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1. Reviewer 1 comment:  
“Page 1285 lines 6-7 and 14-16 Justify the choice of values for E1, E2 and E3 – how do I go from Moss et all or 
Van Vuuren et al. to derive these? Similarly for R1, R2, R3. Page 1287 lines 1-9. Link this to the IPCC AR5 
treatment of uncertainty in the terrestrial carbon sink, as Holden et al 2013a presumably is not based on IPCC 
AR5?” 
 

Your response: “The motivation for these ranges has been expanded on, as below: 

 ‘The E1 and R1 coefficients define the 2100 CO2 emissions and non-CO2 radiative forcing respectively. The 
ranges for these coefficients have been chosen to encompass (and exceed) the ranges of 2100 forcing in Moss 
et al (2010) ; The range of input values for the training dataset needs to be wide in order to avoid extrapolation 
when using the resulting emulator. The maximum E1 = 30 gives 2100 CO2 emissions of E0+E1=39.166GTC, 
which compares to RCP8.5 emissions of 28.817GTC. Maximum radiative forcing of R0+R1=10.619Wm-2 was 
allowed to greatly exceed RCP estimates (maximum 1.796Wm-2) in order to allow the potential application of 

the emulator to extreme non-CO2 forcing scenarios.’”   
What would be the motivation to explore such high radiative forcing scenarios? Is there any policy interest in 
such scenarios?  
 
A wide training range was chosen to ensure that the emulator will remain suitable for use in many different 
applications beyond the scope of the current work. Some such contexts could be policy-relevant (e.g. geo-
engineering in a high CO2 future). 
 
We have edited the text to elaborate on the motivation for the choice of training ranges (see page 7 of revised 
manuscript). 

 
2. Reviewer 2 comment:  

“M1285:1:16. If I apply Equation (3) with the stated parameters I generate some very strange time profiles of 
forcing... Is Equation (3) wrong (I note in Holden and Edwards that the 0.5 embraces R1, R2 and R3 rather than 
just R1 here)? Not being a Chebyshev expert, I was also confused by the R3 parameter; lists I see in text books 
etc have 4x**3 - 3x, but perhaps this is what is meant by “modified” here?” 
 

Your response:  “There was an error in transcribing this equation. As the reviewer suggests, the 0.5 should 
embrace R1, R2 and R3. The modified Chebyshev parameters are arrived at through linear decomposition of the 
first three Chebyshev polynomials. This has been made explicit.”  
 
I can see no revision of the text in the light of this response. Can you tell me where the text has been changed 
please. 

 
This revision was initially omitted but has now been made to the text. Revisions to the equations were already 
made, but were not identified by the LaTeX diff function. 
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Abstract.

We present a carbon cycle-climate modelling framework using model emulation, designed for in-

tegrated assessment modelling, which introduces a new emulator of the carbon cycle (GENIEem).

We demonstrate that GENIEem successfully reproduces the CO2 concentrations of the Represen-

tative Concentration Pathways when forced with the corresponding CO2 emissions and non-CO25

forcing. To demonstrate its application as part of the integrated assessment framework, we use GE-

NIEem along with an emulator of the climate (PLASIM-ENTSem) to evaluate global CO2 concen-

tration levels and spatial temperature and precipitation response patterns resulting from CO2 emis-

sion scenarios. These scenarios are modelled using a macroeconometric model (E3MG) coupled

to a model of technology substitution dynamics (FTT), and represent different emissions reduction10

policies applied solely in the electricity sector, without mitigation in the rest of the economy. The

effect of cascading uncertainty is apparent, but despite uncertainties, it is clear that in all scenarios,

global mean temperatures in excess of 2◦C above pre-industrial levels are projected by the end of the

century. Our approach also highlights the regional temperature and precipitation patterns associated

with the global mean temperature change occurring in these scenarios, enabling more robust impacts15

modelling and emphasising the necessity of focussing on spatial patterns in addition to global mean

temperature change.
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1 Introduction

Integrated assessment modelling can be used to explore the climatic consequences of particular

climate mitigation policy scenarios. However, most integrated assessment models (IAMs) do not20

directly utilise sophisticated coupled Atmosphere Ocean General Circulation Models, such as those

employed in the Coupled Model Intercomparison Project Phase 5 (CMIP5: Friedlingstein et al.,

2013), to represent the climate and carbon cycle. Due to the large computational resources they

require, the direct use of such models within IAMs is not feasible.

Instead, many IAMs have used simple mechanistic models to represent the carbon cycle. One such25

simplified carbon-cycle/climate model is MAGICC6 (Meinshausen et al., 2011a), which is calibrated

against higher complexity models from the Coupled Carbon Cycle Climate Model Intercomparison

Project (C4MIP), to emulate the atmospheric CO2 concentrations of those models. Schaeffer et al.

(2013) used MAGICC6 to derive probability distributions for radiative forcing, which drive a sim-

ple climate model that projects global mean temperature response by linearly scaling the CO2 step30

experiment response of 17 CMIP5 General Circulation Model (GCM) 4×CO2 simulations. Such

approaches can be used to generate large ensembles quite quickly; for instance, MAGICC6 has

been used to generate a 600-member perturbed parameter ensemble (Schaeffer et al., 2013) of CO2-

equivalent concentration and global-mean surface-air temperature change projections.

It has been suggested that a conceptual advantage of this approach is that the mechanistic model35

fit adds some confidence when extrapolating beyond the training data (Meinshausen et al., 2011a). A

limitation of simplified mechanistic models is that they may contain a high level of parameterization.

For example, the Meinshausen et al. (2011a) carbon cycle calibration procedure uses global mean

temperature as a proxy for changes in patterns of temperature and precipitation. These drivers of

change in the carbon cycle would be explicitly represented in a more sophisticated model.40

To represent regionally varying patterns of climatic change, as opposed to global mean temper-

ature change, many IAM studies have used pattern-scaling (e.g. IMAGE: Bouwman et al., 2006).

