Response to Referee #1 Comments on Gemayel, E., Hassoun, A.E.R., Benallal, M.A., Goyet, C., Rivaro, P., Abboud-Abi Saab, M., Krasakopoulou, E., Touratier, F., Ziveri, P., 2015: Climatological variations of total alkalinity and total inorganic carbon in the Mediterranean Sea surface waters. Earth Syst. Dynam. Discuss. 6 (2), 1499-1533. 10.5194/esdd-6-1499-2015

P.S: Original referee comments are in normal font; our replies are in italics. Intended changes to text are shown in bold font.

Gemayel et al. present an interesting study regarding the sea surface total alkalinity and total inorganic carbon in the Mediterranean Sea. To-date our knowledge regarding the carbonate system is limited due to the sparsity of available observations, hence I very much appreciate the effort of the authors to gather available observations and perform this basin scale study. The authors investigate the spatial distribution as well as seasonal variability and nicely explain their findings. The manuscript is well structured, well written and nicely relates the findings of this manuscript to previous studies. I do however believe that the authors need to substantially improve their currently too short methods section. Please find specific points below in the major and minor comments sections.

We would like to thank the referee for their thorough comments, suggestions and criticisms. The points raised by them helped us to improve our manuscript.

Major comments:

The authors need to add more detail regarding the 10-fold cross validation technique. E.g: how are the subsets (training, testing) chosen? randomly?

A more detailed description regarding the 10-fold cross validation technique was added. We modified this section according to:

This model validation technique is performed by randomly portioning the dataset into 10 equal subsamples. One subsample is used as the validation data, and the 9 remaining subsamples are used as training data. The cross validation process is then repeated 10 times, with each of the 10 subsamples used exactly once as the validation data. In this manner, all observations are used both for training and validation, and each observation is used for validation only once.

How is the data distribution between training and testing established? On page 1504 last line the authors report 375 truing data and 115 testing data for the total alkalinity and on page 1505 lines 1-2 they report 381 training data and 45 testing data. I struggle to understand how these numbers

add up? Are the distributions between training and testing data different for alkalinity and total inorganic carbon?

The training dataset is the same for total alkalinity and total dissolved inorganic carbon. This was done by choosing the stations were both parameters were simultaneously measured. However the validation dataset is different for A_T and C_T . The validation dataset for both parameters include the 10^{th} subset of the cross validation, but for A_T we also include the stations were the latter was measured without accompanying C_T . As for the numbers, we rechecked our dataset and corrected them accordingly. This section was rewritten as follows:

The dataset consists of 490 and 400 data points for A_T and C_T , respectively (Table 1). To ensure the same spatial and temporal coverage of the polynomial fits, the same training dataset was retained for both A_T and C_T . This was performed by selecting stations were both parameters were simultaneously measured; yielding 360 data points (Figure 1). To validate the general use of the proposed parameterizations we tested the algorithms with measurements which are not included in the fits (Validation dataset). For A_T , the validation dataset consists of 130 data points which are formed from the testing subset of the 10th fold (40 data points), and from cruises where A_T was measured without accompanying C_T (90 data points). For C_T , the validation dataset is the same as the testing subset of the 10th fold (40 data points).

The authors report that the algorithm was applied for polynomials of 1-3 (page 1504 line 19), however the authors do not explain why? Would it not be possible that a 4th order polynomial could further improve the total inorganic carbon fit?

We explain why a 4th *order polynomial could not improve the total inorganic carbon fit. We add in the text the following explanation:*

High-order polynomials (4 and above) were discarded because they can be oscillatory between the data points, leading to a poorer fit to the data.

The authors use the established relationships to estimate alkalinity and DIC where there are no data, hence it is important to show that the algorithm does not overfit the data but is capable of extrapolating data, which is currently only partly done. E.g. one sign of overfitting would be if there is a substantial difference between the RMSE and mean difference between the residuals of the training set compared to the testing set. A table would help to illustrate this.

As recommended by the referee we tested the mean difference between the RMSE and mean residuals between the training set compared to the testing set. We add to the manuscript the following analysis:

- For A_T we added in section 3.1:

Furthermore, to make sure that the A_T algorithm does not overfit the data, we tested the difference in means between the RMSE and residuals between the training set compared to the testing set. The results show that for both RMSE and mean residual, we cannot reject the null hypothesis (that assumes equals means) between the training and validation datasets (Table 2).

Table 2. Mean difference t-test for the A_T algorithm between the training and validation datasets

	Training dataset	Validation dataset	
RMSE (µmol.kg ⁻¹)	10.60	10.34	Mean difference t-test: H = 0; p = 0.83
Mean residuals (µmol.kg ⁻¹)	2.64e-13 ± 10.57	0.91 ± 10.30	Mean difference t-test: H = 0; p = 0.42

- For C_T we added in section 3.2:

To make sure that the C_T algorithm does not overfit the data, we conducted the same analysis performed on the A_T datasets. The results show that for both RMSE and mean residual, we cannot reject the null hypothesis (that assumes equals means) between the training and validation datasets (Table 4).

Table 4. Mean difference t-test for the $C_{\rm T}$ algorithm between the training and validation datasets

	Training dataset	Validation	
		dataset	
RMSE (µmol.kg ⁻¹)	14.3	16.2	Mean difference t-test:
			H = 0; p = 0.04
Mean residual	$-1.5e-12 \pm 14.2$	4.5 ± 17	Mean difference t-test:
(µmol.kg ⁻¹)			H = 0; p = 0.06

Furthermore, it is somehow worrisome that the different algorithms from table 3 lead to such different results, as they are all developed for different regions, but do not seem to have a good predictable power in the Mediterranean.

The different algorithms presented in Table 3 are all developed in the Mediterranean Sea, except that of Lee et al. (2008). The reason why they lead to such different results is because they were developed over a limited time period, a limited geographical area, and with a limited number of data points. For instance, the Schneider et al. (2007) relationship is developed from only 15 data

points and during the months of October-November 2001. These relationships will hence tend to overfit our data and thus lead to such different results.

Minor comments:

I was very confused to see a reference to equation 1 in the text but I could not find the equation in the text, but rather had to look for it in table 1. It would help the reader if you could put equations in the text

We deleted table 2 and 4, and added instead Equation 1 and 2 in the text. Equation (1) was represented according to:

$$A_{T} = 2558.4 + 49.83(S-38.2) - 3.89(T-18) - 3.12(S-38.2)^{2} - 1.06(T-18)^{2}$$
(1)
 Valid for T > 13 °C and 36.30 < S < 39.65
 n = 360; r² = 0.96; RMSE = 10.6 μ mol.kg⁻¹

Equation (2) was represented according to:

$$\begin{split} C_T &= 2234 + 38.15(\text{S-}38.2) - 14.38(\text{T-}17.7) - 4.48(\text{S-}38.2)^2 - 1.43(\text{S-}38.2)(\text{T-}17.7) + 9.62(\text{T-}17.7)^2 - 1.10(\text{S-}38.2)^3 + 3.53(\text{T-}17.7)(\text{S-}38.2)^2 + 1.47(\text{S-}38.2)(\text{T-}17.7)^2 - 4.61(\text{T-}17.7)^3 \quad (2) \\ & \text{Valid for T} > 13 \ ^\circ\text{C} \text{ and } 36.30 < \text{S} < 39.65 \\ & n = 360, \ r^2 = 0.90; \ \text{RMSE} = 14.3 \ \mu\text{mol.kg}^{-1} \end{split}$$

Please clarify what you mean by summer and winter? E.g. is summer the average of the months of June, July and August?

This was added in the methods sections: '2.3. Climatological and seasonal mapping of A_T and C_T ', as follows:

The summer seasonality is defined as the average of the months of July, August and September. The winter seasonality is defined as the average of the months of January, February, and March.

On page 1507 line 13 the authors mention the effect of biology; however, biology is not included in the polynomial fit. Why? You could e.g. use satellite derived biological proxies.

We mention the effect of biology only in reference to other studies such as: Bakker et al., 1999; Bates et al., 2006; Koffi et al., 2010; Lee et al., 2000; Sasse et al., 2013. The purpose is to mention that the parameterization of C_T is not only restrained to physical parameters. Also the aim of this paper is to derive A_T and C_T relationships from measurements of in situ parameters such as temperature and salinity. This is why we did not include satellite derived biological proxies because it is out of the scope of this study.

Page 1507 line 6: ". . . presents a significant improvement . . ." please provide some information on how the significance has been tested.

This information was added.

In Equation 1, T and S contribute to 96% of the A_T variability and the RMSE of \pm 10.6 μ mol.kg⁻¹ presents a significant improvement of the spatial and temporal estimations of A_T in the Mediterranean Sea surface waters (Mean difference t-test, H = 1; p = 0.04).

Response to Referee #2 Comments on Gemayel, E., Hassoun, A.E.R., Benallal, M.A., Goyet, C., Rivaro, P., Abboud-Abi Saab, M., Krasakopoulou, E., Touratier, F., Ziveri, P., 2015: Climatological variations of total alkalinity and total inorganic carbon in the Mediterranean Sea surface waters. Earth Syst. Dynam. Discuss. 6 (2), 1499-1533. 10.5194/esdd-6-1499-2015

P.S: Original referee comments are in normal font; our replies are in italics. Intended changes to text are shown in bold font.

General comments The authors have compiled CO2 system measurements from 14 cruises in the Mediterranean Sea surface waters. These were then used to constrain basin wide, improved empirical algorithms for both alkalinity (AT) and dissolved inorganic carbon (CT) using salinity and temperature as the independent variables. The newly identified relationships were then applied to WOA climatology to evaluate the spatial and seasonal variability of the carbon system in the Mediterranean Sea surface waters. Thus, the authors contribute with an improved way to utilize the more abundant data of salinity and temperature, for instance, for estimating the exchange of CO2 across the air-sea interface or for the validation of model results etc.

