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Abstract 1 

Representations of the terrestrial carbon cycle in land models are becoming increasingly 2 

complex. It is crucial to develop approaches for critical assessment of the complex model 3 

properties in order to understand key factors contributing to models’ performance. In this study, 4 

we applied a traceability analysis, which decomposes carbon cycle models into traceable 5 

components, for two global land models (CABLE and CLM-CASA’) to diagnose the causes of 6 

their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing 7 

data, CLM-CASA’ predicted ~31% larger carbon storage capacity than CABLE. Since 8 

ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem 9 

residence time (τE), the predicted difference in the storage capacity between the two models 10 

results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA’ 11 

simulated 37% higher NPP than CABLE. On the other hand, τE , which was a function of the 12 

baseline carbon residence time (τ´E) and environmental effect on carbon residence time, was on 13 

average 11 years longer in CABLE than CLM-CASA’. This difference in τE was mainly caused 14 

by longer τ´E of woody biomass (23 vs. 14 years in CLM-CASA’), and higher proportion of NPP 15 

allocated to woody biomass (23% vs. 16%). Differences in environmental effects on carbon 16 

residence times had smaller influences on differences in ecosystem carbon storage capacities 17 

compared to differences in NPP and τ´E. Overall, the traceability analysis showed that the major 18 

causes of different carbon storage estimations were found to be parameters setting related to 19 

carbon input and baseline carbon residence times between two models.  20 

 21 

 22 
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Introduction 1 

Terrestrial ecosystems play a central role in the global carbon cycle as both a reservoir for 2 

carbon and as a regulator of atmospheric concentrations of carbon dioxide (CO2) (Sitch et al., 3 

2015). Future concentrations of atmospheric CO2 strongly depend on the feedbacks between 4 

terrestrial ecosystems and atmosphere; particularly the balance of carbon uptake, driven 5 

primarily by CO2 in simulations; and loss of carbon from the ecosystems, driven primarily by 6 

temperature in simulations (Luo, 2007; Luo et al., 2009; Thornton et al., 2009). Improving our 7 

understanding of the processes by which ecosystems interact with the atmosphere is of 8 

fundamental importance for improving models’ predictions (Zhou, et al., 2012). Global land 9 

models are the major tools for investigating the climate impacts on terrestrial ecosystem carbon 10 

storage capacity (Luo et al., 2012; Rafique et al., 2014). Today’s land models have become very 11 

sophisticated due to inclusion of multitude of different processes in the hope of simulating the 12 

real world more accurately. However, the addition of new processes not only increases the 13 

challenge of understanding the complex model behavior but also hinders the diagnosis of 14 

uncertainty in model outputs (Luo et al., 2009; Xia et al., 2013; Rafique et al., 2016a).  15 

Many studies have been conducted on evaluation and intercomparison of carbon cycle 16 

components of land models (Johns et al., 2011; Taylor et al., 2011; Zaehle et al., 2014; Rafique 17 

et al., 2016b), and most of these studies show large discrepancies in modeled carbon stocks and 18 

fluxes. For example, the Coupled Model Intercomparison Project (C4MIP) reported that carbon 19 

uptake responses to a doubling of atmospheric CO2 concentrations varied from 100 to 800 Gt 20 

carbon amongst 11 models for the period 1850-2100 years (Friedlingstein et al., 2006; Arora et 21 

al., 2011). Similarly, Todd-Brown et al. (2013) reported that the present day total soil organic 22 

carbon simulated by CMIP5 models varied six fold ranging from approximately 510 to 3040 Pg 23 
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of carbon. Most of these studies use a conventional approach for model intercomparison where 1 

models are analyzed by comparing their outputs among each other and with reference data set; 2 

however this approach is not sufficient for understanding the causes of discrepancies in model 3 

outputs.  4 

There have been a few studies that attempt explaining some of these differences in model 5 

outputs by attributing sources of variations. For example, Mishra et al. (2013) identified 6 

uncertainties in modeling soil carbon in permafrost regions but insufficiently attributed these 7 

variations to different components of their model due to lack of comprehensive tractable 8 

approach. Wang et al. (2011) decomposed ecosystem models into several components, such as 9 

climate forcing, net primary productivity (NPP) allocation and decomposition rates. This study 10 

was partly successful in diagnosing uncertainties in simulated carbon dynamics. However, the 11 

framework they used could not adequately address the sources of variations to their origins 12 

thoroughly. For example, this framework was not sufficient to explain the variations in 13 

respirational fluxes (i.e. whether they were caused by carbon pool sizes or turnover rates). 14 

