCO2, middle panel corresponds to the Arctic Only simulation,
and bottom panel corresponds to the full 2 x 2 simulation. Plus signs indicate piControl, and dia-
monds indicate the perturbed simulation. All values are averaged over years 59-68 of simulation
and are linearly bias-corrected to account for small differences in background conditions between
the perturbed simulations and piControl.
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Figure 15. Same as Fig. 12 but for GISS ModelE2 (the evaluation model).

68

| 1odeq uorssnosyq | I1oded uorssnosiq

JTodeJ uotssnosi(J

IodeJ uorssnosi(J



1pctCO2 — piControl

1pctCO2 — piControl

120W 60W 0 60E 120E 180
Arctic Only — piControl

? L= ,’
v - ." - e
R ; -

90N

. . 905 —— -

0 60E 120E 180 120w 60W Q 60E 120E 180

2x2 - piControl 2x2 - piControl
90N

BON

30N

308

60S 1.

90S
120w 6ow 0 60E 120E 180

-8 -4 -2 -1 =05 -0.25 025 0.5 1 2 4 8 -25 -1.3 -0.6 -0.3 -0.2 -0.1 -0.050.05 0.1 0.2 03 06 13 25

Figure 16. Same as Fig. 13 but for GISS ModelE2 (the evaluation model).
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Figure 17. Results for the 3 x 3 case in the design model. Black lines indicate the 1 x 1 sub-case
where L is adjusted to offset changes in Ty due to 1pctCO2. Blue lines indicate the 2 x 2 sub-case
where Ly and L, are adjusted to offset changes in T, and T7. Red lines indicate the full 3 x 3 case.
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Figure 18. Percent reduction in insolation for the 3 x 3 design case. Left column is the 1 x 1 simulation
(offsetting Ty changes via Ly changes), middle column is the 2 x 2 simulation (offsetting 7y and T3
changes via Ly and L; changes), and right column is the full 3 x 3 simulation. Top row corresponds
to the design model, and bottom row is the evaluation model. All results are zonally and annually
averaged.
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Figure 19. Maps of temperature change from the preindustrial control simulation (°C) for the 3 x 3
design case and its sub-cases in the design model. All panels are averages over the last ten years
of a 70 year simulation.
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Figure 20. Same as Fig. 19 but for precipitation changes in the design model. Values are in mm
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Figure 21. Same as Fig. 17 but for GISS ModelE2 (the evaluation model). Note different axis scaling

in the top row.
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Figure 22. Same as Fig. 19 but for GISS ModelE2 (the evaluation model).
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Figure 23. Same as Fig. 20 but for GISS ModelE2 (the evaluation model).
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Figure 24. Change from the preindustrial control in cross-equatorial energy transport by the at-
mosphere (Eqg. A1) for the 2 x 2 case in the design model. All values are annually averaged and
expressed in PW. For clarity, all plotted values were annually averaged and then smoothed (5-point
centered moving average).
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Figure 25. Similar to Fig. 24 but for GISS ModelE2 (the evaluation model). Left panel shows an-
nually averaged change from the preindustrial control in cross-equatorial energy transport by the
atmosphere (Eqg. A1). Right panel shows ordinary least-squares linear regressions performed on
those timeseries. All values are annually averaged and expressed in PW.
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