1Multi-millennial-scalesolaractivityanditslagged2influencesoncontinentaltropicalclimate:Empirical&3tested evidence of recurrent cosmic and terrestrial patterns

4 J. Sánchez-Sesma¹

5 [1]{ Instituto Mexicano de Tecnología del Agua, Mexico }

6 Correspondence to: J. Sánchez-Sesma (jsanchez@tlaloc.imta.mx)

7

8 Abstract

9 Solar activity (SA) oscillations over the past millennia are analyzed and extrapolated based on 10 reconstructed solar-related records. Here, simple recurrent models of SA signal are applied 11 and tested. The consequent results strongly suggest: a) the existence of multi-millennial 12 (~9500-yr) scale solar oscillations, and b) their persistence, over at least the last glacial-13 interglacial cycle. This empirical modelling of solar recurrent oscillations has also provided a 14 consequent multi-millennial-scale experimental forecast, suggesting a solar decreasing trend 15 toward Grand (Super) Minimum conditions for the upcoming period, 2050-2250 AD (3750-4450 AD). Also, a recurrent linear influence of solar variation on continental tropical climate 16 17 (CTC) has been assessed for the last 20 Kyrs, and extrapolated for the next centuries. Taking 18 into account the importance of these estimated SA scenarios, a comparison is made with other 19 SA forecasts, and their possible associated astronomical forcing and influences on past and 20 future **CTC** climate discussed. In four Appendixes, we provide further verification, testing, 21 and analysis of solar recurrent patterns since geological eras, their potential gravitational 22 forcing, the lagged responses of the Earth's climate system (ECS), and the sea level lagged 23 (by ~1550yr) response to tropical climate forcing.

1 Introduction

2	"Long-term solar variability: It is possible that we have missed the forest for the trees.
3	Driven by pragmatic hopes of finding keys to weather prediction, we run the risk of
4	concentrating too much on time scales of practical consequences of days, months or years.
5	In taking a longer view we see the problem in clearer perspective "
6	Climate and the Role of the Sun (John A. Eddy, 1981)
7	
8	"the equatorial and inter-tropical regions can play an important role in the
9	response of the climate system to the astronomical forcing"
10	Equatorial insolation (Berger et al., 2006)
11	
12	"Throughout the last glacial cycle, reorganizations of deep ocean water masses were
13	coincident with rapid millennial-scale changes in climate. Climate changes have been less
14	severe during the present interglacial"
15	Detecting Holocene changes in thermohaline circulation (Keigwin and Boyle, 2000)
16	
17	Solar activity (SA) has non-linear characteristics that influence multiple scales in solar
18	processes (Vlahos and Georgoulis, 2004).
19	For instance, millennia-scale solar oscillations have been recently detected, like those of about
20	6000 and 2400 years, by Xapsos and Burke (2009) and Charvátová (2000), respectively, with
21	important and interesting influences in the near past and future climate. These millennial-
22	scale patterns of reconstructed SA variability could justify epochs of low activity, such as the
23	Maunder Minimum, as well as epochs of enhanced activity, such as the current Modern
24	Maximum, and the Medieval Maximum in the 12th century.
25	Although the reason for these SA oscillations is unclear, it has been proposed that they are
26	due to chaotic behavior of non-linear dynamo equations (Ruzmaikin, 1983), or stochastic
27	instabilities forcing the solar dynamo, leading to on-off intermittency (Schmitt et al., 1996), or
28	planetary gravitational forcing with recurrent multi-decadal, multi-centennial and longer
29	patterns (Fairbridge and Sanders, 1987; Fairbridge and Shirley, 1987; Charvátová, 2000;

Duhau and Jager, 2010; Perry and Hsu, 2000). It should be noted that all proponents of planetary forcing have forecasted a solar Grand Minimum for the upcoming decades, but one of them has also forecasted a Super Minimum for the next centuries (Perry and Hsu, 2000). In addition, during recent decades, statistical forecasts (with physically-based spectral information of reconstructed records) of solar magnetic activity predict a clear decrease in SA, reaching a minimum around 2100 AD (Steinhilber et al., 2013; hereafter S13; Velasco et al., 2015).

8 It should also be noted that several recent studies have been devoted to reconstruct multi-9 millennial-scale solar/climate related records. In relation to solar records, Steinhilber et al. 10 (2009; hereafter S09), Steinhilber et al., (2012; hereafter S12), Solanki et al., (2004; hereafter 11 S04), and Finkel and Nishiizumi (1997; hereafter FN97) have investigated isotopic 12 concentrations in ice-cores and tree-rings over the past 9,500, 9,500, 11,500, and 40,000 13 years, respectively, in order to estimate SA and/or related isotopic production. Another two 14 isotopic reconstructions by Stuverik-Storm et al. (2014; hereafter SS14), and Adolphi et al. 15 (2014; hereafter A14) have just provided detailed key information over 20 Kyrs for the past 16 interglacial, or Eemian period, more than 100,000 years ago, and for the last deglaciation, over 17 8Kyr from 19 to 11 Kya, respectively.

These different cosmogenic radionuclide-based reconstructions of SA present variations for the past millennia, and as Muscheler and Heikkilä (2011) have pointed out, large uncertainties appear in reconstructions of the solar modulation of galactic cosmic rays from different proxies, 10Be and 14C, and of changes in the geomagnetic shielding influence. However, these reconstructed records provide, especially when considered all together, the most objective information as elements for detecting and eventually modelling and extrapolating multi-millennial-scale solar oscillations, trends and absolute levels.

In terms of climate, and following Haigh (2011), who has pointed out that "it is now possible to identify decadal and centennial signals of solar variability in climate data," we have complementarily analyzed one important tropical climate record: the reconstructed Congo River basin surface air temperature (CRB-SAT) record, because it covers the last 25 Kyrs (Weijers et al., 2007; hereafter W07). This tropical climate variable is very important because its location, at the center of tropical Africa, generates a relative isolation from to ocean influences and thus enhances solar influences. This influence is known as continentality.

1 In addition to solar influences on climate, recent studies have highlighted the importance of 2 human activities, and suggest that anthropogenic influences on global warming (GW) are 3 currently active, imposing a projected change of 4 ± 2 °C by 2100 AD that seems to exceed 4 the maxima values estimated for the past millennia (IPCC, 2013). However, an understanding 5 of climate change remains incomplete because firstly, the main signals of climate long-6 termmillennia-scale forcings have not been well described, neither forecasted, and require 7 further work, with new methods and new data, as is the case for phenomena such as solar and 8 volcanic activity; secondly, paleoclimate studies have begun to consider cosmoclimatic 9 approaches (Shaviv et al., 2014); thirdly, solar influence appears to be modulated by the 10 thermo-haline circulation (THC) that increased during the present interglacial (Piotrowski et 11 al., 2004); and fourthly, the detected ECS lagged responses (analyzed in this work) in 12 different scales and regions of the world, would modify our conceptions of and approaches to 13 modelling climate processes.

14 In this paper, we attempt to advance our knowledge of solar variability by considering 15 reconstructed records of variables related with SA over the last glacial cycle, from isotopic 16 information coming from ice-cores and tree-ring layers, reanalyzing them with a linear 17 modelling of oscillations with recurrent influences. This modelling is achieved through simple 18 analogues and Fourier series models. Tests of the proposed method and the detected low-19 frequency solar signal, going back in time, are based on independent data. Finally, we discuss 20 the different oscillations detected, the confidence of our forecasts, some alternative forecast 21 methods, and astronomical information that suggests a possible planetary gravitational forcing 22 of SA by an unknown mechanism during the last millennia, and its past and future modulated 23 and recurrent influences on continental tropical climate (CTC) and sea level. Further analysis 24 is provided in four Appendixes. Appendix A: Qualitative verification of total solar irradiance 25 (TSI) ~9.5Ky recurrent patterns with a bivalve population (BVpop) reconstructed from late 26 Miocene (~10.5Mya) data. Appendix B: Empirical evidence of a planetary gravitational 27 forcing of the ~9500yr total solar irradiance (TSI) recurrent pattern. Appendix C: Non-linear 28 lagged responses of the Earth's climate system (ECS): A power law, its verification, and an 29 example (Iron deposition in the south-western Pacific lags solar activity by ~1500 yrs). 30 **Appendix D:** Sea level lags (~1500 yr) tropical climate.

1 1 Methodology

2 1.1 Data

3 In order to analyze solar/climate recurrent oscillatory patterns, six different reconstructed

4 forcing (five) and climate (one) proxy records of these oscillations are presented used.

5 We have analyzed five different sets of solar-related information. Firstly, total solar irradiance 6 (TSI or S, hereafter) reconstructed by S04, S09 and S12, based on the isotopic information of ¹⁴C and ¹⁰Be, have recently provided records of SA anomalies for the last millennia. Figure 1a 7 displays S04, S09 and S12 reconstructed and intercalibrated values from 9450 BC to 1900 8 9 AD, from 7360 BC to 2009 AD, and from 7350 BC to 1988 AD, respectively. The variance 10 explanation (obtained as the square of the correlation coefficient multiplied by 100) between 11 S04&S09, S04&S12, and S09&S12 for decadal average records are of 52.7, 82.9 and 59.3 %, 12 respectively.

Secondly, there are three interesting and useful solar-related, 10Be isotope concentration records from Greenland ice core, one covering the past 40 Kyrs (FN97)and-the, another covering only 20 Kyrs but located at belonging to the Eemian (SS14), and another covering 20-10 Kyrs BP (A14). Figure 1b and Figure 1c display the information of 10Be FN97, SS14, and A14 records.

18 Thirdly, we will look at a climate record for tropical areas for the last millennia, specifically 19 the Congo River basin surface air temperature (CRB-SAT) record, because it covers the last 20 25 Kyrs and it is a continental tropical climate record obtained with a novel and promising 21 molecular technique (W07), based on changes in lipids associated with surface temperatures. 22 This CRB-SAT record (W07), or Tcrb, is relatively more solar-influenced than the rest non-23 tropical areas of the world, because the latitudinal distribution of solar influences shows its 24 maximum in the tropics. Moreover, this record is also relatively less influenced by the ocean 25 than in coastal regions, because its signal is coming from the central tropical zone of Africa, 26 which is also isolated by topography. The detrended Tcrb information is displayed in Figure 27 1c, and presents higher oscillations in the glacial and deglacial periods with respect to those 28 corresponding to the Holocene.

Although oceanic influences on the Tcrb are minimal, Tcrb responses to SA should be modulated during the interglacial differently due to the increasing intensity of THC that has been reconstructed by Piotrowski et al. (2004), who pointed out: "From a minimum during the Last Glacial Maximum (LGM), North Atlantic Deep Water (NADW) began to strengthen
 between 18 and 17 Kyr cal. BP, approximately 2000–3000 years before the Bølling
 warming."

4 1.2 Modelling

5 To take into account different time-scale recurrences, the solar/climate, *SC*, variable can be 6 expressed with three models. One model is based on the Fourier Series (FS), another is based 7 on a linear transformation of the proxy variable values, and the last one is based on temporal 8 analogues.

9 The FS model can be written by means of:

10
$$SC(t) = \sum_{j=1}^{N_{FS}} \left[a_j \cdot \sin\left(j\frac{2\pi(t)}{T}\right) + b_j \cdot \cos\left(j\frac{2\pi(t)}{T}\right) \right] + e_{FS}(t), \qquad (1)$$

11 Here, T is the FS base period, N_{FS} represents the number of FS terms or harmonics, j is an

12 index component term, a and b are amplitudes, t is time, and $e_{FS}(t)$ is the error in this model.

13 Based on Piotrowski et al. (2004), and the changes of amplitude in the detrended CRB record,

the model for the lagged and modulated linear contribution of a proxy variable is proposed asfollows:

16
$$SC(t) = M[\alpha_p P(t + \delta_p) + \beta_p(t - t_1) + \gamma_p] + e_p(t),$$
 (2)

17 With M=1 for 0<t<10KyrBP, M=1+0.133(t-10) for 10<t<17.5KyrBP, and M=2 for

19 Here, P(t) is the proxy variable, α_P is the amplification factor, β_P is the slope, δ_P is the lag,

20 γ_P is the additive constant, t_I is the initial times for the modeled period, and $e_P(t)$ is the error

- 21 of this model.
- 22 The analogue model is defined as:

23
$$SC(t) = \alpha_A SC(t+\delta_A) + \beta_A (t-t_1) + \gamma_A + e_A(t), \qquad (3)$$

Here, α is the amplification factor, β is the slope, δ is the lag, γ is the additive constant, t_1 is

25 the initial times for the modeled period, and $e_A(t)$ is the analogue error of this model.