Similarly, Todd-Brown et al. (2013, 2014) explained the model differences based on the 15 

variations in NPP, bulk soil decomposition rates and temperature sensitivity. However, they did 16 

not describe the effects of parameterizations such as NPP partitioning, carbon transfer 17 

coefficients and decomposition rates of individual pools. These shortcomings can only be 18 

addressed after gaining more complete understanding of the model’s fundamental structural 19 

differences and its traceable components controlling the carbon dynamics.  20 

The traceability framework developed by Xia et al. (2013) provides a powerful method   21 

for attributing the sources of variations to different components of models. This framework, 22 

based on fundamental properties of the carbon cycle, can be decomposed into few traceable 23 



5 
 

components (Luo et al., 2003; Luo & Weng, 2011). After carbon is fixed by photosynthesis, its 1 

further fate can be summarized by ecosystem carbon residence time, which is a length of time a 2 

carbon atom spends in ecosystem before leaving it via respiration (Luo et al., 2001). The 3 

framework traces modeled ecosystem carbon storage capacity (Xss) to (i) a product of NPP and 4 

ecosystem residence time (τE). The latter ecosystem residence time can be further traced to (ii) 5 

baseline carbon residence times (τ´E), which are function of model parameters representing 6 

vegetation characteristics and soil types, (iii) environmental scalars (ξ) including temperature and 7 

water scalars, and (iv) the external climate forcing.  8 

In this study we applied the traceability framework to decompose two commonly used 9 

complex land models (CLM-CASA’ and CABLE) at global and biome spatial scales into 10 

traceable components for better understanding of the sources of variations in modeled carbon 11 

storage capacity. The specific objectives of this study were: to (1) quantify the effects of NPP 12 

and ecosystem residence time in determining the ecosystem carbon storage and (2) investigate 13 

the impact of parameters (relating to NPP partitioning and carbon transfer coefficients) and 14 

environmental conditions in determining ecosystem’s carbon residence time.   15 

2.0 Methods 16 

2.1 CABLE and CLM-CASA’ models  17 

CABLE is an Australian land model used for the simulation of land atmospheric exchanges 18 

(Kowalczyk et al., 2006). The biogeochemical model in CABLE is adopted from CASACNP, a 19 

model developed by Wang et al. (2010). CASACNP consists of tightly coupled carbon, nitrogen 20 

and phosphorus cycles. Like most of other land models, CABLE’s carbon cycle also consists of 21 

typical pool and flux structure. There are nine carbon pools in the CABLE model: three plant 22 
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pools, three litter pools and three soil pools. The carbon partitioning of photosynthetically fixed 1 

carbon into plant pools is controlled by the availability of light, water and nitrogen. The carbon 2 

transfer among pools is determined by the lignin/nitrogen ratio and the lignin fraction. The 3 

potential decay rates vary with vegetation types, lignin fraction and soil texture. The 4 

environmental scalar regulates the leaf turnover rates via limitations of soil moisture and soil 5 

temperature conditions. The more detailed description of CABLE model is given in Wang et al. 6 

(2011) and Xia et al. (2013).  7 

CLM-CASA’ model combines the biogeophysics of the CLM with Carnegie-Ames-8 

Stanford Approach (CASA) biogeochemistry module (Oleson, et al., 2008). The CLM, released 9 

in 2008, is a component of the Community Climate System Model (CCSM) (Oleson, et al., 10 

2007; Leng et al., 2013,2014). CLM examines the physical, chemical, and biological processes 11 

through which terrestrial ecosystems interact with climate. CASA’ simulates carbon dynamics at 12 

the plant functional type (PFT) level beginning with carbon assimilation via photosynthesis, to 13 

mortality and decomposition, and the release of CO2 to the atmosphere. There are three plant 14 

carbon pools, six litter pools and three soil pools. A more detailed description of the model is 15 

provided by Doney et al.  (2006).  16 

Biomes for both CABLE and CLM-CASA’ were constructed from the 1-km International 17 