The manuscript is well structured and adequately written (for suggested improvements see "specific comments" below) and I find only few minor issues. I recommend publication after minor-moderate revision according to the following comments.

We would like to thank the referee for their thorough comments, suggestions and criticisms. The points raised by them helped us to improve our manuscript.

The authors mention their use of both sea surface temperature (SST) and sea surface salinity (SSS) as regression parameters improves the statistics of the estimated CT and AT values, and that SST and SSS explain most of the variability in AT (96%) and CT (90%). This indicates differences in the processes driving SSS and SST compared to AT and CT. Thus, readers may wonder how similar (or dissimilar) are the SST and SSS distributions compared to those presented for CT and AT? Therefore, the authors should consider presenting SSS and SST distributions as well.

We added figure 6, showing the SSS and SST climatological fields, 7 years averages of the WOA 2013.

Figure 1. The seven years averages (2005-2012) of (a) SSS and (b) SST climatological fields of the WOA13 (Locarnini et al., 2013; Zweng et al., 2013)

The authors use CT data that has been measured over a period of fifteen years (1998- 2013), but they do not account for any systemic CT trend. The reason for this is, they argue, (i) the anthropogenic signal is concealed by measurement uncertainties and seasonal variations, (ii) including the small observed CT trend results in an insignificant change in their results, and (iii) in regions above 30N latitude the outcropping of deep isopycnal surfaces dilutes anthropogenic CO2. The last point represents an outdated view. Firstly, surface CT trends do not need to arise only from local uptake of anthropogenic CO2, but transport of both natural and anthropogenic carbon can also produce trends (e.g. Perez et al 2013). Secondly, several recent studies have actually shown significant anthropogenic CT concentration (e.g. Waugh et al 2004; Sabine et al 2004) as well as pCO2 increase (Takahashi et al 2009) in the surface in areas north of the 30N. Furthermore, I think statement (iii) above is not really essential for the manuscript and, thus, I would suggest removing it altogether.

Statement (iii) was removed from the manuscript

Specific comments Abstract: Line 2 (and throughout the manuscript), "total inorganic carbon (CT)" should be "total dissolved inorganic carbon (CT)" in accordance with Best Practices for CO2 measurements (Dickson et al 2007).

This was corrected accordingly

Line 6 - 7: "The AT surface fit showed an improved root mean square error (RMSE) of. . .." Improved compared to what?

The sentence was corrected as follows:

The A_T surface fit yielded a root mean square error (RMSE) of $\pm 10.6 \ \mu mol.kg^{-1}$, and where salinity and temperature contribute to 96% of the variability

Line 13 - 14, the word "surface" should be deleted since the whole study is treating only surface data. Actually, throughout in the manuscript "surface" should be used only if necessary because emphasizing this word can give the false impression that there are subsurface data included in the study.

Done

Line 11-14, please mention that the climatology were mapped using the identified empirical equations.

This was added in the abstract according to:

The identified empirical equations were applied on the quarter degree climatologies of temperature and salinity, available from the World Ocean Atlas 2013.

Line 17, "repartition" do you mean distribution?

Yes. The term repartition was replaced with 'distribution'

Line 17-19, ".. primarily due to the deepening of the mixed layer and upwelling of dense waters". I do not find any evidence supporting this statement in the manuscript. Please substantiate or otherwise provide references.

This statement was deleted

Methods: Page 1504, line 6-7: "However, the number of the nutrients concentrations was very limited." why is this relevant here?

Originally we wanted to use also nutrients data. But because these measurements are very scarce we did not opt for this option. In all cases this sentence was deleted

Line 26, "Hence for the AT, 375 and 115 data points are used for the training and testing" I understand the testing dataset is from the cruises where AT was measured without accompanying CT, right? If no, then the necessity of holding out some data for validation purposes should be discussed. In either case a clarification is needed.

The testing dataset is from cruises where A_T was measured without accompanying C_T , as well as the testing subset of the 10th fold

Page 1504, line 1-2 "... and the validation dataset is the same as the testing subset of the 10th fold (45 data points)." I thought the 10th fold procedure means that you divide your dataset randomly into 10 equal parts. But 45 is not exactly one tenth of 381 or 426! Can you please clarify this point.

The number of data points was revised and corrected. We have 490 and 400 data points for A_T and C_T , respectively. For the training dataset we choose 360 data points were both parameters were measured. Hence for A_T and C_T , 40 data points remain for the validation. Furthermore we add for A_T data points where the latter was measured without accompanying C_T , yielding 90 data points. We rewrote this section as follows:

The dataset consists of 490 and 400 data points for A_T and C_T , respectively (Table 1). To ensure the same spatial and temporal coverage of the polynomial fits, the same training dataset was retained for both A_T and C_T . This was performed by selecting stations were both parameters were simultaneously measured; yielding 360 data points (Figure 1). To validate the general use of the proposed parameterizations we tested the algorithms with measurements which are not included in the fits (Validation dataset). For A_T , the validation dataset consists of 130 data points which are formed from the testing subset of the 10th fold (40 data points), and from cruises where A_T was measured without accompanying C_T (90 data points). For C_T , the validation dataset is the same as the testing subset of the 10th fold (40 data points).

Page 1506, line 6 "global" should be replaced by more appropriate word like "general", "representative" etc.

We couldn't find 'global' on page 1506, line 6. We found 'global' on page 1506, line 15 and replaced it with 'general'. We also found 'global' on page 1507, line 4 and replaced it with 'representative'

Results and discussion: Page 1507, line 22 "contribute to" should be replace with "explain"

Done

Line, 26-27 "In fact, the interpolation of CT in the mixed layer.." what interpolation?

This was replaced by:

The estimation of $C_{\rm T}$ in the mixed layer adds a high uncertainty due to the seasonal variability

Page 1508, line 21-24 The general comment about dilution of anthropogenic carbon in the surface water in areas north of the 30 latitude is unnecessary and somewhat misleading (see "general comments").

This statement was deleted

Page 1509, line 11-15. Both pCO2 and CT are mentioned. Please be consequent, and comment only CT variations. Remember pCO2 can change even under constant CT!

All the discussion concerning pCO_2 was removed

Page 1511, line 11-20. I'm not sure if the authors argue for low AT or high AT values in the Adriatic and Aegean sub-basins. Please clarify.

We argue for high A_T values in the Adriatic and Aegean sub-basins. The sentence was rephrased as follows:

Hence Eastern marginal seas, such as the Adriatic and Aegean sub-basins have high A_T concentrations due to the freshwater inputs Tables & Figures:

Tables & Figures:

Table 1, please consider including number of data points and area. Figure 1: please consider to indicate the locations of important geographical features named in the text.

Done

Literature referred to in my comments: Waugh, D. W., T. W. N. Haine, and T. M. Hall (2004), Transport times and anthropogenic carbon in the subpolar North Atlantic, Deep Sea Res., Part I, 51, 1475–1491.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO2, Science, 305, 367–371, 2004.

Takahashi et al 2009. Climatological mean and decadal change in surface oceanp CO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II, 56, Pages 554–577.

Perez et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nature Geoscience 6, 146–152 (2013).

Thank you for your suggestions. We consulted again these articles

1 Climatological variations of total alkalinity and total dissolved inorganic carbon in the 2 Mediterranean Sea surface waters

GEMAYEL Elissar^{1,2,3}, HASSOUN Abed El Rahman³, BENALLAL Mohamed Anis^{1,2}, 4 Paola⁴, Catherine^{1,2}, RIVARO **ABBOUD-ABI** SAAB 5 GOYET Marie³, KRASAKOPOULOU Evangelina⁵, TOURATIER Franck^{1,2} and ZIVERI Patrizia^{6,7} 6

8 9 ¹Université de Perpignan Via Domitia, IMAGES_ESPACE-DEV, 52 avenue Paul Alduy, 66860 Perpignan Cedex 9, France ² ESPACE-DEV, UG UA UR UM IRD, Maison de la télédétection, 500 rue Jean-François Breton, 34093 Montpellier Cedex 10 5. France

12 ⁴ University of Genova, Department of Chemistry and Industrial Chemistry, via Dodecaneso 31, 16146 Genova, Italy

13 ⁵ University of the Aegean, Department of Marine Sciences, University Hill, Mytilene 81100, Greece

14 ⁶Universitat Autònoma de Barcelona, Institute of Environmental Science and Technology, Barcelona, Spain

15 ⁷ Universiteit Amsterdam, Earth & Climate Cluster, Department of Earth Sciences, Faculty of Earth and Life Sciences, 16 Amsterdam, The Netherlands 17

18 Correspondence: Elissar GEMAYEL

19 Permanent address: National Council for Scientific Research, National Center for Marines Sciences, P.O Box 534, Batroun,

20 21 22 23 Lebanon

3

7

Mobile: +961 70794882

Email: elissargemayel@hotmail.com

24 Abstract

25

26 A compilation of several cruises data from 1998 to 2013 was used to derive polynomial fits 27 that estimate total alkalinity (A_T) and total dissolved inorganic carbon (C_T) from 28 measurements of salinity and temperature in the Mediterranean Sea surface waters. The 29 optimal equations were chosen based on the 10-fold cross validation results and revealed that 30 a second and third order polynomials fit the AT and CT data respectively. The AT surface fit showed an improved root mean square error (RMSE) of $\pm 10.6 \ \mu mol.kg^{+}$ vielded a root mean 31 square error (RMSE) of \pm 10.6 µmol.kg⁻¹, and salinity and temperature contribute to 96% of 32 the variability. Furthermore we present the first annual mean C_T parameterization for the 33 Mediterranean Sea surface waters with a RMSE of \pm 14.3 µmol.kg⁻¹. Excluding the marginal 34 seas of the Adriatic and the Aegean, these equations can be used to estimate A_T and C_T in 35 case of the lack of measurements. The identified empirical equations were applied on the 36 37 quarter degree climatologies of temperature and salinity, available from the World Ocean 38 Atlas 2013. The seven years averages (2005-2012) mapped using the quarter degree climatologies of the World Ocean Atlas 2013 showed that in surface waters A_T and C_T have 39 40 similar patterns with an increasing Eastward gradient. The surface variability is influenced by 41 the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and 42 thermohaline gradient that characterize the Mediterranean Sea. The summer-winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, 43 44 the A_T and C_T concentrations were higher in the Western than in the Eastern basin, primarily due to the deepening of the mixed layer and upwelling of dense waters. The opposite was 45 46 observed in the summer where the Eastern basin was marked by higher AT and CT 47 concentrations than in winter. The strong evaporation that takes place in this season along

Field Code Changed

¹¹ ³National Council for Scientific Research, National Center for Marines Sciences, P.O Box 534, Batroun, Lebanon

48 with the ultra-oligotrophy of the Eastern basin determines the increase of both A_T and C_T 49 concentrations.

