
Dear	  Editor	  
	  
	  
We	  refer	  to	  the	  replies	  to	  the	  two	  referees.	  	  
	  
We	  find	  the	  situation	  	  rather	  bizarre,	  since	  both	  referees	  suggest	  that	  
proxy	  data	  are	  too	  uncertain	  to	  draw	  firm	  conclusions,	  but	  this	  is	  
exactly	  what	  they	  both	  do.	  Shaun	  Lovejoy	  insists	  on	  the	  reality	  of	  a	  
Holocene	  scale	  break,	  while	  referee#3	  claims	  that	  Rybski	  et.	  al.	  
(2006)	  have	  proven	  that	  such	  a	  scale-‐break	  does	  not	  exist.	  	  
	  
Neither	  referee,	  and	  in	  particular	  not	  referee#3,	  has	  grasped	  that	  the	  
main	  message	  of	  our	  paper	  is	  that	  the	  scale-‐break	  issue	  is	  still	  open.	  
We	  demonstrate	  that	  this	  can	  be	  concluded	  from	  statistical	  
uncertainty	  alone	  (finite-‐size	  effects).	  Biases	  and	  errors	  in	  the	  proxy	  
data	  will	  strengthen	  that	  conclusion.	  In	  the	  2.	  revision	  we	  have	  tried	  
to	  make	  this	  even	  more	  clear,	  both	  in	  the	  abstract	  and	  in	  the	  
concluding	  section.	  
	  
Lovejoy	  criticize	  us	  for	  "	  relying	  on	  the	  DFA-‐literature",	  while	  
referee#3	  criticize	  us	  for	  NOT	  relying	  on	  DFA.	  The	  truth	  is	  that	  
we	  	  don't	  rely	  on	  DFA,	  and	  there	  are	  good	  reasons	  for	  it.	  This	  is	  
explained	  in	  the	  response	  to	  referee#3	  and	  in	  an	  added	  section	  3.5	  in	  
the	  2.	  revision.	  
	  
Both	  referees	  ignore	  basic	  principles	  of	  scientific	  hypothesis	  testing,	  
so	  we	  have	  added	  a	  paragraph	  on	  this	  at	  the	  end	  of	  the	  paper.	  
	  
A	  	  discussion	  on	  cyclic	  phenomena	  on	  millennial	  time	  scale	  in	  the	  
Holocene	  (e.g.,	  Bond	  events)	  has	  also	  been	  added.	  
	  
	  
Best	  regards,	  
	  
	  
Tine	  Nilsen,	  Kristoffer	  Rypdal	  and	  Hege-‐Beate	  Fredriksen	  



Second'reply'to'referee'Lovejoy'
'
General'
The$initial$review$by$this$referee$did$not$follow$the$standard$setup$for$the$structure$
of$a$review$requested$by$Copernicus$journals.$The$way$the$review$was$written$
forced$the$discussion$to$be$more$about$Shaun$Lovejoy’s$work$than$our$work.$This$
was$quite$unfortunate,$and$it$is$not$made$better$by$the$second$round,$where$the$
response$from$the$referee$is$now$in$the$form$of$43$sticky$notes$in$our$reply.$Very$
few$of$these$present$views$or$arguments$that$we$were$not$familiar$with$already,$and$
they$do$not$address$particular$paragraphs$in$our$paper.$Many$of$them$appear$rather$
argumentative,$and$we$see$no$way$we$can$address$them$in$a$coherent$and$academic$
manner$without$writing$a$new$“essay,”$and$that$is$not$something$that$will$help$the$
editor$in$making$a$decision.$
$
Most$of$the$notes$actually$center$around$one$scienceGtheoretic$theme,$and$that$is$
that$the$referee$advocates$the$view$that$science$can$be$done$without$hypothesis$
testing,$and$that$hypothesis$testing$should$be$avoided$if$the$data$are$not$of$superior$
quality.$This$poor$data$quality,$however,$does$not$prevent$him$from$drawing$
positive$conclusions$in$support$of$his$hypotheses.$$This$is$a$philosophy$that$has$lead$
to$an$enormous$amount$of$TypeGI$(false$positives)$in$highGrank$scientific$journals$(in$
fact$the$most$prestigious$journals$are$the$worse),$see$for$instance:$
$
http://www.economist.com/news/briefing/21588057GscientistsGthinkGscienceG
selfGcorrectingGalarmingGdegreeGitGnotGtrouble$
$
We$have$added$a$long$paragraph$at$the$end$of$the$concluding$section$where$we$
address$this$issue.$Here,$and$also$in$the$abstract,$we$state$more$explicitly$that$our$
null$hypothesis$includes$not$only$a$singleGregime$scaling$climate$noise,$but$also$
possible$nonGscaling$lowGfrequency$fluctuations.$The$controversial$issue$is$not$
whether$there$may$be$more$power$on$millennium$time$scales$than$predicted$by$an$
fGnGmodel,$but$whether$these$fluctuations$exhibit$scaling$properties.$
$
Other$notes$repeatedly$state$that$the$Greenland$data$are$exceptional.$In$our$opinion$
this$is$an$inaccurate$statement.$We$have$to$bear$in$mind$that$these$ice$cores$are$
local$measurements$and$as$such$their$scaling$characteristics$are$quite$
representative$for$high$latitude$continental$interiors$as$seen$e.g.,$in$instrumental$
station$data.$We$are$not$interpreting$these$data$in$any$other$way$than$this,$which$is$
the$reason$why$we$also$look$at$multiproxy$data.$$
$
Below$we$address$the$two$specific$comments$that$relate$to$the$manuscript$under$
review.$
'
About'the'Hurst'exponent'
We$do$not$“rely$on$the$DFA$–literature,”$as$stated$by$the$referee.$So$far$DFA$hasn’t$
been$mentioned$in$our$manuscript,$because$DFA$doesn’t$have$the$sensitivity$on$long$



time$scales$to$detect$a$scale$break.$This$has$been$explained$in$our$response$to$
referee$#3,$and$this$is$now$included$in$Section$3.5$in$the$second$revision.$We$believe$
Lovejoy$would$agree$with$our$reasoning$here.$It$seems$that$the$referees$disagree$
more$with$each$other$than$with$us.$Actually,$we$feel$caught$in$crossfire$between$
different$schools$that$has$little$relevance$to$our$paper.$
$
What$we$point$out$in$the$paper$is$just$that$the$letter$H$is$very$commonly$used$in$the$
meaning$as$the$selfGsimilarity$exponent$of$the$cumulative$sum$of$a$fractional$noise,$
or$as$the$similarity$exponent$of$a$fractional$motion.$This$is$the$gold$standard$in$the$
literature$on$longGmemory$stochastic$processes$(se$for$instance$the$recent$book$by$
Beran$et$al.,$“LongGMemory$Processes,”$Springer,$2013).$The$justification$for$calling$
it$the$Hurst$exponent$is$historical.$Hurst$used$it$in$his$rescaled$range$analysis.$The$
range$was$computed$from$the$water$level$in$a$reservoir$(a$fractional$motion).$The$
stationary$increments$of$this$process,$(representing$the$water$flux$in$Hurst’s$case),$
is$often$the$process$under$study$in$many$applications,$and$the$similarity$exponent$H$
for$its$cumulative$sum$is$used$to$characterize$this$noise$process.$We$have$chosen$to$
use$h$for$the$fluctuation$exponent$in$order$to$avoid$possible$confusion$for$readers$
who$are$more$familiar$with$the$stochastic$processes$litterature,$it$is$not$a$statement$
of$adherence$to$a$particular$school.$
$
We$think$a$reasonable$compromise$here$is$to$remove$the$reference$to$Hurst,$but$
retain$the$notation$h#with$reference$to$the$different$notation$used$in$a$large$body$of$
literature.$$
$
The'introduction'of'the'Haar'wavelet'in'line'66'
We$cannot$see$that$this$sentence$is$very$complicated.$The$Haar$wavelet$is$explained$
in$more$detail$in$section$3.4,$so$the$mention$in$the$introduction$should$be$brief.$We$
don’t$find$a$less$complicated$way$to$do$this$without$making$the$paragraph$
considerably$longer.$$



Reply&to&referee&#3&
&
Has&the&absence&of&a&scale&break&been&proven&by&Rybski&et&al&(2006)?&
The$referee$claims$that$the$result$of$no$scaling$break$is$not$new$and$shown$in$a$
paper$by$Rybski,$Bunde$and$von$Storch$from$2006.$Further,$that$it$is$unfortunate$$
that$this$paper$$is$not$discussed$in$the$manuscript.$$
$
On$the$other$hand,$in$the$final$paragraph$of$the$report$the$referee$writes$that$“it$is$
possible$most$earlier$results$as$well$as$the$present$one$are$flawed$because$the$
underlying$data$sets$do$not$give$a$realistic$picture$of$nature.”$We$find$these$
statements$selfFcontradictory,$since$the$Rybski$et$al$(2006)$paper$is$based$on$the$
same$unreliable$data,$and$hence$may$be$flawed.$So$how$can$the$Rybski$et$al.$paper$
have$settled$the$issue?$
$
The$“main$result$of$the$ms”$is$not$“that$there$is$no$scale$break$in$the$Holocene,”$but$
rather$that$available$data$does$not$allow$us$to$draw$such$a$conclusion.$This$is$a$very$
important$distinction.$Our$arguments$have$focused$on$statistical$uncertainty.$
Additional$bias$and$uncertainty$in$the$underlying$data$only$enforces$our$conclusion.$
$
The$Rybski$et$al.$$paper$is$cited$in$the$first$paragraph$in$the$introduction$along$with$
a$number$of$other$papers$that$demonstrate$scaling$from$months$to$centuries.$The$
paper$does$not$specifically$discuss$the$issue$of$a$scaleFbreak,$and$this$is$quite$
reasonable,$since$they$employ$DFA,$which(is(insensitive(to(a(change(in(scaling(on(the(
longest(time(scales(in(a(record.$This$will$be$demonstrated$below.$
$
Why&DFA&is&unsuitable&for&detecting&scaleDbreaks&
DFA$performs$very$well$when$it$comes$to$estimation$of$the$scaling$exponent$of$a$
perfectly$scaling$signal,$with$small$finiteFsize$errors.$However,$the$nature$of$DFA$is$
to$perform$detrending$on(all$scales,$which$means$that$the$variance$on$a$scale$τ$is$
strongly$underestimated$compared$to$the$actual$variance,$even$if$the$signal$is$
perfectly$scaling$with$no$imposed$trend.$The$method$works$for$estimation$of$the$
scaling$exponent$because$(in$a$perfectly$scaling$signal)$this$underestimation$is$the$
same$on$all$scales.$This$effect$increases$with$degree$of$detrending$(the$order$n$of$
DFA(n)),$so$$even$if$the$slopes$of$the$curves$log$Fn(τ)$vs.$log$τ remain$the$same$as$n$
increases,$the$variance$goes$down,$as$shown$for$instance$in$Fig.$4$of$Kantelhardt$et$
al,$Physica$A,$295,$441F454$(2001).$In$effect,$Fn(τ)$does$not$measure$the$variance$on$
scale$τ,$but$is$rather$a$weighted$sum$of$variances$on$shorter$scales$than$τ. 
 