Geosphere–Biosphere Program Data and Information System (IGBP DISCover) dataset 18 

(Loveland et al., 2000).  In CLM-CASA’, however, the above dataset was combined with 1-km 19 

tree cover dataset published by the University of Maryland (DeFries et al., 2000). The CABLE 20 

model has 9 biomes (8 used in this study), and CLM-CASA’ has 16 plant functional types. We 21 

aggregated the CLM-CASA’ output from plant functional types to the scale of biomes as defined 22 

in CABLE. The aggregation of CLM-CASA’ plants functional types into CABLE biomes are 23 
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described in supplementary material for this paper. Furthermore, the photosynthetic parameters, 1 

rate of carboxylation (Vcmax) and specific leaf areas (SLA) were taken from the input files 2 

included in models’ packages. The preset value of Q10 in CABLE was 1.72, 14 % lower than the 3 

Q10 value used in CLM-CASA’. The Q10 plays an important role in determining the 4 

temperature sensitivity of soil respiration (Zhou et al., 2009).  5 

2.2 Mathematical description of carbon cycle and traceability framework 6 

The carbon cycle in most models share four common properties: (1) photosynthesis as the 7 

starting point of carbon flow in an ecosystem, (2) partitioning of assimilated carbon into different 8 

vegetation components, (3) carbon transfer is controlled by donor pool, and, (4) first order decay 9 

of litter and soil organic matter. These fundamental properties of the terrestrial carbon cycle can 10 

be described using the following equation (Luo et al., 2003; Luo & Weng, 2011).  11 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝑩𝑈(𝑡) − 𝑨(𝝃(𝐸)𝑪)𝑋(𝑡)                                 (1) 

Where, X(t) = (X1(t), X2(t), … , Xn(t))
T
 is a vector of length n representing the carbon pool sizes. 12 

B is an n × 1 vector representing the partitioning coefficients of the photosynthetically fixed 13 

carbon into plant pools. U(t) is the photosynthetically fixed carbon (NPP). A is an n × n matrix 14 

representing the carbon transfer between pools. 𝝃(𝐸) is an n × n diagonal matrix of 15 

environmental scalars representing the effects temperature and moisture on decomposition rates. 16 

C is an n × n diagonal matrix representing the carbon losses through respiration at each time 17 

step.  18 

The mutually independent properties of all these elements (B, A, C and 𝝃(𝐸)) enable us to 19 

implement the analytical framework by decomposing the total ecosystem carbon storage capacity 20 
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into its traceable components as described in Xia, et al. (2013). The elements in 𝝃(𝐸)and U(t)  in 1 

equation (1) vary with time and climatic conditions, but their long-term averages can be used to 2 

calculate steady state carbon pool sizes, Xss, by letting equation (1) equal zero for a given Uss and 3 

𝜉𝑠𝑠, as described in Xia et al. (2013): 4 

𝑋𝑠𝑠 = [𝑨𝝃𝒔𝒔𝑪)]−1𝑩𝑈𝑆𝑆                               (2) 

The vector Xss represents the steady state carbon pools. Uss is the steady state carbon 5 

influx in an ecosystem. The partitioning (B), transfer coefficients and respirational losses (A and 6 

C) in equation (2) together determine the baseline carbon residence time (τ´E): 7 

𝜏𝐸
´ = (𝑨𝑪)−1𝑩                                 (3) 

The baseline carbon residence time (τ´E) in equation (3) and environmental scalar values 8 

describe the total ecosystem residence time (τE): 9 

𝜏𝐸 =  𝝃𝒔𝒔
−1𝜏𝐸

´                                  (4) 

Thus the ecosystem carbon storage capacity is jointly determined by the ecosystem 10 

residence time (τE) and steady state carbon influx (Uss): 11 

𝑋𝑠𝑠 =    𝜏𝐸  𝑈𝑠𝑠                             (5) 

Equation (5) also defines the total ecosystem residence time as the ratio of carbon storage 12 

