

1 **Atmospheric moisture transport, the bridge between ocean**
2 **evaporation and Arctic ice melting**

3

4 **Luis Gimeno^{1*}, Marta Vázquez¹, Raquel Nieto¹, Ricardo M. Trigo²**

5 [1]{EPhysLab (Environmental Physics Laboratory), Universidad de Vigo, Facultad de
6 Ciencias, Ourense, Spain}

7 [2]{University of Lisbon, CGUL, IDL, Lisbon, Portugal}

8 Correspondence to: L. Gimeno (l.gimeno@uvigo.es)

9

10 **Abstract**

11 Changes in the atmospheric moisture transport have been proposed as a vehicle for
12 interpreting any of the most significant changes in the Arctic region. The increasing moisture
13 over the Arctic during last decades it is not strongly associated with the evaporation that takes
14 place within the Arctic area itself, despite the fact that the sea-ice cover is decreasing. Such
15 increment is consistent is more dependent on the transport of moisture from the extratropical
16 regions to the Arctic that has increased in recent decades, and is expected to increase within a
17 warming climate. This increase could be due either to changes in circulation patterns which
18 have altered the moisture sources, or to changes in the intensity of the moisture sources
19 because of enhanced evaporation, or a combination of these two mechanisms. In this short
20 communication we focus on the assessing more objectively the strong link between ocean
21 evaporation trends and Arctic Sea ice melting. We will critically analyze several recent
22 results suggesting links between moisture transport and the extent of sea-ice in the Arctic, this
23 being one of the most distinct indicators of continuous climate change both in the Arctic and
24 on a global scale. To do this we will use a sophisticated Lagrangian approach to develop a
25 more robust framework on some of these previous disconnecting results, using new
26 information and insights. Results reached in this study seems to stress the connection between
27 two climate change indicators, namely an increase in evaporation over source regions (mainly
28 the Mediterranean Sea, the North Atlantic Ocean and the North Pacific Ocean in the paths of
29 the global western boundary currents and their extensions) and Arctic ice melting precursors.

1

2

3 **1 The outstanding role of Arctic climate within the global climate system**

4 The last IPCC Assessment Report has confirmed that the main components of the climate
5 system have been warming (atmosphere, oceans) or shrinking (cryosphere) since the 1970s, as
6 a result of global warming induced by the significant increment in concentration of
7 Greenhouse Gases of anthropogenic origin (AR5, IPCC, 2013). The so called hiatus in the
8 rise of global air temperature since the late 1990s is not observed in the relentless decadal
9 shift of temperature distributions in both hemispheres (Hansen et al., 2012) neither in the
10 frequency of extreme hot events over the continents (Seneviratne et al., 2014). The much
11 larger capacity of the oceans to store heat, in respect to the atmosphere, has played a
12 fundamental role storing the excessive heat retained in the climate system either in the Pacific
13 (Kosaka and Xie, 2013) or the Atlantic (Chen and Tung, 2014) oceans.

14 However, global warming is a very uneven phenomena impossible to be encapsulated by a
15 single indicator relative to one subsystem, such as the global average of near surface
16 atmospheric temperature. The spatial pattern of observed temperature trends is very
17 asymmetrical and regionalized, with continents warming more than oceans, and with high
18 latitudes also presenting considerably higher warming rates than mid-latitude and tropical
19 regions. In particular, several authors have shown that the rise in Arctic near surface
20 temperature (AST) has been twice as large as the global average throughout most of the year
21 (e.g. Screen and Simmonds, 2010; Tang et al., 2014, Cohen et al., 2014). Additionally, the
22 evolution of the climate in the Arctic region is often associated to two important indicators;
23 the summer and autumn sea-ice-extent (SIE) and the spring and summer snow-cover extent
24 (SCE), both characterized by a very significant decline since the 1970s and widely recognized
25 as some of the most undeniable indicators of continuous climate change affecting the climate
26 system (Tang et al., 2014; IPCC 2013).

