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Abstract  

Agriculture is a key component of anthropogenic land use and land cover changes that influence 

regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important 

factor shaping agricultural land use. In this study, we compare the contributions of climate 

change and socioeconomic development to potential future changes of agricultural land use in 

West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on 

a balance between food supply and demand, and accounts for the impact of socioeconomic 

drivers on the demand side and the impact of climate-induced crop yield changes on the supply 

side. The impact of human decision-making on land use is explicitly considered through multiple 

“what-if” scenarios. In the application to West Africa, future crop yield changes were simulated 

by a process-based crop model driven with future climate projections from a regional climate 

model, and future changes of food demand is projected using a model for policy analysis of 

agricultural commodities and trade. Without agricultural intensification, the climate-induced 

decrease of crop yield together with increase of food demand are found to cause a significant 

increase in cropland areas at the expense of forest and grassland by the mid-century. The 

increase of agricultural land use is primarily climate-driven in the western part of West Africa and 

socioeconomically driven in the eastern part. Analysis of results from multiple decision-making 

scenarios suggests that human adaptation characterized by science-informed decision making to 

minimize land use could be very effective in many parts of the region.  
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1. Introduction 1 

Land use and land cover change (LULCC) is an important factor responsible for observed global 2 

environmental changes (Foley 2005, Pongtraz 2010, Ellis 2011). Although the terms - land use 3 

and land cover - are often exchangeable, they suggest different implications in climate change 4 

studies. Land use refers to utilization of land resource by human for various socioeconomic 5 

purposes while land cover indicates the type of physical material at Earth’s surface. 6 

Anthropogenic land use patterns have direct impact on land cover type. Both land use and land 7 

cover can be strongly linked with local and regional climate (Lambin 2003, Kalnay and Cai 2004, 8 

Mahmood 2010, Mei and Wang 2010). Agricultural activity is one of the most important 9 

processes driving LULCC in a region. During the pre-industrial period, addition of croplands was 10 

the primary response to increasing demand for food and other agricultural products. With the 11 

advent of modern agricultural technology, farmers adopted intensive crop farming to minimize 12 

the use of land area and slow down the rate of land cover changes (Burney 2010). Nevertheless, 13 

globally the fraction of farmland, which comprises cropland and pasture, has been steadily 14 

increasing at the expense of forest (Burney 2010, Hurtt 2011). The average global GHG emission 15 

from agriculture was reported to increase by 1.6% per year during 1961-2010 (Tubiello 2013).  16 

In addition to increasing the atmospheric concentration of greenhouse gases and 17 

therefore influencing global climate, LULCC also affects the regional or local climate by altering 18 

the water and energy budget at Earth’s surface via changing albedo, Bowen ratio, and surface 19 

roughness (e.g., Xue & Shukla, 1993; Taylor et al., 2002; Hagos et al., 2014; Wang et al., 2015). 20 

Although there is a strong link between climate and LULCC, the dynamics of land use change is 21 
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not explicitly represented in regional and global climate models, partly due to the difficulties in 22 

formulating the human decision-making processes influencing anthropogenic land use (Pielke 23 

2011, Rounsevell 2014). Instead, anthropogenic land use is usually included as an external driver 24 

in climate models, which does not incorporate the potential adaptive measures. Using the 25 

Integrated Assessment Models (IAMs) is another approach to combine the socioeconomic 26 

aspects and the climatic systems into a same analytical framework. Projections from IAMs on 27 

future land use changes are often at the continental or regional scale and need to be downscaled 28 

to derive spatially distributed future land use scenario (Hurtt et al. 2011, West et al. 2014). Also 29 

because of their rather complex modeling framework with different sources of uncertainties 30 

involved, it is difficult to engage IAMs in assessing relative roles played by climate and 31 

socioeconomic changes in projected LULCC (Ackerman 2009, Rounsevell 2014).  32 

There are different approaches to modeling LULCC with a wide range of modeling 33 

perspectives (Agarwal et al. 2002, Parker et al. 2003, Verburg et al. 2006). Agarwal et al. (2002) 34 

reviewed and evaluated a set of 19 land use models with respect to spatial and temporal 35 

resolutions as well as human decision-making processes. They concluded that models involving 36 

more complex human decision-making are limited to lower resolution and extension in both 37 

space and time. In reviewing a number of methodologies of modeling LULCC, Parker et al (2003) 38 

suggested to combine cellular model, which focuses on transitions in landscapes, with agent-39 

based model, which represents human decision-making process, to incorporate anthropogenic 40 

elements in a spatially explicit modeling scheme. In projecting future agricultural land use, human 41 

decision-making is crucially important as farmers can adapt to a changing climate especially if 42 

there is national policy or strategies in place to incentivize or guide adaptation. Moreover, 43 
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different crops may have different responses to the same climate change scenario. Agent-based 44 

modeling approach, which considers the interaction between agents representing decision-45 

makers with certain optimization schemes, has been used to represent the complex 46 

anthropogenic behaviors regarding land use changes (Parker et al. 2003, Verburg 2006, Valbuena 47 

et al. 2010). However, application of agent-based approach in modeling land use change at a 48 

regional scale is limited because of its inherent complexity and larger data requirements 49 

(Valbuena et al. 2010).  50 

Many previous studies with different modeling approaches integrated the climate-51 

induced changes in agricultural productivity with socioeconomic changes to project future land 52 

use scenarios. However, most of them assessed the land use change on national/sub-national 53 

levels, and therefore, do not provided gridded land use map needed by climate projection models 54 