Our$statements$above$were$put$on$firm$theoretical$foundation$by$C.$Henegan$and$G.$
Mc$Darby,$Phys.$Rev.$E,$62,&6103F6110$(2000),$by$establishing$the$link$between$the$$
DFA$fluctuation$function$and$the$power$spectral$density.$They$proved$the$relation$

F(τ ) = S(ω)
2(1− cos(ω))

dω
π /τ

π

∫ ,$

where$F(τ)$is$the$DFA(1)$fluctuation$and$S(ω)$is$the$power$spectral$density$(PSD).$It$
demonstrates$that$the$DFA$fluctuation$function$is$a$weighted$average$of$the$PSD$



over$frequencies$higher$than$π/τ (scales$shorter$than τ).$Hence,$the$variance$on$a$
given$scale$is$influenced$by$the$variability$on$shorter$scales,$where$the$statistics$is$
better.$This$is$the$reason$why$DFA$appears$to$give$smaller$errors$than$other$
methods.$But$for$the$same$reason$DFA$is$insensitive$to$deviation$from$scaling$on$the$
largest$scales$in$the$record,$and$hence$should$not$be$used$to$detect$such$deviations.$
$
It$is$well$known$that$DFA$shifts$the$period$of$an$oscillation$to$longer$scales,$and$the$
same$is$the$case$of$a$scale$break,$as$is$also$shown$by$Fig$4(c)$$in$the$paper$by$
Kantelhardt$et$al.$We$illustrate$this$in$Figure$1$attached$to$this$response,$where$we$
have$employed$DFA$to$an$ensemble$of$200$realizations$of$a$process$with$2000$data$
points,$which$is$a$superposition$of$an$fGn$with$β=0.2$and$an$fBm$with$β=1.8.$The$
spectrum$exhibits$a$clear$transition$in$the$scaling$with$the$center$of$the$break$
located$at$the$frequency$f=$1$x$10F2,$corresponding$$to$scale$ τ=1/f(=100.$This$break$
is$shifted$towards$a$larger$scale$(τ=250)$in$DFA(2),$which$is$the$DFAForder$
employed$in$Rybski$et$al.$(2006).$This$means$that$a$scale$break$at$ τ=100$yr$would$
appear$in$DFA(2)$as$a$break$at$ τ=250$yr.$But$in$Rybski$et$at$(2006)$none$of$the$
multiproxies$have$F(τ)$estimated$to$scales$much$longer$than$this,$hence$such$a$
break$could$not$have$been$detected$by$the$methods$employed$in$that$paper.$
$
The&N/4Drule&
Both$referees$are$disturbed$by$two$sentences$in$our$manuscript,$where$we$state$as$a$
useful$rule$that$the$scales$that$we$can$investigate$is$limited$to$τ<N/4.$Shaun$$Lovejoy$
thinks$it$is$too$restrictive,$and$referee$#3$claims$the$rule$only$applies$to$DFA$and$
that$τ<N/100$is$more$appropriate$for$all$other$estimators.$$
$
Based$on$Monte$Carlo$studies$of$fGns$we$conclude$in$the$manuscript$that$both$are$
wrong.$The$growing$errors$of$the$spectral$estimator$as$τ$approaches$N$gives$an$
indication$of$how$large$ τ$can$be$and$still$give$meaningful$estimates.$Such$error$
estimates$are$presented$for$logFbinned$spectra$in$Figures$9,11,12,$and$13$in$the$ms.$
$
Similar$MC$estimates$were$done$for$instrumental$data$and$multiproxyF
reconstructions$in$Rypdal$and$Rypdal$(2014)$with$DFA,$and$with$spectral$estimates$
and$DFA$on$multiproxies$and$millennium$long$AOGCMFsimulations$in$Østvand$et$al.$
(2014).$DFA$shows$smaller$error$bars$on$the$longest$time$scales,$but$this$is$due$to$
the$effect$discussed$above,$and$does$not$mean$that$the$true$variability$on$these$
scales$are$estimated$with$larger$accuracy.$The$errors$in$the$logFbinned$spectral$
estimates$are$only$large$enough$to$strongly$influence$the$estimate$of$the$spectral$
exponent$on$scales$longer$than$N/4$for$these$data$records$that$typically$contain$a$
few$thousand$data$points.$This$is$our$practical$basis$for$the$N/4Frule.$The$
periodogram$spectral$estimator$has$very$large$errors$at$individual$frequencies$(and$
this$does$not$improve$with$record$length,$so$it$is$not$a$finite$size$effect),$but$after$
proper$binning$of$the$frequencies$(logFbinning$is$the$proper$thing$for$scaling$
purposes$to$assure$that$all$scales$are$equally$weighted)$the$estimator$is$no$worse$
than$any$other$with$respect$to$bias$and$errors.$(As$discussed$above,$the$low$errors$
of$the$DFA$is$artifact).$



$
Multifractal&issues!
The$referee$assumes$we$don’t$know$the$multifractal$DFA,$because$we$have$
employed$the$standard$structure$functions$to$argue$that$the$Holocene$temperature$
record$is$monofractal.$The$possibility$that$MFFDFA$is$not$needed$does$not$seem$to$
occur$to$the$referee.$Multifractal$issues$are$not$essential$to$our$paper.$We$included$
standard$structure$functions$and$their$corresponding$scaling$functions$in$the$
revised$manuscript$in$response$to$Shaun$Lovejoy’s$complaint$that$we$used$a$
monofractal$model.$Multifractal$DFA$suffers$from$the$same$issues$as$standard$DFA,$
and$there$is$no$reason$to$use$it$for$the$mentioned$purpose.$$
$
Citations&concerning&the&Haar&wavelet&method&
We$do$not$write$that$the$Haar$wavelet$method$was$introduced$in$this$field$by$
Lovejoy$and$coworkers,$but$it$was$natural$to$refer$to$them$since$they$have$used$it$
extensively$used$it$for$the$study$of$scale$breaks.$Our$paper$is$not$a$review$of$scaling$
exponent$estimation$methods,$and$hence$have$no$ambition$of$presenting$a$complete$
list$that$gives$credit$to$the$pioneers.$
&
&
Revision&
In$the$second$revision$we$have$included$a$discussion$of$the$reason$why$we$do$not$
employ$DFA,$and$why$the$paper$by$Rybski$et$al.$does$not$disprove$the$existence$of$a$
scale$break$at$centennial$time$scales$(new$section$3.5).$
$
$

$
(Figure(1:((a)(The(power(spectral(density(of(an(ensemble(mean(of(synthetic(processes(
comprised(of(a(superposition(of(a(white(noise((β(=(0.2)(and(a(Brownian(motion((β(=(1.8).((b)(
DFA(fluctuation(function(F2((τ()(for(ensemble(mean(of(the(same(process.(The(dashed(lines(are(
the(limiting(slopes(at(short/long(scales.(Their(intersection(is(used(to(define(a(transition(
frequency((vertical(dashed(line)(between(the(two(scaling(regimes(in((a)(and(a(transition(scale(
for(the(DFA(2)(in((b).((

(



List%of%relevant%changes%in%revision%2%of%the%manuscript%
!

1. The!abstract!has!been!slightly!changed!to!make!our!main!conclusion!
clearer.!

2. In!section!1,!the!description!of!the!parameters!h/H!has!been!slightly!
modified.!

3. A!section!on!DFA!has!been!included!in!Section!3.!This!method!is!
commonly!used!for!scaling!analysis!of!climatic!records,!but!we!have!not!
used!it!since!it!is!insensitive!to!changes!in!scaling!regimes.!

4. A!section!has!been!included!in!section!6!where!Bond!events/cycles!are!
described.!If!these!cycles!are!a!real!phenomenon!in!the!Holcoene!climate,!
they!may!influence!the!scaling!in!the!Holocene!on!millennial!timescales.!!

5. A!section!has!been!included!at!the!very!end!of!section!6!where!the!issue!of!
hypothesis!testing!and!type!1/2!of!statistical!errors!are!discussed!in!
relation!with!our!study.!
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Abstract. The concept of multiple scaling regimes in temperature time series is examined, with em-

phasis on the question whether or not a mono-scaling model with one single scaling regime can be

rejected from observation data from the Holocene. A model for internal variability with only one

regime is simpler, and allows more certain predictions on time scales of centuries when combined

with existing knowledge of radiative forcing. Our analysis of spectra from stable isotope ratios from5

Greenland and Antarctica ice cores shows that a scale break around centennial time scales is evi-

dent for the last glacial period, but not for the Holocene. Spectra from a number of late Holocene

multiproxy temperature reconstructions, and one from the entire Holocene, have also been analysed,

without identifying a significant scale break. Our results indicate that a single-regime scaling climate

noise, with some non-scaling fluctuations on millennial time scale superposed, cannot be rejected10

as a null model for the Holocene climate. The scale break observed from the glacial time ice core

records is likely caused by the influence of Dansgaard-Oeschger events and teleconnections to the

Southern hemisphere on centennial time scales. From our analysis we conclude that the two-regime

model is not sufficiently justified for the Holocene to be used for temperature prediction on centen-

nial time scales.15

1 Introduction

The main focus of this paper is the scaling properties in paleotemperature records at centennial and

millenial time scales. In particular we study the differences in variability between glacial and inter-

glacial climates, and we discuss the justification of separating temperature variability on different

time scales into distinct scaling regimes. The notion of “scaling” in climatic time series is based20

on the observation that the natural variability of the Earth’s surface temperature can be modelled

as a persistent stochastic process, with superposed trends and quasi-periodic modes representing

variability which is not included in the noise background. There is a considerable body of litera-

ture suggesting that long-range memory (LRM) stochastic processes are good statistical models for

de-seasonalised local and global temperature records on time scales from months up to a century or25

more (Koscielny-Bunde et al., 1996; Rybski et al., 2006; Efstathiou et al., 2011; Rypdal et al., 2013;

1



Østvand et al., 2014). The standard continuous-time stochastic LRM processes are the fractional

Gaussian noise (fGn) and fractional Brownian motion (fBm). The latter is the cumulative integral of

the former, and both are said to be scale-invariant (or scaling), even though it is only the fBm process

that exhibits statistical self-similarity (see Sect. 3.3). The strength of persistence, or memory, in an30

LRM stochastic process is described by the spectral exponent �; the power spectral density (PSD)

takes a power-law form S(f)⇠ f�� . The fGn has �1< � < 1 and stationary variance, while the

fBm has 1< � < 3 and a non-stationary variance that grows in time like �(t)⇠ t��1. The fGn is

persistent (exhibits long-range memory) if � > 0, and is anti-persistent if � < 0.