27 Nevertheless, the opposite evolution of AST and SIE indices in recent decades emphasize that
28 both phenomena are not independent and, actually, are known to reinforce each other (Tang et
29 al., 2014), as changes in surface albedo (associated with melting snow and ice) tend to
30 enhance warming in the Arctic (Serreze and Francis, 2006) as shown in the recent review
31 paper Cohen et al. (2014). Nevertheless both indicators (AST and SIE) may also respond to
32 other mechanisms including changes in atmospheric circulation patterns (Graverson et al.,

1 2008), ocean circulation (Comiso et al., 2008), or changes in radiative fluxes associated to
2 cloud cover and water vapour content in the atmosphere (Schweiger et al. 2008; Kapsch et al.,
3 2013), though the absorption of the outgoing long-wave radiation from the surface by the
4 increased atmospheric moisture and then remitted toward the Arctic surface, resulting in the
5 surface warming and sea-ice decline (Kapsch et al., 2013). In particular, changes in the
6 atmospheric moisture have been proposed as a vehicle for interpreting the most significant
7 changes in the Arctic region either due to increase transport from middle latitudes (Lucarini
8 and Ragone, 2011; Zhang et al., 2012) or via enhance local evaporation (Bintanja and Seltan,
9 2014). However, some of the recent studies showed that the evaporation from the Arctic
10 surface appears not to be an important moisture source (e.g., Graversen et al., 2008; Park et
11 al., 2015).

12

13 According to some authors, the recent rise on the incidence of summer extreme weather
14 events over northern hemisphere continental land masses (Coumou and Rahmstorf, 2012;
15 Seneviratne et al., 2014) is probably driven by the accelerated decline of summer SIE and
16 SCE observed in recent decades (Francis and Vavrus, 2012; Tang et al., 2014). According to
17 this hypothesis, the observed weakening of poleward temperature gradient triggered changes
18 in atmospheric circulation namely slower progression of Rossby waves (Francis and Vavrus,
19 2012) and the existence of a planetary-scale wave life cycle (Baggett and Lee, 2015) that is
20 highly amplified (blocking) despite a reduced meridional temperature gradient (consistent
21 with Francis and Vavrus, 2012). These mechanisms have favored more persistent weather
22 conditions that are often associated to extreme weather events, such as the mega-heatwave in
23 Russia in 2010 (Barriopedro et al., 2011) or long drought in central USA (Coumou and
24 Rahmstorf, 2012). However, there is currently a wide debate on the nature of mechanism(s)
25 responsible for this increment of persistent weather patterns associated to such extreme
26 climatic events (Cohen et al., 2014), with some authors suggesting other drivers (albeit
27 equally exacerbated by global warming) such as the role of drying soils associated with earlier
28 SCE melting (Tang et al., 2014) or simply related to tropical extra-tropical interactions
29 (Palmer, 2014).

30 Considering all the above reasons the Arctic sector emerges as the most sensitive region of
31 the climate system to the effects of global warming but it also represents an area where

1 current and future changes are bound to affect the climate at a much larger scale (Screen and
2 Simmonds, 2010; Tang et al., 2014, Cohen et al., 2014).

3

4 **2 Main mechanisms relating sea ice decline and increase moisture transport**

5 The atmospheric branch of the hydrological cycle plays a fundamental role establishing the
6 link between the Arctic system and the global climate. However, to the best of our
7 knowledge, this role has not been fully accounted objectively, although the transport of
8 moisture from the extratropical regions to the Arctic has increased in recent decades (Zhang et
9 al., 2012), and is expected to further increase under global warming, independently of the
10 climate change scenario considered (Kattsov et al., 2007). Some works try to explain extreme
11 events of atmospheric moisture transport to the Arctic throughout the occurrence of
12 atmospheric rivers (Woods et al., 2013) and Rossby wave breaking events (Liu and Barnes,
13 2015). The generalis increase of moisture could be due either to changes in circulation
14 patterns which have altered the location of the most important moisture sources, or result
15 from changes in the magnitude of the existing moisture sources as a consequence of enhanced
16 evaporation, or a combination of these two mechanisms (Gimeno et al., 2012; 2013).

17 Most studies of changes on moisture transport towards the Arctic Climate make use of one of
18 three possible techniques, namely (1) Eulerian approaches (e.g. Jakobson and Vihma, 2010),
19 which can be used to estimate the ratio of advected-to-recycled moisture and to calculate the
20 moisture transport between predetermined source and sink regions; (2) isotope analysis (e.g.,
21 Kurita, 2011), but neither this nor the Eulerian techniques are capable of a proper
22 geographical identification of the sources; or (3) more complex Lagrangian computational
23 techniques that are able to infer the sources of the precipitation that falls in a target region and
24 thus overcome the limitations of (1) and (2). An analysis of the performance of these
25 Lagrangian techniques and their advantages over Eulerian and isotope analysis was recently
26 given by Gimeno et al. (2012). Here we will critically analyze some of the previous
27 assessments that have established the link between moisture transport from mid-latitudes
28 towards the Arctic region and changes in Arctic SIE. In addition, we will use a sophisticated
29 Lagrangian approach to contrast these existing results using new information and insights.