50

51 Keywords: Mediterranean Sea; Carbonate System; Surface Waters; Empirical Modeling;
52 Seasonal Variations

- 54 **1. Introduction**
- 55

53

The role of the ocean in mitigating climate change is well known as it absorbs about 2 Pg C yr⁻¹ of anthropogenic CO₂ (Wanninkhof et al., 2013). Worldwide measurements of surface seawater CO₂ properties are being conducted as they are important for advancing our understanding of the carbon cycle and the underlying processes controlling it. For instance, the buffer capacity of the CO₂ system varies with temperature, the distribution of total inorganic carbon and total alkalinity (Omta et al., 2011).

61 62

63 Our understanding of the open-ocean CO₂ dynamics has drastically improved over the years (Rödenbeck et al., 2013; Sabine et al., 2004; Takahashi et al., 2009; Watson and Orr, 2003). 64 65 However our understanding of marginal seas such as the Mediterranean remains poor due to the limited measurements combined with the enhanced complexity of the land-ocean 66 67 interactions. In the Mediterranean Sea, available measurements of the carbonate system are 68 still scarce and only available in specific regions such as the Alboran sea (Copin-Montégut, 1993), the Gibraltar Strait (Santana-Casiano et al., 2002), the Dyfamed time-series in the 69 70 Ligurian Sea (Bégovic and Copin-Montégut, 2002; Copin-Montégut and Bégovic, 2002; 71 Touratier and Goyet, 2009) and the Otranto Strait (Krasakopoulou et al., 2011). Large 72 geographical-<u>distribution</u> of CO_2 data are often confined to cruises with a short 73 sampling period (Álvarez et al., 2014; Goyet et al., 2015; Rivaro et al., 2010; Schneider et al., 74 2007; Touratier et al., 2012). Numerical models have provided some insights of the carbon 75 dynamics in the Mediterranean Sea (Cossarini et al., 2015; D'Ortenzio et al., 2008; Louanchi 76 et al., 2009), but it remains important to constrain the system from in situ measurements to 77 validate their output.

78

79 The scarcity of the CO₂ system measurements in the Mediterranean Sea make it difficult to 80 constrain the CO_2 uptake in this landlocked area and also limits our understanding of the 81 magnitude and mechanisms driving the natural variability on the ocean carbon system 82 (Touratier and Goyet, 2009). Empirical modeling has been successfully used to study the 83 marine carbon biogeochemical processes such as the estimation of biologically produced O2 84 in the mixed layer (Keeling et al., 1993), estimation of global inventories of anthropogenic 85 CO₂ (Sabine et al., 2004) and estimation of the CaCO₃ cycle (Koeve et al., 2014). Empirical 86 algorithms were also used to relate limited A_T and C_T measurements to more widely available 87 physical parameters such as salinity and temperature (Bakker et al., 1999; Ishii et al., 2004; Lee et al., 2006). The A_T and C_T fields can then be used to calculate pCO₂ fields and thus 88 89 predict the CO₂ flux across the air-sea interface (McNeil et al., 2007).

91 Previous empirical approaches to constrain A_T in the Mediterranean Sea have only covered 92 selected cruises (Schneider et al., 2007; Touratier and Goyet, 2009) or local areas such as the 93 Dyfamed time-series station or the Strait of Gibraltar (Copin-Montégut, 1993; Santana-94 Casiano et al., 2002). As for C_T , empirical models have only been applied to data below the

95 mixed layer depth (MLD) following the equation of Goyet and Davis (1997) at the Dyfamed

96 time series station (Touratier and Goyet, 2009) or using the composite dataset from Meteor

97 51/2 and Dyfamed (Touratier and Goyet, 2011). Also Lovato and Vichi (2015) proposed an

98 optimal multiple linear model for C_T using the Meteor 84/3 full water colum data. To the best

99 of our knowledge the reconstruction of C_T in surface waters has not been yet performed in the 100 Mediterranean Sea. This is probably due to the lack of measurements available for previous

studies to capture the more complex interplay of biological, physical and solubility processes that drive $C_{\rm T}$ variability in the surface waters.

103

In this study we have compiled CO_2 system measurements from 14 cruises between 1995 and 2013, that allowed us to constrain an improved and new empirical algorithms for A_T and C_T in the Mediterranean Sea surface waters. We also evaluated the spatial and seasonal variability of the carbon system in the Mediterranean Sea surface waters, by mapping the 2005-2012 annual and seasonal averages of surface A_T and C_T using the quarter degree climatologies of salinity and temperature from the World Ocean Atlas 2013 (WOA13).

110 111

2. Methods

112 113

114

2.1. Surface A_T and C_T data in the Mediterranean Sea

Between 1998 and 2013, there have been multiple research cruises sampling the seawater properties throughout the Mediterranean Sea. This includes parameters of the carbonate system more specifically A_T , pH and C_T and physico-chemical properties of in situ salinity, and temperature. However, the number of the nutrients concentrations was very limited. In this study we have compiled surface water samples between 0 and 10 m depth, totaling 490 and 426 measurements for A_T and C_T respectively (Table 1).

121 122 123

2.2. Polynomial model for fitting A_T and C_T data

124 Two polynomial equations for fitting A_T or C_T from salinity (S) alone or combined with sea 125 surface temperature (T) in the surface waters (0 - 10 m) of the Mediterranean Sea were 126 chosen from the results of the 10-fold cross validation method (Breiman, 1996; Stone, 1974). 127 This type of analysis was previously performed by Lee et al. (2006) for-general global 128 relationships of A_T with salinity and temperature. This model validation technique is 129 performed by retaining a single subsample used for testing and training the algorithm on the 9 130 remaining subsamples. The cross validation process is then repeated 10 times. This model 131 validation technique is performed by randomly portioning the dataset into 10 equal 132 subsamples. One subsample is used as the validation data, and the 9 remaining subsamples 133 are used as training data. The cross validation process is then repeated 10 times, with each of 134 the 10 subsamples used exactly once as the validation data. In this manner, all observations are used both for training and validation, and each observation is used for validation only
 once. The best fit is chosen by computing the residuals from each regression model, and
 computing independently the performance of the selected optimal polynomial on the
 remaining subsets.

140 The analysis was applied for polynomials of order 1 to 3, and the optimal equation was 141 chosen based on the lowest Root Mean Square Error (RMSE) and the highest coefficient of 142 determination (r^2) . <u>High-order polynomials (4 and above) were discarded because they can be</u> 143 oscillatory between the data points, leading to a poorer fit to the data.

145To ensure the same spatial and temporal distribution of $A_{\rm T}$ and $C_{\rm T}$ polynomial fits we only
selected stations where $A_{\rm T}$ and $C_{\rm T}$ were simultaneously measured (Table 1; Figure 1). To
validate the general use of the proposed parameterizations we tested the algorithms with
measurements which are not included in the fits (Testing dataset). Hence for the $A_{\rm T}$, 375 and
149149115 data points are used for the training and testing datasets respectively. For the $C_{\rm T}$ the
training dataset is formed from 381 data points and the validation dataset is the same as the
testing subset of the 10th fold (45 data points).

153 The dataset consists of 490 and 400 data points for A_T and C_T, respectively (Table 1). To ensure the same spatial and temporal coverage of the polynomial fits, the same training 154 155 dataset was retained for both AT and CT. This was performed by selecting stations were both 156 parameters were simultaneously measured; yielding 360 data points (Figure 1). To validate 157 the general use of the proposed parameterizations we tested the algorithms with measurements which are not included in the fits (Validation dataset). For A_T, the validation 158 dataset consists of 130 data points which are formed from the testing subset of the 10th fold 159 160 (40 data points), and from cruises where AT was measured without accompanying CT (90 data points). For C_T, the validation dataset is the same as the testing subset of the 10th fold (40 data 161 162 points).

2.3. Climatological and seasonal mapping of A_T and C_T

The climatological and seasonal averages of salinity (Zweng et al., 2013) and temperature (Locarnini et al., 2013) in 1/4*1/4 degree grid cells were downloaded from the World Ocean Atlas 2013 (WOA13). The seven years averages (2005-2012) and the summer-winter seasonality of A_T and C_T fields were mapped at 5 m depth by applying the respective derived algorithms in their appropriate ranges of S and T. The summer seasonality is defined as the average of the months of July, August and September. The winter seasonality is defined as the average of the months of January, February, and March.