Because the terms “scaling regime” and “scale-break/deviation from scaling” might be ambigous,35

the terms are briefly explained in the following. According to the glossary of Kantelhardt (2011) a

scaling regime can be identified only if a power law is valid for scales spanning at least one order of

magnitude, be it frequency or time scale. “Deviation from scaling” is synonymous with violation of

Kantelhardt’s definition. The term “break in scaling” is used to separate scaling regimes that exists

in a single time series, where each regime complies with Kantelhardt’s definition and is valid for at40

least one order of magnitude.

Ditlevsen et al. (1996) analysed the scaling in high-resolution ice core data from Greenland. Two

different overlapping time series were used to create a composite power spectrum, and from this a

break in scaling was identified around centennial time scales. On time scales shorter than centennial

the spectrum was flat (|�|⌧ 1), while on longer time scales a non-stationary regime with � ⇡ 1.645

was found. One of the time series covers 0-91 kyr BP, and the other 0-3 kyr BP. This procedure of

combining different time series into one power spectrum is problematic since the two time series

reflect different climate states with different variability. The longer time series is dominated by the

glacial state, while the short one contains only Holocene data. The different variability of the two

states is seen clearly by direct inspection of the data, e.g., from comparing the Holocene part of the50

GRIP ice core (Fig. 10a) and the last glacial period from the same ice core (Fig. 12a). The standard

deviation in the Holocene time series is less than half of the glacial one, and the latter looks more

bursty. The records in Fig. 10a and Fig. 12a can be associated with different stochastic processes.

The Holocene record is similar to an fGn with low persistence, while the records from the last glacial

period exhibits strong intermittency and is associated with a high spectral exponent, � > 1.55

A simple measure of scaling is the fluctuation analysis (FA) (for a brief review see Rypdal et al.

(2013)). It defines the fluctuation function F (�t) as the standard deviation of the data record after

it has been filtered by a simple moving average with window width �t, and hence measures the

fluctuation magnitude as a function of scale �t. The fluctuations are scaling if F (�t)⇠�th, where60

h is the scaling exponent. Lovejoy and co-workers denote this exponent by H . This convention

deviates from the mainstream literature on fractal processes, where H = h+1 is the Hurst exponent.

When we use the Hurst exponent in the present paper we shall denote it by Hu = h+1, in order to
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avoid confusion. For a scaling process the PSD is of the power-law form with � = 2h+1. An issue

with FA is which mean value to relate the fluctuation deviation to; the local mean in the window,65

or the mean of the entire data record. The latter is problematic if the fluctuations are monotonically

growing with increasing scale. This problem can be circumvented by convolving the data record with

the simple antisymmetric Haar-wavelet (Lovejoy and Schertzer, 2012a) rather than performing the

moving average. For fluctuations growing with scale it measures fluctuation differences versus scale,

whereas for fluctuations decreasing with scale it measures fluctuation relative to the local mean. One70

feature that the PSD, FA and Haar fluctuation share with many other measures of scaling is that it is

sensitive to trends and large-scale oscillations, i.e., it is often not able to discriminate between such

variability and true scaling behaviour.

Pelletier (1998) estimated the power spectra and scaling exponents from a Deuterium record from

the Vostok ice core as well as from instrumental local data, and also created composite spectra from75

the records. Huybers and Curry (2006) and Lovejoy and Schertzer (2012b) have studied the scaling

in multiple proxy data sets covering time scales from years to millions of years. Both report a break in

scaling from fluctuations decreasing with scale (h < 0, � < 1) to fluctuations increasing with scale

(h > 0, � > 1) on a transition time scale ⌧c ⇠ 102 yr. The break in scaling is seen from composite

spectra of paleotemperature records based on different proxies and reconstruction techniques, where80

many of the records span hundreds of kyr. Since glaciation is the dominating climate state in the

Quaternary, the spectra obtained in those papers are typical for glacial climate. Huybers and Curry

(2006) suggest that the power-law continuum in the spectrum of surface temperature on time scales

between one year and a century is a result of an inverse cascade in frequency space driven by the

seasonal cycle forcing. The non-stationary scaling regime from century time scale and longer is pro-85

posed to be the result of a nonlinear response to the Milankovitch cycle forcing. From the composite

spectra, they infer scaling exponents in the range � = 0.37� 0.56 for time scales ⌧ < 102 yr, and

� = 1.29�1.64 at longer time scales. Lovejoy and Schertzer (2012b) introduce three different scal-

ing regimes: the “weather” regime (� ⇡ 2 for time scales up to 10 days), the “macroweather” regime

(� ⇡ 0.2 for time scales from 10 days to 102 yr), and the “climate” regime (� ⇡ 1.4 for time scales90

from 102 yr and longer). Common for the studies mentioned is that they don’t make a distinction

between glacial and Holocene spectra.

Other results reported in the literature support our hypothesis of different scaling in glacial and

interglacial climate, with the scale break at centennial time scales absent for the Holocene. Blender

et al. (2006) analysed the scaling properties of a 10 kyr long climate simulation with a general95

circulation model (GCM), where no scale break could be detected at centennial time scales. Love-

joy et al. (2013) made similar observations and concluded that GCM’s do not predict climate, only

macroweather. Roe and Steig (2004) found by using a short-range memory autoregressive (AR)

model that the characteristic time scales for paleotemperature ice core records were significantly

shorter during the Holocene than during the last glacial period. This study is important for our rea-100
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soning, but the idea needs to be adapted to a long-memory model. We will separate the ice core

records into glacial and interglacial time series and demonstrate the fundamentally different scal-

ing properties of these climate states, and we will analyse other temperature reconstructions for the

Holocene in search for a detectable scale break.

105

The paper is organized as follows: in Sect. 2 we address the issues of uncertainties and limitations

of proxy-based reconstructions, and the implications for the existence of separate scaling regimes are

discussed. Sect. 3 describes the scaling analysis methods employed, and information about the data

used can be found in Sect. 4. The results from the analysis are presented in Sect. 5, and discussion

and conclusion follow in Sect. 6.110

2 The concept of multiple scaling regimes in the Holocene

Lovejoy and Schertzer (2012b) identify two scaling regimes in a number of Holocene temperature

records. In instrumental data the transition time ⌧c is found to be 10-30 yr, in proxy/multiproxy

reconstructions it is 40-100 yr, while for one of the ice core paleotemperature records it is approxi-

mately 2000 yr. Hence, it seems difficult to identify a universal ⌧c from the data examined in that pa-115

per. For the proxy/multiproxy reconstructions that were analysed in Lovejoy and Schertzer (2012b),

the time period 1500-1979 was selected because it was common to all reconstructions, and the me-

dieval warm period was avoided. However, by starting in the Little Ice Age the series are strongly

influenced by steadily increasing solar, as well as anthropogenic, forcing. A pronounced linear trend

has strong effect on the estimate of the scaling exponent from power spectra unless the time series is120

linearly detrended. This is also the case for the Haar fluctuation analysis, which was also applied in

Lovejoy and Schertzer (2012b).

Many of the papers cited in Sect. 1 present composite spectra based on instrumental and/or proxy

data for scaling analysis. There are many problems related to this, in addition to the already men-

tioned aspect of combining time series from the Holocene/glacial climate state. The various data sets125

are representative for different degrees of spatial averaging. This will affect the shape of the spectra

and the estimates of the scaling exponent, because the high-frequency variability is reduced with in-

creasing degree of spatial averaging. For the instrumental data we can obtain global averages, while

proxy/multiproxy time series represent local, regional or at best hemispheric temperature. There is

an important difference between composite spectra and spectra from multiproxy reconstructions.130

Multiproxy reconstruction methods generally take geographical weighting into account, and the aim

is to obtain realistic high/low frequency variability throughout the time period covered by the recon-

struction. Most composite spectra, on the other hand, do not handle these aspects in a satisfactory

manner. An example of a well designed composite spectrum can be found in Laepple and Huybers

(2014), where the proxy records have been corrected for noise, and the instrumental data used were135
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extracted from the same location where the proxy records were sampled. No attempt was made to

estimate a scaling exponent from this spectrum, but it is clear that no scale-break can be observed

around centennial time scales. Correcting for proxy noise is outside the scope of the present study,

and we will therefore avoid studying composite spectra based on different reconstructions spanning

different time scales and climatic states, and based on different proxies and reconstruction tech-140

niques.

The techniques used to estimate the scaling exponent have inherently higher uncertainties on

the longest time scales, due to sparse data on these time scales. A rule of thumb is that the scaling

properties for a time series of length N should not be estimated on time scales longer than N/4, since

the uncertainty on time scales longer (frequencies lower) than this is too large to make meaningful145

estimates. Suppose, for instance, we want to establish that we have scaling in annual data on scales

up to 100 yr. Then we need a series which is at least 400 yr long. If we want to establish the existence

of a different scaling regime on time scales longer than 100 yr for a time series, we need to know

with reasonable certainty the spectral estimates up to one millenium. As we will demonstrate in

Sect. 5, this implies that we need record lengths spanning several millennia to bring the uncertainty150

of � below the limit needed to reject the single-regime scaling hypothesis.

Instrumental temperature data are not included in our analysis of multiple scaling regimes because

previous studies do not show pronounced breaks in the scaling after detrending to account for in-

fluences from anthropogenic warming (Rypdal et al., 2013). The series are too short to detect scale

breaks at centennial time scales. However, we use instrumental data in Sect. 3 for illustration of inter-155

esting features of various techniques for scaling characterisation. Detection of scaling properties in

regional or hemispheric proxy/multiproxy temperature time series is possible but not optimal, since

these records generally cover the past 2000 years or less, and, even though they are usually given

with annual resolution, some are effectively filtered to vary smoothly on annual time scale, and have

effective resolution from 5 to 10 yr. For some of the available proxy/multiproxy reconstructions an160

enhanced power can be inferred relative to a mono-scaling spectrum on time scales longer than a

century, but data are too sparse to show that this enhanced power represents a new scaling regime.