(Schmitz et al., 2014). Two partial equilibrium models, the Model of Agricultural Production and 55 

its Impact on the Environment (MAgPIE) (Lotze‐Campen et al. 2008) and the Global Biosphere 56 

Management Model (GLOBIOM) (Havlik et al. 2011), are applicable for modeling land use and 57 

land cover changes on a spatially explicit scheme. MAgPIE simulates land use patterns at a spatial 58 

resolution of 0.5° based on an objective function to minimize the production cost for specific 59 

demand values. GLOBIOM simulates land use change scenario accounting for competition among 60 

agriculture, forestry and bioenergy on a spatially explicit scheme. These two models provide land 61 

use information regarding individual crops in addition to aggregated crop area.  62 

In this study, we develop a land use projection (LandPro) algorithm that operates on a 63 

spatially explicit grid system (therefore addressing the need for grid-based land use information 64 
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by climate models) and has the capacity of quantifying land use at individual crop level (therefore 65 

addressing the need for crop-level information in country-level policy making and development 66 

of adaptation strategies).  In the current application of LandPro to West Africa in evaluating the 67 

impact of future increase of food demand and the climate-induced crop yield changes on 68 

agricultural land use changes in the region, the mid-21st century projection is analyzed as an 69 

example. Sub-Saharan Africa is extremely vulnerable to climate change impact because of its 70 

large dependence on natural resources, fragile economic infrastructure and limited capacity for 71 

mitigation and adaptation. Although local crop production provides the majority supply of staple 72 

foods, the mostly rainfed agricultural system in Sub-Saharan Africa is not prepared to adapt to 73 

projected future climate. Various studies predicted significant reduction in the productivity of 74 

major crops in the region in future climates unless new technology and adaptation policy can 75 

counteract the adverse effect of climate (Schlenker and Lobell 2010, Knox 2012, Ahmed et al. 76 

2015). Here we engage LandPro to address three questions: What level of cropland expansion is 77 

necessary in West Africa to satisfy the future demand for foods with current agricultural practice? 78 

What are the relative roles of socioeconomic factors and climate changes in driving future 79 

agricultural land use changes? Could land use optimization through human decision-making 80 

make a significant difference in the overall LULCC? Since crop yield is influenced by climate, we 81 

also examine the sensitivity of our results to the selection of future climate data source used in 82 

projecting the future yield.  Section 2 outlines the LandPro algorithm with its fundamental 83 

assumptions, and provides a brief description of the datasets used in this study. Section 3 84 

presents the results, discusses the projected future changes in land use patterns in the region 85 

and the key factors driving the changes, and compares the agricultural land use map as projected 86 
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by our model with that of the H11 dataset. Section 4 summarizes the results and presents the 87 

conclusions. 88 

 89 

2. Model, Data, and Methodology 90 

2.1 Algorithm for Land Use Projection 91 

The LandPro algorithm is developed based on the equilibrium between future demand and 92 

supply of food at the country level. In the application to the West African Sahel and Guinea Coast 93 

regions, 14 countries are included: Benin, Burkina Faso, Gambia, Ghana, Guinea, Guinea-Bissau, 94 

Ivory Coast, Liberia Mali, Niger, Nigeria, Senegal, Sierra Leone and Togo. The spatially explicit 95 

model, at a resolution of 0.5˚, treats each country separately to calculate the gap between future 96 

demand of a particular crop and its supply from the local production based on future yield of the 97 

crop and the respective present-day crop area at each pixel within the country.  98 

                                                     𝐷𝑖𝑗 = 𝐺𝑖𝑗- ∑ 𝑦𝑖𝑗𝑘𝑎𝑖𝑗𝑘
𝑛
𝑘=1                                       (1)         99 

where, 𝐷𝑖𝑗 is the future deficit for crop 𝑗 in country 𝑖, 𝐺𝑖𝑗is the future demand, 𝑦𝑖𝑗𝑘 is future yield 100 

of crop 𝑗 at pixel 𝑘 and 𝑎𝑖𝑗𝑘 is present-day area allotted for crop 𝑗 at pixel 𝑘 in country 𝑖 with 𝑛  101 

number of 0.5˚ pixels.          102 

The model is developed based on the assumption that agricultural land use will be 103 

prioritized over natural land use/land cover types to satisfy increased food demand in future 104 

decades. Therefore, the deficit will be overcome by means of increasing local production through 105 

the expansion of cropland at the expense of existing natural vegetation. Several rules are set to 106 
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govern the conversion from naturally vegetated land to cropland, and multiple scenarios of 107 

decision making are considered. For example, in the best scenario of future land use with science-108 

informed decision-making:  109 

1) Forest is preferred over grassland in making new land for crops, due to its generally more 110 

fertile soil and the need to use grassland for pasture.  111 

2) If the forest area within a country is completely exhausted and crop deficit still remains, 112 

the grass area will be used for conversion to cropland. 113 

3) For multiple grid cells having the same type of natural vegetation, areas in grid cells with 114 

higher yield in future climate for a given crop will be used to cultivate that particular crop 115 

before acquiring land from the next most productive grid cell, i.e., the order of land 116 

conversion follows the descending order of crop yield across grid cells within a particular 117 

country.  118 

4) Naturally vegetated land is converted and allocated to crops following the descending 119 

order of crop deficit in a particular country. That is, the crop with the largest remaining 120 

gap between demand and production will be prioritized first. 121 

The best scenario implies the minimum crop area expansion at the expense of natural vegetation. 122 

