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Abstract

Projections of changes in the hydrological cycle from Global Hydrological Models (GHMs)
driven by Global Climate Models (GCMs) are critical for understanding future occurrence
of hydrological extremes. However, uncertainties remain large and need to be better as-
sessed. In particular, recent studies have pointed to a considerable contribution of GHMs5

that can equal or outweigh the contribution of GCMs to uncertainty in hydrological projec-
tions. Using 6 GHMs and 5 GCMs from the ISI-MIP multi-model ensemble, this study aims:
(i) to assess future changes in the frequency of both high and low flows at the global scale
using control and future (RCP8.5) simulations by the 2080s, and (ii) to quantify, for both
ends of the runoff spectrum, GCMs and GHMs contributions to uncertainty using a 2-way10

ANOVA. Increases are found in high flows for northern latitudes and in low flows for several
hotspots. Globally, the largest source of uncertainty is associated with GCMs, but GHMs
are the greatest source in snow dominated regions. More specifically, results vary depend-
ing on the runoff metric, the temporal (annual and seasonal) and regional scale of analysis.
For instance, uncertainty contribution from GHMs is higher for low flows than it is for high15

flows, partly owing to the different processes driving the onset of the two phenomena (e.g.
the more direct effect of the GCMs precipitation variability on high flows). This study pro-
vides a comprehensive synthesis of where future hydrological extremes are projected to
increase and where the ensemble spread is owed to either GCMs or GHMs. Finally, our
results underline the need for improvements in modeling snowmelt and runoff processes to20

project future hydrological extremes and the importance of using multiple GCMs and GHMs
to envelope the uncertainty range provided by these two sources.

1 Introduction

The ongoing intensification of the water cycle at the global scale is expected to continue
in the coming decades (Huntington, 2006; Stott et al., 2010). Projected changes in climate25

variables from global General Climate Models (GCMs) indicate an increase in the frequency
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of hydrological extremes (Tebaldi et al., 2006; Seneviratne et al., 2012; Sillmann et al., 2013;
Kharin et al., 2013). These hydrological shifts go hand in hand with a growing world pop-
ulation that will become ever more vulnerable with respect to access to water and food,
and resilience to natural hazards (Lavell et al., 2012). In this context, global multi-model
ensembles yield a valuable opportunity for climate projections and impact assessments. In5

hydrology, multi-model ensemble experiments – consisting of Global Hydrological Models
(GHMs) fed by input forcing simulated by GCMs – can be used to project future changes
in the water cycle and future hydrological extremes, using modeled variables such as pre-
cipitation, runoff, and soil moisture. In recent years, a number of studies have assessed the
future changes in the global water cycle (e.g. Nohara et al., 2006; Hirabayashi et al., 2008;10

Sheffield and Wood, 2008). Although many of these studies have a representative number
of GCMs in their ensembles, they rarely comprise more than one GHM, and this presents
a limitation considering that GHMs provide more uncertainty than previously thought (Had-
deland et al., 2011; Hagemann et al., 2013; Schewe et al., 2013; Prudhomme et al., 2014).
In addition, the coarse temporal and spatial resolution of the climate signal used in these15

studies does not reflect well the potential changes in sub-monthly extreme events at the
regional and local scale (Forzieri et al., 2014).
Recently, model inter-comparison projects like WaterMIP (Haddeland et al., 2011) and ISI-
MIP (Warszawski et al., 2014) have allowed to include multiple GCMs and GHMs in global
impact studies at unprecedented temporal (up to daily) and spatial (0.5◦) resolution, thereby20

providing frameworks for consistent assessments of the terrestrial water cycle.
The ISI-MIP data set has been used to assess future changes in runoff at global and re-

gional scales. Dankers et al. (2013) explored changes in 30 year return period of river flow
showing that flood hazard is projected overall to increase globally, although not uniformly,
and that decreases occur mainly in areas where the hydrograph is dominated by spring25

snowmelt. Schewe et al. (2013) assessed future water scarcity by analysing changes in
mean annual runoff together with global population patterns, showing how the number of
people living in water scarcity is projected to increase globally. Davie et al. (2013) inves-
tigated runoff changes across models by grouping GHMs into hydrological and biome (in-
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cluding CO2 and vegetation dynamics) models, showing that while both types agree on the
sign of runoff change for most regions of the world (with contrasting exceptions like West
Africa where biome models moisten and hydrological models dry), models accounting for
varying CO2 yield more runoff than those with constant CO2. Prudhomme et al. (2014) ex-
amined the future frequency of droughts using a variable threshold method on daily runoff.5

They identified drought hotspots globally and observed, similarly to Davie et al. (2013),
how biome models accounting for varying CO2 concentrations tend to project more runoff
with increasing CO2 than the hydrological models. All of these studies emphasize how both
GCMs and GHM uncertainty contribute to the spread in projected changes in the hydrolog-
ical cycle. Their findings highlight the importance of including different types of GHMs and10

GCMs for making comprehensive assessments of uncertainty in climate impact studies.
In this context, modeling-induced uncertainty (i.e. inter-model spread of GCMs and GHMs)
has been expressed by looking at the variance across both types of models. For example,
Schewe et al. (2013) and Dankers et al. (2013) used the ratio of the variances of GCM
and GHMs results (for GCM: variance of the change across all GCMs for each GHM, and15

then averaged over all of the GHMs; and vice versa for GHMs). Similarly, using WaterMIP
data, Hagemann et al. (2013) expressed the spread due to the choice of model type using
standard deviation of GCM and GHMs (for GCM: mean across all GHMs for each GCM,
and standard deviation of the GCMs; and vice versa for GHMs). Prudhomme et al. (2014)
omit the partition into GCM/GHM and express the uncertainty through the Signal-to-noise20