The deep ice cores sampled at Greenland and in Antartica provide the most suitable data sets for

studying possible scale breaks in both the Holocene and the last glacial period, due to the high tempo-

ral resolution and long duration. It was argued by Lovejoy and Schertzer (2012b) that the Holocene165

part of the Greenland ice core GRIP �18O is exceptionally stable compared to other proxy-based

reconstructions of North-Atlantic temperature, but we observe similar stability also for the stable

isotope records from Greenland ice cores GISP2 and NGRIP, and the Antarctic ice cores EPICA,

Vostok and Taylor dome. When comparing the Holocene stable isotope records from deep ice core

records with temperature reconstructions from other regions and based on other proxies, one needs170

to keep in mind that local variability and the sensitivity of the various proxies to changes in their

environment will affect the resulting proxy record. A proxy record is based on an imperfect recorder
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of a climatic variable of interest, and some sources of noise are not related to climatic processes.

Unfortunately, there is no such thing as a temperature reconstruction based on a single proxy that

is representative for global temperature variability. In this manner, all temperature reconstructions175

are exceptional, because the proxies record some local variability and are subject to noise from a

number of sources.

3 Methods

In our data analysis we have used a number of tools, which are described in detail in the following

subsections. In general, the periodogram estimator for the power spectral density (PSD) is applied180

for the scaling analysis of paleotemperature time series in our study, and are the basis for signif-

icance testing when studying potential scale breaks in the time series. We have chosen the PSD

because most readers are familiar with it, and because it is fully adequate for the purpose. Wavelet

scalograms are not used to estimate scaling properties, but to visualize particular features in some of

the time series. Structure functions are discussed to point out the general importance of higher-order185

statistics and to justify a monoscaling model (fractional Gaussian noise) for the internal tempera-

ture variability in the Holocene. The Haar fluctuation function is discussed because it is strongly

advocated as the ultimate scaling analysis technique by e.g., Lovejoy and Schertzer (2012a). The

detrended fluctuation analysis (DFA) is an estimation technique that is commonly used for scaling

analysis of climatic records, but it will not be used in this paper because it turns out to be particularly190

insensitive to scale breaks on scales comparable, or larger than, one tenth of the record length. This

feature will be discussed in some detail in section 3.5.

3.1 Estimation of Power Spectral Density

The periodogram is applied as an estimator for power spectral density (PSD) for evenly sampled

time series of length N . The stable istope records from Greenland and Antarctic ice cores have been195

linearly interpolated to obtain even sampling in time. All other records were already provided with

even sampling. The periodogram is defined here in terms of the discrete Fourier transform Hm as

S(fm) = (2/N)|Hm|2, m= 1,2, . . . ,N/2. The sampling time is the time unit, and the frequency is

measured in cycles per time unit: fm =m/N . �f = 1/N is the frequency resolution and the small-

est frequency which can be represented in the spectrum, while fN/2 = 1/2 is the Nyquist frequency200

(the highest frequency that can be resolved). The periodogram has a poor signal to noise ratio, but

since we are interested in studying the overall shape (scaling) of the spectrum, and not the power at

specific spectral peaks this is not a problem here. By presenting the periodogram in a log-log plot, the

scaling exponent � can be estimated by a linear fit to the power spectrum; logS(f) =�� logf + c.

In the present study the periodogram is log-binned before fitting to ensure that all time scales are205

weighted equally (Østvand et al., 2014).
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We have also considered other spectral estimators for the unevenly sampled stable isotope data

from ice cores, such as the Lomb-Scargle periodogram (LSP), (Lomb, 1976; Scargle, 1982), or

correlation slotting, Rehfeld et al. (2011). The main motivation for looking into different spectral

methods is to compare biases in the spectra that could be wrongfully interpreted as breaks in the210

scaling. The papers by Rehfeld et al. (2011) and Broersen et al. (2000) demonstrate that irregularly

sampled data cause various problems for all spectral techniques. Slotting can be problematic because

the covariance estimators may not be positive semi-definite, and could hence give negative values in

the spectrum. Interpolation leads to underestimation of the spectral power at high frequencies, while

the Lomb-Scargle periodogram suffers from the opposite bias: overestimation of the spectral power215

at high frequencies. The skill of the LS periodogram is, as demonstrated by Rehfeld et al. (2011),

dependent on the skewness of the distribution of sampling intervals. The bias will therefore differ

from dataset to dataset. We have tested the performance of the method on surrogate data mimicking

the ice core proxy data under study. The detailed results for this test are shown in supplementary

material. In general the method performs well, but not much better than interpolation plus standard220

periodogram. Results presented in the main paper are obtained using only interpolation and the

standard periodogram. Scaling analysis of the ice core data based on the LSP is included in the

supplementary material section 1.

3.2 Wavelet scalogram

The continuous wavelet transform is the convolution between a time series x(t) and the rescaled225

mother wavelet  (t);

W (t,⌧ ;x(t), (t)) =

1Z

�1

x(t0)
1p
⌧
 ⇤

✓
t0 � t

⌧

◆
dt0, (1)

where the asterisk indicates complex conjungate. The wavelet scalogram (WS) is defined as |W (t),⌧)|2,

and is plotted versus time and time-scale. The WS is used here as a supplementary tool to the Fourier

spectra. Time segments before and after the time interval where we have data were padded with ze-230

ros, as described in Torrence and Compo (1998). The region in (t,⌧)-space affected by edge effects

is the region above the white line in the upper part of the WS-plot shown in, e.g., Fig. 11. Due to the

uneven sampling of the data in this study, linear interpolation has been performed prior to computing

the WS. At each time t there is a characteristic sampling period in the orginal time series, and hence

a Nyquist period. This Nyquist period is marked as the lower white curve in the WS plots. The WS235

below that curve does not reflect observed variability.

We have chosen two wavelet functions as the basis for our study: the Morlet wavelet which is com-

plex valued, and the Mexican hat wavelet (second derivative of a Gaussian) which is real valued. The

wavelet scalograms from these two wavelet functions provide different information. The Mexican

Hat wavelet function resolves the timing of spectral peaks precisely, while the scale resolution is240

poor. For the Morlet wavelet function the opposite is true.
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3.3 Structure functions and scaling function

A plethora of estimators have been developed for computing characteristic exponents for monoscal-

ing long-range memory (LRM) processes. They all have strengths and weaknesses, but have in com-

mon that they give nonsense if the signal is not a monofractal process. Common for many papers245

by “LRM-skeptics” is the uncritical use of cookbook recipes for such estimators to data that are not

fractal, for instance climatic time series dominated by a specific trend (e.g., Mann (2011)). Hence,

more important than estimating a characteristic exponent is to examine the general scaling charac-

teristics of the data. A classical and useful method is to examine the probability density functions

(PDFs) of the time series as it varies on different time scales. Rather than computing and plotting the250

PDFs, it is more common to compute the statistical moments of order q of the distribution, and then

plot these moments as a function of time scale �t. Given a stochastic process x(t), the moments

Sq(�t)⌘ E[|x(t+�t)�x(t)|q], (2)

are called the structure functions (SFs) of the process. If the process is sampled at discrete times

t= 1, . . . ,N the empirical moments Ŝq(�t) = (N ��t)�1
PN��t

i=1 |x(i+�t)�x(i)|q constitute255

estimates of the structure functions. For large �t (when �t is no longer a small fraction of N ) the

number of independent terms becomes small, and the statistical uncertainty of the estimate becomes

large. As mentioned in Sect. 2, a useful rule is that this limits the scales we can investigate to �t <

N/4.

Let us assume that x(t) is a self-similar, Gaussian, non-stationary stochastic process, i.e., a frac-260

tional Brownian motion (fBm). Then the fluctuation function F (�t) is monotonically increasing

(h > 0, � = 2h+1> 1), and the structure functions defined on x(t) take the form,

Sq(�t)⌘ E[|x(t+�t)�x(t)|q] =�t⇣(q), (3)

where ⇣(q) = hq is the scaling function of the self-similar (monofractal) process. By taking the

logarithm of Eq. (3) we find the linear relationship between logSq(�t) and log�t, where ⇣(q) is265

the constant of proportionality, hence the SFs appear as straight lines in log-log plots with slope

⇣(q). The scaling ⇣(q) is a linear function of q only if the process is monofractal. If the SFs have the

form Eq. (3) (i.e., if the SFs are straight lines in log-log plot) so that ⇣(q) is defined, but ⇣(q) is not

a linear function, then the process is multifractal. If the SFs are not straight, the process is neither

multi- nor monofractal, but it may still have a bursty or intermittent appearance.270

If the process is stationary, with decreasing fluctuation function (h < 0, � < 1), it is denoted a

fractional Gaussian noise (fGn), and the SFs are constant (flat) and contain no other information than

the stationarity. However, as we shall see below, the SFs may still contain some useful information

about the deviation from scaling if there are trends or oscillations in the data. In order to expose the

scaling properties (if any) of the process, the trick is to form the cumulative sum y(i) =
Pi

j=1x(j)275
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and then compute the SFs from this sum. The resulting SFs take the form

Sq(�t)⌘ E[|y(t+�t)� y(t)|q] =�t⇣(q) (4)

where ⇣(q) =Huq is the scaling function, and Hu the scaling (Hurst) exponent, of the cumulative

sum y(t). Hu is related to the spectral exponent through Hu = (�+1)/2.

The usefulness of the structure-function approach is illustrated in Figure 1. Panel (a) shows the280

eight structure functions corresponding to q = 1,2, . . . ,8 for the monthly global mean surface tem-

perature (GMST) for the period 1880 – 2010 derived from the HadCRUT3 data set.

The underlying scaling of the noise is exposed by computing the SFs for the cumulative sum, as

shown in Figure 1b. However, the corresponding scaling function, shown by the upper line in Fig. 1d,

has the slope Hu ⇡ 1, which is always the case for a signal dominated by a strong trend. The true285

scaling of the noise appears after a second-order polynomial fit to the record has been subtracted.

The SFs for the cumulative sum of the detrended record is shown in Fig. 1c, and the corresponding

scaling function by the lower line in Fig. 1d. This line has Hurst exponent Hu ⇡ 0.85. The straight

appearance of the scaling function tells us that the GMST is monofractal, and simple tests on the

PDFs at different scales show that it is Gaussian (Rypdal and Rypdal, 2010).290

The scaling functions in Fig. 1d have been computed from the slopes of the SFs in the regime

of scales �t < 10 yr where the SF-curves are straight. The bending of these curves for large scales

are due to oscillatory modes on periods around 20 yr and 70 yr. Estimators employing only second-

order statistics, like the periodogram or the Haar fluctuation employed by Lovejoy and Schertzer

(2012b) are not able to distinguish between scale-invariant fluctuations and variability due to trends295

or oscillations. Careful application of higher-order statistics like higher-order SFs has this ability.

This can give us the possibility to separate distinct non-scaling dynamical features from the scaling,

persistent noise background. In section 5.1 we shall demonstrate this usefulness on a multiproxy

temperature reconstruction spanning two millennia.

3.4 The Haar fluctuation function300

The Haar fluctuation was briefly mentioned in Sect. 1. The simple definition given in Lovejoy et al.