In all these models, parameters are estimated through iterative or multi-linear regression
 processes that minimize the RMS values of errors.

3 Taking into account both the dating limitations and the approximated values provided by 4 proxy reconstructions, and instead of to developing statistical analysis, as convergence and 5 confidence level estimations, we prefer in this stage of research about climate recurrences, to 6 apply verification/replication of all of our findings with independent information in our 7 estimation processes and results. Future climate reconstructions with more accurate 8 information will provide further and refined statistical analysis.

9

10 2 Results

11 2.1 Long-term solar-activity recurrent patterns

In order to detect multi-millennia-scale recurrences and/or persistent oscillations in SA, we need to analyze 10Be information since it is a solar proxy variable and it is available over longer periods than SA records (SS14). However, there are several 10Be post-production and fallout processes (i.e. residence time in the atmosphere, scavenging rate, tropospherestratosphere exchange, precipitation rate, etc.) that may alter the concentration found in the ice archive (FN97; SS14).

Accepting that 10Be concentration variability is influenced by climatic variability through long-term variable trends and modulations, we propose to apply a homogenization process based on statistics to the 10Be (FN97) record. Firstly, a detrending process based on polynomial expressions was applied. And secondly, a demodulation was applied in an attempt to make the variance uniform. The consequent results show the 10Be atmospheric signal of this process with approximated recurrent oscillations with lags of 9.6 and 19.2 Kyrs, which are shown in the Supplementary Information (**SI**) Section 1 (**SI-1**).

The statistically detrended 10Be FN97 record was modeled with a periodic FS function with $N_{FS}=10$ that employed Eq. 1. After a minimization processes, a 9390 yr period, P, was found and the corresponding model that explain 49.2 % of variance is displayed in Figure 2a.

It should be noted that the solar and climate recurrence periods evaluated with FS and
analogue techniques (shown in SI) have shown values of 9500+/-100 yrs (~9.5 Kyr).

Before extrapolating the 10Be ~9.5 Kyr recurrences to TSI, we applied a wavelet analysis to the three TSI records. The TSI spectral results (see **SI-4**) show three main, significant periodicities around 5000, 2400 and 900 years, and confirms the existence in solar activity of, at least three harmonics of the ~9.5 Kyr oscillations.

5 2.2 Verification of the recurrences of the 10Be ~9.5Ky patterns

6 Although this FS periodic 10Be model is based only on the last 40 Kyrs (see Figure 2b), it 7 was extrapolated to cover the last 130 Kyrs, for comparison with other independent 8 information of 10Be. A detailed comparison with the 10Be SS14 record (in 5 parts) coming 9 from Greenland and the Eemian period is displayed in Figure 2c. The maximum variance 10 explanation, of 18.4%, corresponds to a temporal adjustment of 2.5 Kyrs (a temporal bias 11 going back in time) of the SS14 dating. This temporal adjustment is justified because a similar 12 one, of 2.3 Kyr, is required by the SS14 18O record when it is compared with another 13 reconstruction from NGRIP Greenland ice-cores by Kindler et al. (2014; hereafter K14), 14 which is shown in SI-2. This comparison constitutes an important verification and test of the 15 proposed FS model.

16 In order to verify the detected recurrent patterns of 10Be, we apply different homogenization 17 and extrapolation processes to FN97 data. Specifically, we follow the original calculations 18 made by FN97 and the suggestions provided by Dr. Nishiizumi (personal communication, 19 2014), and we have also calculated the atmospheric signal of 10Be (10BeAtm) based on 20 accumulated snow (Cuffey and Clow, 1997) and the signal of 10Be coming from the GISP2 21 ice core. Our normalizations, which are devoted to eliminating high-frequency local climate 22 influences on the 10Be signal, have provided elements (records) to confirm the previous 23 results for the ~9.5 Kyr recurrence and a consequent increase and diminishing of the 10BeA 24 and TSI signals, respectively, for the following centuries, as also shown in the SI-3.

We have also shown, in Appendix A, a qualitative verification of the total solar irradiance
(TSI) ~9.5Ky recurrent patterns with a bivalve population (BVpop) reconstructed from late
Miocene (~10.5Mya) data.

2.3 Empirical tests of the recurrence and potential mechanisms of TSI ~9.5Ky patterns.

Looking for physical basis and robust evidence of the detected recurrences, we have
developed two qualitatively different tests of the multi-millennial recurrences of TSI: a test
based on a suggested gravitational forcing, and a test based on the TSI (S04) and 10Be (A14)
records.

The test, based on a physical mechanism, which develops a gravitational forcing analysis, is
shown in Appendix B. It is an empirical analysis of the gravitational forcing due to lateral
forces. Those lateral forces generate a low-frequency signal with a period of ~9500 yrs,
preceding by ~6700 yrs, and is similar to the low-frequency solar activity. Additional analysis
of a non-linear lagged response of TSI to gravitational forcing is analyzed and suggests a
logarithmic model variation for different forcing periods.

13 The last test, which is based on a high-resolution independent and normalized 10Be record 14 (A14), consists of an extrapolation backward in time of the TSI(S04) record [this record 15 reconstructed sun-spot numbers or SSN], which is based on 14C records from well-dated tree-16 ring studies. First, a temporal bias correction, a 70-yr lag, was applied to the 10Be record to 17 enhance the correlation with the 14C based TSI(S04) record without being extrapolated 18 backward in time. After this adjustment, an application of the analogue model (a linear leaded 19 transformation with corrected trend), Eq. (2), produces an excellent agreement between the 20 14C based TSI(S04) record of SSN, with a lead of 9400 yrs, with the model based on the 21 temporal adjusted 10Be record, displayed in Fig. 3a. The corresponding TSI residue also has 22 nonlinear recurrent oscillation, but with a period of ~1550 yrs. The nonlinear adjustment only 23 required a change of sign in the first 1500 yr modeled. The residue of TSI, accompanied with 24 its non-linear recurrent model, are displayed in Fig. 3b.

25 2.4 Application of the ~9500 yr recurrence of SA

We applied equation 3 with a lag parameter of 9600 yrs to the TSI records, maximizing the match between the analogue model based on S04 information and the original S04 records. Only the S04 model continually covers the next centuries, due to its longest characteristics, and presents an overlapping that explains 16% and 53.4% of the TSI variance of the last 1000 and 500 years, respectively. Results of TSI are displayed in Fig. 4. In this Figure, the three TSI records (S04, S09 and S12) are displayed with their analogue models. However, in order to test the proposed method, we compare our TSI forecasts with a forecast for the next 500 yrs based on S12 data and the Fast Fourier Transform (FFT) techniques developed by S13. The TSI(S04) extrapolation explains 61.4% of the variance of the forecasted TSI(S13) which is based on other data and other technique. This comparison constitutes other important verifications and test of the proposed recurrent model of SA.

Our model confirms a Grand minimum in the period from 2050 to 2200 AD forecasted by
S13, characterized by showing a sustained deficit of 0.5 W/m2, similar to that shown in the

8 Maunder Minimum, four centuries ago (see Fig. 4b).

9 The same model, shown in Figure 3a, suggests that the next Super-minimum of SA will ocurr

around 2100-2600 AD, and will be similar to the period 7500-7000 BP of reduced SA. In Fig.

11 3, big and small vertical orange arrows indicate Super and Grand solar minima, respectively.

12

13 2.5 Influences of the ~9500 yr recurrence of SA on continental tropical climate

14 Three models of the CTC temperatures, Tcrb, based on different TSI reconstructions that 15 employed Eq. 2 are displayed in Figure 4. The modelling required a different modulation for 16 the first (M=2.) and second (M=1.) halves to distinctly consider the decreasing THC induced 17 deglaciation process until the stabilized Holocene periods (Piotrowski et al., 2004). These 18 models of Tcrb, which were based on S04, S09 and S12 records, explain 30.0, 23.6 and 31.6 19 % and 6.5, 10.9, and 8.5 % of the reconstructed Tcrb record for the periods from 20 to 10 and 20 from 10 to 0 Kyr BP, respectively. These three modelling results constitute other tests of our 21 recurrent model of SA. Note that the variance explanation is bigger in the first half of the 22 record when the THC was low and the

Finally, in another confirmation of not only the recurrent solar modelling, but their influences on climate, we also apply equation 3 with a lag parameter of 9600 yrs to the CTC Tcrb record.

Our model explains most of the variation of the Tcrb during the past centuries. In a comparison, partially depicted in Figure 5, the Tcrb analogue model explains 7.3, 18.7, 60.8 and 71.7 % of the Tcrb reconstructed record (W07) for the last 10, 5, 2 and 1 Kyr, respectively. For the future, our model provides an estimation of a cooling for the 21st century of about 0.5°C, followed by a slow warming trend with small oscillations during more than 4 centuries. The forecasts comparison also considers two different forecasts of TSI, shown in 1 Figure 3. With this comparison, we estimated that Tcrb analogue model also explains in the

2 2050-2500 AD period 34.3 and 37.1 % of variance of the TSI forecasts, based on S04 and S12

3 records (S13), respectively.

4 2.6 A model of the lagged response of the ECS

In Appendix C we present an analysis of the non-linear lagged responses of the Earth's climate system (ECS). We propose and apply a power law to model Forcing Period-Response Lag (P/L) relationships. Based on this power law, an estimation of the 1720+/- 400 yrs for the response lag was made for the forcing period of ~9500 yrs._After its verification, we also present, in Appendix C, an important example of the iron deposition in the south-western Pacific [SWP] that lags solar activity by ~1500 yrs.

11 2.7 The lagged response of the sea level to solar recurrent forcing

In Appendix D, as an application and continuation of Appendix C, we present an analysis of the lagged response of the sea level to CTC oscillatory forcing. We found that the sea level lags the CTC signal by ~1500 yrs. Final results are displayed in Figure 7.

15

16 3 Discussion

Thanks to the recently developed paleoclimate records on solar-related and tropical climate
variability, we have found a ~9500 yr recurrence of SA and its linear influences on CTC.

19 Firstly, and in order to confirm this multi-millennial recurrence, we have developed different 20 tests and verifications of the SA and CTC recurrent patterns. In the following a summary of 21 the tests and verifications of our findings is presented:

A. Our FS model explains the detrended and modulated 10Be statistically corrected
 variability over almost the last 40 Kyrs. However the recurrent patterns based on
 FN97 when extrapolated backward in time are comparable with independent 10Be
 information from the Eemian.

B. When this recurrent phenomena detected in the 10Be record was extrapolated to the
TSI records, we conducted other tests, establishing the following: a) the overlapping
of the TSI(S04) record explains over 53% of the variance in the last five centuries; b)
the extrapolated model also based on TSI(S04) presents an important match with

- different data (S12) and an independent procedure (FFT) employed in the TSI forecast
 due to S13; and c) the extrapolated models [TSI(S04), TSI(S09), and TSI(S12)], but
 backward in time (See Fig. 5), present an important match with independent CTC
 Tcrb (W07).
- C. When this recurrent phenomena detected in the 10Be record was also extrapolated to
 the CTC Tcrb record, we conducted another test, establishing that: a) the overlapping
 of the Tcrb (W07) record explains over 71% of the variance in the last millennium;
 and b) the analogue model extrapolated forward in time presents an important match
 with, based on different data (S12) and an independent procedure (FFT) employed in,
 the TSI forecast due to S13.
- 11 **D.** In Appendix B, we developed an empirical analysis of the solar gravitational forcing 12 due to lateral forces. There we found that lateral forces generate a low-frequency 13 signal, preceding by ~6700 yrs low-frequency solar activity. This lag appears to be 14 part of the non-linear lagged responses of solar activity to different time-length 15 gravitational forcing. This lateral forcing could enhance the oblateness of the solar 16 body, and consequently the tidal influences on the sun. In the same Appendix B, we 17 also verify that: a) the solar patterns of 9600 and 10.5 yrs are similar, suggesting a 18 common gravitational origin, and b) the patterns of lateral force show similarities in 19 solar activity in different scales
- E. The qualitative verification of the total solar irradiance (TSI) ~9.5Ky recurrent patterns with a bivalve population (BVpop) reconstructed from late Miocene (~10.5Mya) data, shown in Appendix A, confirms not only the geological existence of this recurrent solar pattern, but also its period because the comparison is made with the extrapolated forward in time records (see Appendix A and Fig. 4).