30 In recent years a number of mechanisms have been put forward relating the strength of
31 moisture transport and Arctic SIE. These mechanisms vary significantly in the nature of their
32 main driver, including; i) hydrological, such as increments in Arctic river discharges (Zhang

1 et al., 2012) or increments in precipitation due to enhanced local evaporation due to less SIE
2 (Bintanja and Selten, 2014), ii) radiative, particularly through rises in cloud cover and water
3 vapour (Kapsch et al., 2013), iii) dynamical, namely more summer storms with unusual
4 characteristics crossing the Arctic, (Simmonds and Rudeva, 2012). Most likely these different
5 mechanisms coexist to a certain extent and are not necessarily mutually exclusive, for
6 instance the autumn and early positive trend is SCE (Estilow et al., 2015) can be closely
7 related to positive trends in Eurasian rivers (Yang et al., 2007). In particular, two of these
8 works (Zhang et al., 2012; Kapsch et al., 2013) provide novel insight on the role played by the
9 transport of moisture and the melting of sea ice or snow cover. Their main findings are
10 summarized below:

11 1. According to Zhang et al. (2012) in their work entitled "Enhanced poleward moisture
12 transport and amplified northern high-latitude wetting trend", the authors provide strong
13 evidence to support; i) that there is a trend in the net poleward atmospheric moisture transport
14 (AMT) towards the Eurasian Arctic river basins , ii) that this net AMT is captured in 98% of
15 the gauged climatological river discharges, iii) that the upward trend of 2.6% net AMT per
16 decade is in good agreement with the 1.8% increase per decade in the gauged discharges.

17 The increase in Arctic river discharge is a possible cause of melting sea-ice in agreement with
18 several studies realized over the Canadian Arctic region support these results (e.g. Dean et al.,
19 1994; Nghiem et al., 2014). Thus, AMT can be seen to have an important role to play in this
20 process. Nevertheless, Zhang et al. (2012) used a very simple analysis of integrated moisture
21 fluxes, in which they calculated moisture transport from predetermined source and sink
22 regions, and were unable to identify the moisture source regions directly.

23

24 2. Using a very different methodology Kapsch et al. (2013) in the paper entitled "Springtime
25 atmospheric energy transport and the control of Arctic summer sea-ice extent" demonstrated
26 that i) enhanced water vapour and clouds in spring, together with the associated greenhouse
27 effect, are related to the extension of sea-ice during the summer; and ii) in areas of summer
28 ice retreat, a significantly enhanced transport of humid air is evident during spring, producing
29 increased cloudiness and humidity resulting in an enhanced greenhouse effect.

30 As for Kapsch et al. (2013), global balances of atmospheric moisture flux were used, which
31 allowed neither the identification of the moisture sources nor any assessment of their role in
32 the variability of the moisture transport.

1

2 **3 Identifying objectively the main sources of moisture for large Eurasian**
3 **rivers basins**

4 The analysis adopted here to discuss existing results is mostly based on the Lagrangian
5 particle dispersion model FLEXPART (Bintanja and Selten, 2014; Stohl and James, 2004),
6 using data from 1979 to 2013 obtained from the ERA-Interim reanalysis of the ECMWF (Dee
7 et al., 2011), which can be considered the state of the art reanalysis in terms of the
8 hydrological cycle (Trenberth et al., 2011; Lorenz and Kunstmann, 2012). The analysis will
9 be restricted to years after 1979 in order to avoid working with results obtained prior to the
10 incorporation of satellite data in the reanalysis. Using a horizontal resolution of 1° in latitude
11 and longitude and a resolution of 61 vertical levels, the algorithm tracks atmospheric moisture
12 along trajectories. A 3-D wind field moves a large number of so-called particles (air parcels)
13 resulting from the homogeneous division of the atmosphere. The specific humidity (q) and the
14 position (latitude, longitude and altitude) of all the particles are recorded at 6-hour intervals.
15 The model then calculates increases (e) and decreases (p) in moisture along each trajectory at
16 each time step by means of variations in (q) with respect to time i.e., $e-p = m dq/dt$. The
17 quantity (E-P) is calculated for a given area of interest by summing (e-p) for all particles
18 crossing a 1° grid column of the atmosphere, where E and P are the rates of evaporation and
19 precipitation, respectively. The particles are tracked and a database is created with values of
20 E-P averaged and integrated over 10 days of transport, this being the average residence time
21 of water vapour in the atmosphere (Numaguti, 1999). The main sources of moisture for the
22 target area (in terms of when and where the air masses that reach the target area acquire or
23 lose moisture) are shown through the analysis of the 10-day integrated (E-P) field. For a
24 comprehensive review see Gimeno et al. (2012), which provides details of the limitations of
25 this Lagrangian approach, its uncertainty and significance, and its advantages and
26 disadvantages with respect to other methods of estimating moisture sources. For further
27 information on FLEXPART model see Stohl et al. (2004).