This computationally inexpensive technique linearly relates regional climatic change, derived from

stored GCM ensembles such as those generated in CMIP5, to global mean temperature change, sim-

ulated using a simplified model, so that the regional response to many emissions scenarios can be45

computed quickly (e.g. Cabré et al., 2010). Simple pattern scaling assumes that the climate response

is spatially invariant (with respect to time and forcing), and therefore cannot capture aspects which

may be sensitive to the greenhouse gas (GHG) concentration pathway (O’Neill and Oppenheimer,

2004; Tebaldi and Arblaster, 2014). Tebaldi and Arblaster (2014) cite a number of instances where

it is liable to break down, in particular for scenarios with strong mitigation or less mean temperature50

change. Recent advances in pattern-scaling have considered the effects of different forcing compo-

nents; for example, with the most recent iteration of MAGICC-SCENGEN, the effects of aerosols

can be estimated for some climate parameters by generating patterns specific to these emissions 1.

1MAGICC/SCENGEN user manual, p. 2: http://www.cgd.ucar.edu/cas/wigley/magicc/UserMan5.3.v2.pdf
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The Atmosphere-Ocean General Circulation Model (AOGCM) ensembles used in pattern scaling

are usually multi-model ensembles (MMEs). Such ensembles consist of simulations from different55

models, and are neither a systematic nor random sampling of potential future climates (Tebaldi and

Knutti, 2007). Similarities between models may lead to a lack of independence amongst ensemble

members (Foley et al., 2013), complicating the interpretation of the ensemble as a whole (Knutti

et al., 2013).

Perturbed physics ensembles (PPEs) offer a more systematic sampling of potential future climates,60

but embedding a PPE approach into an IAM framework requires a computationally fast climate

model. In this context, statistical emulation of complex models is a useful alternative. For example,

Castruccio et al. (2014) constructed a statistical climate model emulator using simulations performed

with the Community Climate System Model, version 3 (CCSM3), in which statistical models are fit-

ted to temperature and precipitation for 47 subcontinental-scale regions. Such an approach is suitable65

for applications requiring annual temperatures of specific regions, but is less appropriate when cli-

mate impacts within regions are to be considered. Carslaw et al. (2013) apply a similar approach to

the grid-cell level. However, such an approach requires many emulators, and correspondingly, com-

putational resources. Furthermore, the global emulation may not be self-consistent, as the individual

emulators do not utilise the correlations between grid cells.70

In this paper, we demonstrate how model emulation using singular vector decomposition (SVD)

can be used within an IAM framework to generate perturbed physics ensembles, systematically

capturing uncertainty in the future climate state while also providing insight into regional climate

change. We introduce the GENIEem-PLASIM-ENTSem (GPem) climate-carbon cycle emulator,

which consists of a statistical climate model emulator, PLASIM-ENTSem, to represent climate dy-75

namics (Holden et al., 2014a), and a new carbon cycle emulator GENIEem. Compared to a sim-

ple mechanistic model, the purely statistical GENIEem does not impose a predefined functional

structure, allowing the emulator to capture more of the behaviour of the underlying simulator, and

notably providing a representation of the parametric uncertainty of the simulator. Although para-

metric uncertainty of MAGICC itself can be investigated (Meinshausen et al., 2009), this is distinct80

from representing the parametric uncertainties and associated non-linear feedbacks in the underly-

ing simulator. Similarly, compared to pattern-scaling, the more complex statistical approach used in

PLASIM-ENTSem enables a representation of spatial uncertainties due to parametric uncertainties

in the underlying model. The use of SVD to decompose spatial patterns of climate parameters makes

PLASIM-ENTSem computationally efficient, compared to techniques in which statistical relation-85

ships are developed for each grid-cell.

We demonstrate how these emulators can be applied in an IAM framework to resolve the regional

environmental impacts associated with policy scenarios by coupling GPem to FTT:Power-E3MG, a

non-equilibrium economic model with a technology diffusion component. Our work builds on that
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of Labriet et al. (2013) and Joshi et al. (2014 subm.) who also derived IAMs from economic and90

energy technology system models coupled to PLASIM-ENTSem.

2 The GENIEem carbon cycle model emulator

The carbon cycle model emulator GENIEem is an emulator of the GENIE-1 Earth System Model

(ESM) (Holden et al., 2013a) (i.e. a statistical model that approximately reproduces selected outputs

from the full GENIE-1 ESM). The emulator takes a time series of anthropogenic carbon emissions95

and non-CO2 radiative forcing (stemming from CH4, N2O, halocarbons, and other forcing agents

including O3 and aerosols) as inputs and provides a time series of atmospheric CO2 concentration

as output.

In the integrated assessment framework developed here, the time series of anthropogenic carbon

emissions is provided by E3MG-FTT, while non-CO2 forcing data is derived from global timeseries100

of forcing data obtained through the RCP Database.2 As such, GPem emulates high-dimensional cli-

mate outputs as a function of scalar model inputs (Holden et al., 2015). We note that certain forcings,

such as aerosol forcing, are characterised by complex spatial patterns and so would benefit from an

approach in which the inputs are also high-dimensional. However, incorporating such forcing into

the emulator framework would involve coupling a state-of-the-art aerosol model to PLASIM-ENTS105

in order to build an ensemble of simulations and a subsequent emulator, which is beyond the current

scope of this work.

2.1 GENIE-1 description

The full GENIE-1 ESM comprises the 3-D frictional geostrophic ocean model GOLDSTEIN (Ed-

wards and Marsh, 2005) coupled to a 2-D Energy Moisture Balance Atmosphere based on that of110

Fanning and Weaver (1996) and Weaver et al. (2001), and a thermodynamic-dynamic sea-ice model

based on Semtner (1976) and Hibler (1979). Ocean biogeochemistry is modelled with BIOGEM

(Ridgwell et al., 2007), coupled to the sediment model SEDGEM (Ridgwell and Hargreaves, 2007).