(by grouping results per type of model) in order to infer which global model type in the en-
semble brings about highest agreement.
The studies cited above have provided useful knowledge on climate change impacts on the
water cycle using the ISI-MIP dataset, however, a synthesis of future projections for high
and low flows along with a consistent estimation of uncertainties is still missing. The present25

study builds on the work on low flows of Prudhomme et al. (2014), but introduces several
new aspects. Firstly, low flows (Q10) are now analised using an improved index extraction.
The variable threshold method used in Prudhomme et al. (2014), has been revisited to
overcome a limitation of the 30-day moving window for which gridcells were assigned lower
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threshold values than the theoretical threshold assigned (Q10) (i.e. a tendency to capture
fewer occurrences, an effect perhaps attributable to GHMs’slow emptying of reservoirs dur-
ing the recession phase). A shorter 5-day fixed time window eliminates this effect. Note
that, in order to gather further data for the estimate of the quantile flow, the period of anal-
ysis was increased from 30 to 34 years, starting four years earlier (1972 for control and5

2066 for future). Secondly, we now analyse high flows (Q95), with the same method used
for low flows (5-d fixed-window variable threshold method). Dankers et al. (2013), who also
analyzed high flows, have focused on a different metric (annual extreme monthly flood peak
with 30-year return level), as their aim was to describe changes in flood hazard, while our
focus is on change in frequency of high flow days. In our study high and low flows are10

hence identified jointly with the same ensemble of 5 GCMs and 6 GHMs. While compris-
ing the same number of GCMs, the ensemble used by Prudhomme et al. (2014) uses one
additional GHM (JULES) and Dankers et al. (2013) uses three additional GHMs (JULES,
LPJmL, MATSIRO). We did not use these additional GHMs as they showed large areas
with long pools of zero values hindering the index extraction, making them unsuitable for15

our analysis, especially for the low flows; additionally, JULES was run at a coarser resolution
(1.25–1.875◦ vs. 0.5–0.5◦) that would potentially influence the uncertainty analysis. Thirdly,
we assess systematically the relative contribution of GHMs and GCMs to uncertainty using
an analysis of variance (ANOVA) framework as in e.g., Yip et al., 2011; Sansom et al., 2013.
This uncertainty assessment moves beyond the signal-to-noise ratio by Prudhomme et al.20

(2014), as the quantification of each source (GCM/GHM) to total uncertainty allows to de-
scribe the spatial variability of the contributions gridcell per gridcell. While (Dankers et al.,
2013; Schewe et al., 2013) partition GCM/GIM uncertainty using ratios between the vari-
ances, our ANOVA approach adds the contribution of the error (or residual) to the partition
of the variance along with post-hoc testing on the residuals for model adequacy. We thus25

describe how high and low flows and inherent uncertainty vary at the seasonal and spatial
scale, identifying areas where we have more confidence in the climate or in the hydrology
(i.e. uncertainty is owed to GCMs or GHMs). Finally, to understand how the variance of the
changes differs regionally, we carry out analysis at the regional scale expressing the ANOVA
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sum-of-squares of each source using homogeneous geo-climate regions (Köppen–Geiger).
This allows for an improved understanding of how the climate and hydrological processes
drive uncertainty for both runoff ends.
By comparing an ensemble of GCMs (5) and GHMs (6) for future projections (2066–2099)
against the historical period (1972–2005), this study aims (i) to assess future high and low5

flows changes at global and annual and seasonal scales, and (ii) to quantify the uncertainty
attributable to GHMs and GCMs using ANOVA. In the next section, the dataset and the
different steps of the methodology are detailed. The results of projected hydrological ex-
tremes and respective uncertainty are presented in Sect. 3 before discussing the important
and wider implications of this research in the fourth and final section.10

2 Data and methods

The dataset used herein comes from the Inter-Sectorial Impact Model Intercomparison
Project (ISI-MIP) (Warszawski et al., 2014) and consists of daily total un-routed runoff at
a spatial resolution of 0.5 degrees from an ensemble of six GHMs forced with five CMIP5
GCMs bias-corrected climate (Hempel et al., 2013) for the historical (1972–2005) and fu-15

ture (2066–2099) periods under the RCP 8.5 scenario. The six GHMs are: H08, MPIHM,
MacPDM, VIC, WBM, PcrGLOBWB (see Table A1 in Appendix A for a summary of the
main characteristics), and the five GCMs are: HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM, GFDL-ESM2M, NorESM1-M (refer to Warszawski et al. (2014) for further de-
tails on the models and to www.isi-mip.org to access the simulation protocol). It should be20

noted that the selection of GHMs was dictated by temporal (daily runoff) resolution and time
series tractability: models with lengthy pools of runoff equal to zero over large portions of
the globe imposing constraints to the index extraction were not included (this aspect is de-
scribed further in Appendix B). The selected model combinations form an ensemble of 30
experiments, each consisting of a historical and future period, none of the GHMs include25

varying CO2.
Our analytical framework was composed of four steps: (i) time-series of days classified as

6
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high and low flows were extracted from daily total runoff record; (ii) high and low flows in-
dices (i.e. change in frequency of high/flow flows) were calculated (future-historical period)
and mapped; (iii) ANOVA was carried out on the high and low flows indices considering
GCMs and GHMs as factors; and (iv) the dominant uncertainty factors were explored for
high and low flows across different climate regions based on the Köppen–Geiger classifica-5

tion.
To quantify high and low flows inter-annual variability, daily binary series (zero or one) were
extracted for every land gridcell: high flows days, HFD; and low flows days, LFD. The series
extraction uses daily varying threshold curves obtained from the daily runoff series for the
historical period (1972–2005), which are then applied to historical period and future pro-10

jections to identify days above (for HFD) or below thresholds (for LFD), as in e.g., for low
flows, Sheffield and Wood (2008); Prudhomme et al. (2014). High flows are characterized
by the 95th percentile (Q95 – runoff equaled or exceeded 5 % of the time) and low flows by
the 10th percentile (Q10 – runoff equaled or exceeded 90 % of the time). For HFD, a value
of 1 (high flow) is assigned to each cell if the cell’s runoff exceeds the Q95 value, otherwise15

a value of 0 (no high flow) is assigned. For LFD, a value of 1 (low flows) is assigned to each
cell if the cell’s runoff is below the Q10 value, otherwise a value of 0 (no low flow) is as-
signed. A comprehensive description of the threshold and binary series extraction together
with an explanatory picture (Fig. B1) are provided in Appendix B. Gridcells showing little or
no seasonal change in the daily runoff of the control period (1972-2005) were screened-20