28

29 According to Zhang et al. (2012), temporal lags must be considered when linking AMT from
30 lower latitudes with snowpack accumulation and also between this and Arctic river
31 discharges. Thus, summer Arctic river discharge can be related to the result of the melting of
32 the snowpack that accumulated during the preceding months, while the AMT most related to

1 the summer river discharge corresponds to that resulting from snowpack accumulation during
2 the period October - March. We therefore choose this period to estimate the moisture sources
3 for the target region formed by the Ob, Yenisei and Lena rivers basins, as in the work of
4 Zhang et al. (2012). The central panel of figure Fig. 1 shows that the main moisture sources
5 are located over the Mediterranean Sea, and the smaller Caspian and Black Seas, as well as
6 the North Atlantic Ocean and to a somewhat lesser degree the North Pacific Ocean in the
7 paths of the global western boundary currents and their extensions. This result is striking
8 because these source regions seem to match those areas with the highest trend in terms of
9 evaporation in the past few decades.

10

11 **4 Trends in evaporation from main sources: possible consequences**

12 Using some of the best estimates of evaporation, namely those derived from the OAFlux data
13 (Yu and Weller, 2007), strong increasing trends can be seen in evaporation from the oceans
14 since 1978, with the upward trend being most pronounced during the 1990s. The spatial
15 distribution of these trends (Yu, 2007) shows that while the increase in evaporation has
16 occurred globally, it has primarily been observed during the hemispheric winter and is
17 strongest along the paths of the global western boundary currents and any inner Seas with
18 wind forcing playing a dominant role. The a), b) and c) panels in Figure 1 also show the
19 evolution of the average evaporation derived from OAFLUX for the main moisture sources
20 for the Arctic river basins (those circled with a blue line and the entire Mediterranean basin
21 sea). Although superimposed to a pronounced decadal-scale variability trends are significant
22 in most of the grid points encircled, and are especially clear for the Atlantic, Pacific and
23 Mediterranean sources. Similar results were reached when evaporation taken from ERA-
24 Interim was used (not shown). The differences in the composites of the moisture sources of
25 the Arctic river basins between the decade 2001-10 and the decade 1981-90 are also shown in
26 Figure 1, with greenish colours indicating regions where their contribution as a source
27 intensified over these years. From these results it seems clear that there is an enhanced
28 moisture contribution from those moisture regions where the evaporation increased.

29 We have repeated the procedure considering the region analyzed by Kapsch et al. (2013), i.e.
30 in this case, the late spring (April and May) moisture sources detected are related to the area
31 where the September sea-ice anomaly is encountered. Overall results (Figure 2) are quite
32 similar to those presented for the Arctic river basins, and the main moisture sources are also

1 placed in the paths of the global western boundary currents in both the North Atlantic and the
2 North Pacific Oceans (the main one in this case), and in the Mediterranean basins (more
3 moderated in this case).

4 In this regard the intensification of evaporation in these source regions could have a dual
5 effect on the reduction of September Arctic ice, through (1) intensification of summer river
6 discharge and (2) enhancement of the greenhouse effect due to an increase in cloudiness and
7 humidity over the ice-melting regions.

8

9 **Summary and conclusions**

10 We have made a critical assessment of the results obtained in two important recent works that
11 offer new understanding on the role played by the transport of moisture and the melting and
12 the melting of sea ice or snow cover (Zhang et al., 2012; Kapsch et al., 2013). The Lagrangian
13 analysis adopted in our approach seems to stress the connection between two climate change
14 indicators, namely an increase in evaporation over source regions and Arctic ice melting. We
15 are confident that our results provide the necessary link between these two realms and suggest
16 an intricate chain of events related to (1) positive trends in evaporation in specific ocean areas
17 that correspond to the main moisture source regions of Eurasian rivers, (2) upward trends in
18 atmospheric transport from these regions to the Arctic river basins/ regions where ice-melting
19 occurs, and (3) trends in river discharges/moisture and cloud cover. These developments merit
20 further and more comprehensive study in terms of their effects on present and future climates.