GENIE-1 is run at 36×36 spatial resolution (≈10×5 degrees on average) with a≈1 day atmospheric

time step, and 16 depth levels in the ocean. Vegetation is simulated with ENTSML (Holden et al.,115

2013a), a dynamic model of terrestrial carbon and land use change (LUC) based on the single plant

functional type model ENTS (Williamson et al., 2006). ENTSML takes time-varying fields of LUC

as inputs. Each simulation used to build the emulator is a transient simulation from 850 AD through

to 2105. Historical forcing (850 to 2005 AD), including changing land use, is prescribed as described

in Eby et al. (2013). Future forcing (2005 to 2105) is defined by a CO2 concentration time series120

and a non-CO2 radiative forcing time series, both represented by polynomials (see section 2.1.2).

The LUC mask is held fixed from 2005, as capturing LUC-climate-carbon feedbacks in the emulator

2Data available via the RCP Database at http://tntcat.iiasa.ac.at:8787/RcpDb
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Accept parameter set if the difference 
between simulated and observed atmospheric 
CO2 concentration lies within an acceptable 
range at 1620, 1770, 1850, 1970 and 2005. 

Generate an ensemble of future simulations , 
forced with time-varying CO2 emissions and 
non-CO2 radiative forcing. Each parameter set is 
reproduced three times and combined with 
different future emissions profiles. 

Calibrate CO2 fertilisation parameter k14  by 
randomly sampling its assumed prior 
distribution and replacing the k14 values in the 
86 GENIE parameter sets. 

Apply singular vector decomposition to the 100 
x 257 matrix of simulated output and emulate 
the first four principal components (PCs). 

Calibrated GENIEem 
climate/carbon cycle emulator 

(generates an 86-member ensemble using GENIE-1 
parameter sets, for six  given Chebyshev coefficients) 

471-member emulator filtered plausibility-
constrained GENIE-1 ensemble (850-2005) 

(transient historical emissions-forced ensemble,  
plausible in preindustrial state by design) 

86 parameter sets from GENIE-1  
(plausible in preindustrial period  

and present day) 

257-member 100-year (2005-2105)  
GENIE-1 future ensemble 

(257 out of 258 simulations completed successfully) 

Uncalibrated GENIEem  
climate/carbon cycle emulator 

(generates an 86-member ensemble using GENIE-1 
parameter sets, for six  given Chebyshev coefficients) 

Figure 1. Schematic describing the construction of GENIEem.

would require high dimensional inputs, a significantly more complex ensemble design and emula-

tion challenge. The future forcing due to LUC is instead subsumed into the CO2 concentration (LUC

emissions) and non-CO2 radiative forcing (LUC albedo).125

The configuration is the same as that applied in the Earth system model of intermediate complexity

(EMIC) intercomparison project (Zickfeld et al., 2013). Due to its reduced complexity, GENIE-1 is

a good choice for performing the many simulations required to build an emulator.

2.2 GENIE-1 parameter set selection

Construction of GENIEem is summarised in (Figure 1). To build the carbon cycle emulator, a subset130

of the 471-member emulator filtered plausibility-constrained parameter sets described in Holden

et al. (2013b) is used. Each of these 471 parameter sets was previously applied to a CO2 emissions-

forced transient historical simulation (850 to 2005 AD). They comprise experiments 1 and 2 of

Holden et al. (2013a). In addition to emissions forcing, these simulations were forced by non-CO2

trace gases, LUC, anthropogenic aerosols, volcanic aerosols, orbital change and solar variability, as135

described in Eby et al. (2013).

The 471 parameter sets are constrained to be plausible in the preindustrial state by design (Holden

et al., 2013b). However, they are not constrained to be plausible in the present day as neither the

anthropogenic carbon sinks nor the LUC emissions are calibrated. Additionally, these 471 parameter

sets are known to contain members that display numerical instabilities (Holden et al., 2013a).140

In order to identify useful parameter sets, we apply a filter to this transient historical ensemble. A

parameter set is accepted as plausible if the difference between simulated and observed atmospheric
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CO2 concentration lies within an acceptable range at each of five time points, 1620, 1770, 1850,

1970 and 2005 AD:

|CO2(t)−CO∗
2(t)|<

√
ε20 + ε2t (1)145

where CO2(t) and CO∗
2(t) are simulated and observed atmospheric CO2 concentration, evaluated

at each time slice t, and the acceptable errors ε0 and εt relate to the preindustrial spin-up state and

to the transient change. The time points span the preindustrial period and are not associated with

volcanic eruptions as these can lead to an unrealistic carbon-cycle response in GENIE due to the

single layer soil module (Holden et al., 2013a).150

The ε0 term dominates the acceptable error during the preindustrial era and is designed to reject

any simulations that exhibit numerical instability. It is set equal to 2 standard deviations (9 ppm)

of the 471-member spin-up ensemble. The εt term is given by 0.22×(CO∗
2(t)-280) ppm. This term

dominates the acceptable error in the post-industrial era and is designed to reject simulations that

exhibit an unreasonable strength for the CO2 sink. It approximately limits the range of acceptable155

uncertainty to the inter-model variance of the multi-model C4MIP ensemble (Friedlingstein et al.,

2006), assuming that the range of simulated CO2 change across the C4MIP ensemble scales linearly

with simulated CO2 change relative to preindustrial (280 ppm). Eighty-six parameter sets satisfied

this constraint at all 5 time points.

2.3 GENIE-1 ensemble design160

These 86 parameter sets from the full GENIE-1 ESM were used to generate an ensemble of future

simulations (2005 to 2105) forced with time-varying CO2 emissions and non-CO2 radiative forcing.

Each simulation was continued from its respective transient historical simulation. Radiative forcing

was applied as a globally uniform additional term in outgoing long-wave radiation to capture the

combined effects of non-CO2 trace gases, aerosols and LUC on global temperature. The LUC mask165

was fixed at the 2005 distribution, but effects of future land use changes are accounted for, albeit

approximately, in the applied radiative forcing and emissions anomalies.