(Xss) to steady state carbon influx (Uss) (𝜏𝐸 = 𝑋𝑠𝑠/𝑈𝑠𝑠) 13 

The environmental scalar is further separated into the temperature ( 𝝃𝑻) and water (𝝃𝑾) 14 

scalar components which can be represented as: 15 

𝜉𝑠𝑠 =   𝜉𝑊 𝜉𝑇                                (6) 
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The set of equations (2-6) not only decomposes the carbon storage capacity into different 1 

traceable components in a systematic way, but also explains the mutual relationships among 2 

them. The additional information on the description of traceability components can be found at 3 

http://ecolab.ou.edu/?research_info&id=36. 4 

2.3 Model simulations and diagnosis 5 

Modeled carbon dynamics heavily depends on the initial conditions of state variables 6 

(carbon pools), which, in land models, are customarily assumed to be steady state pools (in the 7 

year 1850). In this study, for the estimation of modeled carbon storage capacity and other 8 

traceable components, the steady state of the models was obtained through spin up simulations. 9 

The process of spin up was carried out using the semi analytical solution (SAS) method 10 

developed by Xia et al. (2012). For spin up, the models were simulated until the mean changes in 11 

carbon pools over each loop (1 year) were smaller than 0.01 % per year in each cycle. The CLM-12 

CASA and CABLE models were forced with the climate forcing data reported in Qian et al. 13 

(2006) and Wang et al. (2010), respectively. The CO2 concentration was set at 375 ppm for both 14 

models’ runs. Inputs for soil texture in both models were taken from IGBP-DIS dataset (IGBP-15 

DIS, 2000). For both models, the lignin content and CN ratios were assigned for each plant 16 

functional type in the source code (therefore there was no map of them) and lignin to nitrogen 17 

ratios were calculated from PFT-level CN ratios and lignin content. The models were run on two 18 

spatial resolutions of 2.81
o
 x 2.81

o
 (CLM-CASA’) and 1

o
 x 1

o
 (CABLE). After the spin up 19 

simulations, elements of A, C, B, and ξ(E), as well as U(t) were stored to calculate their mean 20 

values. The obtained averages were used to calculate the carbon residence time and steady state 21 

carbon pools (Eqs. 2-4).  22 

http://ecolab.ou.edu/?research_info&id=36
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3.0 Results 1 

3.1 Carbon storage in CABLE and CLM-CASA’ 2 

The ecosystem carbon storage capacity differed substantially between CABLE and CLM-3 

CASA’ at both global and biome level. CLM-CASA’ had 31 % higher global carbon storage 4 

capacity compared to CABLE (Circled in Fig. 1). In both models, evergreen needleleaf forest 5 

and evergreen broadleaf forest showed the highest carbon storage capacity. However, evergreen 6 

needleleaf forest and evergreen broadleaf forest in CLM-CASA’ had 63 % and 47 % higher 7 

carbon storage capacity compared to respective biomes in CABLE. Shrub land, C3G and C4G 8 

showed the most agreement between two models. A substantial variation was observed in the 9 

simulated NPP and estimated ecosystem residence time at both global and biome level between 10 

CABLE and CLM-CASA’. All biomes in CLM-CASA’ produced higher NPP compared to the 11 

respective biomes in CABLE. The minimum value of NPP (250 g C m
-2

 yr
-1

 for deciduous 12 

needleleaf forest) in CLM-CASA’ was much higher than the minimum value of NPP (61 g C m
-2

 13 

yr
-1

 for tundra) in CABLE. A similar diverse trend was also observed for the ecosystem 14 

residence time. In CLM-CASA’, three biomes (deciduous needleleaf forest, evergreen needleleaf 15 

forest and tundra) showed ecosystem residence time of >100 years compared to CABLE. 16 

However, C4G in both models represented the shortest ecosystem residence time in CLM-17 

CASA’ (13 years) and CABLE (18 years).    18 

3.2 Baseline carbon residence time and its components  19 

Both CABLE and CLM-CASA’ showed large variations in baseline carbon residence times 20 

at both global and biome level (Fig. 2). The global baseline residence time of 20 years in 21 