- 173174 3. Results and Discussion
- 175

163 164

165

139

144

- 5. Results and Discussion
- 176 **3.1. Fitting A_T in the Mediterranean Sea surface waters**
- 177

Formatted: Not Highlight

178 In the surface ocean the A_T variability is controlled by freshwater addition or the effect of

evaporation, and salinity contributes to more than 80% of the A_T variability (Millero et al., 180 1998). In the Mediterranean Sea, several studies have shown that the relationship between A_T

and S is linear (Copin-Montégut, 1993; Copin-Montégut and Bégovic, 2002; Hassoun et al.,

182 2015b; Rivaro et al., 2010; Schneider et al., 2007). In other studies, the sea surface

temperature (T) has been included as an additional proxy for changes in surface water A_T related to convective mixing (Lee et al., 2006; Touratier and Goyet, 2011).

The results of the 10-fold cross validation analysis revealed that the optimal model for A_T is a second order polynomial in which A_T is fitted to both S and T (Table 2, Eq 1).

189 $A_T = 2558.4 + 49.83(S - 38.2) - 3.89(T - 18) - 3.12(S - 38.2)^2 - 1.06(T - 18)^2$ (1) 190 $Valid for T > 13 \ ^{\circ}C and \ 36.30 < S < 39.65$ 191 $n = 375; r^2 = 0.96; RMSE = 10.6 \ \mu mol.kg^{-1}$

A linear relationship between A_T and S yields a higher RMSE (14.5 μ mol.kg⁻¹) and a lower r² (0.91) than Eq (1). In a semi-enclosed basin such as the Mediterranean Sea, the insulation and high evaporation as well as the input of rivers and little precipitation leads to a negative freshwater balance (Rohling et al., 2009). The resulting anti-estuarine thermohaline circulation could explain the contribution of temperature to the A_T variability (Touratier and Goyet, 2011).

200 The residuals of training dataset used to generate the second order polynomial fit for A_T are 201 presented in Figure 2a. Most of the A_T residuals ($\frac{340 \cdot 325}{20}$ over $\frac{375360}{20}$) were within a range of \pm 15 µmol.kg⁻¹ (1 σ). However 35 residuals over were high up to \pm 30 µmol.kg⁻¹ (1 σ). 202 Applying the A_T algorithm to the testing dataset (Figure 2b), yields a mean residual of 0.91 \pm 203 10.30 μ mol.kg⁻¹ (1 σ), and only 6 data points have residuals higher than \pm 15 μ mol.kg⁻¹ (1 σ). 204 205 Furthermore, to make sure that the A_T algorithm does not overfit the data, we tested the 206 difference in means between the RMSE and residuals between the training set compared to 207 the testing set. The results show that for both RMSE and mean residual, we cannot reject the 208 null hypothesis (that assumes equals means) between the training and validation datasets 209 (Table 2).

211 The comparison of the RMSE as reported by other studies with that of Eq (1) does not 212 indicate if the parameterization developed here has advanced or not on previous attempts in 213 the Mediterranean Sea. In that order, we independently applied each of the previous 214 equations on the same training dataset used to develop Eq (1) and then computed the RMSE 215 and r^2 for every one (Table 3). The results show that Eq (1) has a lower RMSE and a higher r^2 216 than all of the parameterizations presented in Table 3. For instance, the-general global 217 relationship of Lee et al. (2006) applied to the dataset of this study yields an RMSE as high as \pm 40.50 µmol.kg⁻¹. The RMSE of other studies developed strictly in the Mediterranean Sea 218 varied from \pm 13.81 to \pm 26.11 µmol.kg⁻¹ using the equations of Touratier and Goyet (2011) 219 220 and Schneider et al. (2007) respectively.

221

185

188

192

199

210

Formatted: Justified Formatted: Font: Not Bold, Not Italic, Complex Script Font: Not Bold, Not Italic 222 By applying directly the previous parameterizations to our training dataset, the calculated 223 RMSE are significantly higher than the ones reported in their respective studies. For instance 224 the reported RMSE in Lee et al. (2006) for sub-tropical oceanic regions is $\pm 8 \,\mu\text{mol.kg}^{-1}$ and that of Schneider et al. (2007) for the Meteor 51/2 cruise is $\pm 4.2 \ \mu mol.kg^{-1}$. This shows that 225 226 previous models were constrained by their spatial coverage, time span and used datasets. In 227 fact the previous equations were calculated in local areas such as the Alboran Sea (Copin-228 Montégut, 1993), the Strait of Gibraltar (Santana-Casiano et al., 2002) or the Dyfamed Site 229 (Copin-Montégut and Bégovic, 2002; Touratier and Goyet, 2009). On a large scale, equations 230 were applied using limited datasets such as the Meteor 51/2 cruise in October-November 231 2001 (Schneider et al., 2007), the Transmed cruise in May-June 2007 (Rivaro et al., 2010) or 232 the Meteor 51/2 and the Dyfamed time series station (Touratier and Goyet, 2011).

The proposed algorithm including surface data from multiple cruises, and on a large time span, presents a more <u>representative global</u> relationship to estimate A_T from S and T than the previously presented equations (Table 3). In Equation 1, T and S contribute to 96% of the A_T variability and the RMSE of \pm 10.6 µmol.kg⁻¹ presents a significant improvement of the spatial and temporal estimations of A_T in the Mediterranean Sea surface waters (Mean difference t-test, H = 1; p = 0.04).

3.2. Fitting C_T in the Mediterranean Sea surface waters

233

240 241

242

249

259

The surface C_T concentrations are influenced by lateral and vertical mixing, photosynthesis, oxidation of organic matter and changes in temperature and salinity (Poisson et al., 1993; Takahashi et al., 1993). All these processes are directly or indirectly correlated with seasurface temperature (Lee et al., 2000). Hence, the parameterization of C_T in surface waters includes both physical (S and T) and/or biological parameters (Bakker et al., 1999; Bates et al., 2006; Koffi et al., 2010; Lee et al., 2000; Sasse et al., 2013).

250 The results of the 10-fold cross validation analysis showed that a first order polynome fits C_T to S and T with an RMSE of 16.25 μ mol.kg⁻¹ and r² = 0.87. These values are comparable to 251 the RMSE and r² found by previous empirical approaches applied in the Eastern Atlantic 252 (Bakker et al., 1999; Koffi et al., 2010). However we found that a third order polynome 253 improved the RMSE and r^2 of the equation compared to the first order fit (Table 4, Eq 2). 254 255 Hence we will retain the large dataset used to develop Eq (2), where temperature and salinity 256 contribute explain to 90% of the C_T variability encountered in the Mediterranean Sea surface 257 waters. The remaining 10% could be attributed to the biological and air-sea exchange 258 contributions to the C_T variability.

260	$C_T = 2234 + 38.15(S - 38.2) - 14.38(T - 17.7) - 4.48(S - 38.2)^2 - 1.43(S - 38.2)^2 - $	•		Formatted: Left
261	$38.2(T - 17.7) + 9.62(T - 17.7)^2 - 1.10(S - 38.2)^3 + 3.53(T - 17.7)(S - 38.2)^2 + 3.53(T - 17.7)(S $			
262	$1.47(S - 38.2)(T - 17.7)^2 - 4.61(T - 17.7)^3 $ (2)			Formatted: Font: Border: : (No border),
263	Valid for T > 13 °C and 36 30 < S < 39.65		ļ	Pattern: Clear (White)
200				Formatted: Not Highlight
264	<u>n = 375, r^z = 0.90; RMSE = 14.3 µmol.kg²</u>			
265				

- The C_T parameterization developed in this study (Table 4; Eq 2) showed a higher uncertainty than that of A_T regarding both RMSE and r^2 . In fact, the interpolation of <u>The estimation of</u> C_T in the mixed layer adds a high uncertainty due to the seasonal variability. Also in surface waters the C_T are directly affected by air-sea exchange, and their concentrations will increase in response to the oceanic uptake of anthropogenic CO₂.
- 271

272 Previous models accounted for the anthropogenic biases in the C_T measurements by 273 calculating the C_T rate of increase (Bates, 2007; Lee et al., 2000; Sasse et al., 2013; 274 Takahashi et al., 2014). However in a study, Lee et al. (2000) also did not correct the C_T 275 concentrations for regions above 30° latitude such as the Mediterranean Sea. In the following 276 we will assess the importance of accounting or not for anthropogenic biases in the C_T 277 measurements. In that order we dowloaded the monthly atmospheric pCO_2 concentrations 278 measured from 1999 to 2013 at the Lampedusa Island Station (Italy) from the World Data 279 Center for Green House Gases (http://ds.data.jma.go.jp/gmd/wdcgg/). Following the method 280 described by Sasse et al. (2013), we corrected the CT measurements to the nominal year of 281 2005 and applied the same 10-fold cross validation analysis using data with and without 282 anthropogenic C_T corrections. We found that the RMSE of the C_T model trained using measurements with anthropogenic corrections is 13.9 µmol.kg⁻¹, which is not significantly 283 different from the model trained using measurements without anthropogenic corrections (Eq 284 2; RMSE = 14.3 μ mol.kg⁻¹). 285

286

293

The yearly increase of C_T concentrations is difficult to assess due to the wide spatial distribution of the training dataset used to generate Eq (2). Hence we will refer to the monthly C_T concentrations measured between 1998 and 2013 at the Dyfamed time-series station. We found that the rate of increase in C_T concentrations at the Dyfamed site was 0.99 µmol.kg⁻¹.yr⁻¹ (Figure 3), which is consistent with the anthropogenic C_T correction rate used in the previous studies of Lee et al. (2000), Bates (2007) and Sasse et al. (2013).