To capture the range of possible future forcing we followed the approach of Holden and Edwards

(2010). The CO2 emissions profile is represented as:

::::
using

::::::::::
Chebyshev

:::::::::::
polynomials

:::
Mi::::::::::

(i=0,. . . ,3),
::::::
arrived

:::
at

::
by

::::::
linear

:::::::::::
combination

::
of

::::::::::
Chebyshev170

::::::::::
polynomials

:::
Ti.::::

For
::::::::
example,

::
if

:::
the

::::
first

::::
few

::::::::::
Chebyshev

::::::::::
polynomials

::::
are

:::::::::
T0(t) = 1,

:::::::::
T1(t) = t,

:::::::::::::
T2(t) = 2t2− 1

:::
and

:::::::::::::::
T3(t) = 4t3− 3t,

:::
and

:::
we

:::::
have

:::::::::::::::
M3(t) = 4t3− 4t,

::::
then

::::
this

:::
can

:::
be

:::::::::
expressed

::
as

:
a
:::::::::::
combination

::
of

::::::::::
Chebyshev

:::::::::::
polynomials:

:::::::::::::::::::
M3(t) = T3(t)−T1(t).

:::::::::
Following

::::
this

:::::::::::
approach,the

::::
CO2 ::::::::

emissions
::::::
profile

::
is

:::::::::
represented

:::
as:

:

E = E0 + 0.5[E1(t+ 1) +E2(2t2− 2) +E3(4t3− 4t)] (2)175
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where t is time, normalised onto the range -1 to 1 (2005 to 2105). The coefficient ranges were chosen

to span emissions consistent with the RCP pathways (Moss et al., 2010): E1 = -30 to 30 GtC yr−1,

E2 = -15 to 15 GtC yr−1, E3 = -15 to 15 GtC yr−1. The 2005 emissions E0 = 9.166 GtC yr−1.

Note that Eq. (2) is strictly a linear combination of Chebyshev polynomials such that the first two

terms give the linear increase in emissions; we refer to the coefficients henceforth as ’Chebyshev180

coefficents’.

The non-CO2 radiative forcing profile is also represented by a linear combination of modified

Chebyshev polynomials:

R=R0 + 0.5[R1(t+ 1) +R2(2t2− 2) +R3(4t3− 4t)] (3)

These Chebyshev coefficients are varied in the ranges R1 = -10 to 10 Wm−2, R2 = -5 to 15 Wm−2,185

R3 = -5 to 5 Wm−2. The 2005 non-CO2 radiative forcing R0= 0.619 Wm−2.

The E1 and R1 coefficients define the 2100 CO2 emissions and non-CO2 radiative forcing respec-

tively. The ranges for these
::::::::
remaining

::::::::::
coefficients

::::::::
determine

:::
the

::::::::
curvature

::
of

:::
the

::::::
profile.

::::
The

::::::
ranges

::
for

:::
all

:::
six

:
coefficients have been chosen to encompass (and exceed) the ranges of 2100 forcingin

Moss et al. (2010)
::::
21st

::::::
century

:::::::
forcing; for emulator training we apply wider ranges than we ex-190

pect to apply
::::
need

:
in order to ensure the emulator is never used under extrapolation.

:::::::
Selecting

::
a

:::::
broad

::::::
training

:::::
range

:::::
helps

::
to

::::::
ensure

:::
that

:::
the

::::::::
emulator

:::
will

:::::::
remain

::::::
suitable

:::
for

:::
use

::
in
:::::
many

::::::::
different

::::::::::
applications,

::::
and

:::
not

::::
only

:::::
within

:::
the

:::::::
context

::
of

:::
the

::::::::
scenarios

::::::
studied

::
in

:::
this

:::::
work.

:

The
:::
For

::::::::
example,

:::
the

:
maximum E1 = 30 gives 2100 CO2 emissions of E0+E1=39.166 GtC,

which compares to RCP 8.5 emissions of 28.817 GtC. Maximum radiative forcing of R0+R1=10.619195

Wm−2) was allowed to greatly exceed RCP estimates (maximum 1.796 Wm−2) in order to allow

the potential application of the emulator to extreme non-CO2 forcing scenarios. ,
:::
for

:::::::
instance

:::
to

:::::::
represent

::::::::
non-CO2::::

(e.g.
::::::::
methane)

:::::::
runaway

::::::::
feedbacks

:::::::::::::::::::::::::::
(Schmidt and Shindell, 2003) or

:::::::::::::
geo-engineering

::
in

:
a
::::
high

:::::
CO2:::::

future
:::::::::::::::::
(Irvine et al., 2009) .

:

The 86 parameter sets were replicated three times, and each of these three 86 parameter sets was200

combined with different future emissions profiles to produce a 258-member ensemble. To achieve

this, the six coefficients were varied over the above ranges to create a 258-member Maximin Latin

Hypercube design, using the maximinLHS function of the lhs package in R (R Development Core

Team, 2013). 257 simulations completed; in the remaining simulation, input parameters led to an

unphysical state and ultimately, numerical instability.205

2.4 Construction of GENIEem

The emulation approach closely follows the dimension reduction methodology detailed in Holden

et al. (2014a). We have an ensemble of 257 transient simulations of the coupled climate-carbon sys-

tem, incorporating both parametric uncertainty (28 parameters) and forcing uncertainty (6 modified

7



Chebyshev coefficients). For coupling applications we require an emulator that will generate the an-210

nually resolved evolution of CO2 concentration through time (2006 to 2105). The simulation outputs

were combined into a (100×257) matrix Y, and SVD was performed on the matrix

Y = LDRT (4)

where L is the (100×257) matrix of left singular vectors (“components”), D is the 257×257 diagonal

matrix of the square roots of the eigenvalues and R is the 257×257 matrix of right singular vectors215

(“component scores”).

We retain the first four components, which together explain more than 99.9% of the ensemble

variance. Each individual simulated CO2 concentration time series can thus be well approximated

as a linear combination of the first four components, scaled by their respective scores. Each set of

scores consists of a vector of coefficients, representing the projection of each simulation onto the220

respective component. As each simulated time series is a function of the input parameters, so are the

coefficients that comprise the scores. So each component score can be viewed, and hence emulated,

as a scalar function of the input parameters to the simulator.