(2013) starts by defining the fluctuation on scale �t as,

�xt(�t) =

������
2

�t

t+�t/2X

i=t

xi �
2

�t

t+�tX

i=t+�t/2

xi

������
, (5)

and then the Haar structure function is given by

SHaar
q (�t) =

1

N ��t

N��tX

t=1

�xt(�t)q. (6)305

The Haar fluctuation function used extensively by Lovejoy and Schertzer in arguing for the existence

of transitions between scaling regimes is defined as

FHaar(�t) =
q
SHaar
2 (�t). (7)
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In Fig. 2 we illustrate some features of the Haar fluctuation applied to the instrumental GMST.

Fig. 2a shows the GMST and a trend computed by fitting a second order polynomial. The black310

thick curve in Fig. 2b is the Haar fluctuation function computed from the record in a log-log plot

(the upper curve is shifted by a factor 10).

There are (at least) two different ways to model this record as a simple stochastic process. One

is to assume that it is a linear combination of an fGn (� < 1) and an fBm (� > 1). The former will

dominate the fluctuation function on the small scales, and the latter on the long scales. Hence this315

is a model that exhibits a scale break and two scaling regimes. We have estimated the slopes of

the fluctuation function in these two regimes, and found h⇡�0.1 (� = 2h+1⇡ 0.8) on the short

scales, and h= 0.3 (� ⇡ 1.6) on the long scales. We then computed the weights of each process

from using the estimated variance of the GMST on the shortest and longest scales, respectively,

and computed an ensemble of realisations of their linear combination. The red curves in Figure 2b320

constitute 20 realisations in such an ensemble (multiplied by a factor 10). These curves demonstrate

that the observed Haar-fluctuation is consistent with this model, but also that the uncertainty in the

model prediction on scales longer than a decade is so large that that the observed fluctuation function

here could also be consistent with a model where h < 0 (� < 1). Another obvious way to model the

record is as a linear combination of the fGn and the quadratic trend. The resulting ensemble is shown325

as the blue curves in Figure 2b. The observed record is consistent with this model too, but the big

difference is that in this case the model prediction on large scales is much more certain, and hence

constitutes a “better” statistical model. An extra bonus is that the quadratic trend is physically well

understood, since it corresponds closely to present knowledge about greenhouse forcing.

Thus, we have the choice between explaining the observation with a poor statistical model (many330

parameters, large prediction uncertainty, and no physics explaining the scale break) and a much

better model (fewer parameters, lower uncertainty, and a clear physical explanation).

A common estimator for scaling exponents is the wavelet variance, i.e., to plot the variance of the

wavelet coefficients versus scale in a log-log plot, and it is common to normalise the wavelet such

that the slope for an fGn will be the spectral exponent �. In practice this can be obtained by squar-335

ing the Haar fluctuation S1/2
2 (�t) and multiplying by the scale �t, i.e., we compute �tS2(�t). In

Figure 3 we generate an ensemble of 10 fGns of 1000 data points with h=�0.1 (� = 0.8) and plot

S1/2
2 (�t) for all realisations in the ensemble in Figure 3a , and �tS2(�t) for the same ensemble in

Figure 3c. If we use the entire ensemble to estimate the slope we will get a quite accurate result (get-

ting better the larger the ensemble), but if we estimate the slope from one realisation we make greater340

errors if we include the longer time scales in the fit. This is why some authors recommend not to

include longer scales than 1/4 of the record length and others recommend no more than 1/10. If we

fit a straight line we have no reason to believe that the Haar fluctuation gives less accurate estimates

than the Haar wavelet variance. However, by inspecting the two for one particular realisation in the

ensemble, as is done in Fig. 3b and d, we observe that the Haar fluctuation can present a break in the345
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curve that visually is much more pronounced than in the corresponding Haar wavelet variance. This

is nothing but a visual illusion (the two plots contain the same information); a curve that changes its

slope from negative to positive is more easily perceived to represent different qualities than the curve

that only changes its positive slope somewhat. Since all the curves are produced from realisations

of the fGn, all scale breaks are spurious, and caused by the diverging statistical uncertainty in the350

high-scale end. Thus, if the underlying scaling is close to 1/f noise, then weak trends or oscillations

tend to appear as breaks in the Haar fluctuation curve, but are much less visible in the wavelet vari-

ance curve. A sound approach to graphical tools like this should avoid visualisations like the Haar

fluctuation, which exaggerates such spurious breaks.

3.5 The detrended fluctuation analysis (DFA)355

This estimator was invented by Peng et al. (1994) and first applied to climatic time series by Koscielny-

Bunde et al. (1996). The technique performs an n-th order polynomial detrending of the cumulative

sum of the data record on each time scale ⌧ , and computes the variance (fluctuation function) Fn(⌧)

of the resulting residual as a function of ⌧ . A good introduction to the technique is Kantelhardt et al.

(2001).360

DFA performs very well when it comes to estimation of the scaling exponent of perfectly scaling

signals. Errors arising from the finite length of the data record are smaller than for other estimators.

However, since the nature of DFA is to perform detrending on all scales, the variance on a scale

⌧ is strongly underestimated compared to the actual variance, even when the signal is perfectly

scaling with no imposed trend. The method works for estimation of the scaling exponent because365

(in a perfectly scaling signal) this underestimation is the same on all scales. This underestimation

of the true variance increases with degree of detrending (the order n of the polynomial), so even if

the slopes of the curves logFn(⌧) vs. log⌧ remain the same as n increases, the variance goes down,

as shown for instance in Fig. 4 of Kantelhardt et al. (2001). In effect Fn(⌧) does not measure the

variance on scale ⌧ , but is rather a weighted sum of variances on shorter scales than ⌧ .370

For this reason DFA shifts a scale break to longer scales, as is shown by Fig. 4(c) in the paper by

Kantelhardt et al. (2001). We illustrate this in Fig. 4, where we have employed DFA to an ensemble

of realisations of length 2000 time steps of a process which is a superposition of an fGn with � = 0.2

and an fBm with � = 1.8. The power spectrum exhibits a clear transition in the scaling with the center

of the break located at the frequency f ⇡⇥10�2, corresponding to scale ⌧ ⇡ 1/f = 100. This break375

is shifted towards a larger scale (⌧ ⇡ 250) in DFA(n= 2), which is the DFA-order employed in

Rybski et al. (2006). This means that a scale break at ⌧ ⇡ 100 yr would appear in DFA of a 2000 yr

record as a break at ⌧ ⇡ 250 yr. But in Rybski et al. (2006) this is roughly the maximum time scale

investigated by DFA for the various multi-proxy records, hence such a break could not have been

detected by the methods employed in that paper. This demonstrates that DFA does not have the380

sensitivity on long time scales to detect scale breaks unless the break takes place at a transition scale
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which is at least an order of magnitude shorter than the length of the observed data record. For this

reason DFA is not employed as an estimator in the present paper.

4 Data

The scaling is analysed in seven proxy/multiproxy temperature reconstructions representing late385

Holocene temperature, one temperature reconstruction representing the entire Holocene time period,

in addition to six reconstructions of stable isotope ratios from the deep ice cores GRIP, GISP2 and

NGRIP from Greenland, and EPICA, Taylor dome and Vostok from Antarctica. Information and

analysis results from GISP2, NGRIP, Taylor and Vostok is provided in supplementary material. From

the available ice core time series we extract sub-series covering only the Holocene and only the last390

glacial period, respectively. For the GRIP ice core we also extract a time series covering 0 – 85

kyr BP. Since the exact timing of the transition between the Holocene and the last glacial period is

slightly different for Greenland and Antarctica, we have chosen the start and end of the time series

carefully for each series, such that the transition is not contained in any of the “Holocene only” or

the “glacial only” time series.395

4.1 Proxy/multiproxy late Holocene temperature reconstructions

We have chosen seven proxy- or multiproxy based temperature reconstructions for our study, and

in order to avoid the trend effect from anthropogenic warming we have discarded data after 1850

AD (see Table 1). All time series are given with annual resolution. A few of the reconstructions are

based partly on the same raw proxy records, but we include all since the reconstruction methods are400

different. The Jones et al. (1998) multiproxy reconstruction represents northern hemisphere temper-

ature. The Briffa et al. (2001) reconstruction represents the continental region 20� N – 90� N and is

constructed from tree rings. The Esper et al. (2002) reconstruction is also based on tree rings and rep-

resent the continental region 30� N – 80� N. The Huang (2004) reconstruction is based on borehule

temperatures, integrated with instrumental temperatures and the multiproxy reconstruction by Mann405

et al. (1999). The Moberg et al. (2005) multiproxy reconstruction represent northern hemisphere

temperature, and is smoothed on the shortest time scales, so estimates of the scaling exponents are

restricted to time scales from 4 years and longer. The Mann et al. (2009) multiproxy reconstruction

represents global temperature, and is smoothed up to decadal time scales. The Neukom et al. (2014)

multiproxy reconstruction represents southern hemisphere temperature.410

4.2 Multiproxy full Holocene temperature reconstruction

The temperature reconstruction described in Marcott et al. (2013) is included in our study because it

covers the entire Holocene time period. The reconstruction is based on 73 proxy records with tempo-

ral resolution varying from 20 to 500 years. The spatial distribution of proxy data is near global, and
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there is a high percentage of data sets from marine sites. The proxy records were interpolated to 20-415

year resolution before constructing the temperature reconstruction, and the final record is presented

with a 20-year resolution. This data set is unique in our study because the reconstructed temperature

gets gradually smoother as one goes back in time. This is observed from the time series itself in

Figure 9a. From the supplementary material of the Marcott et al. (2013) paper it is clear that the

proxy records covering the most recent time also in general exhibit the best temporal resolution. The420

reconstructed temperature data for the past 1500 years therefore represent high-frequency variability

in a more realistic way than the remaining part of the reconstruction.

4.3 The GRIP ice core

The European multinational research project “Greenland Ice Core Project” (GRIP) completed drilling

a 3028 m deep ice core from central Greenland in 1992 (Dansgaard et al., 1993). Two GRIP data425

sets are used in this study, one with high temporal resolution covering 0 – 91 kyr BP (Ditlevsen

et al., 1996), and one with lower temporal resolution covering 0 – 250 kyr BP (Greenland Ice-Core

Project (GRIP) Members, 1993; Johnsen et al., 1997). The high-resolution data set was provided by

Peter Ditlevsen at the Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen,

personal communication. Both data sets are used to estimate the scaling exponents, but the results430

shown in Sect. 5 are for the high resolution time series. Both temperature reconstructions are based

on �18O.