out and represented in grey on the maps (for a comprehensive explanation of the masking
see Appendix B). These screened-out gridcells are often located in arid or frozen regions
where there is little or no runoff during long periods of the year and so the index extraction
becomes intractable due to the presence of repeated zero values in the series.
We use indices to express the change in the frequency (in %) of: future high (HFI) and25

low (LFI) flows. These indices are calculated as follows: for each ensemble member HFI
(LFI) is equal to the difference between the frequency (in %) of high (low) flows days (100×
mean of HFD (LFD)) from the future (2066–2099) and historical period (1972–2005), for the
whole year and per season (DJF and JJA). Both HFI and LFI are composed of 30 series
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(i.e. 6 GHMs fed by 5 GCMs each). The agreement in the change across ensemble mem-
bers is expressed by the signal-to-noise ratio, S2N, calculated by dividing the median of the
ensemble flow indices (HFI and LFI) by the inter-quartile range (75th percentile minus 25th
percentile). The higher the S2N, the higher the members agreement in the signal, assuming
signal greater than noise if S2N > 1.5

In this study, the uncertainty is reflected by the spread of the flow indices due to the choice
of GCM or GHM. To quantify the individual contribution of GCMs and GHMs to total uncer-
tainty, a 2-factor ANOVA was carried out on the flow indices HFI and LFI for each gridcell.
For this data set, model runs had no replicates, therefore the ANOVA model considers one
case per treatment (Neter et al., 1999, ch. 21), so no interactions (αβij = 0) and fixed fac-10

tors levels (n= 1):

Yij = µ+αi+βj + εij (1)

where: Yij is the mean change for GCMi and GHMj , µ is a constant (the overall mean), αi

is the main effect for GCM at the ith level, βj is the main effect for GHM at the jth level,15

εij is the residual ≈N(0,σ2)iid. Thus, the variance is partitioned into two factors, GCMs
and GHMs, plus the residuals. The results, expressed in terms of sum of squares, are
used to quantify the factors contributions to the total variance, here considered as uncer-
tainty as in e.g. Sansom et al. (2013). ANOVA models are reasonably robust against certain
types of departures from the model (e.g. error terms not being exactly normally distributed).20

Nonetheless, the suitability of the ANOVA model with the data at hand should be checked
for serious departures from the conditions assumed by the model by looking at the residu-
als (Neter et al., 1999, ch. 18) and testing their normality (e.g. Lilliefors Test) and constancy
of variance (e.g. Hartley Test). Unsatisfactory results would require remedial measures like
data transformation or a modification of the model.25

To understand how variance differs between climate regions, the ANOVA sum of squares
for all model combinations are shown per Köppen–Geiger class. We used the Köppen–
Geiger data classification based on present day proposed by Kottek et al. (2006) (a link to

8



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

the map is provided at the end of Table 1). A total of 15 (out of 31) regions are considered
leaving out underrepresented regions with too few gridcells (< 1000).

3 Results

Annual mean changes and associated S2N across all GHMs and GCMs are shown for HFI
and LFI in Fig. 1a and b. For high and low flow indices, the mean changes vary spatially5

and in magnitude (Fig. 2) but they are positive generally, this means increases in number
of days with (i) high flows, mostly over high northern latitudes; and (ii) low flows, spread
over all latitudes with hotspots in: southern Europe; south western and mid Latin Amer-
ica; south eastern US and south eastern Canada; lower parts of Central Africa; north/north
eastern China; and south western Australia. Regions screened-out represent 14 and 18 %10

of land for HFI and LFI, respectively. The S2N shows model agreement generally over the
same regions for both indices (e.g., southern Europe, south western and mid Latin Amer-
ica, southeastern US). However, model agreement is found for HFI – but not for LFI – over
Alaska, eastern Canada, and northwestern and eastern Russia. In some regions increases
are not associated to a strong S2N (e.g. for high flows western China and the Horn of15

Africa). Mean changes and S2N for boreal winter (DJF) and summer (JJA), in Figs. 3 and
4 respectively, show an increased intensity with very similar spatial patterns to their annual
counterparts in DJF for the high flows and in JJA for low flows. Conversely, high flows in
JJA show virtually no change, while low flows in DJF show decreases at high northern lati-
tudes with high model agreement and increases elsewhere with smaller model agreement20

(S2N). This can be seen also in Fig. 2: the PDF (i.e. the density of the mean change per-
centage) stretches towards higher mean changes for high flows in DJF and for low flows
in JJA. Global results are dominated by boreal seasonality (high flow changes dominant in
DJF, and low flow changes dominant in JJA) as the majority of global land cells 65 % (of
unmasked land) are located North of Latitude 23.5◦. The remainder of the land cells (35 %)25

are located within the Tropics and South latitude bands, and depict weak changes for high
flows in all seasons, and increased changes for low flows in all seasons, though JJA’s are

9
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more marked.
The results of the ANOVA across the 30 members of HFI and LFI are shown in Fig. 1c;

they are expressed, for each factor, as the proportion of sum of squares divided by the to-
tal sum of squares (refer to Appendix C for residuals testing for model adequacy). For the
high flows, the variance is explained mostly by the GCMs (yellow, 47 % of unmasked land,5

Fig. 1c), although the GHMs are the major factor over western Europe and central Canada
(green, 28 % of unmasked land, Fig. 1c). For low flows, the proportions change: the GCMs
(43 %) remain the major contributors over the globe, but GHMs (35 %) increase to a rel-
ative influence closer to the GCMs, and become the major factor in some northern (e.g.
north eastern Russia) and southern (e.g. southern Africa, south western Australia) latitude10

regions. Seasonal results (Figs. 3c and 4c) are very similar to their annual counterparts in
the case of high flows in DJF and low flows in JJA, whereas for high flows in JJA and for
low flows in DJF higher residual rates (i.e. decreased overall GHM and GCM contributions)
are found, perhaps owing to fewer events occurring in these seasons for both low and high
flow indices.15