Emulators of the first four component scores were derived as functions of the 28 model parameters

and the 6 concentration profile coefficients. These emulators were built in R (R Development Core225

Team, 2013), using the stepAIC function (Venables and Ripley, 2002). For each emulator, we first

built a linear model from all 34 inputs allowing only terms that satisfy the Bayes Information Cri-

terion (BIC). BIC-constrained stepwise addition of quadratic and cross terms was then performed,

allowing only inputs present in the linear model.

While the variance in emulator output is dominated by the Chebyshev forcing coefficients, uncer-230

tainty for a given forcing scenario is generated through emulator dependencies on GENIE-1 param-

eters. The most important of these is the CO2 fertilisation parameter, k14, describing the uncertain

response of photosynthesis to changing CO2 concentrations. To use the emulator, we constrain k14

using the calibration of Holden et al. (2013a), to better quantify the uncertainty associated with the

terrestrial sink. We evaluate the resulting emulated uncertainty through a comparison with C4MIP235

in Section 2.6.

We approximate the prior as a normal distribution with mean 500 ppm and standard deviation 150

ppm, following the base posterior of Holden et al. (2013a). We sampled values at random from this

distribution and replaced the k14 values in the 86-member training parameter set. Then, to generate

a perturbed parameter ensemble of emulated futures, the emulation is performed for each of the240

resulting 86 parameter sets.
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2.5 Validation of GENIEem

To validate the emulator, we apply leave-one-out cross-validation, which involves rebuilding the

emulator 257 times with a different simulation omitted and comparing the omitted simulation with

its emulation. The proportion of variance VT explained by the emulator under cross-validation is245

given by:

VT = 1−
257∑
n=1

100∑
t=1

(Sn, t−En, t)
2 /

257∑
n=1

100∑
t=1

(Sn, t− S̄t)
2 (5)

where S(n,t) is the simulated CO2 concentration at time t in left-out ensemble member n, E(n,t)

the corresponding emulated output and S̄t is the ensemble mean output at time t. VT measures the

degree to which individual emulations can be regarded as accurate (Holden et al., 2014a)250

The cross-validated root mean square error of the emulator is given by:

RMSE =

√√√√ 257∑
n=1

100∑
t=1

(Sn, t−En, t)2

25700
(6)

The proportion of variance explained by the emulator under cross-validation is found to be 96.8%,

and the cross-validated root mean square error of the emulator is 34 ppm.The ensemble distribution

of cross-validated emulator error does not exhibit any significant trends as a function of the forc-255

ing, being approximately distributed about zero, independently of the final CO2 concentration. This

suggests that the emulator errors are likely dominated by describing parametric uncertainty with

low order polynomials, and so would be randomly distributed across a perturbed parameter emu-

lated ensemble. To test this we performed a simulation ensemble forced by RCP8.5. The simulated

ensemble mean of 2100 CO2 = 990 ± 92 ppm. This compares to the emulated ensemble mean of260

975 ± 73 ppm with the same forcing. The R2 value for emulated versus simulated output is 74.5%.

The emulator explains 74% of the variance in 2100 CO2 across the RCP 8.5 simulation ensemble,

demonstrating that the parametric uncertainty is reasonably well approximated.

Given that the RCP estimate is 936 ppm, this data appears to show that the emulator and simu-

lator overstate the RCP 8.5 concentration in the median. However, the reason for this is is that this265

validation did not use the CO2 fertilization prior, which is applied to the emulator to constrain the

predictions.

2.6 Evaluation of GENIEem using RCPs

To further evaluate the emulator’s performance, we consider GENIEem’s response to forcing by Rep-

resentative Concentration Pathways (RCPs; Van Vuuren et al., 2011). For each RCP, CO2 emissions,270

non-CO2 radiative forcing and CO2 concentrations are provided by Meinshausen et al. (2011b).3

3Data available via the RCP Database at http://tntcat.iiasa.ac.at:8787/RcpDb
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Figure 2. Carbon cycle emulator output compared with RCP data, for the four RCPs 2.6, 4.5, 6.0 and

8.5.Anomalies are relative to 2005. For RCP 8.5, CMIP5 data is presented as a reference.

GENIEem is run using Chebyshev coefficients derived by fitting Eqs 1 and 2 to RCP CO2 emis-

sions and non-CO2 radiative forcing data. Emulated CO2 concentrations are compared to the CO2

concentrations corresponding to that RCP in the RCP Database. For RCP 8.5, we also compare the

emulator range with the CMIP5 ensemble range of CO2 concentrations for that RCP.275

GENIEem median CO2 concentrations are generally well centred on the RCPs (Figure 2). The

RCP profiles were derived assuming carbon cycle rates that were calibrated to the median of the

C4MIP models. This good agreement is therefore not imposed, but is desirable as it suggests that

the ensemble of GENIE-1 parameter sets is not significantly biased with respect to C4MIP. The full

range of 2105 emulated CO2 concentrations under RCP 8.5 forcing is 806 to 1076 ppm. When forced280

with the same RCP, 11 CMIP5 models simulate a range of 795 to 1145 ppm by 2100 (Friedlingstein

et al., 2013), demonstrating that the emulator can reproduce existing estimates of the carbon cycle

uncertainty. In a related analysis, the ensemble mean and variance were shown to be easier to emulate

than individual simulations (Holden et al., 2014a). The emulator’s capacity to capture the CMIP5

simulation ensemble suggests that this is also the case here.285

For RCP 2.6, the difference between the RCP value and the emulator median reaches about 15

ppm. One possible explanation for this is the formulation of land use change. When land use is

changed in GENIE, soil carbon evolves dynamically to a new equilibrium. Therefore, although the

LUC mask is held fixed after the transient 850-2005 AD spin-up, there are ongoing land-atmosphere

fluxes in the future (2005-2105) due to historical LUC. Since the RCP emissions data used to force290

GENIEem already include the contribution from soil carbon fluxes, the inconsistency of approaches

is liable to lead to a net additional forcing while the historical contribution decays. These residual

emissions would be most significant in RCP 2.6 because other emissions are lowest in this scenario,

potentially contributing to the excess concentrations in the emulation of RCP 2.6. This difference

could be reduced by using a more sophisticated treatment of the forcing inputs that separated fos-295
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sil fuel and land use carbon emissions, with land use emissions calculated from spatially explicit

scenarios based on above-ground carbon change, as in Houghton (2008).