Our experimental multi-millennial-scale analogue forecast of TSI, supported mainly by recurrent oscillations over the last glacial-interglacial cycle, shows a lowering trend toward a minimum for the coming decades. Our forecast also confirms previous efforts by several authors (Fairbridge and Sanders, 1987; Fairbridge and Shirley, 1987; Perry and Hsu, 2000; Duhau and Jager, 2010), who have forecasted a solar Grand Minimum for the upcoming decades. For instance, recent findings linked to periodicities of the solar tachocline and their physical interpretation may permit us to estimate that solar variability is presently entering 1 into a long Grand Minimum, thus consisting of an episode of very low SA (Duhau and Jager,

2 2010).

Although the complete physical basis of this recurrent process is missing, there are several examples of physical and theoretical evidence that also support our findings. Firstly, it is important to highlight what Mackey (2007) has stated: "In several papers, Rhodes Fairbridge and co-authors described how the turning power of planets is strengthened or weakened by resonant effects between the planets, the sun and the sun's rotation about its axis."

8 Specifically, there are important works motivated by Rhodes Fairbridge and other researchers,
9 providing a theoretical basis and practical evidences of resonant interactions, for instance:

A. Abreu et al. (2012) have shown the physical basis of a gravitational forcing of the
 solar tachocline variations. They developed a gravitational model for describing the
 time-dependent torque exerted by the planets on a non-spherical tachocline and
 compared the corresponding power spectrum with the reconstructed SA record. They
 find an excellent agreement between the long-term cycles in proxies of SA and the
 periodicities in the planetary torque (with a period from 50 to 504 yr).

B. Fairbridge and Sanders (1987) have indicated long-term variations due to planetary
forcings. They follow Stacey (1963) who, based on the periodicities of planetary
orbits, proposed a ~4.45 Kyr Outer Planets Restart (OPR) cycle. It is close to half of
the ~9.5 Kyr detected periodic recurrence.

C. Focused on Moon-Earth gravitational links, Keeling and Whorf (2000), based only on
the links expressed in tidal astronomical periodicities, have proposed a ~1.8 Kyr that
represents the time for the recurrence of perigean eclipses closely matched with the
time of perihelion. This cycle is near the fifth part of the ~9.5 Kyr detected periodic
recurrence. Keeling and Whorf (2000) also detected in their analysis a ~4.65 Kyr
modulation cycle of the 1.8 Kyr that is almost half of the ~9.5 Kyr detected periodic
recurrence.

D. Looking for solar-planetary resonances of our detected ~9.5 Kyr, we compared the
"biggest" solar system secular frequencies determined by Laskar (2011) over 20 Ma
for the four inner planets, and over 50 Ma for the five outer planets, corresponding to
45.184 and 49.880 Kyr, respectively. We found that the mean value of 47.532 Kyr is
almost five times the solar period detected (47.532 Kyr = 5 x [9.56 Kyr]). This means

that the solar inner and outer planets show a resonance (5:1) with the solar periodicity
 detected.

E. We also compared the equatorial insolation variability recently evaluated by Berger et al. (2006), who, in line with Milankovitch ideas on astronomical forcing, evaluate, using astronomical models and the MTM spectral techniques, significant 95 Kyr and 123 Kyr periods related to eccentricity periods. The lowest value of 95,000 yrs is almost ten times the solar period detected. This also means that one of Earth's primary eccentricity periods is in resonance (10:1) with the solar periodicity detected.

9 We have found and tested a recurrence of ~9500 yrs of SA that implies a solar Grand-10 minimum for the next one and a half centuries. However, we can also support our findings 11 with other studies. For instance, the existence of different solar modes of activity (Grand 12 minima, Regular, and a possible Grand maxima), which have also shown important temporal 13 variations with asymmetries (Grand maxima significantly less often experienced than Grand 14 minima) during the Holocene (Usoskin et al., 2014), would be considered expressions of our 15 detected recurrent pattern of ~9500yrs.

16 In this work, we have forecasted a continuation of the solar decline for the next decades,17 which is supported through precursory signals during recent decades:

- a) A steady and systematic decline in solar polar magnetic fields, starting from
 around 1995, which is well correlated with changes in meridional-flow speeds
 (Janardhan P., Bisoi, S. K., Gosain S., 2010)
- b) A decline in solar wind micro-turbulence levels. Based on extensive interplanetary
 scintillation (IPS) observations at 327 MHz, obtained between 1983 and 2009, a
 steady and significant drop in the turbulence levels in the entire inner heliosphere,
 starting from around ~1995, was detected (Janardhan et al., 2011).
- 25 c) A significant reduced ionospheric cut-off frequency to radio waves, normally
 26 about 30 MHz, to well below 10 MHz (Janardhan et al., 2015a).
- Also, in this work, we have forecasted a Grand solar-minimum, with sustained low solar
 activity for the next two centuries, which has been supported through a number of recent
 studies and their findings:

a) The continuation of this decline in solar activity is estimated to continue until at least 2020, and there is a good possibility of the onset of a Grand solar minimum from solar-cycle 26 onwards (2031) (Janardhan et al., 2015b).

1

2

3

b) Based on the S04 SA record, it has been shown that gradual (abrupt) changes in solar surface meridional flow velocity lead to a gradual (abrupt) onset of grand minima, and that one or two solar cycles before the onset of grand minima, the cycle period tends to become longer (Choudhuri and Karak, 2012; Karak and Choudhuri. 2011). It is noteworthy that surface meridional flows over Cycle 23 (Hathaway and Rightmire, 2010) have shown gradual variations, and Cycle 24 started 1.3 years later than expected.

11 Finally, we would like to emphasize the social importance of these multi-millennial solar 12 oscillations is clearly shown if we consider that the world population began an almost 13 sustained exponential increase was a lagged response to the past solar Super minimum at 14 ~7000 yr BP, when a multimillennial period of increasing solar activity provided favorable 15 environments for developing the first civilizations all around the world (REF++++++). Also, in that work a detailed analysis about the detection and empirical modelling of solar and 16 17 terrestrial variability of ~2400 yrs recurrent patterns and its potential influences on the world 18 population over past and future millennia is presented and discussed.

19 The detected modulation of CTC Tcrb record, occurring during the interglacial could be 20 linked to the increasing THC that has been reconstructed by Piotrowski et al. (2004): 21 "Neodymium isotope ratios in the authigenic ferromanganese oxide component in a 22 southeastern Atlantic core reveal a history of the global overturning circulation intensity 23 through the last deglaciation...It exhibits a gradually increasing baseline intensity that 24 plateaus in the early Holocene."

This increasing THC implies greater oceanic heat transport from the tropics and a consequent lower thermal response of the CTC. About sudden climate changes during the interglacial, Clarke et al, (2001) have pointed out: "Studies of deep ocean sediments and ice cores as well as coupled climate model simulations have identified changes in the THC in the North Atlantic as the probable mechanism. The warm events are though to have occurred when the THC penetrated further into the Nordic sea, whereas the cold events coincided with times at which the THC has slackened, reducing the transport of warm water to the North Atlantic." 1 Also, we have found a common process of the historically detected lags in different climate 2

scales and processes.

3 The existence of thermal, rheological and mechanical inertias caused by ice-melting and 4 thermo-haline circulation (THC) processes shows a common non-linear, power law model. 5 See more discussion in Appendix C.

6 In Appendix D we have also presented an analysis of climate lags, focused on one of the most 7 representative variables, the sea level, which presents important lags in different scales. In this 8 Appendix, a lagged (~1550 yrs) sea level (SL) response assessed for the last 12 Kyrs, and 9 extrapolated for the next millennia, was associated with the detected solar oscillation of 10 ~9500 yrs. See Figure 7 and more discussion in Appendix D.

11 Conclusions 4

12 An analysis and test of recurrent solar variability for the last millennia has been presented in 13 this study. It was based on five multi-millennia solar-related reconstructed records from 14 different and valuable proxy information.

15 The tested existence of the ~9.5 Kyr period recurrent pattern suggests that SA is characterized 16 by solar dynamics with long-term patterns. Considering that it has been suggested that the 17 modulating oscillations of SA, around 84, 178 and 2400 years, are possibly related to the 18 Sun's rotation rate and impulses of the torque in the Sun's irregular motion (Landscheidt, 19 1999; Fairbridge and Sanders, 1987; Charvátová, 1995; Charvátová, 2000), our results also 20 suggest that similar mechanisms on the solar dynamo must be proposed for solar oscillations 21 of around 9.5 Kyrs. This hypothesis should be tested, taking into account the results presented 22 in this paper.

23 In this direction, we present two evidences of the solar recurrent pattern. In Appendix A, we 24 present a qualitative verification of the total solar irradiance (TSI) ~9.5Ky recurrent patterns 25 with a bivalve population (BVpop) reconstructed from late Miocene (~10.5Mya) data that 26 shows the persistence and regularities of the solar patterns.

27 In Appendix B, we present an empirical analysis of solar gravitational forcing due to lateral 28 forces. We found that lateral forces generate a low-frequency (~9500 yr) signal that presents 29 similarity with, and precedes by ~6700 yrs, low-frequency solar activity. This lateral forcing 30 could enhance the oblateness of the solar body, and tidal influences, and consequently, as 31 Abreu et al. (2012) have also suggested, regular cycles of solar activity.

With all of these recurrent phenomena, we have presented, tested and verified an experimental multi-millennial forecast technique for SA. We have provided elements and supporting recent studies on precursor signals of an entering into a Grand minimum SA mode. The extreme duration of the last solar minimum, is important evidence of longer cycles, similar to those presented before the start of the Maunder and Sporer minimum.

6 The response of the ECS to solar forcing variability of ~9500 yrs is demonstrated in 7 Appendixes C and D, associated with a lagged response of ~1550 yrs for both the sea level 8 and geochemistry of the ocean. In particular, we have proposed, applied, and verified a 9 simple power law model of the lagged response of the ECS to different forcing phenomena 10 during geological, orbital and suborbital time-scales.

11 The consequent forecasted trend toward these Grand (Super)-minima of TSI conditions is 12 very important from a paleoclimatic perspective, because information from different 13 reconstructions and models indicates a potential **continental** tropical temperature cooling of 14 around 0.5°C for the rest of the 21st century, a warming of around 0.65°C from the end of the 21st century to the end of the 23th century, a cooling of around 0.3°C from the end of the 23rd 15 century to the middle of the 23th century, and a warming of around 0.65°C from the middle of 16 the 23rd century to the end of the 25th century without taking into account volcanic and 17 18 anthropogenic forcing.

19 The recurrence in solar activity was verified through its influence on CTC. Three models of 20 the CTC temperatures, Tcrb, based on different SA reconstructions were evaluated. The 21 modelling required a different modulation considering the increasing THC process. These 22 three modelling results constitute other tests of our recurrent model of SA.

The assessed connection between TSI and CTC is also supported by previous studies, such as those by Berger et al. (2006), who pointed out that "the equatorial and inter-tropical regions can play an important role in the response of the climate system to the astronomical forcing." The modulated connection between TSI and CTC helps us to confirm the previous studies on THC, such as those by Piotrowski et al. (2004), who pointed out that "The gradually increasing baseline through the deglaciation indicates that THC does not switch between distinct glacial and interglacial modes of circulation but rather that varies as a continuum."