To capture better the spatial distribution of the major sources of uncertainty, ANOVA results
are aggregated by climatic homogeneous regions based on the climatological Köppen–
Geiger classification. Scatterplots in Fig. 5 show the proportions of sums of squares of
GHMs (y axis) vs. GCMs (x axis); medians for each climatic region are shown as their
class letter and summarize the prominent factor of uncertainty. For both high and low flows20

calculated over the year and seasonally, uncertainty in equatorial regions (A) is dominated
by GCMs (median closest to the x axis); while in snow dominated climate (D) it is domi-
nated by GHMs (median closest to the y axis). In warm temperate regions (C), uncertainty
is slightly higher for GCMs than GHMs. In arid regions (B), the variance is not well ex-
plained by either GCMs or GHMs (median farthest from 1; i.e. residuals explain most of25

the variance), suggesting that reproducing hydroclimatology over these regions represents
a challenge for both GCMs and GHMs. The ANOVA results for the whole year and those for
winter and summer seasons (DJF and JJA shown in Figs. 3c and 4c) are quantified further
in Table 1. This table provides a breakdown with both the regional and global results ex-

10
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pressed for mean changes, S2N and percentage of sum of squares per factor at the annual
and seasonal (DJF and JJA) scale. Looking jointly at the annual and seasonal results in Ta-
ble 1, it is clear that the widespread dominance of the GCMs contribution to uncertainty is
outweighed by the GHMs in the snow and ice dominated regions (D). This pattern is visible
also on the scatter plots (Figs. 5 and 6) with the GHM uncertainty dominated regions (near5

y-axis) often populated by D regions for both HFI and LFI (although to a lesser extent for
the former).

4 Discussion and conclusions

Using six global hydrological models (GHMs) fed by five global climate models (GCMs) un-
der the RCP8.5 scenario, this study aimed to assess future high and low flows changes10

globally by 2080s, and to quantify the uncertainty attributable to GHMs and GCMs. We
decided to focus solely on the uncertainty coming from GHMs and GCMs using as many
ensemble members (from the ISI-MIP project dataset) as possible under the RCP8.5, in
which change signals are expected to be larger (i.e. emissions continue to rise leading to
global radiative forcing levels of 8.5Wm−2 by the end of the 21st century). The hydrolog-15

ical simulations used in this study do not account for anthropogenic influences (e.g. water
abstraction, augmentation and artificial storage) or land-use changes.
High and low flows changes in the future (2066–2099) relative to the control period (1972–
2005) exhibit a number of robust large-scale features. Increases in high flow days were
found at northern latitudes, with a strong signal over eastern Canada, Scandinavia, north-20

western Russia, and around the Bering Sea (eastern Russia and Alaska). Increases in low
flow days were found in southern Europe, southwestern and central Latin America, south-
eastern USA, more southerly parts of Central Africa, and southwestern Australia. These
patterns are largely consistent with the few other studies carried out on runoff at the global
scale with several GHM-GCM combinations e.g. for high flows Dankers et al. (2013) and25

Hirabayashi et al. (2013), and low flows Van Huijgevoort et al. (2013) and Prudhomme
et al. (2014); and for mean flows Davie et al. (2013), Schewe et al. (2013), and Hagemann

11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

et al. (2013). More specifically, the comparison of flood hazard patterns by Dankers et al.
(2013) with the changes in the occurrence of high flow days from our study, reveals some
similarities, mostly northern North America and Northern Asia, while in some regions like
North-eastern Europe patterns are opposite. Low flow patterns are similar to Prudhomme
et al. (2014) although they find a weaker signal-to-noise.5

In this study we provide for the first time a comprehensive assessment of both ends of the
runoff spectrum at the same time using the same dataset globally. Moreover, we undertake
a consistent partition of uncertainty via ANOVA for both high and low flows, showing that
GCMs provide the largest uncertainty, although the GHMs contribution can be substantial in
particular regions. The results from our ANOVA framework are consistent with other global10

studies based on the ratios between the variances (or standard deviations) of ensemble
members averaged per type of model (Dankers et al., 2013), Schewe et al. (2013), and
Hagemann et al. (2013). In particular, uncertainty results that Dankers et al. (2013) ex-
pressed with GCM/GHM variance, are in agreement with our findings for high flows in the
southern hemisphere, mainly driven by GCM uncertainty, whereas there is less agreement15

for the northern hemisphere (in North America, Central Canada is GCM driven uncertainty,
whereas it is GHM driven in our results). Uncertainty results for low flows from Prudhomme
et al. (2014), expressed as S2N ratio, are not directly comparable, but as will be discussed
later, the inclusion of the JULES GHM in their ensemble has pointed to lower model agree-
ment (i.e. increased uncertainty).20

At the regional level, the uncertainty partition enables to delineate in which climate region
each factor (GCMs or GHMs) provides the largest uncertainty at the annual and seasonal
scales. Notably, for snow and ice dominated, polar regions, and arid zones, GHMs bring
about the largest portion of uncertainty, especially for low flows. This is likely to reflect uncer-
tainty in the way the hydrological storage-release processes can modify the climate signal,25

particularly where these storage components are relatively large or water residence times
high – hence the importance of considering several GHMs in studying changes in high and
low flows. GCMs and GHMs uncertainty shares are similar for HFI and LFI globally, although
the spatial patterns differ slightly (e.g., northeastern Russia and southwestern Australia, and
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Alaska are GCM driven in HFI, and GHM driven in LFI). This could reflect different dominant
processes for high and low flows generation, with high flows events mainly driven by pre-
cipitation inputs or snow/ice-melt (i.e. atmospheric-driven processes); whereas low flows
events develop over longer durations and are influenced more by land-surface processes
like evaporation, infiltration and storage, which are simulated by the GHMs, each one with5

its own scheme and parametrization: e.g. for evapotranspiration, Penman–Monteith, Ha-
mon (Haddeland et al., 2011 and Table A1 in Appendix A). Haddeland et al. (2011) have
identified in the snow scheme employed by different GHMs a major source of difference
between the model runoff simulations, and recent studies, at global (e.g. Hagemann et al.,
2013) and regional scale (e.g. Jung et al., 2012) hint to an increase in uncertainty in snow10

dominated regions. Our study shows that in snow dominated and arid regions GHMs un-
certainty equals or outweighs GCMs uncertainty for both high and low flows, highlighting
the importance of comprising balanced sets of both global hydrological and climate models
to envelope the overall uncertainty in these regions.
To put the current study in context and to provide suggestions for further studies, it is worth15

making a few considerations on the hydrological index extraction and clarify a few aspects
of the uncertainty partition concerning the method and the data set we used.
The identification of high and low flows over long time series, and particularly over climate

projections, is non trivial. As an illustration, van Huijgevoort et al. (2014) in their multi-model
ensemble study on droughts, report that applying the threshold level method to the future20

period using a threshold derived from the control period can lead to spurious pooling of
drought events. They suggest that future changes could be accounted for by linking the
drought threshold to adaptation scenarios like Vidal et al. (2012) did over France. Wanders
et al. (2014) used a transient threshold level method for a moving reference period, in order
to reflect the changes in hydrological regime over time, finding that the non-transient thresh-25

old method projected larger shares of areas in drought (except in snow dominated regions).
For our study, the threshold was calculated over the control period, as changes in future
extremes with respect to present day were sought. In general, the selection of threshold
approach should consider that if, on the one hand, a consistent pooling of extreme events