3 Application of GPem in an IAM framework

To demonstrate the utility of emulation within an integrated assessment framework, we describe

how GENIEem, along with PLASIM-ENTSem has been used to explore the climate change impli-300

cations of four of the policy scenarios for the electricity sector, as presented in Mercure et al. (2014).

GPem is coupled to FTT:Power-E3MG, which combines a technology diffusion model with a non-

equilibrium economic model. Mercure et al. (2014) emphasises the policy instruments that can be

applied to decarbonisation of the global energy sector, and analysis of climate impacts is limited to

mean surface temperature anomalies. Here, we extend that work to illustrate the regional patterns of305

climate variability associated with different policy scenarios, and discuss these results in the context

of "dangerous climate change" (Jarvis et al., 2012).

3.1 The climate model emulator: PLASIM-ENTSem

PLASIM-ENTSem is an emulator of the GCM PLASIM-ENTS; both simulator and emulator are

described by Holden et al. (2014a). The GCM consists of a climate model, PLASIM (Fraedrich,310

2012), coupled to a simple surface and vegetation model, ENTS (Williamson et al., 2006), which

represents vegetation and soil carbon through a single plant functional type. PLASIM has a heat-

flux corrected slab ocean and a mixed-layer of a given depth, and a 3D dynamic atmosphere, run at

T21 ∼5 degree resolution. It utilises primitive equations for vorticity, divergence, temperature and

the logarithm of surface pressure, solved via the spectral transform method, and contains parameter-315

izations for long and short-wave radiation, interactive clouds, moist and dry convection, large-scale

precipitation, boundary layer fluxes of latent and sensible heat and vertical and horizontal diffusion.

It accounts for water vapour, carbon dioxide and ozone.

As an emulator of PLASIM-ENTS, PLASIM-ENTSem emulates mean fields of change for surface

air temperature and precipitation well, while emulations of precipitation underestimate simulated320

ensemble variability, explaining ∼ 60− 80% of the variance in precipitation (compared to ∼ 95%

for surface air temperature) (Holden et al., 2014a).

The response of PLASIM-ENTSem to RCP forcing was analysed in Holden et al. (2014a, Figure

6); in all four scenarios, the emulated ensemble distribution was found to compare favourably with

the multi-model CMIP5 ensemble.325
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Figure 3. Total CO2 emissions associated with four different electricity sector-only policy scenarios. Total CO2

emissions associated with two RCPs are shown for reference. (Note that the RCP scenarios cover all sectors

and land use.)

3.2 Policy scenarios and emissions profiles

FTT:Power is a simulation model of the global power sector (Mercure, 2012), which has been cou-

pled to a dynamic simulation model of the global economy, E3MG (Mercure et al., 2014)4. These

models are described in greater detail in the supplementary information of this paper. Policies within

the electricity sector drive the uptake or phasing out of types of generators, leading to different CO2330

emission profiles (Figure 3).

Here we consider four scenarios, a subset of the ten scenarios explored in Mercure et al. (2014).

Scenario i is the no-climate-policy baseline. The baseline scenario extends current policies in the

energy sector to 2050. It assumes no additional technology subsidies worldwide, feed-in tariffs in

some EU countries, and carbon pricing in the EU. Figure 3 illustrates that the emissions associated335

with this scenario are of a similar magnitude as emissions associated with RCP 8.5, but following a

more linear trajectory.

Scenario ii introduces carbon pricing, which rises to 200-400 2008$/tCO2. Scenario iii explores

the use of carbon pricing, along with technology subsidies and feed-in tariffs in the developed world

only. Finally, scenario iv uses carbon pricing, along with technology subsidies and feed-in tariffs to340

incentivise decarbonisation, and also includes regulations to ban the construction of new coal power

plants in China if not equipped with Carbon Capture and Storage; this policy set decarbonises the

global electricity sector by 90% (relative to 1990 emissions) by 2050.

4www.4cmr.group.cam.ac.uk/research/FTT/fttviewerhttp://www.4cmr.group.cam.ac.uk/research/FTT/fttviewer
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3.3 Coupling procedure

As FTT:Power-E3MG runs until 2050, emissions for 2050-2105 are estimated using a linear best-345

fit trend, except in the case of successful mitigation scenarios, where such an approach could lead

to implausible emissions reductions by 2105. In these scenarios, the emissions in PgCy−1 reached

in 2050 were assumed to remain constant beyond 2050 (i.e. in these scenarios, it is assumed that

by 2050, the energy sector has decarbonised as much as can be incentivised under the specified

policies).350

Chebyshev coefficients are calculated to provide least squares fits to each emissions profile pro-

duced by FTT:Power-E3MG. If we conservatively assume that any error in emissions due to differ-

ences between the FTT:Power-E3MG emissions profile and the corresponding Chebyshev curve has

an infinite lifetime in the atmosphere, the accumulated error does not exceed 4.5 ppm in any scenario

over the period 2005-2105, well within the 5th-95th percentiles of GENIEem.355

As FTT:Power-E3MG does not simulate non-CO2 radiative forcing, we select the RCP that best

matches the CO2 concentrations associated with the baseline scenario (RCP 8.5) and force GE-

NIEem with the non-CO2 radiative forcing associated with that RCP. The RCP 8.5 non-CO2 radia-

tive forcing was applied to all scenarios as the RCPs lack a suitable analog to the CO2 concentrations

associated with the power sector mitigation scenarios examined in this work. Values for Chebyshev360

coeficients are calculated and these three coefficients, together with the three CO2 emissions coeffi-

cients, are the inputs to GENIEem.