However, more research is needed to better understand the solar recurrent patterns and theirinfluences not only in the tropical climate but also in the global climate, because, as Peeters et

1 al. (2004) have suggested, the Mozambique and Agulhas currents in the western Indian Ocean 2 could be an efficient carrier of the CTC signal (influenced by SA) to the global scale. 3 It has been demonstrated with a decreasing sea level trend for the next millennia, forecasted 4 and verified in Appendix D, as a natural lagged (~1550 yrs) response of our ECS to the recurrent solar signal of ~9500 yrs. 5 6 Our final remarks are the following: 7 A. The detected lagged response of the ECS will be useful for proposing internal and/or 8 external forcing mechanisms in future modeling efforts on multi-decadal and longer 9 time scales. 10 B. Our results also support that lagged responses are required for accurate modeling and 11 forecasting of climate-related issues. However, further multi-disciplinary scrutiny and 12 modeling efforts are still required. 13 C. Our results have placed natural climate variability in an important place for climate 14 modeling and analysis, and of course, for climate forecasting. Also, our results have 15 clearly shown how important Holocene climate events would be better understood 16 with climate reconstructions, analysis and recurrences. 17 D. The forecasted trends and minima are of great interest not only for the solar and 18 terrestrial climate, but also for socio-economic planning, since climate variability has 19 led to important impacts in different economic and social sectors of our societies 20 around the world. 21 E. Our findings strongly suggest that recurrent variability may play an active role in 22 natural climate change during the coming decades, centuries and millennia.

Appendix A: Qualitative verification of total solar irradiance (TSI) ~9.5Ky
 recurrent patterns with a bivalve population (BVpop) reconstructed from late
 Miocene (~10.5Mya) data

4

5 In a recent paper Harzhauser et al. (2013; H13 hereafter) analyze the explosive demographic 6 expansion by dreissenid bivalves as a possible result of astronomical forcing. These authors: 7 a) reconstruct the extinct bivalve species Sinucongeria primiformis in a lacustrine system of 8 Lake Pannon during the Tortonian (~10.5 Mya; late Miocene), with 600 samples that cover 9 about eight millennia of late Miocene time with a decadal resolution; and b) detect bivalve 10 population regular fluctuations possibly linked to solar activity. H13 have pointed out: "Our 11 data indicate that the settlement by bivalves in the off-shore environment was limited mainly 12 by bottom water oxygenation, which follows predictable and repetitive patterns through time. 13 These population fluctuations might be related to solar cycles: successful dreissenid 14 settlement is recurring in a frequency known as the lower and upper Gleissberg cycles with 15 50-80 and 90-120 yr periods. These cycles appear to control regional wind patterns, which 16 are directly linked to water mixing of the lake. This is modulated by the even more prominent 17 500 yr cycle, which seems to be the most important pacemaker for Lake Pannon hydrology."

18

In this comment, we extend the H13 detected solar-terrestrial connections (TSI-BVpop) to the complete reconstructed ~8Kyr BV record, comparing the reconstructed record with the average of the S04, S09 and S12 TSI records extrapolated forward in time (Fig 4.).

22

An initial comparison, shown in Figure A.1, demonstrates the existence of millennia and multi-millennia scale oscillation in TSI and BV series of anomalies. However, when an adjustment (a linear transformation) and a lower threshold for TSI are applied, the following comparison, shown in Figure A.2, better demonstrates the existence of millennia and multimillennia-scale similar oscillation in TSI and BVpop series of anomalies.

This simple trend adjustment of the TSI could be justified by the orbital phenomena of
 eccentricity and obliquity that can modulate solar influences in periods of 100 and 40 Kyr,
 respectively. Additional adjustments in the BVpop timing could improve the match.

4

5 REFERENCES

- 6
- 7 Harzhauser, M., Mandic, O., Kern, A.K., Piller, W.E., Neubauer, T.A., Albrecht, C., Wilke,
- 8 T. 2013. Explosive demographic expansion by dreissenid bivalves as a possible result of
- 9 astronomical forcing. Biogeosciences, 10, 8423-8431.

Appendix B: Empirical evidence of a planetary gravitational forcing of the
 ~9500yr total solar irradiance (TSI) recurrent pattern

3

4 Planetary gravitational forcing (PGF) of solar activity (SA) has been considered by many 5 solar researchers (see references in the main part). However, numerical simulations of this 6 forcing have been analyzed by only a few of them. For instance, Abreu et al. (2012) analyzed 7 the PGF of solar tides. In this comment, we compare the lateral (perpendicular to movement) 8 forces evaluated by lateral accelerations of the solar movement around the solar system (SS) 9 barycenter (BC) with TSI reconstructed and extrapolated (based on the detected recurrences) 10 records. Our work is motivated by the findings from Fairbridge and Shirley (1987), who 11 predicted the initiation of a Maunder-type prolonged minimum on the basis of a study of solar 12 motion with respect to the SS-BC in the years from 760 to 2100 AD. Their study detected 13 "patterns" in solar orbits associated with different levels of SA.

14

In order to analyze variability in both solar dynamics and solar activity, we studied data coming from: a) lateral forces (F) of the sun due to planetary gravitational forces and movements, reconstructed and forecasted by JPL/NASA from 3000 BC to 3000 AD, and b) solar activity expressed in the total solar irradiance (TSI) average from three reconstructed records over the last millennia and extrapolated for the next millennia (all shown in Figures 3a). These two records are displayed in Figure B.1.

21

22 Lateral (perpendicular to movement) forces were evaluated based on X, Y and Z coordinates 23 and derivatives provided by the HORIZONS (H) system from the Jet Propulsion 24 Laboratory/NASA (JPL/NASA) for the past 5000 and future 1000 years, every 90 days, 25 where the XY plane is the ecliptic plane centered on the BC. As an approximation, solar 26 movement was considered only in the XY plane, and lateral acceleration in this plane was 27 evaluated to be perpendicular to the tangential direction of solar movement. These on-line 28 solar system data and ephemeris computation services provide accurate ephemerides for solar 29 system objects.

The simulated lateral inertial forces (F) are considered to provide gravitational influences on
 solar activity. In order to enhance their low-frequency oscillations, we applied the double
 integral function to the analyzed F record.

4

5 An integration was applied twice to the Solar signal, S(t), as follows:

6

7

8

$$\sigma S_{1}(t) = \int_{t_{0}}^{t} (S_{1}(t) - \mu_{S}) dt$$
 (B1a)

$$\sigma S_{2}(t) = \int_{t_{0}}^{t} (\sigma S_{1}(t) - \mu_{S1}) dt$$
 (B1b)

9 Where, S(t) is the solar signal, expressed as force (F(t)) or total irradiance (T(t)), t is time, t_0 is 10 initial time, $\sigma S_N(t)$ is its time integral, N is the successive application number, and μ_s and 11 μ_{s_1} are the long-term averages of S(t) and $\sigma S_1(t)$, respectively.

12

13 We apply equations B1a and B1b to these two records in order to enhance low-frequency variations. Results are displayed in Figure B.2. The double integral of forces $F, \sigma F_2(t)$, is 14 15 almost explained (99.9 % of variance) by a sine function of a 9400 yr oscillation, which is 16 also displayed in Fig. B.2a. The double integrated solar activity TSI, $\sigma T_2(t)$, also shows a 17 periodicity of ~9500 yrs. The scales of these enhanced solar signals are inverted because the 18 sign is changed due to the double integration enhancement. A comparison of both curves is 19 displayed in Figure B.3a. Figure B.3b also displays both integrated curves, however the 20 $\sigma T_2(t)$ curve is leaded (moved backward in time) 6700 yrs.

21

In order to verify this 6700 yr lag of the TSI response to the F oscillation of a 9500 yr period, we look for two other similar pairs of periods and lags (P/L). In order to obtain an additional pair of P/L, we analyze the lateral force F and solar activity TSI over the 1000-3000 AD period. We applied a double integration (Eq. B1) and a polynomial detrending process to F. The $\sigma T_2(t)$ and its trend is shown in Figure B.4. The detrended $\sigma T_2(t)$ is compared with the TSI record, and oscillations of ~950 yrs are detected, together with a lag of ~350 yrs of TSI with respect to the supposed forcing F. These two variables are displayed in Figure B.5.

29

Another pair of P/L values is evaluated with the Hale SSN cycle of ~22 years that shows an
alternating magnetic sign for each 22 yrs. It is compared with the Fourier series (with only 2
harmonics) of the force F, signal based on the period from 1700 to 2000 AD. The comparison,
depicted in Figure B.6, indicates a lag of less than 1 year.

1

The three sets of L/P pairs are 1/22, 350/950 and 6700/9500 yrs, respectively. These three pairs, which correspond to different phases, are modeled together with a non-linear function that tends toward a lower limit of 0° for lower periods, and an upper asymptotic limit of 360° (2*Pi radians). The adjusted model for phase variations in terms of period, which is a logarithmic function, is depicted in Figure B.7.

7

8 It is important to emphasize that the results in Figure B.5 have not only detected an L/P pair 9 but also confirm the next forecasted Grand Minima (2020-2220 AD) also associated with 10 contributions from unexplained modulation process of ~350-yr-lagged-influences of solar 11 lateral forces.

12

13 Additionally, we developed an interesting comparison that shows self-similarity in TSI.

This comparison is for our enhanced $\sigma T_2(t) \sim 9500$ yr-solar-cycle, evaluated previously, with a Fourier series model of the solar SSN cycle with a period of 10.5 yrs, based on monthly SSN data from the World Data Center SILSO, Royal Observatory of Belgium, Brussels, over the period from 1964 to 2008. This comparison is displayed in Figure B.8, and clearly shows selfsimilarities between these two solar cycles. Both cycles show a shorter increasing period (~25%) than the decreasing period (~45%), and a maximum plateau (~20%), and an almost nonexistent minimum plateau.

21

Finally, we also developed a spectral analysis of the analyzed lateral forces. This analysis is based on wavelets and is displayed in Figure B.9. It clearly shows important contributions to periods around of 8, 22, 60 (in a range of 50-80), 180, 650 (in a range of 400-800), 1000 and 2500 years.

Based on both a) the SS movement reconstruction and simulation, H services, developed by the Solar System Dynamics Group of the JPL/NASA, and b) monthly SSN data from the World Data Center SILSO for the last decades, we have provided additional elements to support the idea that long-term solar activity is modulated by recurrent planetary effects. Our analysis has put forward the following: 1

1) SS dynamics generate lateral forces (enhanced by $\sigma F_2(t)$) with multi-millennia scale (~9500 yr) oscillations similar to those shown by solar activity (enhanced by $\sigma T_2(t)$);

4 2) There is a suggested lagged response of around 67 centuries, of solar activity ($\sigma T_2(t)$) to 5 the gravitational forcing (lateral force). The maximum forces F precede the maximum solar 6 activity TSI, meaning that increases (decreases) of force F produce lagged increases 7 (decreases) of TSI;

3) Taking into account that the Sun's rotation axis is tilted by about 7.25 degrees from the axis
of the Earth's orbit, the PGF are able to generate meridional forces and consequently
meridional circulations in the Sun;

4) The lagged response appears to increase with forcing periods with a non-linear logarithmic
function that implies temporal scale influences and possible connections with meridional
circulations in different deep layers of the Sun;

5) The similarity of the ~9500yr TSI with the average SSN 10.5yr cycle, with scales differing
at almost three orders of magnitude, suggests a self-similar process with a mechanism
possibly linked to recurrent PGF in different scales.

17

18 REFERENCES

19

20 HORIZONS System. Documentation of JPL Horizons (Version 3.75)
21 Apr 04, 2013. <u>ftp://ssd.jpl.nasa.gov/pub/ssd/Horizons_doc.pdf</u>. [Data retrieved at:
22 <u>www.ssd.jpl.nasa.gov/?horizons</u>]

23

Abreu, J. A., Beer, J., Ferriz-Mas, A., McCracken, K. G., Steinhilber, F., 2012. Is there a planetary influence on solar activity? Astronomy& Astrophysics, 548, A88 (2012)

- 26 DOI: 10.1051/0004-6361/201219997
- 27

SILSO, World Data Center - Sunspot Number and Long-term Solar Observations, Royal
 Observatory of Belgium, on-line Sunspot Number catalogue: [Data retrieved at:
 <u>http://www.sidc.be/silso/datafiles</u>].

1 2

3 Figure B.1. a) Lateral forces on the Sun generated by planetary gravitational forces (PGF), expressed in

4 [arbitrary units], evaluated by the Horizon/NASA system from 3000 BC to 3000 AD. b) The solar activity (TSI)

5 expressed in [W/m2], average values of the three reconstructed records over the last millennia and extrapolated

6 for the next millennia (10000 BC to 10000 AD) based on ~9500 yr recurrence (records shown in Figure 3a).