4.4 The EPICA ice core

The European Project for Ice Coring in Antarctica (EPICA) drilled two deep ice cores in Antarctica

between 1996 and 2006. Here we focus on the core from dome C at the East Antarctic Plateau,435

covering the past 740 000 years (EPICA community members, 2004; Jouzel et al., 2007). The tem-

perature reconstruction is based on �D.

5 Results

5.1 Results for late Holocene multiproxy reconstructions440

Three approaches are used to detect a scale break from the spectra of the seven multiproxy temper-

ature reconstructions. The first is to assume a scale break at exactly 100 years, and then estimate �

for long and short time scales, and determine the uncertainties for each estimate. By this approach

we demonstrate that scale breaks may occur by chance from a mono-scaling model, without being

statistically significant. The second approach is to use a procedure for automatic detection of a scale445

break from a two-scaling regimes hypothesis, and show that a wide range of time scales ⌧c for the

break, and a wide range of scaling exponents �1,�2, arise by applying the procedure to a Monte
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Carlo ensemble of monoscaling time series. We also employ the structure function approach, and

show that the enhanced power at large scales is associated with an oscillation with characteristic

scale around 500 yr.450

Fig. 5 illustrates the procedure and results for the Moberg temperature reconstruction, using the

first approach. The scaling exponent � is estimated from the standard periodogram of the recon-

structed data, for time scales shorter than 102 yr (�1,data) and for time scales longer than 102 yr

(�2,data), as shown in Fig. 5b. A Monte Carlo (MC) ensemble of synthetic fGn’s with 2000 mem-

bers is then constructed with �1,data, and from the spectra (Fig. 5c), the same estimation technique is455

used to estimate �1,MC and �2,MC for each realization. From the distribution of the estimated �1,MC

and �2,MC, the 95% confidence ranges are computed. Fig. 5d shows the mean and 95% confidence

range for �2,MC. Since the blue line (�2,data) is within the confidence range for a MC ensemble

of fGn’s with �=0.8, the single-scaling regime hypothesis cannot be rejected. Results for all seven

reconstructions are shown in Table 1.460

For the Esper at al. (2002) reconstruction the estimate of �1,data is slightly outside the confidence

range, but this is due a bias of the synthetic fBm for � slightly higher than unity (see supplementary

material section 1.1 for further details). This deviation should therefore be ignored.

From the second approach we obtain for each reconstruction two values of � and a time for

the scale break. The procedure is to fit two line segments with slopes �1 and �2 to the log-log465

spectrum, such that they join at f = fc = 1/⌧c. The two slopes and the transition frequency fc are

the parameters to be fitted by an ordinary least-square procedure. Results for the seven temperature

reconstructions are provided in Table 2, where also the differences in �-values are included. The

scale-break hypothesis of Lovejoy and Schertzer (2012b) states that the the difference �2��1 should

be around unity. This procedure has also been tested on a Monte Carlo ensemble of mono-scaling470

fGn’s. Fig. 6 shows a histogram of the differences in estimated �2 and �1. The histogram shows that

the scale breaks detected by this procedure in the multiproxy records are not unlikely to be detected

in records with a single scaling regime, i.e., their detection does not reject the single-scaling regime

hypothesis. A histogram of ⌧c also shows a broad distribution, (figure not shown).

In Figure 7a we plot SFs for the cumulative sum of the Moberg multiproxy reconstruction. The475

SFs are straight in the log-log plot up to around 500 yr, but then there is a broad bump. By examining

the record it becomes apparent that this bump is associated with an oscillation with period of order of

a millennium that involves the Medieval Warm Anomaly (MWA) high and the Little Ice Age (LIA)

low. The fact that this oscillation shows up in the high-order SFs indicates that its amplitude is larger

than consistent with the underlying persistent noise. If we fit the SFs by straight lines up to 500 yr480

we obtain the scaling function in Figure 7b with slope Hu ⇡ 0.87, in very good agreement with what

was found from the instrumental data. If this oscillation were a manifestation of a new scaling regime

with � > 1.4 (h > 0.2, Hu > 1.2), we should expect the SFs in Figure 7a to be straight with slope q

on scales > ⌧c, and the scaling function obtained by fitting lines to the SFs on these scales to have
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slope Hu = 1 (this is easily demonstrated by Monte Carlo simulations). What we observe, however,485

is a downward bend caused by the oscillation discussed above. It can be correctly argued that this

bend is not statistically significant, since we only have one sample of it, but it demonstrates very

clearly that there are cases where fluctuation measures like the periodogram or the Haar fluctuation

function will suggest a new scaling regime with higher scaling exponents (see Figure 8b), while the

SF method will suggest oscillations.490

The issue of modelling the fluctuations on multi-century time scale as a second scaling regime

or an oscillation is illustrated in Fig. 8. The idea is the same as in Fig. 2, but now the “trend” is

modelled as a growing oscillation on the form Atsin [!(t�')]. The Moberg record and the fitted

trend is shown in Fig. 8a, and Fig. 8b shows the Haar fluctuation of the record along with realisations

of a model comprised of a linear combination of an fGn and an fBm (red curves), and realizations of a495

model comprised of a linear combination of an fGn and the oscillatory trend. Again, the observation

is consistent with both models, but the latter exhibits smaller uncertainties at longer scales, and

hence is a better statistical model. The attribution study of Rypdal (2015) points at a combination of

volcanic and solar forcing, with greater weight to volcanoes, as the main driver of this oscillation.

Rypdal and Rypdal (2014) show that the residual after subtracting the response to this forcing is500

well modelled as an fGn with h compatible with what was used for the short scales in Figure 8b.

Thus, compared to a two-scaling regime model, the simpler and more accurate statistical model of

the Moberg record is to model the internal variability as a persistent fGn for all scales up to the

length of the record, superposed on a forced oscillatory trend.

An important feature shown by the scaling functions in Figs. 1 and 7 is that the background noise505

in GMST is monofractal. It is also Gaussian. This means that a fractional Gaussian noise is a good

model for these fluctuations, and hence that all essential information is contained in the scaling

exponent and the variance. This is also true for ice core data in the Holocene, while during the last

glaciation, ice core data are neither monofractal nor multifractal. In an accompanying paper from our

research group (Rypdal and Rypdal, 2015) it is demonstrated that if the transitions between stadial510

and interstadials associated with DO events and glacial/interglacial transitions are removed from

the ice-core records, the remaining fluctuations scales roughly as a 1/f noise (� ⇡ 1) on time scale

longer than a century. In other words, over the length of the Antarctic ice core record (800 kyr) the

temperature variability can be described as a series of glacial/interglacial transitions, and within the

glacial periods; a series of stadial/interstadial transitions, superposed on a background 1/f noise.515

This suggests that Holocene variability should also exhibit this scaling of the climate noise, and the

analysis of the Moberg record we have made here does not reject that hypothesis.

5.2 Results for the full Holocene multiproxy reconstruction

The reconstruction by Marcott et al. (2013) has been analysed with the periodogram in a particular

way to take into account the increasing smoothness of the record as one goes backward in time. If we520
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compute the standard periodogram for the full time series, the resulting spectral exponent is � = 2.9.

The power is artificially low at high frequencies, and this is corrected by dividing the time series into

segments Sn of lengths 2n ⇥ 400 yr, with n= 0,1,2 . . . ,5, and starting with the most recent period.

Hence, S1 = 50� 450 yr BP, S2 = 50� 850 yr BP, S3 = 50� 1650 yr BP, S4 = 50� 3250 yr BP,

S5 = 50� 6450 yr BP, and S6 = 50� 11290 yr BP (longest possible record, shorter than 25⇥ 400).525

The periodogram was estimated for each segment, and then a new power spectrum was created using

only parts of each segment assumed to be trustworthy with regard to preserved variability. All of S1

was included, while for S2, . . . ,S6 only the low-frequency parts were included (none overlapping).

By this composition, the resulting power spectrum represents the variability on all time scales more

correctly. Fig. 9c shows the spectra of all six segments, in addition to the corrected spectrum (blue530

dots, black line). The value of �=1.3 is estimated from this line. The corrected spectrum still does

not represent the true scaling of the global temperature, but it is a better representation than the

periodogram of the original record.

5.3 Results for ice core time series

For the time series plots, time on the horizontal axis is given in years BP (before present), where535

“present” is defined as 1950 AD. The spectral analysis is presented in a double-logarithmic plot.

The raw periodogram is plotted in gray, while the log-binned version is marked by black points.

The spectral index � is estimated from the log-binned periodogram in the region shown by the blue

line. Finally, the blue, shaded area indicate the 95% confidence range estimated from an ensemble

of synthetic fGn’s/fBm’s with � and variance estimated from the log-binned periodogram. The plot540

of the wavelet scalogram is included in this section only for the GRIP Holocene/past85 kyr record.

For the last glacial period, we present time series and periodograms for a time interval of ⇡ 80 kyr.

Spectral analysis results are also included for a combined Holocene/last glacial period time series

from the GRIP ice core to illustrate that analysis of such records will be dominated by the glacial

climate and suppress the characteristics of Holocene climate.545

5.3.1 Results from the GRIP ice core

Fig. 10a shows the �18O time series of the Holocene part of the high-resolution GRIP ice core, and

Fig. 10b the periodogram from the same time series. Fig. 10c displays the same time series as shown

in (a), but with the earliest 2500 yr removed. Fig 10d shows the periodogram for the time series in

(c). The rationale for removing the earliest part of the Holocene record can be seen from Fig. 10a,550

where one observes a decrease in �18O around 8 kyr BP. This particular decrease is often observed

in paleotemperature records from the northern hemisphere, and especially in records from the North-

Atlantic region. The feature is known as the 8.2 kyr event, and the temperature change was probably

caused by a large pulse of freshwater into the North-Atlantic Ocean associated with the collapse of

the Laurentide ice sheet (Alley and Agustsdottir, 2005). In Fig. 10b, � is estimated to be ⇡ 0.3 for555
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time scales up to 103 yr. No scale break is detected on centennial time scales. The low value of �

is typical for local temperature data from continental sites (Blender and Fraedrich, 2003; Fraedrich

and Blender, 2003). On time scales longer than a millennium we can infer a higher �, but still � < 1.

Since the 8.2 kyr event might affect the scaling we also analysed the shorter record (Fig. 10c). The

periodogram for this time series is essentially flat. Fig. 11 shows the Mexican hat and Morlet wavelet560

scalograms for the full Holocene section of the GRIP ice core. The 8.2 kyr event clearly increases

the power at millennial time scales, and this event is the source of the increased power observed at

that time scale in Fig. 10b. From the periodogram of the Holocene part of the low-resolution GRIP

time series we estimate � ⇡ 0.1 (not shown in figure).