CABLE was approximately five fold larger than the global baseline carbon residence time of 22 
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CLM-CASA’. The deciduous needleleaf forest and evergreen needleleaf forest in both models 1 

showed the highest baseline carbon residence times. The tundra in CABLE showed the minimum 2 

baseline carbon residence time, whereas, it was ranked third highest in CLM-CASA’. Similarly, 3 

the baseline carbon residence time of shrub land in CABLE was 89 % higher than the baseline 4 

carbon residence time of tundra in CLM-CASA’. In general, five biomes (evergreen needleleaf 5 

forest, evergreen broadleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, shrub 6 

land) in CABLE showed baseline residence times of >15 years compared to the maximum 7 

baseline carbon residence time of 9 years for deciduous needleleaf forest in CLM-CASA’.  8 

The baseline carbon residence time is dependent on NPP partitioning coefficients (vector 9 

B), carbon transfer coefficients (matrix A) and decomposition rates (matrix C) (Eq. 4). All these 10 

components of B, A, and C showed substantial differences between the two models. CABLE 11 

allocated 61 % of NPP to roots, 23 % to wood and 16 % to leaves (Fig. 3A). CLM-CASA’ 12 

allocated 43 % of NPP to leaves, 16 % to wood and 41 % to roots (Fig. 3B). Similarly, a large 13 

difference in carbon transfers from live plants to litter and soil was also observed. In CABLE, the 14 

live tissues were partitioned into three litter pools (including CWD). 59 % of leaf carbon 15 

partitioned to metabolic litter and 41% to structural litter pools, while roots transferred 61 % of 16 

their carbon to metabolic and 39 % to structural litter. A major portion of litter carbon was 17 

released into the atmosphere through respiration losses, while the remaining was transferred into 18 

the soil organic matter pools (Fig. 3A). In CLM-CASA’, the plant tissues dispersed to six litter 19 

pools (including CWD) after mortality. The leaves allocated 62 % of its carbon to surface 20 

metabolic litter and 38 % to surface structural litter. Likewise, the fine roots allocated 62 % of its 21 

carbon to soil metabolic litter and 38 % to soil structural litter. All of the litter pools contributed 22 

to three soil carbon pools which were then interlinked for back and forth movement of carbon 23 
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until it was respired completely (Fig. 3B). CLM-CASA’ and CABLE also differed in 1 

representing their C matrix which was a fraction of carbon leaving from each pool with values in 2 

CLM-CASA’ being higher than in CABLE, in general.  3 

3.3 Photosynthetic parameters 4 

      The magnitude of NPP is one of the two factors that control ecosystem carbon storage 5 

capacity in CLM-CASA’ and CABLE. Differences in NPP between the two models could’ve 6 

been caused by differences in model structures, forcing, and in model parameterization of 7 

photosynthesis process. As illustrated in Figure 4, there were no significant differences in 8 

models’ climatic forcing, whereas, photosynthetic parameters differed substantially. For most 9 

biomes CLM-CASA’ had higher Vcmax and SLA values (Table 1), which caused the NPP to be 10 

higher than in CABLE. However, NPP simulated by CLM-CASA’ was higher than NPP 11 

simulated by CABLE for all biomes, therefore differences in the photosynthetic model 12 

formulations were likely the most significant contributor to the differences in NPP between the 13 

two models . 14 

3.4 Climate forcing data 15 

The mean air temperature (11.2 ± 4.9 
o
C) and precipitation (973 ± 457 mm) in CABLE was 16 

comparable to mean air temperature (11.7 ± 5.1 
o
C) and precipitation (967 ± 490 mm) in CLM-17 

CASA’ (Fig. 4). A strong agreement between climate forcing was also observed between the 18 

biomes of both models. However, a few biomes showed substantial variations in climate forcing 19 

between CABLE and CLM-CASA’. The maximum difference between mean air temperatures of 20 

both models was observed for deciduous broad leaf forest followed by tundra and deciduous 21 

needleleaf forest, respectively (Fig 4). CLM-CASA’ showed 18 % higher mean air temperature 22 
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for deciduous broad leaf forest compared to CABLE. In both models, tundra (-8.0 ± 5.2 
o
C in 1 