Several alternative scenarios are constructed to test the sensitivity of the land use projection 123 

results by altering one or multiple rules listed above. For example, a worst scenario implying the 124 

maximum crop area expansion involves reversing the order mentioned in rule 3 and rule 4, and 125 

several intermediate scenarios represent different degrees of randomness in the decision making 126 

related to the rules.   127 
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The 𝑦𝑖𝑗𝑘 in equation 1 is derived using the process-based crop model Decision Support System 128 

for Agrotechnology Transfer (DSSAT) (Jones et al. 2003). Future yield projected by the DSSAT are 129 

scaled by three factors. First, like any process-based model, outputs from the DSSAT associate 130 

with some bias. The ratio of the DSSAT-simulated present-day yield to a reference present-day 131 

yield dataset is used to correct the bias in the DSSAT-simulated future crop yield. Second, 132 

although the land use allocation model can account for any number of crops, sometimes due to 133 

data limitation or other reasons, only a subset of crops are considered. For example, instead of 134 

exhausting all crops existing, for simplicity, we consider in this study only five major crops in West 135 

Africa - maize, sorghum, millet, cassava and peanut. These crops were chosen for their large 136 

present-day harvest area and high economic value in the region (Ahmed et al. 2015). To indirectly 137 

account for the existence of other crops (“minor crops”), the DSSAT-simulated future yield for 138 

major crops were scaled down using the ratio between major-crop harvesting area and all-crop 139 

harvesting area. In addition, mixed cropping systems commonly seen in West Africa are difficult 140 

to model explicitly. To indirectly account for the impact of mixed crops, a third factor, the ratio 141 

of total harvest area to the total area of physical land for crops, is used to scale up the DSSAT-142 

simulated future crop yield. These can be summarized as follows:  143 

                                       𝑦𝑖𝑗𝑘 = 𝑦′
𝐷𝑆𝑆𝐴𝑇,𝑖𝑗𝑘

*
𝑦𝑆𝑃𝐴𝑀,𝑖𝑗𝑘

𝑦𝐷𝑆𝑆𝐴𝑇,𝑖𝑗𝑘 
*

𝐴𝑀,𝑖𝑘

𝐴𝐻,𝑖𝑘
∗

𝐴𝐻,𝑖𝑘

𝐴𝑃,𝑖𝑘
                              (2) 144 

where, 𝑦𝑖𝑗𝑘 is the factored future yield, 𝑦′
𝐷𝑆𝑆𝐴𝑇,𝑖𝑗𝑘

 is the DSSAT future yield, 𝑦𝐷𝑆𝑆𝐴𝑇,𝑖𝑗𝑘 is the 145 

DSSAT present-day yield, 𝑦𝑆𝑃𝐴𝑀,𝑖𝑗𝑘 is the present-day yield according to the Spatial Production 146 

Allocation Model (SPAM) (You and Wood, 2006, You et al. 2014), 𝐴𝐻,𝑖𝑗𝑘 is the total harvest area 147 

(summation of areas allocated to all the individual crops) at pixel 𝑘 in country 𝑖, 𝐴𝑃,𝑖𝑘 is the total 148 
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physical area (excluding water body) and 𝐴𝑀,𝑖𝑘 is the total area allocated to the five major crops 149 

chosen for this study. The mixed cropping practice, as well as the ratio of harvest areas occupied 150 

by the “major” and the “minor” crops in a particular region or country, is largely influenced by 151 

dietary habits, and is likely to stay stable in the absence of any major shift in dietary habits. In the 152 

application to the mid-century in West Africa, we assume that the scaling factors in the future 153 

will be at the same level as in the present. Harvest area used here was aggregated from the SPAM 154 

data which represents the geographic distribution of crop harvest areas across the globe at a 155 

spatial scale of 5 min. for the year of 2005. SPAM was generated combining the Food and 156 

Agriculture Organization (FAO) national crop-specific data, population density, satellite imagery 157 

and other datasets. Also note that brief descriptions of the reference present-day yield data and 158 

the land use land cover data are provided later in section 2.4.   159 

2.2. Projecting Future Crop Yield 160 

Agricultural land use in a region depends to a large degree on crop yield which is one of the 161 

essential inputs to the LandPro algorithm. In the application to West Africa, spatially distributed 162 

future yields of five major crops were used as the inputs that were simulated using the DSSAT 163 

version 4.5 at a spatial resolution of 0.5° across the region. The DSSAT was calibrated and run to 164 

simulate future yield for the period of 2041-2059 following the methodology of Ahmed et al. 165 

(2015) for cereal crops. This calibration of the cereal crop models was based on tuning of the 166 

nitrogen fertilizer input, which dramatically improved the agreement between DSSAT and the 167 

FAO data on the country-average crop yield.  For cassava and peanut, however, the DSSAT could 168 

not be calibrated satisfactorily following the same approach. Therefore, instead of calibrating the 169 
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model, yield values of those two crops for the future DSSAT runs were adjusted by the ratio of 170 

country-level mean observed yield to the corresponding present-day mean of DSSAT-simulated 171 

yield. The mean observed yield values were calculated using the FAO country-level yearly yield 172 

data for 1980-1998 (FAOSTAT database). Note that these approaches, both the model calibration 173 

for cereal crops based on the Ahmed et al. (2015) and the scaling of the cassava and peanut yields 174 

for bias correction, focus on getting the right long-term mean of crop yields. Differences in the 175 

inter-annual variability of crop yield between DSSAT and the FAO data remain, and are difficult 176 

to address due to the impact of human factors as discussed in Ahmed et al. (2015). Simulated 177 

future yield values from 2041 to 2059 were averaged to provide the inputs to the LandPro 178 

algorithm for projecting agricultural land use in 2050.  179 

The future climate data required to drive the crop model was derived by dynamically downscaling 180 

the RCP8.5 climate of two general circulation models (GCMs) participating in the Coupled Model 181 