13
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may be hampered by incremental shifts or shape changes of the hydrograph throughout
the future, on the other hand, when assessing the changes in frequency with respect to the
present, information on the present used for comparison is lost when the threshold adapts
throughout the projections.
The model runs used in this study have no replicates; therefore, our ANOVA partition set-5

up poses some limitations as it assumes that the factors do not interact (no degrees of
freedom are available for the estimation of the experimental error). However, interactions
between the factors may indeed be present and, as pointed out by (Bosshard et al., 2013),
these interactions may represent uncertainty contributions that do not behave linearly: e.g.
a snowmelt bias of a GHM may depend on the temperature projection of the driving GCM10

that could lead to a nonlinear response in the simulated runoff. This could in part explain
the high rate of residuals’contribution seen in some gridcells for which potential interactions
hinder the ANOVA to properly disclose the factors main effects. To avoid this drawback mul-
tiple model runs would be necessary.
Bias correction and CO2 and vegetation dynamics represent other sources of uncertainty15

that were not accounted for in this study, though their influence should be further investi-
gated in future works. Bias-correction is commonly used to overcome bias inconsistencies
between GCMs and impact models (i.e. GHMs) in climate impact studies; however, this
technique alters the model output by e.g. reducing the inter-GCM variability and potentially
their contribution to total uncertainty in climate projections (Dankers et al., 2013; Wada20

et al., 2013), and it is argued that its use is not always justified (Ehret et al., 2012). Hage-
mann et al. (2011) even found that uncertainty due to bias-correction can be of the same
order of magnitude as that related to the choice of GCM or GHM. As Huber et al. (2014)
points out, findings on relative contributions of GCMs and GHMs to total impact uncertainty
would need to stand the test of using non bias-corrected runs, but runs that have not been25

bias-corrected (with a method designed to preserve the long term trends in temperature
and precipitation projections, Hempel et al., 2013) are unavailable within ISI-MIP or with the
same GCM/GHM combinations.
As mentioned in the introduction, biome models have shown a larger spread than GHMs
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without varying CO2 and vegetation dynamics processes, and it is argued that, due to the
additional processes that they simulate, the inclusion of biome models in multi-model en-
semble studies is important to capture a comprehensive range of uncertainty (Davie et al.,
2013; Prudhomme et al., 2014). Within our study specifically, biome models with runs at
daily resolution were JULES and LPJmL. These models were excluded primarily for in-5

tractability in low flows analysis. Therefore, uncertainty from varying CO2 is not sampled
and could suggest overconfidence (or bias) in favor of non biome GHMs, which simulate
less runoff than biome models. During our exploratory analysis we actually included JULES
in the ensemble and found that the uncertainty was driven towards the GHM source (in
agreement with Prudhomme et al. (2014) who found higher S2N, i.e. stronger agreement10

between the models, when considering the ensemble without JULES). However, the inclu-
sion of models in the ensemble must be compatible with the applicability of the method,
and the biome models available through ISI-MIP proved to hamper the global compar-
ison assessment for the heavy masking over large areas with zero-rich time series. As
shown in Table B1, low flows index extraction was vetoed over large areas of the globe, ulti-15

mately leaving 61% and 20% of land cells for JULES and LPJmL respectively (note that the
masking is formed by superimposing masking from each GHM-GCM combinations). Also,
JULES’coarser resolution (7558 vs. 67420 total land grid cells for JULES and the other
GHMs respectively, i.e. a ratio of 1 to 9 cells) may contribute to more uncertainty, although
lower resolution runs would be necessary to assess such contribution. Index extraction for20

high flows proved more favorable, but we adopted the pragmatic approach of using the
largest possible ensemble of models common to both high and low flows. We are aware
that the inclusion of multiple models is not sufficient to fully scope model uncertainty due
to resolution and structural errors that are common across models and place a limit to the
confidence we obtain from robustness (Knutti, 2010). However, our results demonstrated25

that, even excluding biome models and other model structure differences in the ISI-MIP
ensemble, large uncertainty in the signal of changes in high and low flows is attributable to
GHMs and not only on GCMs.
Were biome models’shortcomings not present, their inclusion in our ensemble would have
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required a modification of our uncertainty partition strategy because the presence of out-
liers (likely introduced by biome models) would limit our ANOVA model (whose assumptions
include no or minimal presence of outliers). For their distinct behavior from the other GHMs,
biome models could be considered as a factor level in a 2-way ANOVA framework with
unequal sample sizes (Neter et al., 1999, ch. 23), i.e. the spread of future hydrological5

extremes would be examined as the function of factor 1 – the type of hydrological model
(level 1: 6 GHMs; level 2: 2 biome models) and factor 2 – the GCMs.
Finally, the focus of our uncertainty analysis was on GCMs and GHMs, therefore the effect
of emission scenarios (RCPs) was neglected. The few studies that have considered this
aspect hint at a relatively small role of emission scenarios (Hagemann et al., 2013; Wada10

et al., 2013) all throughout the 21st century when compared to GCMs and GHMs, which
play a stronger role in uncertainty contribution over most of the globe.
To conclude, knowledge of the dominant source of uncertainty in climate-to-hydrology sig-

nal is critical to modelers for improving modeling of the terrestrial water cycle and to sci-
entists for putting together targeted multi-model ensembles for climate impact studies. In15

addition to GHMs and GCMs, further work is needed to assess the degree to which internal
variability, bias correction, biome models (i.e. GHMs that simulate vegetation dynamics and
varying CO2), and emission scenarios contribute to total uncertainty.