CABLE; -5.5 ± 5.2 
o
C in CLM-CASA’) and deciduous needleleaf forest (-7.0 ± 1.4 

o
C in 2 

CABLE; -9.8 ± 1.2 
o
C in CLM-CASA’) showed much lower air temperature compared to all 3 

other biomes. The maximum differences in precipitation data between both models were found 4 

in C4G, tundra and deciduous needleleaf forest respectively. In CABLE, C4G (1018 ± 491 mm) 5 

presented 59 % lower precipitation compared to C4G (1622 ± 765 mm) in CLM-CASA’. 6 

However, CABLE exhibited 46 % and 43 % more precipitation for tundra and deciduous 7 

needleleaf forest, respectively, compared to that of comparable biomes in CLM-CASA’.  8 

3.5 Environmental scalars 9 

The lower environmental scalar limits decomposition rates and turnover time result in 10 

increases of the final ecosystem residence time. The environmental scalars at global and biome 11 

level differed substantially between two models (Fig 5). The global average of environmental 12 

scalar in CABLE (0.34) was considerably lower compared to that of CLM-CASA’ (0.42). In 13 

general, CLM-CASA’ simulated higher environmental scalar values for most of the biomes 14 

compared to CABLE. C4G, shrub land and evergreen broadleaf forest were least limited by 15 

temperature and moisture with environmental scalars of 0.65 and 0.49, respectively. Both models 16 

simulated tundra with the highest temperature and moisture limitation of organic matter 17 

decomposition.  18 

The global temperature and water scalars in CLM-CASA’ were found to be 16 % and 4 % 19 

higher than that of CABLE. The temperature scalars were strongly dependent on the Q10 value, 20 

which was 14 % higher in CLM-CASA’ than in CABLE. The C4G, evergreen broadleaf forest 21 

and shrubs in CABLE and C4G, shrubs and evergreen broadleaf forest in CLM-CASA’, 22 
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respectively, showed the highest temperature scalar values amongst all other biomes, (Fig. 5). 1 

The minimum temperature scalar was observed for tundra in both CABLE and CLM-CASA’. 2 

Overall, organic matter decomposition (across the biomes) in CABLE was more dependent on 3 

temperature than the organic matter decomposition in CLM-CASA’. The same diverse pattern of 4 

biome level water scalars was observed in both models (Fig. 5). The deciduous needleleaf forest 5 

(0.87) in CABLE and EBF (0.98) in CLM-CASA’ showed the maximum water scalar values. 6 

Similarly, evergreen broad leaf forest (0.65) in CABLE and tundra (0.16) in CLM-CASA’ 7 

showed the minimum environmental scalar values. Overall, the lowest water scalar was observed 8 

in the deciduous needleleaf forest for CLM-CASA’ and the lowest temperature scalar was 9 

observed in Tundra for CABLE. In general, CLM-CASA’ presented higher values of water 10 

scalars for most biomes compared to CABLE. Furthermore, environmental scalars were mainly 11 

determined by temperature rather than water scalar in both models.   12 

4.0 Discussion 13 

The traceability framework implemented in this study is an effective method to 14 

characterize the major components of the carbon cycle represented by two widely used land 15 

models, CABLE and CLM-CASA’. We were able to identify the differences in modeled carbon 16 

storage capacity in an independent manner through decomposing of the carbon cycle into its 17 

major components of NPP, ecosystem residence time and environmental scalars (Eq. 1-6). For 18 

example, the global carbon storage capacity in CLM-CASA’ was substantially higher (31%) 19 

compared to that in CABLE, primarily due to 37% higher simulated NPP slightly offset by lower 20 

ecosystem residence time (Fig. 1 and Fig. 6). The higher NPP in CLM-CASA’ was partly 21 

attributed to the relatively higher rates of carboxylation and specific leaf areas (Table 1) 22 

compared to CABLE, but for half of the biomes, the cause of differences in NPP between the 23 
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two models was not straightforward, and might have been a combination of models formulation 1 

and assumptions about autotrophic respiration (Kowalczyk et al., 2006; Oleson, et al., 2004).  2 