Intercomparison Project phase 5 (CMIP5) (Taylor et al. 2012), the Model for Interdisciplinary 182 

Research On Climate – Earth System Model (MIROC-ESM) and the National Center for 183 

Atmospheric Research (NCAR) Community Earth System Model (CESM). The regional climate 184 

model of Wang et al. (2015), which couples RegCM 4.3.4 (Giorgi et al. 2012) with the Community 185 

Land Model version 4.5 (CLM 4.5) (Oleson et al. 2010), was used to downscale the MIROC and 186 

CESM outputs to 50km, and the resulting climate was then resampled to a 0.5° grid system. The 187 

dynamically downscaled climates were then bias-corrected using the Statistical Downscaling and 188 

Bias Correction (SDBC) method of Ahmed et al. (2013), and the Sheffield et al. (2006) data was 189 

used as the present-day climate reference in the bias-correction algorithm. We chose these two 190 

GCMs because the MIROC-ESM-driven and the CCSM4-driven CLM-CN-DV model performed 191 
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better than other GCM-driven runs in capturing the present-day vegetation distribution in West 192 

Africa (Yu and Wang, 2014). 193 

2.3. Projecting Future Demand for Local Production 194 

Future demand for local crop supply is one of the main inputs to LandPro. Demand of crops in 195 

the West African countries in future years (from 2005 to 2050) was projected using the 196 

International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model 197 

(Rosegrant et al. 2012). The IMPACT was developed at the International Food Policy Research 198 

Institute (IFPRI) to investigate the supply-demand chain in the context of national food security 199 

in future decades. It can be used to project the future scenarios of supply, demand and price for 200 

more than 40 food commodities globally or regionally. For this study, IMPACT was run under the 201 

Shared Socioeconomic Pathway-2 (SSP2), a moderate pathway characterized by historical trends 202 

of economic development and medium population growth, according to IPCCC AR5. The future 203 

climate data used to drive IPMACT were derived from the RCP8.5 output of four GCMs, including 204 

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC-ESM. The average of the output from 205 

the four IMPACT runs was used as the input to the LandPro algorithm. Also, to project the mid-206 

century land use scenario, future average of the demand during 2041-2050 was used. Note that 207 

the IMPACT projections include future scenarios for both the total demand (i.e., local demand 208 

assuming no international trade) and effective demand (i.e., net demand for local production 209 

after considering international trade) for a specific commodity in a country. Local production may 210 

satisfy the total demand partially or fully. The deficit or surplus between the total demand and 211 

local production reflects the effect of international trade. For example, comparison of the time-212 
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series of total demand and local production of maize in Nigeria as projected by IMPACT for 2005-213 

2050 indicates an increasing trend for the portion of total demand to be met by international 214 

trade during the period (Figure S1).      215 

2.4. Present-Day Land Use and Crop Yield Data 216 

To quantify the bias in crop yield simulated by DSSAT (equation 2), the grid-level dataset of 217 

present-day yield from SPAM for the year of 2005 were used as the reference data. The present-218 

day harvest area for five major crops and total physical land area at each 0.5˚ pixel in West Africa 219 

used as inputs to LandPro were also obtained from the SPAM 2005 dataset. In addition to crop 220 

area, the present-day fractional coverage of forest and grassland at each grid cell are also needed 221 

to provide the initial condition for the LandPro algorithm. The fractional coverage of each of these 222 

three land cover types at each grid cell was obtained from the global land surface data developed 223 

by Lawrence and Chase (2007) which combined various satellite products and other datasets to 224 

derive the present-day global distribution of plant functional types at a 0.05˚ resolution. 225 

However, crop fraction in the Lawrence and Chase (2007) dataset was estimated according to 226 

historical crop area data generated by Ramankutty and Foley (1999) and it shows a considerable 227 

deviation from the SPAM crop fraction. Since crop area information for this study were 228 

prescribed according to SPAM, the cropland coverage from Lawrence and Chase (2007) was 229 

updated accordingly and the fractional coverage for forest and grassland were adjusted 230 

proportionally.  231 

 232 

 233 
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3. Results and discussions 234 

The reduction in crop yield as a result of climate change and the increasing demand for food in 235 

future years are expected to cause an increase in the agricultural land use, leading to a substantial 236 

shift in land cover in West Africa as projected by the LandPro algorithm (Figure 1). The present-237 

day land use distribution shows majority of the agricultural activity occurring in the eastern part 238 

of West Africa and the extensive presence of forests in the southwest, especially along the coast. 239 

Although grassland exists almost over the entire region, they are more dominant further inland 240 

in the north. The LandPro algorithm projects further increase in crop areas in the eastern part of 241 

West Africa which would result in a complete depletion of forest and grassland in future decades. 242 

The western and central parts of West Africa would also experience noticeable expansion of 243 

cropland. However, most of the increment would occur at the expense of forests, with generally 244 

a lower degree of grassland depletion. In Nigeria, the country-average cropland fractional cover 245 

is projected to increase from 39.4% to 84.5% under MIROC-driven climate and to 80.9% under 246 

CESM-driven climate (Table S1). In the western part of the region along the coast, the largest 247 

absolute increase in cropland coverage is projected to occur in Gambia (by 45% and 39.2% under 248 

the MIROC- and CESM-driven climates respectively). Along the Gulf of Guinea, west of Nigeria, 249 

Benin would also experience a large increase of cropland coverage by 37.3% (MIROC) and 40.9% 250 