21

22 **Acknowledgements:** The authors acknowledge funding by the European ERAnet.RUS
23 programme, within the project ACPA and by the Spanish MINECO and FEDER within the
24 project TRAMO

25

1 **References**

2 Baggett, C. and Lee, S.: Arctic warming induced by tropically forced tapping of available
3 potential energy by planetary scale waves. *J. Atmos. Sci.*, 72, 1562-1568, 2015.

4 Barriopedro D., Fischer E. M., Luterbacher L., Trigo R. M., García-Herrera R.: The hot
5 summer of 2010: redrawing the temperature record map of Europe. *Science*, 332, 6026, 220-
6 224, doi: 10.1126/science.1201224, 2011.

7 Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local
8 evaporation and sea-ice retreat, *Nature*, 509, 480-482, 2014.

9 Chen X. and Tung, K.K.: Varying planetary heat sink led to global-warming slowdown and
10 acceleration, *Science*, 345(6199), 897-903, doi:10.1126/science.1254937, 2014.

11 Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J.,
12 Dethloff, K., Entekhabi, D., Overland, J. and Jones, J.: Recent Arctic amplification and
13 extreme mid-latitude weather. *Nat. Geosci.*, 7(9), 627–637, doi:10.1038/ngeo2234, 2014.

14 Comiso, J. C., Parkinson, C. L., Gersten, R. and Stock, L.: Accelerated decline in the Arctic
15 sea ice cover. *Geophys. Res. Lett.*, 35, doi:10.1029/2007GL031972, 2008.

16 Coumou, D. and Rahmstorf, S.: A decade of weather extremes. *Nat. Clim. Chang.*, 2, 491-
17 496, 2012.

18 Dean, K. G., Stringer, W. J., Ahlnas, K., Searcy, C. and Weingartner, T.: The influence of
19 river discharge on the thawing of sea ice, Mackenzie River Delta: albedo and temperature
20 analyses. *Polar Research*, 13: 83–94, doi: 10.1111/j.1751-8369.1994.tb00439.x, 1994.

21 Dee, D, Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
22 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
23 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,
24 Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
25 McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P.,
26 Tavolato, C., Thépaut, N. and Vitart, F.: The ERA Interim reanalysis: Configuration and
27 performance of the data assimilation system, *Q. J. R. Meteorol. Soc.*, 137, 553–597, doi:
28 10.1002/qj.828, 2011.

1 Estilow, T. W., Young, A. H. and Robinson, D. A.: A long-term Northern Hemisphere snow
2 cover extent data record for climate studies and monitoring, *Earth Syst. Sci. Data*, 7, 137-142,
3 doi:10.5194/essd-7-137-2015, 2015.

4 Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in
5 mid-latitudes, *Geophys. Res. Lett.* 39, L06801, doi: 10.1029/2012GL051000, 2012.

6 Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A.,
7 Duran-Quesada, A. M. and Nieto, R.: Oceanic and Terrestrial Sources of Continental
8 Precipitation, *Rev. Geophys.*, 50, RG4003, doi: 10.1029/2012RG000389, 2012.

9 Gimeno, L., Nieto, R., Drumond, A., Castillo, R. and Trigo, R.M.: Influence of the
10 intensification of the major oceanic moisture sources on continental precipitation, *Geophys.*
11 *Res. Lett.*, 40, 1443-1450, doi:10.1002/grl.50338, 2013.

12 Graversen, R. G., Mauritsen, T., Tjernstrom, M., Källen, E. and Svensson, G.: Vertical
13 structure of recent Arctic warming, *Nature*, 451, 53–56, doi:10.1038/nature06502, 2008.

14 Hansen, J., Sato, M. and Ruedy, R.: Perception of climate change, *Proc. Natl. Acad. Sci.*, 109,
15 14726-14727, E2415-E2423, doi:10.1073/pnas.1205276109, 2012.

16 IPCC: Climate Change 2013: The physical science basis. Contribution of working group 1 to
17 the fifth assessment report of the intergovernmental panel on climate change, edited by:
18 Stocker, T. F., Qin, D., Plantner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
19 Xia, Y., Bex, V. and Midgley, P. M., Cambridge University Press, Cambridge, United
20 Kingdom and New York, NY, USA, 2013.

21 Jakobson, E. and Vihma, T.: Atmospheric moisture budget in the Arctic based on the ERA-40
22 reanalysis, *Int. J. Climatol.*, 30, 2175–2194, doi: 10.1002/joc.2039, 2010

23 Kapsch, M. L., Graversen, R. G. and Tjernström, M.: Springtime atmospheric energy
24 transport and the control of Arctic summer sea-ice extent, *Nat. Clim. Chang.*, 3, 744-748,
25 doi:10.1038/nclimate1884, 2013.