Fig. 12a displays the �18O time series for the GRIP ice core from the last glacial period, and565

Fig. 12b the periodogram for the same time period. In Fig. 12a the Dansgaard-Oeschger (DO) events

are observable as rapid warming over decadal time scales, followed by more gradual cooling (Bond

and Lotti, 1995). In Fig. 12b we find � ⇡ 1.8 for time scales longer than 102 yr and shorter than 104

yr. On centennial time scales and shorter, the spectrum is flatter. This means that a hypothesis of a

scale break at centennial time scales is plausible under glacial climate conditions, even though such570

a scale break could not be identified from the Holocene time series. From the low-resolution GRIP

data set we estimate � ⇡ 1.3 for time scales longer than centennial, and a scale break is seen at this

scale (figure not shown).

Fig. 13a shows the past 85 kyr time series of the high-resolution GRIP ice core, and Fig. 13b the

periodogram for the same time series. In Fig. 13b, � ⇡ 1.6 for time scales longer than centennial,575

and a scale break is visible at this scale. The periodogram in Fig. 13 is very similar to that in Fig. 12,

indicating that the information from the Holocene is suppressed to a high degree in the periodogram

of this time series.

5.3.2 Results from the EPICA ice core

Fig. 14a shows the Holocene time series of the EPICA ice core, and Fig. 14b the periodogram for the580

same time series. In Fig. 14a the Antarctic equivalent to the Northern Hemisphere Holocene climate

optimum (HCO) occurred between 11500 and 9000 yr BP (Masson et al., 2000). In Fig. 14b, � ⇡ 0

for time scales shorter than 103 yr.

Fig. 15a shows the time series of the EPICA ice core from the last glacial period, and Fig. 15b

the periodogram for the same time period. We observe from the time series that the fluctuations do585

not coincide with the DO events in the GRIP ice core with respect to timing and amplitude. Like the

glacial part of the GRIP ice core the EPICA glacial time series Fig. 15a has higher fluctuation levels

than the Holocene counterpart. In Fig. 15b we estimate � ⇡ 1.6 for 103 yr < ⌧ < 104 yr. The scale

break in this figures appears at 103 yr.
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6 Discussion and conclusions590

In this paper we have examined a number of paleoclimatic temperature records to assess the feasi-

bility of detection with confidence multiple scaling regimes in Holocene climate, and in particular

a break in scaling around centennial time scales. Seven proxy/multiproxy reconstructions from the

late Holocene, and one for the entire Holocene, have been selected for analysis due to high temporal

resolution and coverage in time, and six reconstructions from deep ice cores sampled at Greenland595

and Antarctica also meet our requirements for temporal coverage and resolution.

For the seven late Holocene proxy-based temperature reconstructions, our first approach was to

assume a break at exactly 100 years. Obviously there are few data points available for estimation on

the longer scales using this procedure, and the estimated values of �2 are within the uncertainties

of a mono-scaling model for all seven reconstructions. The scale break is therefore not statistically600

significant. For the second approach, our systematic procedure detects a break in scaling for all

reconstructions. The time scale for the break varies significantly between reconstructions and is in

most cases not even located near centennial time scales. The differences �2 ��1 varies over a great

range and takes on both positive and negative values. This procedure has also also been tested on

a Monte Carlo ensemble of fGn’s and demonstrates that we will find such apparent breaks even in605

data that should not have breaks.

The discussion and correction of the temperature reconstruction by Marcott et al. (2013) illustrates

the potential pitfall of uncritically selecting paleoclimatic time series for scaling analysis. The time

series may be an excellent temperature reconstruction for many purposes, but for scaling analysis

one needs to correct for the the fact that the data are increasingly low pass filtered as one goes610

backward in time.

In ice-core data, a scale break at centennial time scales can only be seen in records from the

last glacial period. The time series for the Holocene from the GRIP and EPICA ice cores both

exhibit weak persistent scaling (Figs. 10 and 14). The scaling exponent is estimated to � ⇡ 0.3

and � ⇡ 0 for the two ice cores respectively up to millenium time scale. No break in scaling can615

be observed at centennial time scale. The low value of � obtained is consistent with the scaling

exponents observed over land from the paleoclimate model run presented in Blender et al. (2006).

On time scales longer than millenial we do not have enough data points to make confident estimates

of �. From the wavelet scalogram we argue that the increase in power seen at the longest time scales

in the GRIP periodogram can be attributed to the 8.2 kyr event.620

The scaling properties of the GRIP and EPICA last glacial period are significantly different from

the Holocene. A scale break at centennial time scales is identified with confidence from Figs. 12

and 15. We interpret this scale break as being associated with the variability of Dansgaard-Oeschger

events and teleconnections to the Southern Hemisphere, (WAIS Divide Project Members, 2015).

A number of theories and models exist for the mechanism of these events, see e.g., Dokken et al.625
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(2013). This and other studies indicate that the DO-variability is internal and not a direct response

to external forcing.

From the GRIP time series including both the Holocene period and the last glacial period we

obtain a power spectrum very similar to that of the glacial climate, Fig. 13. Since the glacial climate

state is the dominating state in the Quaternary, the Holocene temperature variability is strongly630

suppressed when time series covering 100 kyr or longer are used to estimate scaling exponents. Our

analyses of Holocene records, on the other hand, show that a scale break on centennial time scales

is not a universal feature, and in those cases it appears to be present, it cannot be detected with

sufficient certainty.

The DO events are observed exclusively in records from the glacial climate state, but a number635

of studies investigate the possiblity of cyclic climate variability on millenial time scales also in the

Holocene. Bond et al. (1997) presents paleoclimatic data from different sources, indicating a number

of cooling events throughout the Holocene related to ice-rafting in the North Atlantic Ocean. The

Little Ice Age, the 8.2 kyr event and even the Younger Dryas are examples of cold periods sometimes

denoted “Bond-events”. The amplitudes of the temperature anomalies are much smaller than for the640

DO events, but Bond et al. (1997) find the periodicity to be similar (1470 ±352 yr, the “Bond-cycle”).

From these results, the authors infer a pervasive quasiperiodic climate cycle ocurring independently

of the climate state. The majority of the data indicating Holocene cooling events is from marine

sites, and the proxies are in most cases not direct proxies for temperature. Therefore, in the data we

have analysed, the evidence for cooling events is essentially limited to the 8.2 kyr event (GRIP) and645

the LIA (multiproxy reconstructions). If we assume that the DO events cause the characteristic scale

break observed in the power spectra at centennial time scale during glacial time periods, should we

also expect the Bond events to manifest themselves in the spectra from the Holocene? It is clear

from our results that one event in each record is not sufficient to cause a scale break at centennial

time scales, but higher power on millenial time scales is possible. The uncertainty due to finite-size650

effects does not let us draw firm conclusions about the scaling on these time scales.

The idea of a millenial climate cycle, which may have some manifestation even in the Holocene,

relates well with the recent results by Rypdal and Rypdal (2015). In this study, the background tem-

perature variability (the climate noise) during the late Quaternary is found to follow a monoscaling

power law of 1/f -type when DO events and glacial/interglacial transitions are excluded from the655

analysis. The glacial/interglacial changes are of course driven by orbital forcing, while the origin

of the 1470-year climate cycle is debated and unclear at present. Removing temperature variability

related to the Bond cycles for the Holocene may prove an effective way to obtain the proposed 1/f

background climate noise. However, it should be mentioned that the very existence of the Bond-

cycles is debated. Chronological uncertainties in the proxy data, spatial conformity and undersam-660

pling of proxy records are unsettled issues.
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Faced with the results we have presented here one may ask what the practical implications are. Is

scaling in climatic time series a useful concept? Our perception is that a scaling law may be useful

as a statistical (stochastic) model when a causal description turns out to be very complex, i.e., when

the viable alternative is something like a general circulation model. Such a statistical model does665

not have to exhibit long-memory scaling (a more standard model is a short-memory autoregressive

process). Nevertheless, there is strong evidence, for internal variability of surface temperature data,

that an fGn is a much better model than an AR(1) process for time scales at least up to centuries

(Rypdal and Rypdal, 2014). Thus, for prediction on time scales up to decades, a single-regime mono-

scaling model with � < 1 is what should be used (Lovejoy et al., 2015). More interesting, however,670

is whether long-memory scaling is important for prediction on century time scales and beyond, and

here the issue of non-stationary scaling (� > 1) for such time scales becomes crucial. What is the

proper value of � to use in such prediction efforts in a warming Holocene climate? The conclusion

we draw from our results is that, unless we ignore the knowledge that the present climate state

of the Earth is an interglacial, we should still use � < 1. One argument that can be raised against675

that conclusion is that, even though we cannot reject the hypothesis of single-regime scaling based

on available Holocene data, we cannot exclude that two scaling regimes is true either. Moreover,

the latter is supported from records spanning hundreds of kyr which encompass both glacial and

interglacial climate. This stalemate reflects that we are faced with a model selection problem where

the outcome depends on which available knowledge we prefer to emphasize.680

The multiple regime model stresses the information we have on scaling in the second-order statis-

tics such as power spectra (� > 1) on time scales up to hundreds of kyr (Quaternary scaling), and

infers that this scaling should be a guideline for prediction independent of whether the initial state

is glacial or interglacial. It essentially ignores the fact that Quaternary climate is characterised by

several intermittencies (Lovejoy and Schertzer, 2012b). The dominating Quaternary climate state is685

the glacial, and temperature proxies from the last glacials take the form of a non-Gaussian inter-

mittent stochastic process, displayed in its full glory by the Dansgaard-Oeschger events. One type

of intermittency implies that the probability density functions (PDFs) are heavy-tailed on short time

scales and approach Gaussian on longer time scales. This typically happens if the signal is bursty, but

without long-range correlation between bursts. In this case the high-order structure functions are not690

straight lines in a log-log plot. Another, and more restricted, class of intermittent processes are those

that are multifractal. Here we have correlated bursts, straight structure functions, but curved scaling

function. Hence structure functions of higher order than two are needed to characterise the process.

For a Gaussian process the power spectral density can be inferred from the second-order structure

function and hence does not convey information beyond second-order statistics. Moreover, Quater-695

nary climate is characterised by the glacial-interglacial transitions, which adds more intermittency,

and all this intermittency makes prediction based only on Quaternary scaling very difficult.
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The single-regime model, on the other hand, ignores the information available on time scales

beyond the Holocene, but makes use of the fact that our present climate state is an interglacial, and

that second-order statistics is sufficient to describe the scaling on the time-scales that is available to700

us in the Holocene. As discussed above, and by Rypdal and Rypdal (2015), single-regime scaling

can be rejected by data that goes way beyond the Holocene if this scaling is supposed to account

for DO-events and glacial/interglacial transistions, but there is no statistically significant empirical

evidence that the scaling inferred by glacial-state data is present in the interglacial climate state.