Appendix A: Global hydrological models

The Global Hydrological Models (GHMs) vary in the types of processes represented and the20

parameterizations used. Table A1 summarizes the main processes included in the GHMs
used in this study. Input variables are listed under “Meteorological Forcings” they include:
Surface air temperatures; Precipitation; Surface radiation; Near-surface windspeed; Surface
air pressure; Near-surface relative humidity. Except the last one, as reported in the ISI-
MIP Protocol, all of these variables consist of bias-corrected climate data from the GCMs25

participating in the CMIP5 and cover the time period from 1950 to 2099 (1950-1970 are
usually used for spin-up). All variables have daily and monthly frequency. Fig. B2 shows,
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for the control period, inter-annual dynamics in mean daily runoff simulated by the GHMs
(in row) for the different GCMs for selected representative gridcells, one per main Köppen–
Geiger region (A-Tropical, B-Arid, C-Temperate, D-Cold, E-Polar).

Appendix B: High and low flows binary series extraction and masking

The schematic of extraction of binary series of days under high (HFD) and low (LFD) flows5

is shown in Fig. B1. The threshold curves are obtained by linearly interpolating percentiles
calculated over fixed 5 day windows (e.g. 1–5 December, 6–10 December, and so forth,
i.e. 73 for the whole year) of the historical period runoff (i.e. December 1971 to December
2005), having considered the hydrological year from December to November.
The percentiles are Q95 (runoff equaled or exceeded 5 % of the time) for HFD, and Q1010

(runoff equaled or exceeded 90 % of the time) for LFD. In general, the identification of high
and low flows at the global scale imposes the selection of a universal threshold level serving
many hydrological regimes and climate regions at once (thereby pooling events that may
not always be extreme) and it is based on physical processes: low flows are generally char-
acterized by a slower onset, and a longer duration, while and high flows by a sudden onset,15

and a shorter duration. Accordingly, high and low flows are not necessarily symmetric with
respect to the median flow (Q50). For low flows in particular, the choice of Q10 comes from
seeking a sufficiently low quantile without compromising the analysis, as quantiles lower
than 10 % become intractable for the large presence of zero pools in some time series. This
is in agreement with e.g. Gudmundsson et al. (2011) who showed how the performance of20

a similar set of WaterMIP global models decreased systematically from high Q95 to low Q5

runoff percentile over Europe.
The choice of a fixed 5 day time window with interpolation was preferred over the 30 day

moving average used in e.g. Prudhomme et al. (2014) because the latter had shown some
limitations with regards to the low flows quantile extraction. The effect of leveling out over25

30 days could lead to lower values than expected in the control period (10 % by design). In
addition, we wanted to use the same framework for high and low flows and considered 5 day
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to be appropriate to identify both types of events. The choice of a linear interpolation was
preferred over the moving window approach to minimize dependence (i.e. inertia) within
quantile estimates with the following rationale: (i) Moving average aims to smooth out wig-
gles for a less spiky identification of hydrological events like droughts that could result into
erratic threshold crossings, thereby pooling several times over the same event; however, its5

quantile estimates use the same information from neighboring days (as many as the time
window), resulting in a quantile series holding a correlation that is higher the longer the time
window, potentially leading to inadvertent effects of large inertia during the extraction of the
hydrological index. (ii) In our case, as we count high (low) flow days (as opposed to single
events), smoothing the threshold is unnecessary. (iii) A 1 day window would assure a series10

of independent quantile estimates, but the computation over 34 points (i.e. 34 years of the
control period) was considered insufficient for quantile estimation. (iv) Seeking a represen-
tative number of points for quantile extraction (170, i.e. 5days× 34 years), we decided to
compute the quantile by extracting a point every 5 days and extrapolating values for inter-
mediate days to the next 5 days point; as a result threshold values were obtained with a15

non recursive use of data, thereby minimizing dependence.
The index extraction described above is not applicable when the runoff is very low, i.e.

when long periods of the year have the same value. Therefore, with reference to the con-
trol period (1972-2005), gridcells showing little or no seasonal change in daily runoff were
screened out (represented in grey on the maps) using the 5 day percentiles series that20

form the threshold curves (i.e., one mask for HF and one for LF) following these rules: (i)
percentiles are equal to zero for more than one third of the year (ii) standard deviation of
percentiles of first and/or second half year equals zero (iii) annual percentiles Q10 and Q95

series are equal. Table B1 shows percentages of available land gridcells after screening for
the different GCM-GHM combinations and runoff percentile. Although screened gridcells25

could become seasonal through the climate projection - e.g., Alessandri et al. (2014) inves-
tigated the expansion and retreat of specific climate boundaries (Mediterranean climate in
Europe and western USA) using CMIP5 data - we neglect this aspect as our base reference
for changes in projections is the control period.
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Mean changes for each ensemble member (GHM-GCM combination) are shown in Fig. B3
and Fig. B4, for high and low flows respectively.

Appendix C: Tests on ANOVA’s residuals

To verify whether the ANOVA model assumptions hold, statistical tests were performed on
the ANOVA’s residuals. For every unmasked gridcell, for both HFI and LFI, residuals were5

assessed as follows: we tested (i) normality with the Lilliefors Test; and then, for gridcells for
which the null hypothesis (that the residuals’ vector comes from a distribution in the normal
family) was not rejected, we tested (ii) constancy of variance with the Hartley Test. Results
for the annual and seasonal ANOVAs show that HFI has higher rates of residuals for which
the hypotheses of normality and constancy of variance were rejected compared to the LFI.10

For the year, the percentages of unmasked gridcells not meeting the residuals requirements
were: HFI 22 % not normal, 15 % no constant variance, for a total of 37 % globally; LFI
12 % not normal, 15 % no constant variance, for a total of 27 % globally. JJA and DJF
have the lowest proportions of residuals requirements not met for HFI and LFI respectively.
We also applied the ANOVA on HFI and LFI transformed via the normal-score method15

(seeking normality of the data); this showed lower percentages of cells not satisfying the
ANOVA assumptions of normality and constant variance (HFI: 7.5 and 11 %; and LFI: 7
and 12 % respectively) for a total of 19 % globally. It should be noted that the residuals’
contribution to uncertainty tends to be lower for the transformed data (e.g. gridcells with
residuals’ dominated uncertainty decreased by 6 % for HFI and 1 % for LFI). Because the20

partition of uncertainty between GCMs and GHMs are similar from both ANOVA applied to
raw and transformed data sets, and because the areas of non-satisfaction of normality are
not located where the residuals dominate the uncertainty, we discussed results obtained
from the raw, non transformed data.
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Table 1. Summary of mean changes, signal-to-noise S2N, and sources of variance for high and low
flows at the annual and seasonal (DJF, JJA) scale, at the global and climate region scale. The fist
source of variance is shown in bold, the second one in italic font.