26 Kattsov, V. M., Walsh, J. E., Chapman, W. L., Govorkova, V. A., Pavlova, T. V. and Zhang,
27 X.: Simulation and projection of Arctic freshwater budget components by the IPCC AR4
28 global climate models, *J. Hydrometeorol.*, 8, 571-589, 2007.

29 Kosaka Y. and Xie, S.P.: Recent global-warming hiatus tied to equatorial Pacific surface
30 cooling, *Nature*, 501, 403–407, doi:10.1038/nature12534, 2013.

1 Kurita, N.: Origin of Arctic water vapor during the ice-growth season, *Geophys. Res.*
2 *Lett.*, 38, L02709, doi: 10.1029/2010GL046064, 2011.

3 Liu, C. and Barnes, E. A.: Extreme moisture transport into the Arctic linked to Rossby wave
4 breaking. *J. Geophys. Res. Atmos.*, 120, 3774–3788. doi: 10.1002/2014JD022796, 2015.

5 Lorenz, C. and Kunstmann, H.: The hydrological cycle in three state-of-the-art reanalyses:
6 Intercomparison and performance analysis, *J. Hydrometeorol.*, 13, 1397–1420, 2012.

7 Lucarini, V. and Ragone, F.: Energetics of climate models: Net energy balance and
8 meridional enthalpy transport, *Rev. Geophys.*, 49, RG1001, doi:10.1029/2009RG000323,
9 2011.

10 Nghiem, S. V., Hall, D. K., Rigor, I. G., Li, P. and Neumann, G.: Effects of Mackenzie River
11 discharge and bathymetry on sea ice in the Beaufort Sea, *Geophys. Res. Lett.*, 41, 873–879,
12 doi:10.1002/2013GL058956, 2014.

13 Numaguti, A.: Origin and recycling processes of precipitating water over the Eurasian
14 continent: Experiments using an atmospheric general circulation model, *J. Geophys. Res.*,
15 104, 1957-1972, 1999.

16 Palmer T.: Record-breaking winters and global climate change, *Science*, 344, 803-804, doi:
17 10.1126/science.1255147, 2014.

18 Park, D. S. R., Lee, S. and Feldstein, S. B.: Attribution of the Recent Winter Sea Ice Decline
19 over the Atlantic Sector of the Arctic Ocean. *J. Climate*, 28, 4027–4033, 2015.

20 Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic
21 temperature amplification, *Nature*, 464, 1334-1337, doi:10.1038/nature09051, 2010.

22 Simmonds, I. and Rudeva, I.: The great Arctic cyclone of August 2012, *Geophys. Res. Lett.*,
23 39, L23709, doi: 10.1029/2012GL054259, 2012.

24 Seneviratne, S., Donat, M. G., Mueller, B. and Alexander, L. V.: No pause in the increase of
25 hot temperature extremes, *Nat. Clim. Change*, 4, 161–3, 2014