- The rate of increase in C_T concentrations of 0.99 µmol.kg⁻¹.yr⁻¹ as well as the RMSE difference of \pm 0.4 µmol.kg⁻¹ between the two models (with or without anthropogenic corrections) are both smaller than the uncertainty of the C_T measurements of at least \pm 2 µmol.kg⁻¹ (Millero, 2007). A recent study also showed that the uncertainty of the C_T measurements can be significantly higher than \pm 2 µmol.kg⁻¹, as most laboratories reported values of C_T for the measures that were within a range of \pm 10 µmol.kg⁻¹ of the stated value (Bockmon and Dickson, 2015).
- 301

Between 1998 and 2013, the C_T concentrations measured at the Dyfamed time-series station 302 showed a slightly increasing trend ($r^2 = 0.05$). The increase in C_T concentrations in response 303 to elevated atmospheric CO₂, was masked by the high seasonal variations. For example, 304 305 during the year 1999 the variation in C_T concentrations reached as high as 100 μ mol.kg⁻¹ 306 (Figure 4a). Also there is a clear seasonal cycle of surface waters C_T in the Dyfamed station 307 (Figure 4b). In the summer, the C_T starts to increase gradually to reach a maximum of 2320 μ mol.kg⁻¹ during the winter season, after which a gradual decrease is observed to reach a 308 minimum of 2200 µmol.kg⁻¹ by the end of spring. The seasonal cycle can be explained by the 309

counter effect of temperature and biology on the C_T variations. During the spring, the increasing effect of warming of pCO₂ is counteracted by the photosynthetic activity that

increasing effect of warming of pCO_2 is counteracted by the photosynthetic activity that lowers the C_T . During the winter, the decreasing effect of cooling on pCO_2 is counteracted by

112 in overs the C_1 . During the whitely the decreasing effect of cooling on p_{CO_2} is counterfaced by 113 the upwelling of deep waters rich in C_T (Hood and Merlivat, 2001; Takahashi et al., 1993).

314 This shows that the C_T concentrations in surface waters were more affected by the seasonal

315 variations than by anthropogenic forcing.

316

325

317 Considering the small differences in RMSE obtained by the two models, the uncertainties in the $C_{\rm T}$ measurements and the clear signal of the seasonal variations; no corrections were 318 319 made to account for the rising atmospheric CO₂ concentrations. In regions above 30° latitude 320 such as the Mediterranean Sea, the corrections of $C_{\rm T}$ are small considering that the 321 outcropping of deep isopycnal surfaces dilutes the anthropogenic CO2 throughout the water 322 column (Lee et al., 2000).-Also the dynamic overturning circulation in the Mediterranean Sea 323 plays an effective role in absorbing the anthropogenic CO₂ and transports it from the surface 324 to the interior of the basins (Hassoun et al., 2015a; Lee et al., 2011).

326 The residuals of the dataset used to generate the third order polynomial fit for C_T are 327 presented in Figure 5a. Most of the C_T residuals (330 over $\frac{381360}{2}$) were within a range of ± 18 µmol.kg⁻¹ (1 σ). In contrast only few residuals (12 over 381360) reached up to \pm 50 328 μ mol.kg⁻¹ (1 σ). Applying the C_T algorithm to the testing dataset (Figure 5b), yields a mean 329 residual of 1.48 \pm 19.80 μ mol.kg⁻¹ (1 σ) which is close to the uncertainties of our C_T 330 331 relationship. The high residuals observed in this study are consistent with the results of the 332 optimal multiple linear regression performed by Lovato and Vichi (2015), where the largest 333 discrepancies between observations and reconstructed data were detected at the surface layer with RMSE higher than $\pm 20 \ \mu mol.kg^{-1}$. To make sure that the C_T algorithm does not overfit 334 335 the data, we conducted the same analysis performed on the AT datasets. The results show that 336 for both RMSE and mean residual, we cannot reject the null hypothesis (that assumes equals 337 means) between the training and validation datasets (Table 4).

Considering the high uncertainties of the C_T measurements, the seasonal variations and the anthropogenic forcing; Eq (2) presents the first parametrization for C_T in the Mediterranean Sea surface waters, with an RMSE of $\pm 14.3 \ \mu mol.kg^{-1}(1 \ \sigma)$ and a $r^2 = 0.90$ (Table 4, Eq 2).

342 343

344

338

3.3. Spatial and seasonal variability of A_{T} and C_{T} in surface waters

345 The ranges of the 2005-2012 average annual climatologies of the World Ocean Atlas 2013 346 (WOA13) are from 35.91 to 39.50 for S and from 16.50 °C to 23.57 °C for T (Locarnini et al., 347 2013; Zweng et al., 2013). However a wider range is observed for the seasonal climatologies, 348 especially during the winter season where T ranges from 9.05 °C to 18.43 °C. The estimations 349 of A_T and C_T in surface waters from Eq (1) and (2) respectively are only applicable in the appropriate ranges of T > 13 °C and 36.3 < S < 39.65. Hence the surface waters A_T and C_T 350 351 concentrations were mapped only where T and S were within the validity range of Eq (1) and 352 (2) respectively (Table 2 and 4). Excluding few near-shore areas and the influence of cold

Atlantic Waters in winter, the ranges in which Eq (1) and Eq (2) can be applied are within those of the climatological products of T and S of the WOA13 (Figure 6).

355

The mapped climatologies for 2005-2012 at 5m depth show a strong increase in the Eastward gradient for both A_T and C_T with the highest concentrations always found in the Eastern Mediterranean (Figure 67). The minimum values of 2400 µmol.kg⁻¹ for A_T and 2100 µmol.kg⁻¹ for C_T are found near the Strait of Gibraltar and the maximum values of 2650 µmol.kg⁻¹ and 2300 µmol.kg⁻¹ are found in the Levantine and Aegean sub-basin for A_T and C_T respectively.

362

368

381

390

The A_T parameterization of this study detects a clear signature of the alkaline waters entering through the Strait of Gibraltar that remains traceable to the Strait of Sicily as also shown by Cossarini et al. (2015). In the Eastern basin the positive balance between evaporation and precipitation contributes to the increasing surface A_T . Local effects from some coastal areas such as the Gulf of Gabes and riverine inputs from the Rhone and Po River are also detected.

369 Our results for surface A_T have a similar spatial pattern and range as the annual climatology 370 of Cossarini et al. (2015) which simulates surface A_T values from 2400 to 2700 µmol.kg⁻¹. The main difference is marked in the upper ends of the Adriatic and Aegean sub-basins 371 where our algorithm predicts A_T values around 2400-2500 µmol.kg⁻¹, whereas the analysis of 372 Cossarini et al. (2015) yields a maximum of 2700 µmol.kg⁻¹ in these regions. Regressions in 373 374 regions of river input indicate a negative correlation between alkalinity and salinity (Luchetta 375 et al., 2010); hence Hence, Eastern marginal seas such as the Adriatic and Aegean sub-basins 376 have high AT concentrations due to the freshwater inputs are expected to have high AT due to 377 the freshwater inputs (Cantoni et al., 2012; Souvermezoglou et al., 2010). This shows the 378 sensitivity of our algorithms to temperature and salinity especially in areas that are more 379 influenced by continental inputs such as the Po River and inputs of the Dardanelle in the 380 northern Adriatic and northern Aegean respectively (Figure 6a7a).

382 At the surface, the basin wide distributions of $C_{\rm T}$ are affected by physical processes and their 383 gradient is similar to that of A_T (Figure 6b7b). The lowest C_T concentrations are found in the 384 zone of the inflowing Atlantic water and increases toward the East in part due to evaporation 385 as also shown by Schneider et al. (2010). Our results for surface C_T have a similar range as the optimal linear regression performed by Lovato and Vichi (2015) which estimates surface 386 C_T values from 2180 to 2260 μ mol.kg⁻¹. Moreover, the results show that the Mediterranean 387 Sea is characterized by C_T values that are much higher (100–200 μ mol.kg⁻¹ higher) than 388 389 those observed in the Atlantic Ocean at the same latitude (Key et al., 2004).

391 As a consequence of uptake of atmospheric CO_{27} , the Eastward pCO_2 increase is parallel to 392 that of C_T (D'Ortenzio et al., 2008). For example the Ionian and Levantine sub-basin are 393 characterized by a pCO_2 as high as 470 µatm (Bégovic, 2001), whereas the Algerian sub-394 basin is characterized by a much lower pCO_2 of 310 µatm (Calleja et al., 2013). The high 395 pCO_2 and C_T -encountered in the Eastern basin make it a permanent source of atmospheric 396 CO_2 (D'Ortenzio et al., 2008; Taillandier et al., 2012). Overall the Western basin has a lower surface C_T content than the Eastern basin which could be explained by the Eastward decrease of the Mediterranean Sea trophic gradient (Lazzari et al., 2012). The higher rate of inorganic carbon consumption by photosynthesis in the Western basin can lead to the depletion of C_T in the surface waters, whereas the ultra-oligotrophic state in the Eastern basin can lead to a high remineralization rate that consumes oxygen and enriches surface waters with C_T (Moutin and Raimbault, 2002).

404 The magnitude of the seasonal variability between summer and winter for A_T and C_T is 405 shown in Figure $\frac{78}{2}$. Unlike the seven years averages, the seasonal climatological variations 406 (2005-2012) of A_T have different spatial patterns than those of C_T. Overall the summer-407 winter time differences for A_T have an increasing Eastward gradient (Figure $\frac{7a8a}{2}$). The 408 largest magnitudes are marked in the Alboran Sea with differences reaching up to - 80 409 µmol.kg⁻¹; the negative difference implies that during the winter inflowing surface Atlantic water has higher AT concentrations than in summer. Higher winter than summer time AT 410 concentrations are also observed in the Balearic, Ligurian and the South-Western Ionian sub-411 basins but with a less pronounced seasonality (~ -30 µmol.kg⁻¹). For these three sub-basins, 412 the C_T has a higher summer-winter magnitude than $A_T (\sim -70 \ \mu mol.kg^{-1})$. The winter cooling 413 414 of surface waters increases their density and promotes a mixing with deeper water. Thus, the 415 enrichment in winter time likely reflects the upwelling of deep waters that have accumulated 416 AT and CT from the remineralization of organic matter, respiration and the dissolution of 417 CaCO₃. The seasonality is more pronounced for C_T, which likely reflects the stronger 418 response of C_T to biological processes than A_T (Takahashi et al., 1993).