(CESM). In Niger, crop production is clustered only to the south since the vast northern part of 251 

the country is mostly desert. Therefore, although the model projects a small change in the 252 

fractional coverage of cropland averaged over the entire country, the magnitude of the projected 253 

increase of agricultural land use in the south is much larger. For most countries, the LandPro 254 

projections for aggregated land use change driven by the dynamically downscaled climates from 255 



15 
 

the two GCMs are very similar. The inter-model difference is much smaller than the inter-country 256 

difference of land use changes, and much smaller than the differences caused by some human 257 

decision making (as to be shown later). Several factors contribute to this remarkable similarity in 258 

the LandPro-produced land use changes under the two future climate scenarios. First, climate 259 

from MIROC and CESM are dynamically downscaled by the regional climate model and 260 

statistically corrected for model bias, which eliminates part of the inter-model differences related 261 

to model bias; as the bias-corrected future climate data were used to force the crop model 262 

DSSAT, a better agreement results between the DSSAT-produced crop yields corresponding to 263 

the two climate scenarios. Second, as shown later, results of our study indicate that the future 264 

land use changes in this region would mostly be dominated by socioeconomic factors in the 265 

region.   266 

To assess the relative importance of climate and socioeconomic factors in driving the future land 267 

use changes, we also conducted LandPro simulations considering only the socioeconomic 268 

changes in the region and excluding the impact of climate-induced crop yield changes. In order 269 

to do so, the LandPro was run with the future demand and present-day crop yield (as opposed 270 

to the future yield used for the initial run) as inputs. Since the crop yield values remain 271 

unchanged, outputs from this run, namely LandPro_SE, reflect the impact of socioeconomic 272 

changes on agricultural land use ignoring the climate-induced changes in yield (Figure 2). The 273 

difference between the future changes in cropland coverage from the LandPro_Total run 274 

(considering both climate and socioeconomic factors) and the LandPro_SE run indicate the 275 

changes projected by LandPro considering only climate changes (LandPro_CC). Under both the 276 

MIROC-driven and CESM-driven regional climates, the socioeconomic changes tend to have a 277 
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stronger impact on future land use transition than the changes in crop yield in the eastern part 278 

of the region. In the western part near the coast, however, the impact of crop yield changes is 279 

more dominant, which can be attributed to the larger yield loss resulting from a larger future 280 

warming and drying in that part of the region (Ahmed et al. 2015). In the central part of the 281 

region, the climate-induced expansion in crop area tends to be somewhat more evident under 282 

the CESM-driven climate.  283 

Food demand determined by socioeconomic factors is the most important driver for land use. 284 

The land use changes shown in Figure 2 were predicted using LandPro driven by changes in the 285 

net demand for local production projected by IMPACT (referred to as “Local Production” 286 

experiment). To test the sensitivity of LandPro to the production demand, future changes in 287 

agricultural land were also predicted using the total demand projected by IMPACT (as if there 288 

would be no international trade) as the driver (referred to as the “Total Demand” experiment), 289 

and using a demand that features a future increase half as fast as the projection by IMPACT 290 

(referred to as the “50% Change” experiment). Spatial patterns of absolute changes in cropland 291 

fractional coverage are essentially similar for both the net demand and total demand 292 

experiments (Figures 3 and 4, for the MIROC- and CESM-driven climates respectively). The 293 

magnitude of changes is generally larger in the case of total demand since most of the countries 294 

in the region depend on import to satisfy the demands which exceed local production. The land 295 

use changes are expectedly smaller for the “50% Change” experiment. However, spatial patterns 296 

of the relative importance of climate change and socioeconomic changes can noticeably vary 297 

according to demand scenarios. For example, under the MIROC-driven climate, to satify the total 298 

demand, cropland changes in the northeast part of Nigeria (East of 10°E and North of 8°N) are 299 
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projected to be dominated by socioeconomic factors (Figure 3). In contrast, in satisfying either 300 

the net demand or 50% future changes of total demand, cropland changes in the same region 301 

would be controlled by climate-induced changes in crop yield while the impact of socioeconomic 302 

changes would be negligible. Thus, the fraction of future land use changes attributed to climate 303 

changes tends to vary spatially within a country depending on the level of future demands. 304 

However, the magnitudes and spatial patterns of the climate-induced cropland expansion across 305 

the regions for all three demand scenarios are generally similar under both climate scenarios. 306 

The dependence of future land use patterns on the magnitude of demand can be 307 

attributed to two factors which govern LandPro algorithm – the present-day distribution of forest 308 

and grass, and the differences between present-day and future ranking of grid cells according to 309 

their respective yield values. Since the LandPro scenario experimented on uses up forest area 310 

over the entire country before it starts to consume grassland, grid cells with grass in the present-311 

day are not converted to crop area until the demand reaches a threshold value. Therefore, with 312 

present-day yield, although many grid cells dominated by grass do not experience any change in 313 

land use in satisfying lower demand, they are converted to crop area when demand is higher. 314 

However, with generally lower yield in future climate, those grid cells need to be converted to 315 

cropland even to satisfy a lower level of demand. Furthermore, a grid cell with a lower rank for 316 

present-day yield may become higher-ranked for future yield and vice versa, leading to a 317 

difference in spatial variability of climate-induced land use changes for different demand values. 318 

The comparison among country-average values of climate-induced land use changes for different 319 

demand scenarios also highlights the uncertainty in LandPro in determining the fraction of 320 

changes attributable to climatic factors (Figure 5). For a particular country, the total demand 321 
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would usually necessitate a larger increase in total crop area than the net demand for local 322 

production, whereas the magnitude of the increase would be the lowest in the case of 50% 323 

changes of the total demand. Exception can be found for export countries. The relative 324 

importance of climate and socioeconomics changes as drivers of land use change and how it 325 

varies spatially are relatively stable across the three simulations, with the exception of several 326 

countries. For example, under the MIROC-driven climate changes, in Gambia, Senegal and Togo, 327 

the climate-induced changes as a fraction oftotal changes projected by LandPro to satisfy the 328 