26 Serreze, M. C. and Francis, J.A.: The Arctic amplification debate, *Clim. Chang.*, 76, 241–264,
27 2006.

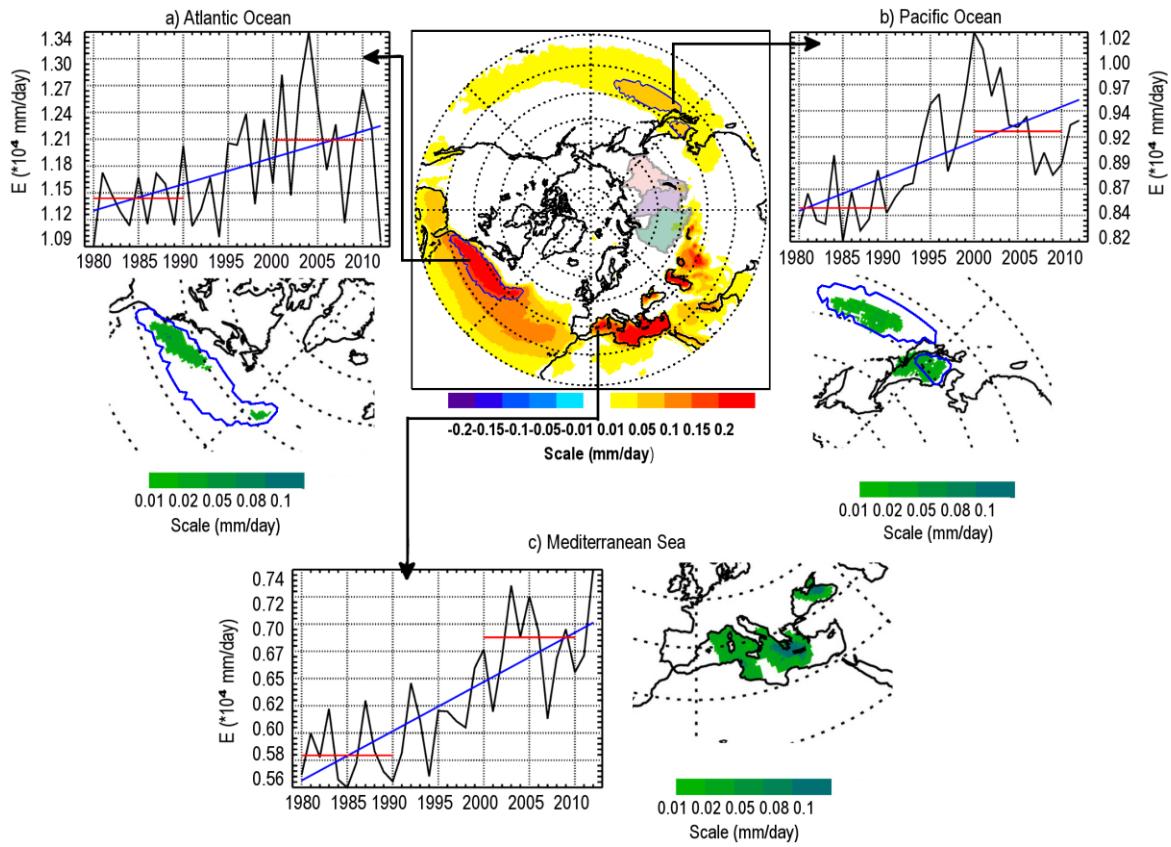
28 Schweiger, A. J., Lindsay, R. W., Vavrus, S. and Francis, J. A.: Relationships between Arctic
29 sea ice and clouds during autumn, *J. Clim.*, 21, 4799–4810, 2008.

1 Stohl, A. and James, P. A.: Lagrangian analysis of the atmospheric branch of the global water
2 cycle: Part I. Method description, validation, and demonstration for the August 2002 flooding
3 in central Europe, *J. Hydrometeorol.*, 5, 656–678, 2004.

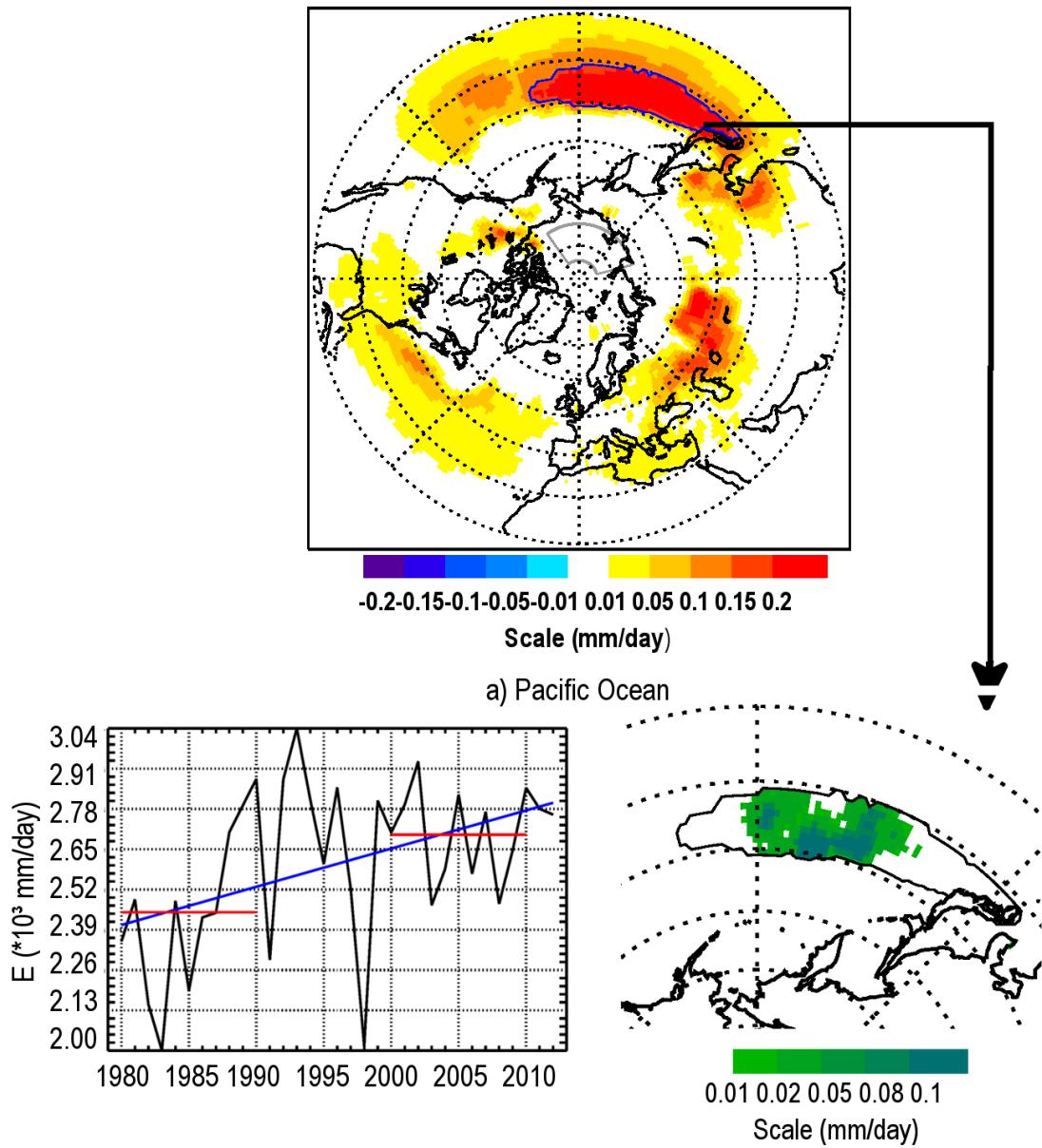
4 Tang, Q., Zhang, X. and Francis, J. A.: Extreme summer weather in northern mid-latitudes
5 linked to a vanishing cryosphere, *Nat. Clim. Chang.*, 4, 45-50, doi:10.1038/nclimate2065 ,
6 2014.