419

403

420 In the Algerian sub-basin and along the coasts of Tunisia and Libya, the seasonality is 421 inversed with higher A_T and C_T concentrations prevailing in the summer. The African coast is 422 an area of coastal downwelling during the winter season. However, during summer the 423 coastal upwelling appears in response to turning of the wind near the coast toward the West 424 (Bakun and Agostini, 2001). In general, the magnitude of the A_T seasonal variability is higher 425 in summer than in winter for the Eastern basin and more particularly in the Ionian and 426 Levantine sub-basins. During this season strong evaporation takes place and induce an 427 increase of AT concentrations (Schneider et al., 2007). In the Eastern basin, the high 428 evaporation during the summer has a smaller effect on the C_T, and magnitudes reach their 429 maxima in the Levantine sub-basin ($\sim + 20 \mu mol.kg^{-1}$). During winter time the Western basin 430 and South East of Sicily appear to be dominated by higher C_T concentrations than the rest of 431 the Eastern basin, where the summer C_T concentrations are prevailing (Figure 7<u>b8b</u>). During 432 winter the high C_T concentrations that coincide with low SST in the Western basin, could 433 result from the deepening of the mixed layer and could be enhanced by the upwelling 434 associated with the Tramontane-Mistral winds that blow from the southern of France and 435 reach the Balearic Islands and the Spanish coast.

- 436
- 437 Summary
- 438

The A_T and C_T algorithms are derived from a compilation of 490 and 426 quality controlled surface measurements respectively, collected between 1999 and 2013 in the Mediterranean

Sea. A second order polynomial relating A_T to both S and T yielded a lower RMSE (± 10.4 441 μ mol.kg⁻¹) and a higher r² (0.96) than a linear fit deriving A_T from S alone. This confirmed 442 the important contribution of temperature to the A_T variability. Hence, temperature should be 443 444 included in future algorithms to help better constrain the surface A_T variations. The proposed 445 second order polynomial had a lower RMSE than other studies when we applied their 446 respective algorithms to the same training dataset. In this study we propose an improved and 447 more global relationship to estimate the A_T spatial and temporal variations in the 448 Mediterranean Sea surface waters.

449

450 The C_T parameterization is a first attempt to estimate the surface variations in the 451 Mediterranean Sea. A third order polynomial is suggested to fit the C_T to T and S with a RMSE of \pm 14.3 µmol.kg⁻¹. The biological contributions to the C_T variations were less 452 453 pronounced than the physical processes. The contributions of to the physical processes and 454 biology to the C_T variability were 90 and 10 % respectively. In terms of anthropogenic forcing, the C_T rate of increase of 0.99 $\mu mol.kg^{\text{-1}}.yr^{\text{-1}}$ was significantly lower than the 455 uncertainty of the measurements than can reach \pm 10 μ mol.kg⁻¹ between different 456 laboratories. Moreover the C_T concentrations were more affected by the seasonal variations 457 458 than the increase of atmospheric CO_2 .

459

460 We propose to use Equations (1) and (2) for the estimation of surface A_T and C_T in the 461 Mediterranean Sea when salinity and temperature of the area are available and are in the 462 appropriate ranges of the equations. However in the Eastern marginal seas especially the 463 northern Adriatic and northern Aegean there is a need to develop a more specific equation 464 that minimizes the errors in these areas. Hence, it is important to enrich the existing dataset 465 by an extensive sampling program such as the Med-SHIP initiative (CIESM, 2012) in order 466 to improve the modeling of the carbonate system over the whole Mediterranean Sea.

467468 Acknowledgments

469

The authors would like to thank all parties that have contributed to the data provision in particular:

- 472 The Sesame IT4 and Moose-GE cruise data were provided through SeaDataNet Pan473 European infrastructure for ocean and marine data management
 474 (http://www.seadatanet.org).
- The DYFAMED time series have been provided by the Oceanological Observatory of
 Villefranche-sur-Mer (L.Coppola). This project is funded by CNRS-INSU and ALLENVI
- 477 through the MOOSE observing network".
- The Transmed cruise data were provided by Dr. Rivaro, P., Dr. Russo, A. and Dr. Kovacevic, V. The Transmed cruise is part of the VECTOR Project, funded by: the Ministry of Education, University and Research, the Ministry of Economy and Finance, the Ministry of the Environment and Protection of Natural Resources and the Ministry of
- 482 Agriculture and Forestry with an Integrated Special Fund for Research (FISR).
- 483 _____The MedSEA 2013 cruise data were provided by the University of Perpignan Via
 484 Domitia: 'Institut de Modélisation et d'Analyse en Géo-Environnements et Santé,

485	ESPACE-DEV' (Goyet, C. and Hassoun, A.E.R.). This project was funded by the EC	
486	"Mediterranean Sea Acidification in a changing climate" project (MedSeA; grant	
487	agreement 265103).	
488		
489	Océaniques du CO ₂) for their contribution in measuring some of the A_{T} and C_{T} samples	Formatted: Complex Script Font: Bold, Ital
490	Authors are also grateful to the National Council for Scientific Research (CNRS) in Lebanon	
401	for the DhD thesis scholership granted to Miss Geneval Elisser	
491	for the rnD thesis scholarship granted to Miss Gemayer Elissar.	
492	D 4	
493	Keterences	Formatted: Left
494		Formatted: Font: Bold, Complex Script For Bold
495	Alvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L., Luchetta, A., Cantoni, C.,	
496	Schroeder, K., and Civitarese, G.: The CO ₂ system in the Mediterranean Sea: a basin	
497	wide perspective, Ocean Sci, 10, 69-92, 2014.	
498	Bakker, D. C. E., de Baar, H. J. W., and de Jong, E.: The dependence on temperature and	
499	salinity of dissolved inorganic carbon in East Atlantic surface waters, Mar Chem, 65,	
500	263-280, 1999.	
501	Bakun, A. and Agostini, V. N.: Seasonal patterns of wind-induced upwelling/downwelling in	
502	the Mediterranean Sea, Sci Mar, 65, 243-257, 2001.	
503	Bates, N. K.: Interannual variability of the oceanic CO_2 sink in the subtropical gyre of the North Atlantia Ocean over the last 2 decedes. I Coophys Bas, 112, C00012, 2007	
504	Rotas N. P. Paguignet A. C. and Sabine C. L.: Ocean carbon evaling in the Indian Ocean:	
505	1. Spatiotemporal variability of inorganic carbon and air sea CO, gas avehange Clobal	
507	Biogeochem Cycles 20, GB3020, 2006	
508	Bégovic M and Copin-Montégut C: Processes controlling annual variations in the partial	
500	pressure of CO_2 in surface waters of the central northwestern Mediterranean Sea	
510	(Dyfamed site) Deen Sea Res Part II Ton Stud Oceanogr 49 2031-2047 2002	
511	Bégovic, M. and Copin, C.: Alkalinity and pH measurements on water bottle samples during	
512	THALASSA cruise PROSOPE. 2013.	
513	Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing the quality of	
514	seawater carbon dioxide measurements, Mar Chem, 171, 36-43, 2015.	
515	Breiman, L.: Stacked regressions, Mach Learn, 24, 49-64, 1996.	
516	Cantoni, C., Luchetta, A., Celio, M., Cozzi, S., Raicich, F., and Catalano, G.: Carbonate	
517	system variability in the Gulf of Trieste (North Adriatic Sea), Estuar Coast Shelf Sci,	
518	115, 51-62, 2012.	
519	CIESM: Designing Med-SHIP: a Program for repeated oceanographic surveys, CIESM,	
520	Monaco, 164 pp., 2012.	
521	Copin-Montégut, C.: Alkalinity and carbon budgets in the Mediterranean Sea, Global	
522	Biogeochem Cycles, 7, 915-925, 1993.	
523	Copin-Montégut, C. and Bégovic, M.: Distributions of carbonate properties and oxygen along	
524	the water column (0–2000m) in the central part of the NW Mediterranean Sea	
525	(Dyfamed site): influence of winter vertical mixing on air-sea CO_2 and O_2 exchanges,	
526	Deep Sea Res. Part II Top Stud Oceanogr, 49, 2049-2066, 2002.	
527	Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the	
528	Mediterranean Sea, Biogeosciences, 12, 164/-1658, 2015.	
529 520	minud layon and air and CO, flux in the Maditerranean See Deer See Deer See Deer L	
521	December Pas Dep 55, 405, 424, 2008	
331	Oceanogr Res rap, 33, 403-434, 2008.	

Goyet, C. and Davis, D.: Estimation of total CO₂ concentration throughout the water column,
 Deep Sea Res. Part I Oceanogr Res Pap, 44, 859-877, 1997.