3 Figure B.2. a) Double integral of the solar lateral inertial forces $\sigma F_2(t)$ due to the solar movement resulting from the planetary gravitational forces shown in Figure B.1.1a, and b) Double integral of the solar reconstructed 4 and extrapolated record $\sigma T_2(t)$ shown in Figure B.1.1b. Vertical scale of values were inverted both in 5 $\sigma F_2(t)$ and $\sigma T_2(t)$ because the double integral procedure changes the sign of the enhanced result. Please note 6 7 that the last minimum of lateral inertial force F was around 2500 BC and the next minimum of TSI will be 8 expected around 4200 AD.

Figure B.3. A comparison of the double integral of the solar lateral inertial forces $\sigma F_2(t)$ and the solar reconstructed and extrapolated record $\sigma T_2(t)$. To enhance a possible cause-effect relationship [$\sigma F_2(t) - \sigma T_2(t)$] the $\sigma T_2(t)$ record is shown a) without and b) with a lead of 6700yrs.

3 Figure B.4. The double integral of the solar lateral inertial forces $\sigma F_2(t)$ for the period from 1000 to 3000 AD.

4 A polynomial trend is also depicted.

Figure B.5. A comparison of the double integral of the solar lateral inertial forces $\sigma F_2(t)$ and the solar reconstructed and extrapolated record TSI. To enhance trends, polynomials are adjusted to both records, showing oscillations of ~950 yrs and a lag of ~350 yrs.

Figure B.6. A comparison of the Hale solar cycle of SSN and the Fourier Series (with only 2 harmonics) model

2

3 Figure B.7. A model of phase between F (forcing) and TSI (suggested response) signals for different periods.

The adjusted logarithmic model, which explains 99.5 % of the variance, shows two trends, one to zero for short
 periods, and other, an asymptotic one, for long periods.

- (

Figure B.9. (a) Lateral Force [arbitray units]. (b) The wavelet power spectrum. The contour levels are chosen so
that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. The cross-hatched region is
the cone of influence, where zero padding has reduced the variance. (c) The global wavelet power spectrum
(black line). The dashed line is the significance for the global wavelet spectrum, assuming the same significance
level and background spectrum as in (b). Reference: Torrence, C. and G. P. Compo, 1998: A Practical Guide to
Wavelet Analysis. Bull. Amer. Meteor. Soc., 79, 61-78.
1 Appendix C: Non-linear lagged responses of the Earth's climate system (ECS):

A power law, its verification, and an example (Iron deposition in the south-

3

2

western Pacific lags solar activity by ~1500 yrs)

4

5 Climate & Sea-level (C&SL) responses to different climate forcing (CF) variability, over the Phanerozoic and the last glacial-interglacial cycles, are jointly analyzed based on previous 6 7 studies of C&SL reconstructed records. Our analysis suggests that C&SL responses are forced 8 by different processes with different lagged responses through mechanisms possibly 9 associated with the crustal movements and thermohaline currents that move mass (soil, water 10 and salt) and energy against the thermal-rheological-mechanical (TRM) inertias of continents, 11 oceans, glaciers and ice-sheets. The non-linear response appears to be frequency dependent 12 and is verified twice, based on published data of multi-annual and centennial SL lagged 13 responses. Our power law model suggests, for the ~9500 yr detected solar oscillation, a 14 millennial-scale climate lagged response, which is verified with an oceanographic record of 15 iron deposition in the south-western Pacific [SWP] that lags ~1500 yrs solar activity.

16

17 The Earth's climate (and sea level) lagged response

18 It should be mentioned, first of all, that sea level is affected by plate collisions. For instance, 19 the crustal subduction (and/or spreading) rate has shown oscillations greater than 200 Myr 20 that are followed by sea level variation with a lag of ~30 Myr (van Andel, 1994). Secondly, it 21 must be mentioned that Shackleton (2000) has detected three different lags of 15, 7.6 and 3.7 22 Kyr of the ocean volume and climate responses to orbital forcing periodicities of 100, 41 and 23 21 Kyr (eccentricity, tilt or obliquity, and precession), respectively. While the geological lags 24 are due to mass inertia and volumetric readjustments of continents (van Andel, 1994), the 25 orbital scale lags are due mainly to the thermal and mass inertias associated with ice melting 26 of glaciers and polar ice-sheets (Shackleton, 2000). Although all of these lags are due to 27 different processes, they present a general common behavior in the TRM inertial responses 28 and must be included, at least empirically, in all climate models. These four pairs of 29 period/lag (P/L) samples of the climate lagged response processes are shown in Table C1.

Taking into account all of these aspects of C&SL variability, we propose that there is a lagged
millennial scale C&SL response, similar to the four described earlier, to the solar forcing
detected patterns of ~9500 yrs.

4

5 A proposed, applied and verified power law model for the climatic lags

6 A power law model is proposed as follows:

$$7 L(t) = \alpha P^{\rho}, (1)$$

8 Where, *L* is the period of the lagged response of the Earth's climate system, *P* is period of the
9 oscillatory forcing, *α* is the amplitude factor and *β* is the exponent of the power law.

10 Three power law models (Avg.-Std.Dev., Avg., and Avg+Std.Dev) are adjusted to Shackleton 11 (2000)'s evaluated lags of three different orbital forcing oscillations, and another lag 12 associated with plate tectonics (van Andel, 1994), and are displayed with the data of P/L pairs 13 in Figure C.1. Estimated parameters and equations are also displayed in this Figure.

Based on the obtained power law equations, we are able to estimate the lag corresponding to the TSI ~9500 yr recurrent patterns. This lag must be located, following the power laws with a probability of 63%, in the range from 1270 to 2120 yrs and with a central value of 1695 yrs.

Based also on the obtained power law equations, we have verified the cases of SL lag analyses developed by Howard et al. (2015; hereafter H15) and van de Plassche et al. (2003; hereafter vdP03). Firstly, in order to verify the forcing period of 12 yrs and the corresponding lag of ~2 yrs estimated by H15, we look for the lag that corresponds to a forcing period of 12.6 yrs. The lag estimated with the power laws has a mean value of 2.5 and a range from 1.7 to 3.5 yrs, which includes the value estimated by H13.

23 Secondly, in order to estimate the forcing period corresponding to the lag of ~ 120 yrs 24 estimated by vdP03, we look for the forcing period of 650 yrs that corresponds to this lag 25 based on the estimated power law. We analyze the 10 Be record reconstructed by Bard et al. 26 (1997), which was employed by vdP03 in their simulated SL response to SA, based on 27 recurrent models. We apply two simple models, a sinusoidal model with a period of 650 yrs, 28 and an analog model with a lag of 647 yrs, which explain 17.6 and 32.7 % of the 10Be 29 variance, respectively, and are displayed in Figure C2, confirming the 650 yr provided by the 30 power law model.

1 It must be mentioned that the extrapolation of the Be10 record also provides a verification of

2 our solar forecast for the next centuries. See main text.

3

4 Iron deposition in the south-western Pacific [SWP] lags ~1500 yrs solar activity

5 Based on the iron deposition in the SWP, off the Chilean coast, reconstructed record by Lamy 6 et al. (2001) and the SSN record by S04, a cross-correlation analysis was developed. Figure 7 C3a shows a maximum correlation of 0.6 (0.71) with the ~10 yr original resolution (smoothed 8 with 50yr-moving-averge) records where the Fe signal lags 1570 yrs the SSN record. With 9 this lag, a linear lagged transformation was applied and a comparison of the Fe content record 10 and its model based on SSN are displayed in Figure C3b. The model explains more than 50% 11 of the variance in the Fe record.

In addition, we must also consider that there are natural oscillations in the THC, from years and multi-decadal, to multi-centennial and multi-millennial scales, which appear in the multimillennia control runs of the OA-GCM (Jungclaus et al., 2010). In order to show this, we have analyzed, with spectral analysis tools, data provided by the MPI climate-ocean group, with main periodicity ranges of 4-7, 42-55, 180-260, 350-550, and 2600-3100 yrs (significant level of 1%). See Figure C4.

18

19 Discussion

20 With respect to a lagged climate, the historically detected existence of TRM inertias caused 21 by the ice-melting and thermo-haline circulation (THC) processes should be noted.

On the one hand, as Ahlman (1953) noted: "In a short preliminary review of the scientific work of the Norwegian-British-Swedish expedition, E.F. Roots points out that the lag between climatic change and change in form of the glaciers may be longer than the period of climatic change itself."

On the other hand, the THC, driven by meridional differences in temperature and salinity, is considered as the main oceanic climate process (van Aken, 2007). It is initiated when the deep waters, mainly forming in the North Atlantic, flow in the direction of the South Atlantic. At about 60 degrees South, they join the Antarctic Circumpolar Current, in which they move west to east, gradually rising towards the thermocline and spreading throughout the South Atlantic, Pacific and Indian Oceans. The return of this massive flow to the North Atlantic
 takes place through warm currents near the surface, whose circulation is linked to atmospheric
 currents. The entire process can take from several hundred to thousands of years (van Aken,
 2007).

5 The mean lag period, of 1695 +/- 425 years, associated with the ~9500 yr oscillation, is close 6 to double the period in which the CO2 signal lags the hemispheric temperature signal during 7 the last glacial-interglacial cycle. For instance, Callion et al. (2003) have pointed out: "the 8 sequence of events during Termination III suggests that the CO2 increase lagged Antarctic 9 deglacial warming by 800 +/- 200 years and preceded the Northern Hemisphere 10 deglaciation.... This result is in accordance with recent studies but, owing to our new method, 11 more precise."

12

13 Conclusions

We have proposed, applied and verified a simple power law model of the lagged response ofthe ECS to different forcing phenomena during geological, orbital and suborbital time-scales.

The existence of these lagged responses is supported by simulated THC with one of the best ECS long-term control runs (Jungclaus et al., 2010). These runs support the existence of different, short and long-period, oceanic near-cyclic movements associated with the THC, and implying, with moving sources and sinks of heat, mass and salt, several patterns of advection of mass and heat that generate consequent patterns of: a) a thermal expansion/contraction of sea-water, and then, a sea-level increase/decrease, and b) the transfer to/from the atmosphere with a consequent increase/decrease of smelt of inland ice.

Based on the conclusion by Broecker and Henderson (1998) that "the Southern Ocean is likely to be the main agent in the ~800 yr lag of atmospheric CO2," we propose, in addition to the THC influences on the lagged climate responses, that the Southern Ocean should also be considered as a main agent in these detected and suggested lags during the last millennia.

In order to corroborate these proposed lags, we are going to analyze C&SL records over the
Holocene looking for those associated with one of the most representative records of global
climate, the SL (see Appendix D).

1 References

- 2 van Andel, T.H. 1994. New Views on an Old Planet, 2nd Edition, Cambridge University
- 3 Press. ISBN 0521447550.
- 4 Ahlman, H.W.: Glacier Variations and Climatic Fluctuations, Bowman Memorial Lectures,
- 5 American Geographical Society, 51 pp, 1953.
- 6 van Aken, H.M. 2007. The Oceanic Thermohaline Circulation-An Introduction, Springer-
- 7 Verlag, Germany. Hardcover, xvii + 176 pages, 153 illustrations. ISBN 978-0-387-36637-1.
- 8 Bard, E., G. Raisbeck, F. Yiou, and J. Jouzel. 1997, Solar modulation of cosmogenic nuclide
- 9 production over the last millennium: comparison between 14C and 10Be records. Earth and
- 10 Planetary Science Letters, Vol. 150, pp. 453-462.
- 11 Broecker, W. S., and G. M. Henderson, The sequence of events surrounding Termination II
- 12 and their implications for the cause of glacial- interglacial CO2 changes, Paleoceanography,
- 13 13, 352-364, 1998.
- 14 Caillon, N., Severinghaus, J.P., Jouzel, J., Barnola, J.-M., Kang, J. and Lipenkov, V.Y. 2003.
- Timing of atmospheric CO2 and Antarctic temperature changes across Termination III.Science 299: 1728-1731.
- Howard, D, Shaviv, NJ & Svensmark, H. 2015, The Solar and Southern Oscillation
 Components in the Satellite Altimetry Data. Journal of Geophysical Research: Space Physics,
 Vol. 120, pp. 3297-3306., 10.1002/2014JA020732.
- 20 van de Plassche, O., G. van der Schrier, S. L. Weber, W. R. Gehrels, and A. J. Wright. 2003.
- 21 Sea-level variability in the northwest Atlantic during the past 1500 years: A delayed response
- 22 to solar forcing?, Gephys. Res. Lett., 30 (18), 1921, doi:10.1029/2003GL017558.
- Shackleton, N.J. 1988: Oxigen isotopes, ice volume and sea level, Quaternary Science
 Reviews, 6:183-190.
- 25

- 1 Table C1. Lags of different variables with respect to their different astronomical and tectonic
- 2 forcing periods

	Osc.ForcingPeriod	Lag(Avg)	Lag(Avg-s)	Lag(Avg+s)
Variable	[Kyr]	[Kyr]	[Kyr]	[Kyr]
d180Air	21*	4.6*	4.2*	5*
d180Air	41*	7*	5*	9*
lceVol.	100*	14*	9*	19*
Sea Level	100,000**	30,000**	27,000***	33,000***

*Shackleton (2000) and astronomical forcing, **van Andel (1994) and tectonic forcing,

4 ***supposing a std.dev = 0.1avg.