7 Trenberth, K. E., Fasullo, J. T. and Mackaro, J.: Atmospheric moisture transports from ocean
8 to land and global energy flows in reanalyses, *J. Clim.*, 24, 4907–4924, 2011.

9 Woods, C., Caballero, R. and Svensson, G.: Large-scale circulation associated with moisture
10 intrusions into the Arctic during winter, *Geophys. Res. Lett.*, 40, 4717–4721,
11 doi: 10.1002/grl.50912, 2013.


12 Yang, D., Zhao, Y., Armstrong, R., Robinson, D. and Brodzik, M.-J.: Streamflow response to
13 seasonal snow cover mass changes over large Siberian watersheds, *J. Geophys. Res.*, 112,
14 F02S22, doi:10.1029/2006JF000518, 2007.

15 Yu, L.: Global variations in oceanic evaporation (1958-2005): The role of the changing wind
16 speed, *J. Clim.*, 20, 5376–5390, 2007.


17 Yu, L. and Weller, R. A.: Objectively analyzed air-sea heat fluxes for the global ice-free
18 oceans (1981–2005), *Bull. Am. Meteorol. Soc.*, 88, 527–539, 2007.

19 Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J. and Wu, P.: Enhanced
20 poleward moisture transport and amplified northern high-latitude wetting trend, *Nat. Clim.
21 Chang.*, 3, 47-51, doi:10.1038/nclimate1631, 2012.

22

1
 2 Figure 1. (Central panel) Climatological October-March 10-day integrated (E-P) values
 3 observed for the period 1979 – 2012, for all the particles bound for the Ob, Yenisei and Lena
 4 rivers basins (green, purple and pink areas respectively indicate the basin area), determined
 5 from backward tracking. Warm colours represent regions acting as moisture sources for the
 6 tracked particles. Plots in green show the significant positive differences at the 95% level
 7 after bootstrap test (1000 interactions) in the composites of the moisture sources of the Arctic
 8 river basins between the decades 2001-10 and 1981-90. Temporal series show the evolution
 9 of the average evaporation derived from OAFLUX dataset for the main moisture sources for
 10 the Arctic river basins (the Atlantic and Pacific sources, those circled with a blue line in the
 11 central figure, and for the whole Mediterranean Sea basin). The blue lines are the linear trend
 12 and the red ones denoted the 10-year periods used on composites.
 13

1
2 Figure 2. As Fig.1 but for the Kapsch area (115° - 215° E ; 75° - 85° N), denoted with the grey
3 contour in the bottom panel.