This approach maintains comparability across the different scenarios, although we expect some

small reductions in CH4 and N2O in the mitigation scenarios, due to a reduction in leaks of these

GHGs from drilling. Representations of these GHGs in E3MG-FTT are not sufficiently detailed to365

provide forcing data for GPem, but reductions in fuel use-related CH4 and N2O emissions of around

10-15% by 2050 in the mitigation scenarios can be inferred. After 2050, we expect a stabilisation at

this new level, as the sectors involved have decarbonised by 90%, producing a reduction in forcing

of roughly 0.1 Wm−2 (relative to total forcing of 7.3 to 8.3 Wm−2 in the baseline and 5.3 to 6.2

Wm−2 in the mitigation scenario, accounting for carbon cycle uncertainty). This small reduction in370

forcing is well within the uncertainty bounds of GENIEem.

Climate-carbon feedbacks are emulated entirely within GENIEem. No climate information is

passed from PLASIMem to GENIEem. PLASIM-ENTSem takes inputs of both actual CO2 (for

CO2 fertilization) and equivalent CO2 (for radiative forcing). Chebyshev coefficients are calculated

to provide least squares fits to the median and 5th-95th percentiles of the GENIEem ensemble CO2375

concentrations; these coefficients, therefore, correspond to actual CO2 concentrations. Chebyshev

coefficients for equivalent CO2 are also calculated, corresponding to combined CO2 and non-CO2
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forcings. To determine these coefficients for equivalent CO2, the median and 5th-95th percentiles of

the GENIEem ensemble CO2 concentrations are converted to radiative forcing following:

∆F = 5.35ln(CO2/280)Wm−2 (7)380

RCP 8.5 non-CO2 forcing is added to this time series to give total radiative forcing, which is

converted to equivalent CO2 using the previous relationship. Chebyshev coefficients for equivalent

CO2 are fitted to the resulting time series.

Thus, PLASIM-ENTSem is forced with three sets of six coefficients (three actual CO2 and three

equivalent CO2 each for the median and 5th-95th percentiles of the GENIEem ensemble).385

We calculate the median warming of the PLASIM-ENTSem ensemble based on the 5th and 95th

percentiles of the GENIEem ensemble. These bounds, therefore, illustrate parametric uncertainty of

the carbon cycle model alone.

We also calculate the median and 5th-95th percentiles of warming of the PLASIM-ENTSem en-

semble from the median GENIEem ensemble output. These bounds reflect parametric uncertainty in390

the climate model alone.

Finally, we calculate the 5th percentile of warming from the PLASIM-ENTSem ensemble based

on the 5th percentile of CO2 concentration from the GENIEem ensemble, and the 95th percentile of

warming from the PLASIM-ENTSem ensemble based on the 95th percentile of CO2 concentration

from the GENIEem ensemble. This third set of bounds reflects warming uncertainty due to paramet-395

ric uncertainty in the climate model and the carbon cycle model, computed under the assumption

that GENIEem and PLASIM-ENTSem projections are perfectly correlated, i.e. that states exhibiting

the greatest CO2 concentration in GENIEem correspond to states exhibiting greatest warming in

PLASIM-ENTSem. Many carbon cycle processes are affected directly by changes in temperature,

or by variables which covary with temperature (Willeit et al., 2014), so while such a correlation is400

not absolute, there is a motivation for this approach.

4 Results

4.1 GPem mean warming under policy scenarios

We applied GPem to determine the atmospheric CO2 concentrations and mean global temperature

anomalies associated with different mitigation policiies applicable to the energy sector. While the405

mitigation policies explored generate reductions in CO2 emissions from the energy sector, due to

the effect of non-CO2 radiative forcing on climate, combined with remaining CO2 emissions, CO2

concentrations continue to increase in mitigation scenarios (Figure 4). Figure 4 also illustrates the

temperature anomalies associated with each of the scenarios. Modelled anomalies are relative to

the model baseline, 1995-2005. Therefore historical warming, estimated at ≈ 0.6◦C in 2000 (IPCC,410
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Figure 4. Top: Median CO2 concentrations for scenarios i (baseline), ii, iii and iv, simulated by GENIEem,

with uncertainty bounds (GENIEem 5th/95th percentile). Bottom: Median temperature anomalies relative to

preindustrial conditions for scenariosa (baseline), d, i and j, simulated by PLASIM-ENTSem using median

GENIEem CO2 concentrations. Uncertainty bounds are based on carbon cycle uncertainty (PLASIMem me-

dian with GENIEem 5th/95th percentile), climate uncertainty (PLASIMem 5th/95th percentile with GENIEem

median), and combined uncertainty (PLASIMem 5th/95th percentile with GENIEem 5th/95th percentile). The

2◦C target, described as ‘the maximum allowable warming to avoid dangerous anthropogenic interference in

the climate’ (e.g Randalls, 2010), is also illustrated by the grey dashed line.

2013) is added to give anomalies relative to the preindustrial period. While there is no scenario in

which temperature stabilises by 2100, in scenario iv, the rate of warming remains roughly constant,

while in scenario i, the rate of warming appears to increase towards the later half of this century. The

effect of cascading uncertainty is apparent (Jones, 2000; Foley, 2010), leading to large uncertainty

bounds for temperature projections.415

4.2 GPem regional climate under policy scenarios

Figure 5 illustrates the 2095-2105 December-February and June-August warming anomalies associ-

ated with scenario i and iv, presenting the median and 5th/95th percentiles of the PLASIM-ENTSem

ensemble outputs calculated independently at each grid point. These emulated ensembles are forced

with GENIEem median CO2 concentrations for the respective scenario, giving an indication of the420

range of PLASIM-ENTSem parametric uncertainty associated with the projection. It is evident that

the warming associated with the baseline scenario would be partially offset under the mitigation
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Figure 5. 2095-2105 temperature anomalies relative to 1995-2005 for DJF and JJA under the baseline scenario i

(right) and the mitigation scenario iv (left). The 5th, 50th and 95th percentile of the PLASIM-ENTSem ensemble

are calculated independently at each grid point. The PLASIM-ENTSem ensembles are forced with GENIEem

median CO2 concentrations for that scenario.
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Figure 6. 2095-2105 precipitation anomalies (ensemble means) relative to 1995-2005 under the baseline sce-

nario i, and the mitigation scenario iv (top) and proportion of ensemble members simulating increased precipi-

tation (bottom).

sceanrio. However, certain hotspots of warming are apparent even under the 5th percentile projec-

tion. In both scenarios, there is cooling in south-east Asia in summer, which likely arises due to a

strengthening of the monsoon in PLASIM-ENTSem. However, Holden et al. (2014a) note that this425

signal may not be robust as the model lacks aerosol forcing.