- 2 Figure C1. Multiscale empirical model of climatic lagged response. Three power law models of lags, for the
- 3 average and +/- standard deviation values, are displayed. Empirical models of lags in terms of climate oscillatory
- 4 periods are adjusted to four estimations made by Shackleton (2000) and van Andel (1994). See data in Table C1.

Figure C2. Double recurrent modelling of the Be10 record (Bard et al., 1997). A first model is based on a simple sine function with a period of 650 yrs, which explains 17% of the variance in the 10Be record. A second model is a simple analogue, which employs a lagged linear and trend adjustment with a lag of 647 yrs, explaining 33% of the variance in the 10Be record for the last four centuries. The vertical scale is inverted in order to indicate minimum and maxima of solar activity in the upper and lower parts of the graph, respectively.

Figure C3. Lags and comparison between the south-western Pacific (SWP) iron deposition reconstructed by
Lamy et al. (2001) and a proposed model based on the lagged influences of the SA SSN (S04). a) Lagged
correlation values between SWP Fe deposition and TSI for different lags and two different resolutions of around
10 and 50 yrs that show a maximum at a lag of 1570 yr, and b) The model is a simple analogue, which employs a
lagged linear and trend adjustment with a lag of 1570 yrs, explaining 50% of the variance in the SWP Fe content
record for the 8 last millennia.

Figure C4. (a) AMOC ctrl. (b) The wavelet power spectrum. The contour levels are chosen so that 75%, 50%,
25%, and 5% of the wavelet power is above each level, respectively. The cross-hatched region is the cone of
influence, where zero padding has reduced the variance. Black contour is the 1% significance level, using a rednoise (autoregressive lag1) background spectrum. (c) The global wavelet power spectrum (black line). The
dashed line is the significance for the global wavelet spectrum, assuming the same significance level and
background spectrum as in (b). Reference: Torrence, C. and G. P. Compo, 1998: A Practical Guide to Wavelet
Analysis. Bull. Amer. Meteor. Soc., 79, 61-78.

1 Appendix D: Sea level lags (~1600 yr) tropical climate

2

Sea level (SL) changes occur over a broad range of temporal scales and SL is strongly correlated not only with climate but also with the diversity of life (van Andel, 1994). SL has changed over geologic time up to hundreds of meters. As Hallam's (1984) Phanerozoic SL reconstruction has shown, SL has changed with a maximum relative SL of +400 meters above the present SL.

8 Although SL change has been considered as a result of many contributing processes, it can be 9 considered as an integral measure of climate change (Milne et al., 2009), with all its 10 complexity included. For instance, the primary contributors to contemporary sea level change 11 are the expansion of the ocean as it warms and the transfer of water currently stored on land to 12 the ocean, particularly from land ice (glaciers and ice sheets) (Church et al., 2013). Numerical 13 experiments with an ocean-atmosphere coupled model have shown that centennial variations 14 in the SL in the NW Atlantic may be associated with solar-forced variations of deep-ocean 15 salinities and temperature in the North Atlantic meridional overturning circulations (AMOC) 16 (van de Plassche et al., 2003; hereafter vdP03).

However, all of these complex aspects of SL variations and their lagged responses (see
Appendix C), can be better understood, if we analyze the phenomenon of SL changes as a
multi-scale, multi-process based on long-term scale information (Lovejoy and Schertzer,
2013).

In order to take into account the SL multi-fractal processes, firstly, we must consider that SL change does not occur instantaneously after its different forcings. SL change takes time. This has recently been emphasized by an important lag of ~120 yrs found between solar forcing and its simulated SL variations (vdP03).

In order to promote a multi-fractal and lagged analysis of climate responses, and based on non-linear relationships between pairs of periods of forcing oscillations and their SL lagged responses, the author was able to estimate the climate & SL (C&SL) lag to the TSI forcing of the 9500 +/- 100 yr recurrent patterns in Appendix C. This lag, which was estimated in line with adjusted power laws, in a range from 1270 to 2120 yrs, is considered to be one of the lagged processes associated with different, from geological and orbital to multi-millennial, scales oscillations. 1 Another verification of the L/P power law profiles with SL information in the centennial scale

2 was developed in Appendix C. It was based on an analysis of a SL lag of 120 yrs published by

3 vdP03.

4 In the following paragraphs, we are going to: a) present SL reconstructed records and their 5 verification and adjustment, b) propose and apply a model for SL variations in term of the 6 lagged influences of CTC variations and their verification with their recurrences, c) discuss 7 results, and e) present the main conclusions.

8

9 The Holocene sea level record

10 Primarily, we have chosen the Sidall et al. (2003; hereafter S03) SL reconstruction for the 11 Holocene and previous periods, because it is based on isotopic information coming from Red 12 Sea sediments and a multi-layer hydraulic model that considers evaporation due to high 13 surface temperatures. Complementarily, we selected the classic Fairbridge curve (FC), which 14 is a record of changes in sea levels over the past 10,000 years (Fairbridge, 1961; hereafter 15 F61). The FC, which is based on geological information of reefs and shorelines and the 16 effects of climate change upon them, shows periodic dips and spikes in levels against a larger 17 trend of rising ocean waters for the Holocene. Although the FC was developed more than 50 18 years ago, it was selected because its author also developed many excellent works and an 19 encyclopedic knowledge of not only geology and sea levels, but also paleo-climates, paleo-20 environments, sedimentary geology, and solar system dynamics (Rampino, et al., 1987; Finkl, 21 1995). Both records are displayed in Fig. C1. Before their detailed comparison, we calculate 22 trends of both SL(F61) and SL(S03) records, and Figure D1 displays these trends.

23 A comparison of the detrended S(F61) and S(S03) records was developed. The S(S03) record 24 was compared with the adjusted S(F61). Two adjustments were applied to the S(F61), to force 25 the match between those records:

- 26 27
- 1) A temporal reduction factor of 0.97 was applied in order to minimize the RMS errors. This adjustment is justified due to the well known 14C dating limitations in the 1950s 28 of the data employed in the S(F61) reconstruction.
- 29 2) A constant bias correction of the detrended value of S(F61) for the period 6-1.8 Kyr 30 BP.
- 31 The final verification/comparison process is displayed in Figure D2.

As we have mentioned in the main part, we have selected the Congo River basin surface air temperature (CRB-SAT) signal, or T, as one of the records of regional climate most influenced by the forcing of the sun. This T record is a continental tropical climate (CTC) that is also influenced by volcanic activity. Additionally, it must be emphasized that volcanic influences could be developed not only through blockage of atmospheric radiation effects, but also through the deposition of ashes in CRB soils (Weijers, 2011).

7

8 Simple models for lagged climate connections

9 To take into account the lagged response of sea level to tropical climate variations, we

10 propose the following expression:

11
$$S(t) = \alpha T(t-\delta) + \beta (t-t_1) + \gamma + e(t),$$
 (D.1)

12 where, *S* is the sea-level values, *T* is the MAT-CRB values, α is a linear modulation factor 13 (>0 due to the positive, in general, correlation between T and SL changes), δ is a time lag 14 (>0), β is the temporal slope, γ is the additive constant, t_1 is the initial times for the modeled 15 periods, and e(t) is the error.

16 To take into account the recurrent process of sea levels, we propose the following expression:

17
$$S(t) = \alpha_s S(t - \delta) + \beta_s (t - t_1) + \gamma_s + e_s(t),$$
 (D.2)

18 where, *S* is the sea-level values, α_s is a linear modulation factor (>0 due to the positive, in 19 general, correlation between T and SL changes), δ_s is a time lag (>0), β_s is the temporal 20 slope, γ_s is the additive constant, t_1 is the initial times for the modeled periods, and $e_s(t)$ is 21 the corresponding error.

We applied eq. D.1 to adjust a lagged CTC influence on the SL record. However, an additional adjustment was applied to the S model to take into account potential negative values of α during relatively short periods, when the T increase appears to cause not a warming of sea water, but a possible ice and iceberg melting with a corresponding decrease of deep-sea temperatures and a decrease in SL. These periods are supposedly short and located in time, after a persisting cooling period. The corresponding graphics of these adjustments, with and without melting effects, are displayed in Figure D3.

1 Verification and final adjustment of results

In order to corroborate our model (and test our hypothesis), firstly, we verified the SL(T)
model.

To do that, we applied eq. D.2 to adjust a recurrence of the SL record. A lag of 9600 years and linear adjustment were applied to the S analogue model to explain the last millennia and to extrapolate it forward in time. Figure D4 presents a comparison of the model based on tropical CTC information, with the analogue model S(S03) record, lagged 9600 years and linearly adjusted.

9 This comparison constitutes a verification of the S modeling proposed as a lagged response of 10 CTC variability. The verification with the lagged SL record appears necessary because the 11 CTC response to the 1258 AD mega-volcanic-eruption seems to be influencing the initial low 12 temperatures but also, ~15 centuries later, a magnified decrease of sea level. 13 A final adjustment of our S model was applied for its recent values (reduction factor of 0.26)

14 based on another SL record of the last millennia from Iceland (Gehrels et al., 2006; hereafter 15 G06) based on different information and different techniques than S(S03). The comparison is 16 shown in Figure D5. Our non-adjusted or adjusted results suggest that the present increase in 17 SL is going to end in the next decades, and will be followed by a decreasing trend in sea 18 levels toward a value of 4 or 1 [m] below the present SL by 4000 AD, with oscillations of 19 around +/-1.6 or 0.4 [m], respectively.

20

21 Discussion

In this section we will discuss different aspects of the lagged response of SL to the CTC:
firstly, the SL records; secondly, the lag of ~1500 yrs; and thirdly, the ~9500 yr recurrence of
the SL record.

With respect to a lagged climate, the historically detected existence of thermal, rheological and mechanical inertias caused by ice-melting and thermo-haline circulation (THC) processes should be noted, and have been discussed in Appendix C. In addition, the detected SL multicentennial lagged response can be justified and analyzed as a part of lagged response processes and different climate oscillations detected previously. 1 On the one hand, Charles et al. (1996) found that Northern Hemisphere climate fluctuations 2 during the past 80 Kyr lagged those of the Southern Hemisphere by 1500 yr. Based on an analysis of core RC11-83 in the Southern Atlantic (41°36'S; 9°48'E; 4718m), these authors 3 4 detected the early response of Southern Ocean surface and deep waters relative to 5 paleoceanographic proxies from other regions, a persistent pattern during the entire late 6 glacial-interglacial cycle. Additionally, in Appendix C we have detected a significant lagged 7 response of iron deposition in the SWP, off the Chilean coast, to the SSN solar signal, 1570 8 yrs later. These 1570-yr lags, almost coincide with the doubling of the lag shown by the CO2 9 atmospheric concentration during the reconstructed last glacial-interglacial cycles.

10 On the other hand, there are climatic oscillations of around 1500 years. For instance, the 11 existence of climatic changes, possibly on a quasi-1,500-year cycle, is well established for the 12 last glacial period from ice cores. Bond et al. (1997) argue for a cyclicity close to 1470 ± 500 13 years in the North Atlantic region, and state that their results imply a variation in Holocene 14 climate in this region.

15 The analogue model of SL not only confirms the decreasing SL trend for the next millennia 16 based on the lagged influences of CTC and limits extreme decreases in SL, but also confirms 17 the possibly associated forcing oscillation of ~9500 yrs.