- Goyet, C., Hassoun, A. E. R., and Gemayel, E.: Carbonate system during the May 2013
 MedSeA cruise. Pangaea, 2015.
- Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab, M.,
 Guglielmi, V., Touratier, F., and Falco, C.: Acidification of the Mediterranean Sea from
 anthropogenic carbon penetration, Deep Sea Res. Part I Oceanogr Res Pap, 102, 1-15,
 2015a.
- Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab, M., Ziveri,
 P., Touratier, F., Guglielmi, V., and Falco, C.: Modeling of the total alkalinity and the
 total inorganic carbon in the Mediterranean Sea, J Water Resource Ocean Sci, 4, 24-32,
 2015b.
- Hood, E. M. and Merlivat, L.: Annual to interannual variations of fCO₂ in the northwestern
 Mediterranean Sea: Results from hourly measurements made by CARIOCA buoys,
 1995-1997, J Mar Res, 59, 113-131., 2001.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Al Amir Moulay
 Abdallah cruise CARBOGIB-2. Unidad de Tecnología Marina Consejo Superior de Investigaciones Científicas, 2007a.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Al Amir Moulay
 Abdallah cruise CARBOGIB-3. Unidad de Tecnología Marina Consejo Superior de Investigaciones Científicas, 2007b.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Al Amir Moulay
 Abdallah cruise CARBOGIB-4. Unidad de Tecnología Marina Consejo Superior de Investigaciones Científicas, 2007c.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Al Amir Moulay
 Abdallah cruise CARBOGIB-5. Unidad de Tecnología Marina Consejo Superior de Investigaciones Científicas, 2007d.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Al Amir Moulay
 Abdallah cruise CARBOGIB-6. Unidad de Tecnología Marina Consejo Superior de Investigaciones Científicas, 2007e.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Garcia del Cid cruise
 GIFT-1. Unidad de Tecnología Marina Consejo Superior de Investigaciones
 Científicas, 2007f.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Garcia del Cid cruise
 GIFT-2. Unidad de Tecnología Marina Consejo Superior de Investigaciones
 Científicas, 2007g.
- Huertas, E.: Hydrochemistry measured on water bottle samples during Garcia del Cid cruise
 GIFT-3. Unidad de Tecnología Marina Consejo Superior de Investigaciones
 Científicas, 2007h.
- 571 Hydes, D., Jiang, Z., Hartman, M. C., Campbell, J. M., Hartman, S. E., Pagnani, M. R., and 572 Kelly-Gerreyn, B. A.: Surface DIC and TALK measurements along the M/V Pacific 573 VOS Line during the 2007-2012 Celebes cruises. 574 http://cdiac.ornl.gov/ftp/oceans/VOS Pacific Celebes line/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of 575 Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.VOS_PC_2007-2012, 2012. 576
- Ishii, M., Saito, S., Tokieda, T., Kawano, T., Matsumoto, K., and Inoue, H. Y.: Variability of
 surface layer CO₂ parameters in the Western and Central Equatorial Pacific. In: Global
 Environmental Change in the Ocean and on Land, Shiyomi M., K. H., Koizumi H.,
- 580 Tsuda A., Awaya Y. (Ed.), TERRAPUB, Tokyo, 2004.
- Keeling, R. F., Najjar, R. P., Bender, M. L., and Tans, P. P.: What atmospheric oxygen measurements can tell us about the global carbon cycle, Global Biogeochem Cycles, 7, 37-67, 1993.

- Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A.,
 Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean carbon climatology: Results
 from Global Data Analysis Project (GLODAP), Global Biogeochem Cycles, 18,
 GB4031, 2004.
- Koeve, W., Duteil, O., Oschlies, A., Kähler, P., and Segschneider, J.: Methods to evaluate
 CaCO₃ cycle modules in coupled global biogeochemical ocean models, Geosci Model
 Dev, 7, 2393-2408, 2014.
- Koffi, U., Lefèvre, N., Kouadio, G., and Boutin, J.: Surface CO₂ parameters and air-sea CO₂
 flux distribution in the Eastern Equatorial Atlantic Ocean, J Mar Syst, 82, 135-144,
 2010.
- Krasakopoulou, E., Souvermezoglou, E., and Goyet, C.: Anthropogenic CO₂ fluxes in the
 Otranto Strait (E. Mediterranean) in February 1995, Deep Sea Res. Part I Oceanogr Res
 Pap, 58, 1103-1114, 2011.
- Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and
 Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary
 production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217233, 2012.
- Lee, K., Sabine, C. L., Tanhua, T., Kim, T.-W., Feely, R. A., and Kim, H.-C.: Roles of marginal seas in absorbing and storing fossil fuel CO₂, Energy Environ Sci, 4, 1133-1146, 2011.
- Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H.,
 Wanninkhof, R., Feely, R. A., and Key, R. M.: Global relationships of total alkalinity
 with salinity and temperature in surface waters of the world's oceans, Geophys Res Lett,
 33, L19605, 2006.
- Lee, K., Wanninkhof, R., Feely, R. A., Millero, F. J., and Peng, T.-H.: Global relationships of
 total inorganic carbon with temperature and nitrate in surface seawater, Global
 Biogeochem Cycles, 14, 979-994, 2000.
- Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O.
 K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and
 Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, NOAA Atlas NESDIS
 73, 40 pp., 2013.
- Louanchi, F., Boudjakdji, M., and Nacef, L.: Decadal changes in surface carbon dioxide and
 related variables in the Mediterranean Sea as inferred from a coupled data-diagnostic
 model approach, ICES J Mar Sci, 66, 1538-1546, 2009.
- Lovato, T. and Vichi, M.: An objective reconstruction of the Mediterranean sea carbonate
 system, Deep Sea Res. Part I Oceanogr Res Pap, 98, 21-30, 2015.
- Luchetta, A., Cantoni, C., and Catalano, G.: New observations of CO₂ induced acidification
 in the northern Adriatic Sea over the last quarter century, Chem Ecol, 26, 1-17, 2010.
- McNeil, B. I., Metzl, N., Key, R. M., Matear, R. J., and Corbiere, A.: An empirical estimate
 of the Southern Ocean air-sea CO₂ flux, Global Biogeochem Cycles, 21, GB3011, 2007.
- Medar-Group: MEDATLAS 2002. Mediterranean and Black Sea database of temperature,
 salinity and biochemical parameters. Climatological Atlas., 2002.
- 626 Millero, F. J.: The Marine inorganic carbon cycle, Chem Rev, 107, 308-341, 2007.
- Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in the surface waters of the
 major oceans, Mar Chem, 60, 111-130, 1998.
- Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients availability in
 Western and Eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J Mar
 Syst, 33–34, 273-288, 2002.

- Omta, A. W., Dutkiewicz, S., and Follows, M. J.: Dependence of the ocean-atmosphere
 partitioning of carbon on temperature and alkalinity, Global Biogeochem Cycles, 25,
 GB1003, 2011.
- 635 Perez, F. F., Rios, A. F., Pelegri, J. L., de la Paz, M., Alonso, F., Royo, E., Velo, A., Garcia-Ibanez, M., and Padin, X. A.: Carbon Data Obtained During the R/V Hesperides Cruise 636 in the Atlantic Ocean on CLIVAR Repeat Hydrography Section A17, FICARAM XV, 637 638 (March 20 May 2. 2013). http://cdiac.ornl.gov/ftp/oceans/CLIVAR/A17_FICARAM_XV_2013/. Carbon Dioxide 639 Information Analysis Center, Oak Ridge National Laboratory, US Department of 640 641 Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.CLIVAR FICARAM XV 642 2013.
- Poisson, A., Metzl, N., Brunet, C., Schauer, B., Bres, B., Ruiz-Pino, D., and Louanchi, F.:
 Variability of sources and sinks of CO₂ in the western Indian and southern oceans during the year 1991, J Geophys Res, 98, 22759-22778, 1993.
- Rivaro, P., Messa, R., Massolo, S., and Frache, R.: Distributions of carbonate properties
 along the water column in the Mediterranean Sea: Spatial and temporal variations, Mar
 Chem, 121, 236-245, 2010.
- Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and
 Heimann, M.: Global surface-ocean pCO₂ and sea-air CO₂ flux variability from an observation-driven ocean mixed-layer scheme, Ocean Sci, 9, 193-216, 2013.
- Rohling, E. J., Abu-Zied, R. H., Casford, J. S. L., Hayes, A., and Hoogakker, B. A. A.: The
 marine environment: Present and past. In: The physical geography of the
 Mediterranean, Woodward, J. C. (Ed.), Oxford University Press, 2009.
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R.,
 Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A.,
 Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO₂, Science, 305, 367371, 2004.
- Santana-Casiano, J. M., Gonzalez-Davila, M., and Laglera, L. M.: The carbon dioxide system
 in the Strait of Gibraltar, Deep Sea Res. Part II Top Stud Oceanogr, 49, 4145-4161,
 2002.
- Sasse, T. P., McNeil, B. I., and Abramowitz, G.: A novel method for diagnosing seasonal to
 inter-annual surface ocean carbon dynamics from bottle data using neural networks,
 Biogeosciences, 10, 4319-4340, 2013.
- Schneider, A., Tanhua, T., Körtzinger, A., and Wallace, D. W. R.: High anthropogenic
 carbon content in the Eastern Mediterranean, J Geophys Res, 115, C12050, 2010.
- Schneider, A., Wallace, D. W. R., and Körtzinger, A.: Alkalinity of the Mediterranean Sea,
 Geophys Res Lett, 34, L15608, 2007.
- Schneider, B. and Roether, W.: Meteor 06MT20011018 cruise data from the 2001 cruises,
 CARINA Data Set. <u>http://cdiac.ornl.gov/ftp/oceans/CARINA/Meteor/06MT512/</u>.
- 671 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
 672 Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg.CARINA
 673 06MT20011018, 2007.
- Souvermezoglou, E., Krasakopoulou, E., and Goyet, C.: Total inorganic carbon and total
 alkalinity distribution in the Aegean Sea, CIESM, 312 pp., 2010.
- Stone, M.: Cross validatory choice and assessment of statistical predictions, J R Stat Soc
 Series B Stat Methodol, 36, 111-147, 1974.
- Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal
 variation of CO₂ and nutrients in the high-latitude surface oceans: A comparative study,
 Global Biogeochem Cycles, 7, 843-878, 1993.

- Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T.,
 Sweeney, C., and Munro, D. R.: Climatological distributions of pH, pCO₂, total CO₂,
 alkalinity, and CaCO₃ saturation in the global surface ocean, and temporal changes at
 selected locations, Mar Chem, 164, 95-125, 2014.
- Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. 685 W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., 686 Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., 687 Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., 688 689 Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de 690 Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO₂, and net 691 sea-air CO₂ flux over the global oceans, Deep Sea Res. Part II Top Stud Oceanogr, 56, 692 554-577, 2009.
- Tanhua, T., Alvarez, M., and Mintrop, L.: Carbon dioxide, hydrographic, and chemical data
 obtained during the R/V Meteor MT84_3 Mediterranean Sea cruise (April 5. April 28,
 2011). <u>http://cdiac.ornl.gov/ftp/oceans/CLIVAR/Met 84 3 Med Sea/</u>. Carbon Dioxide
 Information Analysis Center, Oak Ridge National Laboratory, US Department of
 Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.CLIVAR_06MT20110405,
 2012.
- Touratier, F. and Goyet, C.: Decadal evolution of anthropogenic CO₂ in the northwestern
 Mediterranean Sea from the mid-1990s to the mid-2000s, Deep Sea Res. Part I
 Oceanogr Res Pap, 56, 1708-1716, 2009.
- Touratier, F. and Goyet, C.: Impact of the Eastern Mediterranean Transient on the
 distribution of anthropogenic CO₂ and first estimate of acidification for the
 Mediterranean Sea, Deep Sea Res. Part I Oceanogr Res Pap, 58, 1-15, 2011.
- Touratier, F., Guglielmi, V., Goyet, C., Prieur, L., Pujo-Pay, M., Conan, P., and Falco, C.:
 Distributions of the carbonate system properties, anthropogenic CO₂, and acidification
 during the 2008 BOUM cruise (Mediterranean Sea), Biogeosci Discuss, 9, 2709-2753,
 2012.
- Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N.,
 Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J.,
 Graven, H., and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and
 trends, Biogeosciences, 10, 1983-2000, 2013.
- Watson, A. and Orr, J.: Carbon Dioxide Fluxes in the Global Ocean. In: Ocean
 Biogeochemistry, Fasham, M. R. (Ed.), Global Change The IGBP Series (closed),
 Springer Berlin Heidelberg, 2003.
- Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P.,
 Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World
 Ocean Atlas 2013, Volume 2: Salinity. Levitus, S., Ed. and Mishonov, A., Technical Ed
 (Eds.), NOAA Atlas NESDIS 74, 2013.

726 727 728

744 Table 1. List of available carbonate system datasets for the Mediterranean Sea

Dataset	Period	<u>Area</u>	Carbonate system	<u>Data</u> points	Reference
			parameters		
Prosope	Sep-Oct 1999	<u>Mediterranean</u> <u>Sea</u>	A_T and pH	<u>20</u>	Bégovic and Copin (2013)
Meteor 51/2	Oct-Nov 2001	<u>Eastern</u> <u>Mediterranean</u>	A_{T} and C_{T}	<u>16</u>	Schneider and Roether (2007)
Meteor 84/3	Apr 2004	<u>Southern</u> <u>Mediterranean</u>	A_T , C_T and pH	<u>16</u>	Tanhua et al. (2012)
Carbogib 2-6	2005- 2006	<u>Gibraltar</u> <u>Strait</u>	A_T and pH	<u>28</u>	(Huertas, 2007a, b, c, d, e)
Gift 1-3	2005- 2006	<u>Gibraltar</u> <u>Strait</u>	A_T and pH	<u>12</u>	(Huertas, 2007f, g, h)
Transmed	Jun 2007	Eastern Mediterranean	A_T and pH	<u>20</u>	Rivaro et al. (2010)
Sesame IT- 4	Mar - Apr 2008	<u>Northern</u> <u>Mediterranean</u>	A_T and C_T	<u>16</u>	SeaDataNet
Boum	Jun-Jul 2008	<u>Mediterranean</u> <u>Sea</u>	A_T and C_T	<u>75</u>	Touratier et al. (2012)
Pacific- Celebes	2007- 2009	<u>Mediterranean</u> <u>Sea</u>	A_T and C_T	<u>22</u>	Hydes et al. (2012)
Moose-GE	May 2010	Ligurian Sea	A_T and C_T	<u>44</u>	SeaDataNet
Hesperides	May 2013	<u>Gibraltar</u> <u>Strait</u>	A _T	<u>10</u>	Perez et al. (2013)
MedSEA	May 2013	Southern Mediterranean	A_T and C_T	<u>59</u>	Goyet et al. (2015)
Dyfamed time-series	1998- 2013	Ligurian Sea	$A_{\rm T}$ and $C_{\rm T}$	<u>152</u>	Oceanological Observatory of Villefranche-sur- Mer

Formatted Table

747						
7/8						
740						
749						
/50	1					
751						
752						
753						
754						
755						
756						
757						
758						
759	Table 2. Mean differ	rence t-test for the A	T algorithm betwee	n the traiı	ning ar	nd validation
760	<u>datasets</u>					
		Training dataset	Validation dataset			
	<u>RMSE (µmol.kg⁻¹)</u>	<u>10.60</u>	<u>10.34</u>	Mean dif	ference	<u>e t-test:</u>
				<u>H = 0; p</u>	= 0.83	
	<u>Mean residual</u>	$2.64e-13 \pm 10.57$	0.91 ± 10.30	Mean dif	ference	<u>e t-test:</u>
7.61	<u>(µmol.kg⁺)</u>			<u>H = 0; p</u>	<u>= 0.42</u>	
761						
762						
763						
764						
765						
766						
767						
768						
769						
770						
771						
772						
773						
774	Table 2 Second and	ler nelvnemiel fit to	derive A _ from sel	inity and	tomno	ratura in tha
775	Moditorranoan Soa	surface waters		inty and	tempe	fature in the
115	Treuter ranean Sea	surface maters			2	RMSE
	Polynomial fit			N	r "	(umol.kg ⁻¹)
	$Eq (1): A_T = 2558.4$	+ 49.83(S) - 3.89(T) -	$\frac{3.12(S)^2 - 1.06(T)^2}{1.06(T)^2}$	375	0.96	10.6
	$T \rightarrow T$	13 °C and 36.30 < S <	< 39.65			
776	-				•	<u>. </u>
777						
778						
779						
780						
781						
787						
101						

813Table 3. Performance of the different parameterizations for the estimation of AT814applied independently to the training dataset of this study

Region	Parameterization	RMSE	r^2	Reference
		(µmol.kg ⁻¹)		
Alboran Sea	$A_{\rm T} = 94.85({\rm S}) - 1072.6$	± 16.61	0.92	Copin-Montégut (1993)
Dyfamed site	$A_{\rm T} = 93.99(S) - 1038.1$	± 16.31	0.92	Copin-Montégut and Bégovic (2002)
Strait of Gibraltar	$A_{\rm T} = 92.28({\rm S}) - 968.7$	± 16.48	0.92	Santana-Casiano et al. (2002)
Mediterranean Sea	$A_{\rm T} = 73.7({\rm S}) - 285.7$	± 26.11	0.68	Schneider et al. (2007)
Dyfamed site	$A_{\rm T} = 99.26({\rm S}) - 1238.4$	± 18.53	0.91	Touratier and Goyet (2009)

	Western Mediterranean	$A_{\rm T} = 95.25({\rm S}) - 1089.3$	± 16.97	0.92	Rivaro et a		al. (2010)	
	Eastern Mediterranean	$A_{\rm T} = 80.04({\rm S}) - 499.8$	± 14.58	0.91				
	Mediterranean Sea	$\begin{split} A_{T} &= 1/(6.57*10^{-1})^{-1} \\ &^{5}+1.77\cdot10^{-2})/S - (5.93-10^{-4}(\ln\theta))/\theta^{2}) \end{split}$	± 13.81	0.92	Touratie	er and C	Goyet (2011)	
	Global relationship (Sub-tropics)	$\begin{split} A_T &= 2305 + 58.66 \; (S - \\ &35) + 2.32 \; (S - 35)^2 + \\ &1.41 \; (T - 20) + 0.04 \; (T \\ &- 20)^2 \end{split}$	± 40.50	0.26	Le	e et al.	(2006)	
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 832	Table 4 Third							
834 835	Hable 4. Third (Mediterranean	Sca surface waters	erive C _T irom	sannu	y and ten	aperat	DMSE	
	Polynomial fit				N	r ²	KIVISE (µmol.kg ⁻¹)	
	$\frac{\text{Eq} (2): C_{\rm T} = 22}{1.10(\text{S})^3 + 3.53(2)}$	134 + 38.15(S) - 14.38(T) T)(S) ² + 1.47(S)(T) ² - 4.6 T > 13 °C and 36.30 < S	4.48(S) ² + ♀ 1(T)³ < 39.65).62(T)	<u>-</u> 381	0.90	14.3	
836 837 838	Table 4. Mean o	difference t-test for the C	C _T algorithm b	etweer	<u>the trair</u>	uing an	d validation	

datasets								
	Training dataset	Validation dataset						
<u>RMSE (µmol.kg⁻¹)</u>	<u>14.3</u>	<u>16.2</u>	Mean difference t-test:					
			<u>$H = 0; p = 0.04$</u>					

Formatted: Complex Script Font: Times Ne Roman, 12 pt, Bold

Formatted: Font: 9 pt, Bold, Font color: Accent 1, Complex Script Font: 9 pt, Bold

933 Figure 3. Rate of increase applied to correct the C_T measurements in reference to the year 2005

Figure 4. (a) Temporal and (b) seasonal variations of C_T measured at the Dyfamed timeseries station between 1998 and 2013

Formatted: Complex Script Font: Times Ne Roman, 12 pt

Figure 67. The seven years averages spatial variability of (a) surface A_T predicted from Eq (1) and (b) surface C_T predicted from Eq (2), applied to the 2005-2012 climatological fields of S and T from the WOA13

1049Figure 78.Distribution of the summer-winter differences of (a) surface A_T predicted1050from Eq (1) and (b) surface C_T predicted from Eq (2), applied to the 2005-20121051climatological fields of S and T from the WOA13