Both models showed a distinctive pattern of NPP partitioning and transferring carbon 3 

among different pools (Fig. 3) which resulted in different baseline carbon residence times. The 4 

baseline carbon residence time in CABLE was longer due to more NPP partitioning into roots 5 

and wood, which had higher residence times than in CLM-CASA’. In biomes, deciduous 6 

needleleaf and evergreen needleleaf forests showed the highest baseline carbon residence times 7 

because they partitioned the largest fraction of NPP to woody biomass. For tundra the baseline 8 

residence times differed also, likely due to the partitioning coefficients, because both models 9 

simulated similar environmental scalars of 0.1. Previous studies also reported that partitioning of 10 

NPP among different pools is a significant factor in determining carbon residence time (Todd-11 

Brown et al., 2013; Rafique et al., 2016a). In CABLE, the allocation of NPP into plant pools was 12 

mainly driven by the availability of water, nitrogen and light (Xia et al., 2013), whereas, CLM-13 

CASA’ considers only water and light (Friedlingstein et al., 1999). CABLE and CLM-CASA’ 14 

also differed significantly in transferring carbon among pools, and their corresponding 15 

respiration loss (Fig. 3). The most obvious difference was the pattern of carbon transfer from live 16 

tissues to litter pools. These carbon transfer rates among pools directly influence the carbon pool 17 

sizes and residence time (Xia et al., 2013). The more complicated interactions between soil pools 18 

in CLM-CASA’ slightly increase the residence time but not significantly, because instead of 19 

leaving the system, carbon returns to another pool, thus staying in the system longer (results not 20 

shown).   21 

Environmental scalars strongly influenced the actual ecosystem residence time and varied 22 

substantially across the biomes in both models. Temperature scalars in both models showed more 23 
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diverse distribution than water scalars, indicating that temperature limitation was more important 1 

in determining actual ecosystem residence time than water limitation (Todd-Brown et al., 2014). 2 

However, water scalars were more variable across biomes in CLM-CASA’ than in CABLE. 3 

Despite the similarity of air temperature data used in both models (Fig. 4), the temperature 4 

scalars were found to be different between the two models due to the considerable difference in 5 

Q10 value,  which was  higher in CLM-CASA’. It should be noted that there is some difference 6 

in the two forcing in certain regions, which may propagate into the simulations by the two 7 

models. Nevertheless, the main conclusions are robust since we mainly focused on the long-term 8 

global means of all variables at steady states.   9 

The traceability framework is an effective method for explaining the models variations, a 10 

major issue identified by previous studies (Friedlingstein et al., 2006; Wang et al., 2011; Mishra 11 

et al., 2013; Todd-Brown et al., 2013; Zaehle et al., 2014). Overall, our results showed that the 12 

major factors contributing to the differences between the two models were primarily due to 13 

parameter settings related to photosynthesis, carbon input, baseline residence times and 14 

environmental conditions. This study provides information on the relative importance of model 15 

components and source of variations which are useful for model intercomparisons, benchmark 16 

analyses and evaluation of additional components in models. Hence, this framework can be 17 

applied to other biogeochemical models to better characterize and quantify the processes that 18 

contribute to model differences. For example, CLM4, VEGAS and CENTURY share similar 19 

structure of carbon cycle modules and thus can be diagnosed through the traceability framework 20 

for evaluating the models’ performance.  21 

 22 

 23 
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Summary 1 

The modeled total carbon storage capacity in CLM-CASA’ was ~31% higher compared to 2 

CABLE, due to the combined effect of higher NPP and lower ecosystem residence time. The 3 

ecosystem residence time was primarily dependent on the baseline carbon residence time and 4 

environmental scalar. Both CABLE and CLM-CASA’ showed large variations in baseline 5 

carbon residence times, which is largely influenced by NPP partitioning coefficients (vector B), 6 

carbon transfer coefficients (matrix A), and decomposition rates (matrix C). The global average 7 

of environmental scalar in CABLE (0.34) was lower compared to that of CLM-CASA’ (0.42). At 8 

biome level, CLM-CASA’ exhibited higher environmental scalar values for most of the biomes 9 

compared to CABLE. The difference in environmental scalars between CABLE and CLM-10 

CASA’ was largely due to the differences in temperature scalars rather than water scalars. 11 