50% increase in total demand is larger than the projected changes for the other two demand 329 

scenarios. Under the CESM-driven climate, the climate-induced change in agricultural land use is 330 

the largest for the “50% change” experiment in the case of Burkina Faso as well.     331 

The LandPro algorithm  explicitly considers multiple scenarios of human decision-making 332 

(as reflected by the order of land conversion in rule 3 and rule 4 mentioned in section 2.3), which 333 

is a major source of uncertainty in projected future land use changes. To assess such 334 

uncertainties, we evaluated whether human decision regarding agricultural land use optimization 335 

can influence the future land use change in West Africa based on alternative decision scenarios. 336 

In agricultural expansion, the selection of areas to cultivate from naturally vegetated land is one 337 

major uncertainty in human decision-making for land use. Therefore, apart from the best 338 

scenario simulated by the initial run, two alternative projections of future land use distribution, 339 

including the worst scenario and an intermediate scenario, were conducted by altering the order 340 

of crop area selection based on future crop yield in rule 3. The worst scenario assumes that the 341 

conversion from natural vegetation to cropland by farmers follows the ascending order of crop 342 

yield, while the selection is random for the intermediate scenario. Comparison of these 343 
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alternative scenarios with the best scenario reveals noticeable differences, with both alternative 344 

scenarios generally involving more cropland (Figure 6). The cropland expansion is minimized if 345 

farmers utilize the areas with higher future yield first before engaging the less productive land, 346 

whereas the opposite approach would maximize the amount of cropland usage (Table S2, using 347 

MIROC as example). The difference among multiple future scenarios of agricultural land use, 348 

which depends on the farmers’ decision regarding the selection of crop area, implies an adaptive 349 

potential to minimize the conversion of naturally vegetated land based on appropriate 350 

knowledge of future crop yield. We also performed sensitivity analysis of LandPro projections to 351 

input demand (as shown in Figures 3 and 4) in the case of worst scenario of agricultural land use 352 

regarding the order of crop area selection. With the alternative cropping order, the relative 353 

importance of climate and socioeconomic factors as land use drivers considerably changes in 354 

many parts of the region for all the demand scenarios (Figure S2, using MIROC as example). This 355 

implies that land use decision-making can make a significant in determining future agricultural 356 

land use changes. 357 

Prioritization of the crops by farmers with respect to the sequence of land allocation in a 358 

particular country reflects another uncertainty related to human decision-making. For the best 359 

scenario run, the land was allocated to the crops according to the descending order of future 360 

crop deficits as stated in rule 4. Several alternative scenarios were examined with LandPro. In 361 

alternative 1, the prioritization in rule 4 follows the ascending order of deficits in each country;  362 

in alternative 2, in all of the countries, the priority for land allocation was given to the cereal 363 

crops first (maize, sorghum and millet) followed by cassava and peanut; in alternative 3,  the 364 

reverse order of alternative 2 is used. Under the MIROC-driven climate, spatial maps of crop area 365 
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distribution from the multiple alternative runs indicate that prioritization of the crops as a land 366 

use optimization technique would have little impact on the projected future land use land cover 367 

changes (Figure 7). The difference in country-average cropland fractional coverage from different 368 

runs is negligible as compared to the absolute magnitude in a particular country (Table S3).  The 369 

results are qualitatively similar for the projections based on the CESM-driven climate changes. 370 

We also tested the sensitivity of LandPro projections to the assumption that forest would be 371 

totally exhausted before using grasslands for crop area expansion (rule 1 and 2), by employing 372 

LandPro to project the future cropland expansion preferring grassland over forest (Figure 8, using 373 

MIROC as an example). Some differences between the two scenarios are noticeable but are 374 

mostly small, indicating a low level of sensitivity of the model to this assumption. Overall, based 375 

on results from all sensitivity experiments, the LandPro-projected future cropland expansion is 376 

most sensitive to the demand input and the order of land selection for agricultural expansion. 377 

As an inter-comparison with others’ results, we compared the LandPro projections with the crop 378 

area distribution in 2050 projected by Hurtt et al. (2011, henceforth H11) data. H11 projected 379 

future (2005-2100) land use scenarios following four Representative Concentration Pathways 380 

(RCPs) according to the Fifth Assessment Report (AR5) of the Intergovernmental panel on Climate 381 

Change (IPCC), and created a unique grid-level dataset for both the historical land use and future 382 

carbon-climate scenarios.  However, the impact of future climate changes on land use and land 383 

cover changes was not explicitly accounted for. Therefore, the future change in crop area 384 

according to the H11 data is conceptually comparable to our LandPro_SE projection. The 385 

comparison shows that the increase in croplands projected by LandPro_SE is substantially higher, 386 

especially in the agriculture-dominated eastern part of the region (Figure 9). The changes in land 387 
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use from one type to another between two time steps according to Hurtt et al. (2011) significantly 388 

depends on the probability of particular types of land use changes in previous time steps. 389 

However, in the application of LandPro in this study, the future crop area expansion was 390 

projected between two time slices, which are several decades apart, without considering the 391 

transient processes in land use dynamics. Although noticeable differences exist also in the spatial 392 

patterns projected by the two data sets, both projections show consensus with larger increase in 393 

the southeastern part of the region. The challenges and uncertainty in quantifying land use are 394 

also reflected by the differences in the present-day cropland coverage between SPAM and H11. 395 