YEAR DJF JJA
Koppen– Area Mean1 Signal2 Source of variance Mean Signal to Source of variance Mean Signal to Source of variance
Geiger change to noise GCM GHM Resid. change noise GCM GHM Resid. change noise GCM GHM Resid.
Class∗ [km2] [%] adim. [%] [%] [%] [%] adim. [%] [%] [%] [%] adim. [%] [%] [%]

HIGH FLOWS

Equatorial
1 Af 2468 3.1 0.5 65.5 14.2 20.3 3.4 0.5 64.4 11.4 24.3 3.2 0.6 64.0 12.4 23.6
2 Am 1836 1.4 0.5 61.6 15.5 22.9 2.8 0.4 60.2 14.8 25.0 0.7 0.9 65.9 11.0 23.1
3 Aw 6017 1.6 0.6 52.7 20.4 27.0 2.9 0.4 56.3 18.3 25.5 0.5 0.9 47.0 19.7 33.3
Arid
4 Bwk 3095 4.1 0.5 49.7 19.8 30.5 5.5 0.4 47.1 20.7 32.3 2.3 0.7 42.9 20.3 36.8
5 Bwh 3139 1.2 0.6 39.3 28.5 32.2 3.1 0.6 35.6 29.6 34.8 0.1 0.7 37.7 25.3 37.1
6 BSk 4255 6.4 0.4 40.5 25.1 34.4 7.0 0.4 39.6 23.9 36.4 5.1 0.5 36.2 25.5 38.3
Warm temp.
7 Cfa 2955 −0.6 0.6 56.1 26.8 17.1 −0.5 0.4 57.1 22.9 20.0 −0.8 0.8 55.4 20.1 24.5
8 Cfb 2360 0.4 0.9 45.0 35.9 19.0 1.8 0.6 40.5 37.7 21.9 −0.5 1.0 45.4 29.1 25.5
9 Csa 1099 −1.2 1.5 45.3 32.8 21.9 −0.8 1.3 50.8 30.2 19.0 −2.0 1.9 31.0 30.5 38.5
10 Cwa 1504 0.9 0.6 43.8 28.0 28.2 0.9 0.4 45.6 27.6 26.8 1.1 0.8 49.8 23.9 26.3
Snow
11 Dfb 4459 5.4 0.7 42.7 37.1 20.2 17.5 0.7 38.2 40.3 21.5 −1.1 0.8 57.3 21.6 21.1
12 Dfc 11008 18.6 1.2 38.0 38.8 23.2 37.5 1.0 36.0 39.7 24.2 0.2 0.7 39.7 34.2 26.2
13 Dfd 1405 27.4 1.1 42.7 22.4 34.9 39.8 0.9 38.1 26.2 35.6 7.4 0.4 13.6 55.6 30.8
14 Dwb 1311 6.7 0.5 29.1 46.1 24.8 11.0 0.4 25.7 41.9 32.3 1.4 0.3 35.0 41.9 23.1
Polar
15 ET 5937 26.3 1.3 42.9 36.1 20.9 40.6 1.2 43.7 32.2 24.1 5.5 0.5 34.3 41.0 24.7

Global 128.9M 6.5 0.7 46.5 28.0 25.5 11.8 0.6 45.5 27.5 27 1.3 0.8 45.0 25.4 29.7

LOW FLOWS

Equatorial
1 Af 2463 14.6 0.5 58.7 18.1 23.1 12.7 0.3 56.5 20.4 23.1 15.4 0.5 50.1 17.1 32.8
2 Am 1834 23.7 0.7 57.0 25.2 17.8 19.7 0.4 50.5 29.1 20.4 27.1 0.7 59.5 18.1 22.4
3 Aw 5997 21.7 0.7 52.4 28.5 19.0 18.4 0.5 48.2 29.8 22.0 25.7 0.6 50.8 28.3 20.9
Arid
4 Bwk 2927 15.6 0.5 41.4 31.0 27.6 14.3 0.5 40.0 31.1 28.9 17.1 0.4 38.4 32.1 29.5
5 Bwh 2821 20.2 0.6 32.1 42.6 25.3 18.4 0.5 29.2 42.8 28.0 22.2 0.6 30.3 42.9 26.7
6 BSk 2693 14.3 0.6 35.9 32.1 32.0 13.5 0.6 35.0 31.2 33.7 15.1 0.5 33.8 33.3 33.0
Warm temp.
7 Cfa 2950 18.2 1.0 49.1 32.9 18.1 17.6 0.7 47.5 32.4 20.0 19.1 0.9 44.1 30.9 25.0
8 Cfb 2358 20.2 1.1 51.7 32.3 16.0 15.2 0.8 43.7 36.4 19.9 24.4 1.0 46.2 33.6 20.1
9 Csa 1096 35.7 1.4 47.0 37.6 15.5 31.0 1.3 48.7 35.8 15.5 41.9 1.4 41.0 37.7 21.3
10 Cwa 1500 18.5 0.8 42.0 39.4 18.5 18.1 0.7 39.5 39.8 20.7 18.4 0.7 44.7 34.1 21.2
Snow
11 Dfb 4440 15.8 0.8 50.6 28.1 21.3 4.1 0.5 29.8 43.5 26.7 26.3 0.9 52.4 26.0 21.6
12 Dfc 10920 8.7 0.5 33.6 44.8 21.7 −2.0 1.5 17.4 45.1 37.5 25.0 0.8 38.9 43.1 18.1
13 Dfd 1402 −2.5 0.7 15.3 59.3 25.4 −5.7 2.3 16.8 40.1 43.1 4.4 0.2 14.5 66.4 19.1
14 Dwb 1306 9.5 0.3 26.8 48.5 24.7 9.9 0.3 23.3 47.3 29.4 11.4 0.5 31.7 46.7 21.5
Polar
15 ET 5650 3.4 0.5 29.8 45.0 25.2 −1.7 2.1 20.2 37.9 41.9 14.3 0.5 35.2 46.4 18.3