Overall, our results suggested that the differences in carbon storage between the two models 12 

were largely influenced by parameter settings related to photosynthesis, baseline residence times 13 

and temperature limitation of organic matter decomposition. The different NPP values were 14 

determined by the differences in Vcmax and SLA, while the differences in baseline carbon 15 

residence times were determined by differences in NPP partitioning and carbon transfer 16 

coefficients. 17 
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Figure captions 1 

Figure 1 2 

Determination of ecosystem carbon storage (kg C cm
-2

) capacity (grey contour lines) by carbon 3 

influx (Uss; X-axis) and ecosystem residence time (τE; Y-axis) (at global and biome level) 4 

between CABLE and CLM-CASA’. The contour lines show the constant values of ecosystem 5 

carbon storage capacity. ENF – Evergreen needleleaf forest, EBF – Evergreen broadleaf forest, 6 

DNF – Deciduous needleleaf forest, DBF – Deciduous broadleaf forest, Shrub – Shrub land, 7 

C3G – C3 grassland, C4G – C4 grassland. Open squares in the circle show the global values. 8 

Figure 2 9 

Spatial distribution of ecosystem residence time (τE) and baseline carbon residence time (τ´E) (at 10 

global and biome level) between CABLE and CLM-CASA’. Abbreviations of biomes are given 11 

in Fig 1. Circles separate the biomes of CLM-CASA’ and CABLE. Open squares in the circle 12 

show the global values. 13 

Figure 3 14 

Schematic diagram showing the carbon cycle in CABLE (A) and CLM-CASA’ (B). Carbon 15 

enters the system through photosynthesis and is partitioned among live pools. From live pools, 16 

carbon is transferred to litter pools, and from litter pools it is transferred to soil carbon pools. 17 

Values in boxes show the pools residence times. Values outside the boxes show the partitioning 18 

and transfer coefficients. The full names of the abbreviated carbon pools are coarse woody debris 19 

(CWD), structural litter (surface and soil), metabolic litter (surface and soil), surface microbial 20 

litter, soil microbial carbon, fast soil organic matter, slow, and passive soil organic matter. 21 
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Figure 4 1 

Distribution of climate forcing data (at global and biome levels) used for CABLE and CLM-2 

CASA’ simulations. Open square show the global values. Abbreviations of biomes are given in 3 

Fig 1.  4 

Figure 5 5 

Determination of environmental scalars by the temperature and water scalars (at global and 6 

biome level) between CABLE and CLM-CASA’. Open squares show the global values. The 7 

contour lines show the constant value of environmental scalars. Abbreviations of biomes are 8 

given in Fig 1.  9 

Figure 6 10 

Schematic diagram of the traceability framework along with the summary of the results obtained 11 

in this study. The numerical values show the percentage increase between two models. Xss - 12 

ecosystem carbon storage capacity; τE - ecosystem carbon residence time; τ′E - baseline carbon 13 

residence time; ξ - environmental scalar; ξT - temperature scalar; ξW - water scalar.  14 

Table Caption 15 

Table 1 16 

Photosynthesis parameter values for different biomes in CLM-CASA’ and CABLE. 17 

Abbreviations of biomes are given in Fig 1. The relative difference is calculated by CLM-18 

CASA’ minus CABLE and then divided by CLM-CASA’. 19 
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Figure 5 1 
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Figure 6 1 
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Table 1 1 

 2 

Biomes CLM-CASA’ CABLE Difference (%) 

 
Vcmax 

(umol/m
2
/s) 

SLA 

(m
2
/gC) 

Vcmax 

(umol/m
2
/s) 

SLA 

(m
2
/gC) 

Vcmax 

(umol/m
2
/s) 

SLA 

(m
2
/gC) 

ENF 47 0.009 40 0.018 14.90 -100 

EBF 72 0.006 55 0.021 23.61 -250 

DNF 51 0.024 40 0.025 21.57 -4.17 

DBF 47 0.03 60 0.025 -26.76 16.67 

Shrubland 22 0.024 40 0.025 -79.10 -4.17 

C3G 43 0.05 60 0.028 -39.53 44 

C4G 24 0.05 10 0.028 58.33 44 

Tundra 43 0.05 60 0.028 -39.53 44 

 3 