For the present-day land use distribution in 2005, the two data sets exhibit noticeable 396 

discrepancy over the region dominated by agriculture. This highlights the typical inconsistency 397 

between land use maps generated by different methodologies (You et al. 2014).  398 

 399 

4. Summary and conclusions 400 

An algorithm for land use and land cover change projection (LandPro) was developed to study 401 

the future expansion of cropland and the resulting loss of naturally vegetated land, and was 402 

applied to West Africa as a case study. LandPro integrates the impact of climate change on crop 403 

yield and future socioeconomic scenarios to construct a spatially gridded land cover map, and a 404 

spatial scale of 0.5˚ is used in the case study. Without accounting for the farmers’ adaptive 405 

potential to address the negative impact of future warming and changes in precipitation pattern 406 

on crop productivity (such as use of irrigation, fertilizer and other crop management techniques), 407 

the model projects a large increase in agricultural land use under the future climate scenario. The 408 
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increase in cropland would occur at the expense of natural vegetation cover, both of which could 409 

further modify the regional climate. Not considering the farmers adaptive potential and the 410 

technological advancements (which could reduce the rate of cropland expansion by increasing 411 

yield) is one of the limitation of this study. However, in Sub-Saharan Africa, more than 80% of the 412 

agricultural growth since 1980 was attributed to crop area expansion as opposed to increase of 413 

productivity over already existing cropland (The World Bank, 2008). Considering the vulnerability 414 

of agricultural infrastructures in the region, despite the potential scope of improving yield to 415 

minimize land use change, addition of new crop area is likely to be a prevailing strategy for 416 

agricultural growth in the near future.  417 

Multiple possible adaptive measures by the farmers to minimize the agricultural expansion were 418 

also analyzed addressing the uncertainties involved in human decision-making process. Although 419 

prioritization among the crops in allocating the available land for their cultivation might have no 420 

or minimal impact in optimizing agricultural land use, a specific order of selecting cultivation area 421 

based on future crop yield might effectively reduce the total loss of naturally vegetated land. The 422 

effect of farmers’ adaptive actions characterized by their decision-making based on scientific 423 

information suggests the significance of farmers’ adaptive potential on future land use change 424 

dynamics in the region, and emphasizes the need for more effective adaptation strategies to slow 425 

down the regional land use expansion under future climate scenarios. 426 

We would like to point out that the spatial scale of 0.5 degree is too coarse to simulate cropping 427 

patterns in each individual farm. It is extremely difficult, if not impossible, to capture the farmers’ 428 

decision-making at individual farm level for a large region. While many existing land use models, 429 
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applicable at much smaller scale, are capable of simulating the farm-level changes, they do not 430 

address the need of climate models for land use change information at the regional scale. This 431 

study attempts to address the climate model needs and simulate the land use-climate 432 

interactions at the regional scale, and to facilitate national-level policymaking in devising 433 

strategic framework to assess the potential impact of climate and socioeconomic factors on 434 

future land use. The focus therefore is not on developing a land use model capable of analyzing 435 

and projecting cropping pattern in each individual farm. Instead, we are interested in the long-436 

term aggregated outcome, assuming that all farmers will eventually adapt to the climate-induced 437 

changes in crop yields by adjusting the agricultural land use practice. Therefore, the algorithm 438 

assumes similar science-informed decision-making by all the farmers under a particular pixel. 439 

Our results also indicate spatial heterogeneity of land use change dynamics which can be 440 

dominated by different controlling factors in different parts of West Africa. Climate change 441 

impact on crop yield would considerably vary across the region resulting in large variability in the 442 

spatial pattern of future yield loss. While land use changes could be dominated by the projected 443 

yield loss in some parts of the region, the projected increase in food demand would be of greater 444 

importance in land use dynamics in other regions. However, future projections from LandPro 445 

imply that farmers’ decision-making can alter the relative importance of different factors in 446 

driving future land use changes. Therefore, although LandPro demonstrated robustness to 447 

multiple future climate scenarios, the projection from the model can be more sensitive to other 448 

future scenarios of supply and demand for food. Despite the fact that the IMPACT model was run 449 

for multiple climate and socioeconomic scenarios in projecting the future demand, the 450 

uncertainties involved in the IMPACT projection can potentially be a limitation of this study. Apart 451 
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from the uncertainties involved in the model setup, not considering any historical trend in land 452 

use transitions is another limitation of this study.  453 

The LandPro algorithm provides a preliminary framework for the projection and analysis of future 454 

agricultural land use. LandPro offers two clear advantages. It provides spatially distributed land 455 

use information needed by climate models as the lower boundary condition; it can also be 456 

conveniently used for future land use information at the individual crop level that is needed for 457 

national and regional land use and food security policy analysis. The algorithm can and will be 458 

further developed to overcome existing limitations pointed out earlier. In this study, we 459 

employed LandPro in equilibrium mode to evaluate the changes in land use between two time 460 

slices, which are several decades apart, without considering the transient processes in land use 461 

dynamics. Applying LandPro in transient mode (which necessitates performing the crop modeling 462 

and the regional climate modeling in a transient mode as well) is a topic of our follow up study.  463 
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Figure Captions 664 

Figure 1: Spatial distribution of cropland, forest and grass coverage (%) in 14 West African 665 
countries from present-day (year 2005) observation (top row) and future projections by the 666 
LandPro for mid-21st century under regional climates driven with two GCMs: MIROC (middle row) 667 
and CESM (bottom row).  668 