The issue discussed in this paper is an example of a more general problem concerning scaling705

analysis that needs to be addressed in a systematic manner. On geological time scales the Earth is an

evolving system. There are cycles, but the Earth rarely repeats itself. The Eemian was similar to the

Holocene, but also very different, the most striking difference being the evolution of human civili-

sations. Thus, the dynamics of the Earth is non-stationary in a very fundamental sense. This makes

scaling analysis, and modelling of Earth processes based on such analysis, a quite problematic issue.710

It has little meaning to talk about a universal scaling in Earths climate since the scaling characteristic

on a given range of scales up to a chosen maximal scale ⌧max will depend on the eon, era, period,

epoch, or age the analysis is done. In other words, the result will depend on the time t around which

the time range ⌧max is centred. A scaling analysis of a given Earth-system variable must therefore be

conditioned by two essential parameters; the range ⌧max of scales considered, and the positioning t of715

this range in time. The time series and the wavelet scalogram of the GRIP temperature series for the

past tmax = 90 kyr illustrates the issue, as shown in Fig. 16. The central time parameter t is along the

horisontal axis and the scale ⌧ along the vertical. We have no data for the future, which means that

the transform cannot be computed correctly above the upper white line in the figure. Likewise, the

area below the lower white curve is influenced by the interpolation made due to uneven sampling of720

the time series. It is apparent that the scalogram is different in the first 11.5 kyr (the Holocene) from

the remaining 80 kyr (the last glacial). There is generally lower power on all scales in the Holocene,

and the increase in power with increasing scale as t is kept constant is lower. We can also observe

from this scalogram that the longest interstadials (warm stages) associated with DO-events exhibit

variability very similar to the Holocene.725

The literature reveals that there is no consensus of how this issue of non-stationarity could be

handled. Ice cores restrict the information we can obtain to somewhat less than ⌧max = 1 Myr BP.

This is the range of time scales considered in the work of Lovejoy and Schertzer (2012b), and the

period is the Quaternary in which the Earth’s climate has been in a bistable state shifting between

glacials and interglacials. The methodology and interpretations are based on this choice of the pa-730

rameters (⌧max, t). We don’t see anything wrong with that, as long as one is mindful on that this is

a choice, and recognises that there are other, equally valid, choices. If the issue is understanding of

the present and future climate in our present interglacial state, we don’t believe this choice is useful,

simply because it ignores the knowledge that the Earth at present resides in an interglacial state and
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probably will continue to do so as long as there is human civilisation and anthropogenic forcing on735

this planet.

The issues dealt with in this paper reveals that a debate on the role of statistical hypothesis test-

ing and scientific method in general is unavoidable if scaling analysis is going to be accepted as a

useful method in climate science. Our main statement is that it is scientifically incorrect to draw pos-

itive conclusions about an alternative hypothesis (two scaling regimes) from finite size data sets that740

do not allow rejection of a plausible null hypothesis. This null hypothesis involves a single scaling

regime with some distinct events or oscillations superimposed, raising the power on millennial time

scale. We do not claim that the scale-break hypothesis is false, but we claim that the null hypothesis

cannot be rejected from the data at hand. The distinction between the two hypotheses might seem

unimportant, but it is not, because the important issue is the nature of the fluctuations on time scales745

longer than a few centuries. The scale-break hypothesis states that these fluctuations are scaling.

We contend that the data do not reject the null hypothesis that these fluctuations are of quite differ-

ent nature, and hence that claimed scaling properties on these long time scales cannot be used for

understanding or prediction of Holocene climate.

In many recent papers the two-regime scaling hypothesis is presented as one that has been tested750

against data. In any precise meaning of the concept of hypothesis testing, this implies that other

plausible descriptions of the observations have been rejected. By presenting the evidence this way

these papers run a great risk of committing a Type-I statistical error (a false positive). If the present

paper had claimed that this hypothesis is false we would have run the same risk of committing a

Type-II error (a false negative). But this is not what we have done here. Our conclusion is that he755

issue of scaling beyond centennial time scales is still open, in spite of the large body of literature

that coneys the impression that it is closed.
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Table 1. Results using approach 1 for multiproxy temperature reconstructions

Reconstruction Time period �1,data conf. range for �1,MC �2,data conf. range for �2,MC

Jones et al. 1998 1000 - 1850 0.5 (0.4, 0.7) 1.2 (-0.8, 1.7)

Briffa et al. 2001 1402 - 1850 0.6 (0.4, 0.8) 2.9 (-2.0, 3.0)

Esper et al. 2002 831 - 1850 1.3 (0.8, 1.2) 1.2 (0.2, 3.3)

Huang 2004 1500 - 1850 0.7 (0.6, 1.0) 2.3 (-4.4, 6.0)

Moberg et al. 2005 0 - 1850 0.8 (0.6, 1.0) 1.2 (0.0, 1.5)

Mann et al. 2008 500 - 1850 2.5 (1.9, 2.6) 1.6 (1.5, 3.1)

Neukom et al. 2014 1000 - 1850 0.6 (0.4, 0.8) 1.3 (-0.8, 1.9)

Table 2. Results using approach 2 for multiproxy temperature reconstructions

Data set �1,data �2,data ⌧c (yr) �2 ��1

Jones et al. 1998 0.5 0.9 38 0.4

Briffa et al. 2001 0.9 0.2 22 -0.7

Esper et al. 2002 1.4 1.0 38 -0.4

Huang 2004 0.8 2.2 94 1.4

Moberg et al. 2005 0.7 2.6 353 1.9

Mann et al. 2008 3.1 0.9 47 -2.2

Neukom et al. 2014 0.5 0.8 9 0.3
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Figure 1. (a): Structure function estimates (empirical moments) Sq(�t) = (N��t)�1PN��t
i=1 |T (ti+�t)�

T (ti)|q for the GMST (HadCRUT3) monthly record 1880-2010; T (ti); i= 1, . . . ,N . (b): Structure function

for the cumulative sum yti =
Pi

j=1T (tj). (c): Structure function for the cumulative sum of the quadratically

detrended GMST. (d): Scaling functions for the undetrended cumulative sum (upper line) and the detrended

cumulative sum (lower line).

1850 1900 1950 2000

-0.5

0.0

0.5

1.0

year

Te
m
pe
ra
tu
re

GMST and quadratic trend

0.5 1 5 10 50 100
0.1

0.5

1

5

10

Δt (years)

S
2(
Δt
)1/
2

Haar GMST and models

(a)$ (b)$

Figure 2. (a): The instrumental global mean surface temperature (GMST) 1850 – 2010 (black). A second order

polynomial least-square fit to the GMST record (blue). (b): Black curves are the Haar fluctuation function of

the GMST, the upper is multiplied by 10. The red curves are Haar fluctuation functions of 20 realisations of a

model comprised of a linear combination of an fGn with h=�0.1 and an fBm with h= 0.3. The blue curves

are the same of a model comprised of a linear combination of an fGn with h=�0.1 and the second-order

polynomial trend.
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Figure 3. (a) The Haar fluctuation of 20 realisations of an fGn with h=-0.1, corresponding to � = 0.8. (b) The

Haar-fluctuation of one realisation in the ensemble. (c) The Haar wavelet variance of the same 20 realisations

as in panel (a). (d) The Haar wavelet variance of the same realisation as in panel (b).

Figure 4. (a) The power spectral density of an ensemble mean of synthetic processes comprised of a super-

position of a white noise (� = 0.2) and a Brownian motion (� = 1.8). (b) DFA fluctuation function F2(⌧) for

ensemble mean of the same process. The dashed lines are the limiting slopes at short/long scales. Their inter-

section is used to define a transition frequency (vertical dashed line) between the two scaling regimes in (a) and

a transition scale for the DFA in (b).
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Figure 5. a) The Moberg et al. (2005) reconstructed temperature for the Northern hemisphere. (b) Estimated

values of �1 and �2. (c) 95% confidence range for periodograms in Monte Carlo study. (d) 95% confidence

range for estimates of �2.
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Figure 6. Differences in �2 and �1 for a Monte Carlo ensemble with 2000 members of synthetic LRM processes

with �=0.7. The black arrows indicate the differences from the multiproxy reconstructions.
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Figure 7. (a): Structure functions for the cumulative sum of the Moberg NH reconstruction year 0–1979. (b):

Scaling functions for the cumulative sum computed from straight line fits to the SFs in the scale range 1 – 500

yr.
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Figure 8. (a): The Moberg reconstruction (black). A fit of the function Atsin [!(t�')] (blue). (b): Black

curves are the Haar fluctuation function of the Moberg record, the upper is multiplied by 10. The red curves

are Haar fluctuation functions of 20 realisations of a model comprised of a linear combination of an fGn with

h=�0.2 and an fBm with h= 0.3. The blue curves are the same of a model comprised of a linear combination

of an fGn with h=�0.2 and the trend Atsin [!(t�')].
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Figure 9. (a) The reconstructed time series covering the entire Holocene time period. (b) Wavelet scalogram

for the same time period. (c) Section 1-6 of the reconstruction described in section 5.2, and composite spectrum

(black line, blue dots). The estimated � is estimated for this line.
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Figure 10. (a): �18O anomalies from the Holocene part of the high-resolution GRIP ice core. (b): Periodogram.

The raw periodogram is shown in gray, the log-binned version by black dots. � is estimated from the log-binned

periodogram in the region marked by the blue line. The confidence range is shown by the blue, shaded area,

estimated from a Monte Carlo ensemble of synthetic fGns with the estimated value of � and variance from the

log-binned periodogram. (c) Same figure as in (a) except the oldest section has been removed. (d) Periodogram

for the time series in (c).
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Figure 11. Top: the Mexican hat wavelet scalogram for the Holocene part of the GRIP ice core, and bottom:

the Morlet wavelet scalogram for the same time series. The lower white curve in each plot denotes the varying

Nyquist frequency, and the upper white curve the area affected by edge effects. Studies are restricted to the area

between the two curves. The color bar to the right of the figure is used to indicate the the magnitude of the

wavelet power.
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Figure 12. (a): �18O anomaly time series from the last glacial period of the high-resolution GRIP ice core. (b):

Periodogram for the time series in (a).

Figure 13. (a): �18O anomalies from the past 85 kyr of the high-resolution GRIP ice core. (b): Periodogram for

the same time series.

Figure 14. (a): �D anomalies from the Holocene part of the EPICA ice core. (b): Periodogram.
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Figure 15. (a): �D anomalies from the last glacial period part of the EPICA ice core. (b): Periodogram for the

time series in (a).
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Figure 16. Upper panel: The �18O proxy time series for Greenland temperature from the GRIP ice core for the

period 0 – 90 kyr BP. Lower panel: The Morlet wavelet scalogram for the signal in the upper panel.
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