18 Additionally, in Appendix C we have also shown that there are natural oscillations in the 19 THC, from years and multi-decadal, to multi-centennial and multi-millennial scales, that 20 appear in the multi-millennia control runs of the OA-GCM (Jungclaus et al., 2010). Parts of 21 these cyclic circulations should be related to the detected lags of 2, 120 and 1500 yrs of the 22 SL response to solar forcing periods of 12.6, 650 and 9500 yrs, respectively. This is 23 confirmed because these lags are around half of the main periodic modes of natural oscillation 24 in the THC, with three of the period ranges of 4-7, 180-260, and 2600-3100 yrs, shown in 25 Figure C3.

26

27 Conclusions

We have proposed a simple, power law model presented in Appendix C, for the lags of the ECS that depend non-linearly on the forcing period. This model has been verified three times with sea level response lags of 2, 120 and 1500 years, to the forcing periods of solar activity of 12.6, 650 and 9500 yrs.

1 The natural THC variability shows periodic circulation cycles, and then favorable conditions 2 for generating stochastic resonances from other forcings. However, the temporal scale 3 similarities between THC cycles and the ECS lagged responses, also provide elements of 4 probable harmonic cycles of THC that could be linked to the lagged processes.

5 Specifically, based on the Broecker and Henderson (1998) conclusion that "the Southern 6 Ocean is likely to be the main agent in the ~800 yr lag of atmospheric CO2," and also on the 7 Charles et al. (1996) conclusion that "perhaps a more likely explanation for the observed 8 phase relationship involves tropical temperature variability," we propose that the Southern 9 Ocean could also be the main agent, and the tropical ocean, the main source region, of this 10 millennia-scale SL lag during the Holocene.

Finally, we must emphasize that our SL model based on the lagged influence of tropical climate is confirmed with the SL recurrent process with a lag of 9500 yrs, which also confirms the proposed recurrent solar cycle of 9500 yrs and its influences in, at least, the tropical climate and the global expressions of the ECS, the SL.

15

16 References

17 Ahlman, H.W. Glacier Variations and Climatic Fluctuations, Bowman Memorial Lectures,

18 American Geographical Society, 51 pp, 1953.

19 Broecker, W.S., and Henderson, G.M. The sequence of events surrounding Termination II

and their implications for the cause of glacial-interglacial CO2 changes, Paleoceanography,
13, 352-364, 1998.

22 Caillon, N., Severinghaus, J.P., Jouzel, J., Barnola, J.-M., Kang, J. and Lipenkov, V.Y. 2003.

Timing of atmospheric CO2 and Antarctic temperature changes across Termination III.
Science 299: 1728-1731.

Charles, C.D., LynchStieglitz, J., Ninnemann, U.S., and Fairbanks, R.G. 1996. Climate
connections between the hemispheres revealed by deep sea sediment core ice core
correlations. Earth and Planetary Science Letters. 142:19-27. 10.1016/0012-821x(96)000830.

Church, J.A., Clark, P.U., Cazenave, A.,Gregory, J.M., Jevrejeva, S., Levermann, A.,
Merrifield, M.A., Milne, G.A., Nerem, R.S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer,

D., and Unnikrishnan, A.S. 2013. Sea Level Change. In: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.K., Tignor,
M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

6 Fairbridge, R.W. 1961. Eustatic changes in sea level, Phys.Chem. Earth, 5:99.

7 Fairbridge, R.W. and Sanders, J.E. 1987. The Sun's Orbit, A.D. 750-2050: basis for new

8 perspectives on planetary dynamics and Earth-Moon linkage. In: Rampino, M.R., Sanders,

9 J.E., Newman, W.S., and Konigsson, L.K. 1987. Climate: History, Periodicity, and

10 Predictability. Van Nostrand Reinhold USA, pp. 446 to 471.

11 Finkl, C.W., (Ed.). 1995. Holocene cycles: Climate, sea levels, and sedimentation.

12 Charlottesville, Va: Coastal Education and Research Foundation. (A special issue of the

13 Journal of Coastal Research—Being a Jubilee Volume in Celebration of the 80th Birthday of

14 Rhodes W. Fairbridge).

- 15 Gehrels, W.R. et al. 2006. Rapid sea-level rise in the North Atlantic Ocean since the first
- 16 half of the nineteenth century. Holocene 16:949–965.
- Hallam, A. 1984. Pre-Quaternary Sea-Level Changes. Ann. Rev. Earth Planet. Sci. 12: 205-243.
- 19 Kemp, A.C., Horton, B.P., Donnelly, J.D., Mann, M.E., Vermeer, M. and Rahmstorf, S. 2011.

20 Climate related sea-level variations over the past two millennia. Proceedings of the National

- 21 Academy of Sciences 108, Pg 11017-11022.
- Lovejoy, S. and Schertzer, D. 2013. The Weather and Climate: Emergent Laws and
 Multifractal Cascades, Cambridge U. Press, 496 pp.
 http://www.physics.mcgill.ca/~gang/ftp.transfer/final.book.figs.Feb.2012.pdf
- Munk, W. 2002. Twentieth century sea level: An enigma, Proc. Nat. Acad. Sci., 99, 6550–
 6555.
- 27 Milne, G.A., Gehrels, W.R., Hughes, C.W., and Tamisiea, M.E. 2009. Identifying the causes
- 28 of sea-level change. Nature Geosci, 2, 471–478.
- 29 Mörner, N-A, 1995. Sea Level and Climate—The decadal-to-century signals. J Coastal Res.,
- 30 Special Issue No.17: Holocene cycles, Sea Levels and Sedimentation, pp. 261-268.

- 1 Rahmstorf, S. 2007. A Semi-Empirical Approach to Projecting Future Sea-Level Rise.
- 2 Science, 315, 368-370.
- Rampino, M.R., Sanders, I.E., Newman, W.S. and Konigsson, L.K. (Eds.). 1987. Climate:
 History, Periodicity, and Predictability, Van Nostrand Reinhold, New York. (Papers presented
 at a meeting held May 21-23, 1984, at Barnard College, Columbia University, to honor
 Professor Emeritus Rhodes W. Fairbridge on his 70th birthday).
- 7 Sánchez-Sesma, J. 2010. Technical Note: Multi-centennial scale analysis and synthesis of an
- 8 ensemble mean response of ENSO to solar and volcanic forcings, Clim. Past Discuss., 6,

9 2055-2069, 2010.

- Shackleton, N:J. 1988. Oxigen isotopes, ice volume and sea level, Quaternary ScienceReviews, 6:183-190.
- 12 Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, Ch., Meischner, D., Schmeltzer, I.,
- and Smeed, D.A. 2003. Sea-level fluctuations during the last glacial cycle. Nature 423: 853-858.
- 15 Siddall, M., Rohling, E.J., Almo gl-Lab. In: A., Hemleben, Ch., Melschner, D., Schmelzer, I.,
- and Smeed, D.A. 2003. Sea-level fluctuations during the last glacial cycle. Nature 243, 853-858.
- 18 Stacey, C. 1963. Cyclical measures: Some tidal aspects concerning equinoctial years.
- 19 Annals New York Academy of Science 105, Article 2:421-460.
- 20 Ters, M. 1987. Variations in Holocene sea level on the French Atlantic coast and their
- 21 climatic significance. In: Rampino, M.R., Sanders, J.E., Newman, W.S. and Konigsson, L.K.
- 22 (Eds.). Climate: History, Periodicity, and Predictability. Van Nostrand Reinhold, New York,
- 23 NY, pp. 204-236.
- van Andel T.H. 1994. New Views on an Old Planet, 2nd Edition, Cambridge University
 Press. ISBN 0521447550.
- 26 van Aken, H.M. 2007. The Oceanic Thermohaline Circulation-An Introduction, Springer-
- 27 Verlag, Germany. Hardcover, xvii + 176 pages, 153 illustrations. ISBN 978-0-387-36637-1.
- 28 Weijers, J.W.H., Schefuss, E., Schouten, S., and Damste, J.S.S. 2007. Coupled thermal and
- 29 hydrological evolution of tropical Africa over the last deglaciation. Science, 315, 1701-1704.

- 1 Vermeer, M. and Rahmstorf, S. 2009. Global sea level linked to global temperature. Proc Natl
- 2 Acad Sci USA 106:21527–21532.

Figure D1. Millennia-scale reconstructed records of relative sea-level, S, by a) Sidall et al. (2003), S(S03), and

b) Fairbridge (1961), S(F61). Polynomials trends are also displayed.

3 Figure D2. Comparison of two sea-level records: the S(S03) and the adjusted S(F61). Two adjustments were

4 applied to the S(F61) reconstruction: a time reduction factor (0.89) and a simple constant bias adjustment

5 between 5 and 3.8 Kyr BP. The adjusted S(F61) reconstruction shows a very good match with the S(S03) record.

Figure D3. Comparison reconstructed and modelled sea-level records. The reconstructed record is developed by
S03, and is compared with the lagged linear analogue transformation of the CRB SAT record. The CRB SAT
record is shown a) without and b) with an adjustment of change of sign in the temporal ranges from 7.4 to 6.8
and 5.8 to 5 Kyr BP.

Figure D4. Comparison of reconstructed and modelled sea-level records. The reconstructed record is developed
by S03, and is compared with the smoothed linear analogue transformation of the CRB SAT record and with a
lag of ~1500 yrs and partially non-linearly adjusted (see Fig. D3), and an analogue (linear transformation and

6 trend adjustment) model based on the same S03 record with a lag of 9.6 Kyrs.

Figure D5. Comparison/calibration of results shown in Figure D4 with other SL reconstructions (Gehrald et al.,
2007). The graphics shows two scales for the SL: one is the original S03 SL scale (left), and the other is the

adjusted one (right) with a recent published reconstruction (dots and the linear trend depicted, and the right scaleare taken from Gehrald et al., 2007).

1 Acknowledgements

2 This work was motivated by Rhodes Fairbridge's work around the idea that the solar system 3 regulates the solar and Earth's climate (Mackey, 2006). The author thanks Professor Jan 4 Veizer for his encouraging comments. The author also thanks Jana Schroeder, for her editorial 5 contributions, and Oscar Alonso and Ricardo Espinoza, for their graphical contributions to 6 this work. This work was initiated when the author was supported (2008-2012) by a NSF 7 grant (GEO-0452325) through the IAI project CRN-II-2050 and by the Institute UC MEXUS 8 and CONACYT through an international collaborative project between IMTA and SIO/UCSD 9 under the 2008 Climate Change Program.

10

11 References

- 12 Abreu J.A., C. Albert, J. Beer, A. Ferriz-Mas., K. G. McCracken, and F. Steinhilber (2012), Is
- 13 there a planetary influence on solar activity? Astronomy and Astrophysics, 548, A88.
- A. Berger, M. F. Loutre, and J. L. Mélice (2006), Equatorial insolation: from precession
 harmonics to eccentricity frequencies, *Clim. Past*, 2, 131–136, www.climpast.net/2/131/2006/
- 17 Charvátová, I. (1995), Solar-terrestrial and climatic variability during the last several
 18 millennia in relation to solar inertial motion, *J. Coastal Res.*, 17, 343-354.
- Charvátová, I. (2000), Can origin of the 2400-year cycle of solar activity be caused by solar
 inertial motion? *Ann. Geophys.*, 18, 399-405.
- 21 Cuffey, K. M., and G. D. Clow (1997), Temperature, accumulation, and ice sheet elevation in
- central Greenland through the last deglacial transition, *Journal of Geophysical Research*,
 102:26383-26396.
- Duhau, S. and C. de Jager (2010), The Forthcoming Grand Minimum of Solar Activity, *Journal of Cosmology*, 8, 1983-1999.
- 26 Eddy, J. A. (1981), Climate and the Role of the Sun, in Climate and History, (R. I. Rotberg
- and T. K. Rabb, Eds.) Princeton University Press, Princeton, New Jersey, 145-168.
- Fairbridge, R. W., and J. E. Sanders (1987), The Sun's orbit AD 750-2050. Basis for new perspectives on planetary dynamics and Earth-Moon linkage, in: Rampino, M. R., J. E.