Global 122M 16.1 0.7 43.1 34.8 22.1 11.8 0.8 36.6 35.9 27.6 21.5 0.7 42.5 34.2 23.3
1st, 2nd Source of variance.
1 Mean change weighted over gridcells surface areas. 2 Signal-to-noise weighted over gridcells surface areas.
∗ The map can be downloaded at: http://koeppen-geiger.vu-wien.ac.at/pdf/kottek_et_al_2006_A4.pdf.
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Table A1. Global Hydrological Models main characteristics (after Prudhomme et al., 2014).

Model name a Time
step

Meteorological forcing b Energy
balance

Evaporation scheme Runoff scheme Snow scheme

H08 Daily R, S, T , W , Q, LW, SW, SP Yes Bulk formula Saturation excess, Energy balance
nonlinear

MPI-HM Daily P , T , W , Q, LW, SW, SP No Penman–Monteith Saturation excess, Degree-day
nonlinear

Mac-PDM.09 Daily P , T , W , Q, LWn, SW, SP No Penman–Monteith Saturation excess, Degree-day
nonlinear

VIC Daily, P , Tmax, Tmin, W , RH, LW, SW, SP Snow Penman–Monteith Saturation excess, Energy balance
3 h snow only nonlinear

WBM Daily P , T No Hamon Saturation excess Empirical temp and
precip based formula

PCRGlobWB Daily P , T No Hamon Infiltration excess, Degree-day
saturation excess,
groundwater

a All of the 6 models were run at the spatial resosution of 0.5◦ × 0.5◦.
b LW: downwelling longwave radiation; LWn: net longwave radiation; P : precipitation rate (rain and snow calculated in the model); Q: air specific humidity; R: rainfall rate; RH: relative
humidity; S: snowfall rate; SP: surface pressure; SW: downwelling shortwave radiation; T : air temperature; Tmax(min): daily maximum (minimum) air temperature; W : wind speed.
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Table B1. Percentage of available land gridcells after masking per GHM-GCM model combination.

GCM

HadGEM IPSL MIROC GFDL NorESM
H08

Q10 99.97 99.82 99.96 99.96 99.95
Q95 99.98 99.98 99.98 99.99 99.98

MPIHM
Q10 89.85 89.14 89.69 89.68 89.68
Q95 92.75 92.24 92.52 93.17 93.08

MacPDM
Q10 100 100 100 100 100
Q95 100 100 100 100 100

VIC
Q10 96.25 96.25 96.47 96.59 96.39
Q95 99.48 97.72 99.41 99.20 99.36

WBM
Q10 96.19 96.29 95.72 96.02 96.27
Q95 97.38 97.97 96.81 97.75 97.58

PCRGLOBWB
Q10 90.91 91.17 90.39 91.26 90.71
Q95 92.92 92.84 92.16 93.16 92.79

JULES*
Q10 64.07 64.05 65.45 66.06 66.59
Q95 84.71 89.16 91.39 89.57 91.06

LPJmL*
Q10 26.97 25.07 25.95 26.12 26.89
Q95 70.22 67.27 69.76 68.50 69.72

MATSIRO*
Q10 25.73 23.27 29.60 25.39 27.70

G
H

M

Q95 64.56 61.26 67.15 69.10 67.42
∗ Models not included in the ensemble.
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Figure 1. Change in the frequency (in %) of days under high (left) and low (right) flows conditions for
the period 2066–2099 relative to 1972–2005, based on a multi-model ensemble MME experiment
under RCP8.5 from five Global Climate Models and six Global Hydrological Models: (a) MME mean
change and associated (b) signal-to-noise ratio; (c) Proportion of variance per factor for the MME
mean change: GCM (yellow), GHM (green), Residual (red).
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Figure 2. PDFs of mean changes in high (HFI) and low (LFI) flows, annually and per season (DJF
and JJA) for North, Tropics, and South latitude bands.
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Figure 3. Same as Fig. 1 for the season DJF.
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Figure 4. Same as Figs. 1 and 3 for the season JJA.
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Figure 5. ANOVA sum of squares (SS) of the 2 factors (GHM y axis; GCM x axis) divided by the
total sum of squares (TSS) for all grid cells as gray dots; and for each Köppen–Geiger climate region
(15 most represented), as region letters shown at the medians of the region’s GCM SS/TSS as x
coord and of the regions’s GHM SS/TSS as y coord.
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Figure 6. Same as Fig. 5 for the seasons DJF (top) and JJA (bottom).
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Figure B1. Schematic of HFD and LFD extraction (days under high and low flows): (a) Daily varying
threshold curves for HF and LF from 5 day percentiles calculated over the historical period; (b) High
and low flows days extraction for a given year. As an example, runs of a Southern European gridcell
(Lat 43.75◦ N, Lon 11.25◦ E) from (a) historical (December 1971 to December 2005) and (b) RCP8.5
(2082) periods of the MacPDM/NorESM1-M were used for this figure.
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Figure B2. Inter-annual dynamics in mean daily runoff (smoothed with a 7-d moving average) rel-
ative to the period 1972-2005 for selected Köppen-Geiger region gridcells: A-Tropical (-2.25◦ N,
-53.25◦ E) Northern Brazil; B-Arid (-20◦ N, 25◦ E) Botswana; C-Temperate (43.75◦ N, 11.25◦ E) Cen-
tral Italy; D-Snow (41.65◦ N, -91.5◦ E) Central U.S.; E-Polar (65◦ N, 165◦ E) N-Eastern Russia.

34



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure B3. Same as Fig. 1a for individual GHM (row) – GCM (column) combination, for HFI.
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Figure B4. Same as Fig. 1a for individual GHM (row) – GCM (column) combination, for LFI.
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