Figure 6 illustrates the mean 2095-2105 December-February and June-August precipitation pat-

terns associated with scenario i and iv, along with the proportion of the 86 ensemble members

simulating increased precipitation in each case. Generally, areas that experience a significant in-

crease/decrease in precipitation under scenario iv (i.e. larger than ± 1 mm day−1) experience even430

greater extremes under scenario i, which can be attributed to differences in water vapour amount

in the atmosphere due to warming (Held and Soden, 2006); precipitation fields are amplified as

more water is available in the convergence zones to condense. Plotting the proportion of ensemble
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members that project increasing precipitation shows that in most regions of the world, there is high

agreement between ensemble members on the direction of change for precipitation.435

Precipitation patterns are similar for the two scenarios presented (r=0.99), suggesting that a sim-

ple pattern scaling approach would have sufficed in the particular example considered here, at least

for estimation of the ensemble mean field. However, Tebaldi and Arblaster (2014) considered cor-

relations between the averaged precipitation anomaly fields (2090-1990) of the CMIP5 multi-model

ensemble when forced with different RCPs; the lowest correlation (0.85) was between ensembles440

forced with RCP 2.6 and RCP 8.5, while a correlation of 0.97 was found between RCP 4.5 and RCP

8.5. Applying our emulation framework yielded correlations of: 0.89-0.93 (RCP 2.6, RCP 8.5) and

0.97-0.98 (RCP 4.5, RCP 8.5), depending on season. This comparison suggests that the emulation

framework captures non-linear feedback strengths that are comparable to those found in a high-

complexity high-resolution multi-model ensemble and, furthermore, that the assumptions of pattern445

scaling may not be optimal when applied to strong mitigation scenarios.

5 Conclusions

We have described and validated a new carbon cycle model emulator, GENIEem, and applied it along

with PLASIM-ENTSem to demonstrate the utility of statistical model emulation in an IAM setting.

The climate-carbon cycle emulator GPem was used to examine atmospheric CO2 concentration,450

mean global temperature anomolies, and spatial temperature and precipitation response patterns re-

sulting from CO2 emission scenarios associated with various mitigation scenarios for the electricity

sector.

Even the most successful mitigation strategy considered here results in warming of above 3.5◦C

by 2100, a level of warming which Parry et al. (2009) notes could result in substantial harmful455

impacts, including risks of water shortage and coastal flooding. As such, in a context where the

global electricity sector is decarbonised by 90%, further emissions reductions must be achieved in

other sectors (e.g. transport and industry) to enable CO2 concentrations to remain below 450 ppm,

and correspondingly, global warming below 2◦C (Meinshausen et al., 2009).

The latest IPCC AR5 notes that in 2010, the energy supply sector accounted for 35% of total GHG460

emissions (IPCC, 2014), therefore there is scope for reductions to be achieved in other sectors. For

instance, policy options explored by Luderer et al. (2012) which keep CO2 concentrations below

450 ppm, using the IMACLIM-R and ReMIND-R models, include mitigation in the transportation

sector to reduce energy demand. However, the IPCC AR5 notes that based on scenario analysis,

sectors currently using liquid fuel may be more costly, and therefore slower, to decarbonize than465

electricity. Additionally, it is worth noting that the most successful mitigation scenarios explored in

the IPCC AR5, which lead to CO2 equivalent concentrations in the range of 430-480 ppm by 2100

(approximately equivalent to RCP 2.6) feature large-scale, long-term application of carbon dioxide
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removal (CDR) technologies, in addition to large emissions reductions (IPCC, 2014). This analysis,

focusing on the effectiveness of mitigation policies in the electricity sector, therefore highlights470

the danger of focusing mitigation efforts on this single sector, where the cost of decarbonisation is

lower; not only are such efforts insufficient to maintain global warming below 2◦C, but additionally,

the heterogeneous distribution of climate impacts globally will need to be addressed.

Furthermore, the inadequacy of electricity sector to solve the emissions problem is in spite of

the fact that the inclusion of non-linear feedbacks on technology uptake is expected to promote475

decarbonisation in our model, compared to the equilibrium models in the IPCC AR5 database, which

may not capture the complexities of real-world human behaviour in mitigation decision-making

(Mercure et al., 2015).

The 2◦C warming threshold is often a focal point of climate mitigation policy and scholarship,

and is indeed useful as a guiding principle (e.g. Den Elzen and Meinshausen, 2006; Oberthür and480

Roche Kelly, 2008; Shindell et al., 2012). However, it is also vital to consider the complex tem-

perature and precipitation patterns that could occur, lest a focus on the global mean temperature

result in regional climate impacts being overlooked. Furthermore, consideration must be given to

how to adapt to diverse regional climate change, should this target not be met (Parry et al., 2009).

Applying the GPem framework yields a more systematic representation of uncertainty in future re-485

gional climate states, when compared the pattern-scaling approaches that are based on "ensembles

of opportunity" (Stone et al., 2007).

While uncertainty associated with carbon cycle and climate modelling in this framework are ac-

counted for through the use of ensembles, it is still possible that the actual future climate state may

fall outside the simulated range. Uncertainty associated with emissions profiles is more difficult to490

quantify as these depend, ultimately, on human decision-making. Therefore many policy contexts

should be modelled in order to find out which ones effectively lead to desired outcomes.
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