- 1 Sanders, W. S. Newman, and L. K. Königsson, (eds.), Climate, history and predictability, Van
- 2 Nostrand-Reinhold, New York, 446-471.
- Fairbridge, R. W., and J. H. Shirley (1987), Prolonged minima and the 179-yr cycle of the
 solar inertial motion, *Sol. Phys.*, 110, 191-220.
- 5 Finkel, R. C., and K. Nishiizumi (1997), Beryllium 10 concentrations in the Greenland Ice
- 6 Sheet Project 2 ice core from 3-40 ka, Journal of Geophysical Research, 102:26699-26706.
- Fowler, W. (1972), What Cooks with Solar Neutrinos? *Nature*, 238, 24-26;
 doi:10.1038/238024a0.
- 9 Haigh J. D. (2011), Solar Influences on Climate, Grantham Institute for Climate Change
 10 Briefing Paper No 5, Imperial College, London.
- 11 IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working
- 12 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
- 13 [Stocker, T. F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y.
- 14 Xia, V. Bex, and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United
- 15 Kingdom and New York, NY, USA, 1535 pp.
- 16 Jose, P. D. (1965), Sun's Motion and Sunspots, Astron. J., 10(1), 193-200.
- 17 Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger,
- 18 M.: Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim. Past,
- 19 10, 887-902, doi:10.5194/cp-10-887-2014, 2014.
- Landscheidt, T. (1999), Extrema in sunspot cycle linked to Sun's motion, *Sol. Phys.*, 189, 413424.
- 22 Laskar, J., A. Fienga, M. Gastineau, and H. Manche (2011), La2010: A new orbital solution
- 23 for the long-term motion of the Earth, *Astronomy & Astrophysics*, 532 (A889).
- 24 Mackey, R. (2007), Rhodes Fairbridge and the idea that the solar system regulates the Earth's
- 25 climate, Journal of Coastal Research, Special Issue 50 (Proceedings of the 9th International
- 26 Coastal Symposium), 955 968. Gold Coast, Australia.
- 27 Muscheler, R., and U. Heikkilä (2011), Constraints on long-term changes in solar activity
- 28 from the range of variability of cosmogenic radionuclide records, Astrophys. Space Sci.
- 29 Trans., 7, 355-364, doi:10.5194/astra-7-355.

- 1 Perry, C. A., and K. J. Hsu (2000), Geophysical, archaeological, and historical evidence
- 2 support a solar-output model for climate change. Proceedings of the National Academy of
- 3 Sciences USA, 97, 12,433-12,438.
- 4 Peeters, F. J C., R. Achinson, G. J. A. Brummer, W. P. M. de Ruijter, G. M. Ganssen, R. R.
- 5 Schneider, E. Ufkes, and D. Kroon (2004), Vigorous exchange between Indian and at the end
- 6 of the last five glacial periods, *Nature*, 430, 661-665.
- 7 Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2004),
- 8 Intensification and variability of ocean thermohaline circulation through the last deglaciation,
- 9 Earth and Planetary Science Letters, 225, 205-220.
- 10 Ruzmaikin, A. A. (1983), Nonlinear problems of the solar dynamo, in: Soward, A. M. (ed.):
- 11 Stellar and Planetary Magnetism, Gordon Breach, New York, 151.
- 12 Schmitt, D., M. Schussler, and A. Ferriz-Mas (1996), Intermittent solar activity by an on-off
- 13 dynamo, Astron. Astrophys., 311, L1.
- 14 Sánchez-Sesma, J. (2015), The climates of history and their influences on the world
- 15 population: A hypothesis, test and millennia scale projections, Proceedings of the National
- 16 Academy of Sciences (sent).
- 17 Shaviv N. J., A. Prokoph, and J. Veizer (2014), Is the solar system's galactic motion imprinted
- 18 in the Phanerozoic climate?, *Sci Rep.*, Aug 21;4:6150. doi: 10.1038/srep06150.
- 19 Solanki, S. K., I. G. Usoskin, B. Kromer, M. Schüssler, and J. Beer (2004), Unusual activity
- 20 of the Sun during recent decades compared to the previous 11,000 years, Nature, Vol. 431,
- 21 No. 7012, 1084–1087.
- Steinhilber, F., J. Beer, and C. Frohlich (2009), Total solar irradiance during the Holocene,
 Geophysical Research Letters, 36, doi: 10.1029/2009GL040142.
- 24 Steinhilber, F., J. A. Abreu, J. Beer, I. Brunner, M. Christl, H. Fischer, U. Heikkilä, P. W.
- 25 Kubik, M. Mann, K. G. McCracken, H. Miller, H. Miyahara, H. Oerter, and F. Wilhelms
- 26 (2012), 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, Proc.
- 27 Natl. Acad. Sci. USA, 109. 10.1073/pnas1118965109.
- 28 Steinhilber F., and J. Beer (2013), Prediction of solar activity for the next 500 years, J.
- 29 Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50210.

- 1 Shirley, J. H., and R. W. Fairbridge (Eds.) (1997), Encyclopedia of Planetary Sciences,
- 2 Chapmann & Hall.
- 3 Stacey, C. (1967), Earth motions and time and astronomic cycles. Pages 335-340 and 999-
- 4 1003 in The Encyclopedia of Atmospheric Sciences and Astrogeology, R. Fairbridge, editor,
- 5 Reinhold Publishing, NewYork.
- 6 Stacey, C. M. (1963), Cyclic measure. Some tidal measures concerning equinoctal years, Ann.
- 7 New York Acad. Sciences, No. 6.
- 8 Sturevik-Storm, A. et al. (2014), 10Be climate fingerprints during the Eemian in the NEEM
- 9 ice core, Greenland, *Nature/Sci.Rep.*, 4, 6408; DOI:10.1038/srep06408.
- Torrence, C., and G. P. Compo (1998), A Practical Guide to Wavelet Analysis, B. Am.
 Meteorol. Soc., 79, 61-78.
- 12 Velasco Herrera, V. M., B. Mendoza, and G. Velasco Herrera (2015), Reconstruction and
- 13 prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century,
- 14 New Astronomy, 34, 221, DOI: 10.1016/j.newast.2014.07.009
- 15 Weijers, J. W. H., E. Schefuß, S. Schouten, J. S. Sinninghe Damsté (2007), Coupled thermal
- and hydrological evolution of tropical Africa over the last deglaciation. *Science*, 315, 17011704.
- Xapsos, M., and E. Burke (2009), Evidence of 6000-year periodicity in reconstructed sunspot
 numbers, *Sol. Phys.*, 257 (2), 363-369.
- 20 Clarke, A.; Church, J.; Gould, J. (2001). Ocean processes and climate phenomena, in: Siedler,
- 21 G. et al. (Ed.) (2001). Ocean circulation and climate: observing and modelling the global
- 22 ocean. International Geophysics Series, 77: pp. 11-30
- 23 Usoskin, I.G., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thebault,
- E. and Khokhlov, A. 2014. Evidence for distinct modes of solar activity. Astronomy and
- 25 Astrophysics 562: L10, doi: 10.1051/0004-6361/201423391.
- 26 Janardhan P., Bisoi, S.K., Gosain S. 2010. Solar Polar Fields During Cycles 21 □-□23:
- 27 Correlation with Meridional Flows, Solar Physics, December 2010, Volume 267, Issue 2, pp
- 28 267-277, doi: 10.1007/s11207-010-9653-x.
- 29 Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., and Fujiki, K. 2011. The
- 30 prelude to the deep minimum between solar cycles 23 and 24: Interplanetary scintillation

- signatures in the inner heliosphere, Geophys. Res. Lett., 38, L20108,
 doi:10.1029/2011GL049227.
- Janardhan, P., Bisoi S.B., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., and
 Sridharan, R. 2015. A 20 year decline in solar photospheric magnetic fields: Innerheliospheric signatures and possible implications, J. Geophys. Res.: Space Physics, 120(7),
 5306–5317, doi: 10.1002/2015JA021123.
- 7 Janardhan, P., Bisoi S.B., Ananthakrishnan, S., Sridharan, R., and Jose, L. 2015. Solar and
- 8 Interplanetary Signatures of a Maunder-like Grand Solar Minimum around the Corner -
- 9 Implications to Near-Earth Space, Sun and Geosphere, Special Issue: UN/Japan Workshop on
- 10 SPACE WEATHER (In Press).
- 11 Choudhuri, A.R. and Karak, B.B. 2012. The origin of grand minima in the sunspot cycle,
- 12 Phys.Rev. Lett., 109,171103.
- 13 Karak, B.B. and Choudhuri, A.R. 2011. Is meridional circulation important in modelling
- 14 irregularities of the solar cycle? Comparative Magnetic Minima: characterizing quiet times in
- 15 the Sun and stars. Proceedings IAU Symposium No. 286, 2011, A.C. Editor, B.D. Editor &
- 16 C.E. Editor, eds. International Astronomical Union.
- 17 Hathaway D.H. and Rightmire, L. 2010. Variations in the Sun's Meridional Flow over a Solar
- 18 Cycle, Science, Vol. 327, No. 5971, pp. 1350-1352, doi: 10.1126/science.1181990.

1 Figure Legends

Figure 1. Solar-related and climate signals. (a) Solar activity, TSI, reconstructed by S04, S09 and S12, after an intercalibration using the S09 record as a base. (b) 10Be isotope concentration in polar ice cores during the past 130 Kyrs (Finkel and Nishiizumi, 1997; Stuverik-Storm et al., 2014). (c) The continental tropical Congo River basin (CRB) mean annual surface air temperature record for the last 21000 years, based on lipids (W07). Please note that in all figures: as the 10Be concentration varies inversely with Solar activity, TSI, the beryllium scale is inverted, and thus upper parts in this scale indicate high TSI levels.

9 Figure 2. Data and modelling of 10Be isotope concentration in Greenland ice cores. a) Data and a FS model of 10Be isotope for the past 40 Kyrs provided by FN97 (Finkel and Nishiizumi, 1997) after detrended and demodulated. b) The model, shown in a), is extrapolated covering the last 135 Kyrs, and the SS14 (Stuverik-Storm et al., 2014) data is included for comparison. c) A zoom of b) for a detailed comparison of the extrapolated FS model and the SS14 data. Please note that a maximum match implies a SS14 temporal adjustment, or time bias, of 1.5 Kyrs going back in time.

Figure 3. A test of the recurrent TSI signal based on 14C over the last 11000 yrs, TSI(S04), and the 10Be isotope concentration record from Greenland ice cores. a) Extrapolated TSI(S04) record backward in time, 9400 yrs, and its model based on 10Be isotope (A14) that covers the period from 18000 to 10000 yrs BP. b) The residue of model, smoothed with a 100-yr-moving-average process, shown in a), is also explained, with an analogue non-linear model, with a lag of ~1550yrs, and a change of sign that is only applied for the first 1500 yrs.
Figure 4. Solar activity signals reconstructed and modelled records. (a) Solar activity. TSI.

Figure 4. Solar activity signals reconstructed and modelled records. (a) Solar activity, TSI, reconstructed by S04, S09 and S12, shown in Figure 1a, and their analogue models. (b) A zoom of a) that covers only 2Kyr. (c) Another greater zoom of a) that covers only 0.85Kyr including the independent TSI forecast by S13. (d) The CTC Tcrb signal and its simple model including the independent TSI forecast by S13. Big and small vertical arrows indicate Super and Grand solar minima.

Figure 5. Tropical climate (CRB) T reconstructed and detrended signal and its solar-based models. The CRB T models, extrapolated backward in time, were based on: a) TSI (S04), b) TSI (S09) and c) TSI (S12), applying Eq. 2 with greater modulated amplitudes before 10Kyr BP.

- Figure 6. Continental tropical climate, Tcrb reconstructed and its analogue model with a lag
 of 9.6 Kyrs but including two forecasts of TSI, provided by our analogue model TSI (S04)
 and the TSI forecast by S13. (a) The CRB T signal and its model, during the last 1 and future
 1 Kyr, and (b) a zoom of a) during the last 0.3 and future 0.6 Kyr.
- 5 Figure 7. Sea level, S, reconstructed by S03, and its two models: a linear analogue 6 transformation of the CRB SAT record, with a lag of ~1500 yrs, and an analogue model based
- 7 on the same S03 record, with a lag of 9.6 Kyrs. The diagrams show two scales for the SL: one
- 8 is the original S03 SL scale (left), and the other is the adjusted scale based on a recent
- 9 published reconstruction (see details in Appendix D).

2 Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 7.