 669 

Figure 2: Future changes in crop area distribution projected by LandPro: total changes 670 
(LandPro_Total), changes because of socioeconomic changes (LandPro_SE) and changes because 671 
of climate change (LandPro_CC) in West Africa under the MIROC-driven and CESM-driven future 672 
climates.  673 

 674 

Figure 3: Land use changes projected by LandPro assuming three different levels of future 675 
demand, under the MIROC-driven regional climate. 1st row: absolute magnitude of total land use 676 
changes; 2nd row: changes due to socioeconomic factors; 3rd row: changes due to climatic factors; 677 
4th row: climate-induced change as a fraction of total change.   678 

  679 

Figure 4: Similar to Figure 3, but for CESM-driven climate. (Note that the SE-induced changes in 680 
Figure 3 and Figure 4 are same). 681 

 682 

Figure 5: Country-average values of total changes in cropland coverage (top) and climate-induced 683 
changes as a fraction of total changes (bottom) according to three future scenarios of demand 684 
under the MIROC- and the CESM-driven regional climate.    685 

 686 

Figure 6: Future crop area percentage (1st and 3rd rows) in West Africa (under the MIROC- and 687 
CESM-driven regional climates) projected by the LandPro algorithm following two alternative 688 
scenarios of selecting grid cells for conversion to agricultural land based on the order of yield, 689 
and their respective differences relative to the initial run (best scenario) that follows the 690 
descending order of yield (2nd and 4th rows). Alternative scenario 01: ascending order of yield; 691 
alternative scenario 2: random order.  692 

 693 
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Figure 7: Future crop area coverage (%) in the West Africa as projected by the LandPro algorithm 694 
under the MIROC-driven climate, following four different ranks of prioritizing crops in land 695 
allocation: Rank 1, descending order of country-level crop deficit (initial run); Rank 2, ascending 696 
order of country-level crop deficit; Rank 3, maize, sorghum, millet, cassava, peanut; Rank 4, 697 
peanut, cassava, millet, sorghum, maize.  698 

 699 

Figure 8: Future crop area coverage (%) in the West Africa as projected by the LandPro algorithm 700 
under the MIROC-driven regional climate, based on the future scenario where forest is preferred 701 
over grass for crop area expansion (as shown in Figure 1) and the alternate scenario where grass 702 
is preferred over forest, and the differences between the two. 703 

 704 

Figure 9: Future changes in crop area distribution, from the LandPro projections accounting for 705 
only socioeconomic changes (LandPro-SE) and from the Hurtt et al. data, and their differences 706 
(top row); the present-day (2005) crop area, from SPAM and from Hurtt et al. data, and their 707 
differences (bottom row).   708 
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 717 

Figure 1: Spatial distribution of cropland, forest and grass coverage (%) in 14 West African 718 
countries from present-day (year 2005) observation (top row) and future projections by the 719 
LandPro for mid-21st century under regional climates driven with two GCMs: MIROC (middle row) 720 
and CESM (bottom row).  721 
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 723 

 724 
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 725 

Figure 2: Future changes in crop area distribution projected by LandPro: total changes 726 
(LandPro_Total), changes because of socioeconomic changes (LandPro_SE) and changes because 727 
of climate change (LandPro_CC) in West Africa under the MIROC-driven and CESM-driven future 728 
climates.  729 
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 737 

 738 

Figure 3: Land use changes projected by LandPro assuming three different levels of future 739 
demand, under the MIROC-driven regional climate. 1st row: absolute magnitude of total land use 740 
changes; 2nd row: changes due to socioeconomic factors; 3rd row: changes due to climatic factors; 741 
4th row: climate-induced change as a fraction of total change.   742 
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  743 

Figure 4: Similar to Figure 3, but for CESM-driven climate. (Note that the SE-induced changes in 744 
Figure 3 and Figure 4 are same). 745 

 746 
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 747 

Figure 5: Country-average values of total changes in cropland coverage (top) and climate-induced 748 
changes as a fraction of total changes (bottom) according to three future scenarios of demand 749 
under the MIROC- and the CESM-driven regional climate.    750 
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 756 

Figure 6: Future crop area percentage (1st and 3rd rows) in West Africa (under the MIROC- and 757 
CESM-driven regional climates) projected by the LandPro algorithm following two alternative 758 
scenarios of selecting grid cells for conversion to agricultural land based on the order of yield, 759 
and their respective differences relative to the initial run (best scenario) that follows the 760 
descending order of yield (2nd and 4th rows). Alternative scenario 01: ascending order of yield; 761 
alternative scenario 2: random order.  762 
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 763 

Figure 7: Future crop area coverage (%) in the West Africa as projected by the LandPro algorithm 764 
under the MIROC-driven climate, following four different ranks of prioritizing crops in land 765 
allocation: Rank 1, descending order of country-level crop deficit (initial run); Rank 2, ascending 766 
order of country-level crop deficit; Rank 3, maize, sorghum, millet, cassava, peanut; Rank 4, 767 
peanut, cassava, millet, sorghum, maize.  768 
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 772 

Figure 8: Future crop area coverage (%) in the West Africa as projected by the LandPro algorithm 773 
under the MIROC-driven regional climate, based on the future scenario where forest is preferred 774 
over grass for crop area expansion (as shown in Figure 1) and the alternate scenario where grass 775 
is preferred over forest, and the differences between the two. 776 
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 780 

Figure 9: Future changes in crop area distribution, from the LandPro projections accounting for 781 
only socioeconomic changes (LandPro-SE) and from the Hurtt et al. data, and their differences 782 
(top row); the present-day (2005) crop area, from SPAM and from Hurtt et al. (data, and their 783 
differences (bottom row).   784 
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