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Abstract

A global sensitivity analysis is used to describe the response of the Earth Climate
Model of Intermediate Complexity LOVECLIM to components of the astronomical
forcing (longitude of perihelion, obliquity, and eccentricity) assuming interglacial
boundary conditions. Compared to previous studies, the sensitivity is global in the5

sense that it considers the full range of astronomical forcing that occurred during the
Quaternary. We provide a geographical description of the variance due to the different
components and their combinations and identify non-linear responses.

The methodology relies on the estimation of sensitivity measures, which due to the
computational cost of LOVECLIM cannot be obtained directly. Instead, we use a fast10

surrogate of the climate model, called an emulator, in place of the simulator. A space
filling design (a maximin Latin hypercube constrained to span the range of astronomical
forcings characterising the Pleistocene) is used to determine a set of experiments to
run, which are then used to train a reduced-rank Gaussian process emulator. The
simulator outputs considered are the principal modes of the annual mean temperature,15

precipitation, and the growing degree days, extracted using a principal component
analysis. The experiments are run on two distinct land surface schemes to address the
effect of vegetation response on climate. Sensitivity to initial conditions is also explicitly
assessed.

Precession and obliquity are found to contribute equally to growing degree days20

(GDD) in the Northern Hemisphere, and the effects of obliquity on the response of
Southern Hemisphere temperature dominate precession effects. Further, compared
to the original land-surface scheme with fixed vegetation, the LOVECLIM interactive
vegetation induces non-linear responses in the Sahel-Sahara and Arctic sea-ice area.
Finally, we find that there is no synergy between obliquity and precession.25
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1 Introduction

Any experiment with a climate model requires the specification of a number of input
factors or parameters, be it parameters involved in parameterisations, or factors
defining forcing conditions. It is good practice to assess carefully the sensitivity of
model outputs to these inputs. The objective may be either to quantify uncertainties5

associated with uncertain inputs (e.g., parameters), or to learn about climate’s
sensitivity to changes in external factors.

One classical approach for estimating a model’s sensitivity consists in defining
a reference state, and then changing one or two inputs (parameters or forcings) with
respect to the reference state. In particular, Stein and Alpert (1993) show how to identify10

second-order effects, that is, the extra contribution obtained by varying two factors at
once, compared to the sum of variations obtained by varying the factors independently.
These second-order effects are sometimes called synergies or synergistic effects in
the climate literature (Ganopolski et al., 1998; Berger, 1999; Wohlfahrt et al., 2004;
Henrot et al., 2010).15

The approach followed by Stein and Alpert (1993) and others is local, in the
sense that it quantifies the model sensitivity between two well-defined states. By
contrast, the purpose of a global sensitivity analysis is to explore systematically all the
physically relevant space of inputs. Specifically, global sensitivity analysis consists in
estimating the relationships between the variances of input factors – either separate or20

combined – and the variances of outputs, and summarising this information by means
of appropriately defined sensitivity measures (Saltelli et al., 2004).

One crucial aspect of global sensitivity analysis is the choice of experiments to be
made. This is particularly important if the model is computationally expensive, as is
common in climate science. To illustrate this point consider a global sensitivity analysis25

of a model with d inputs. A factorial design is a natural choice, with experiments
performed along a regular grid in the input space. However, the size of a factorial
design grows exponentially with d . Even with d = 3, and assuming a resolution of ten
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values along each input axis, 1000 experiments would need to be run, which is already
prohibitive for many climate simulators.

The theory of experimental design is the response to this problem. Its aim is to
determine which experiments are expected to yield the best estimators of sensitivity
measures. The theory was landmarked by the early studies of Sobol’ (1976) and, in5

particular, by Sacks et al. (1989), Morris and Mitchell (1995) and Morris et al. (2008),
who addressed the specificities of computer experiments in contrast to laboratory
experiments.

Complementary to this approach, a number of authors, notably Sacks et al. (1989),
Kennedy and O’Hagan (2000) and Oakley and O’Hagan (2004), developed a “meta-10

modelling” strategy. The “meta-model”, often referred to as an “emulator” in this context,
refers to a statistical model of the computer model (the “simulator”). The purpose of
meta-modelling is to build a computationally cheap approximation to the simulator that
can be used as a surrogate in any subsequent analysis. The approach is feasible
because it is usually possible to formalise additional assumptions on the response15

structure of the simulator: typically the smooth character of the model’s response to
variations in inputs, or possible correlations between the different components of model
outputs. This approach is effective for exploring the model response within the full input
space. It accounts explicitly for prior probability distributions of input factors, and can
be used to provide estimators of second-order effects associated with the combined20

variations of input factors.
The purpose of the present article is to develop an emulator-based global sensitivity

analysis of a climate model to three input factors representing the astronomical forcing.
This objective introduces a number of specific challenges not covered to our knowledge
in the literature on global sensitivity analysis. First, we want to distinguish linear from25

non-linear effects. For example, the desertification of the Sahara is seen as a typical
case of non-linear response to precession (Claussen et al., 1999). Can we identify this
with an emulator-based approach? Second, we want to produce geographical maps,
that is, deal with multivariate outputs. Thirdly, we have to deal with possible dependency
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on initial conditions and with the possible co-existence of several stable solutions, and
assess the extent to which they may induce artifactual conclusions.

2 Methodology

2.1 Emulator

Consider first the simpler case of simulators which have one-dimensional outputs. The5

Bayesian meta-model introduced by Sacks et al. (1989) and Kennedy and O’Hagan
(2000) is used here because it is adequate for distinguishing local from global linear
effects. It is also the basis of the emulator-based, global sensitivity analysis theory
developed by Oakley and O’Hagan (2004).

Let f (x) denote the simulator output when run at input vector x. Until the simulator10

is evaluated at a given input, we are uncertain about its value. Thus, the Bayesian
approach is to model f as an unknown stochastic quantity. Specifically, we assume

f (·) ∼ GP (m̃(·), Ṽ (·, ·))

where this notation denotes that f is a Gaussian process (GP), with distribution fully15

specified by its mean and covariance functions, m̃ and Ṽ (see, e.g. Rasmussen and
Williams, 2005). We assume these take the form

m̃(x) = h(x)′β (1)

Ṽ (x,x?) = σ2[c(x,x?)] (2)
20

where c(x,x?) is covariance function, σ2 its variance, h(x) is a feature vector of q
a priori known regression functions and β is the vector of corresponding regression
coefficients. Note that the ()′ is used to denote the transpose operation.

The interpretation of this model is that the simulator response is the sum of a global
response function expressed as the linear combination of regressions m̃(x) = h(x)′β,25
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and a smooth local stochastic component (a zero-mean Gaussian process) that
absorbs deviations from this global response.

Let D = {xi ,yi}
n
i=1 denote the set of simulator runs obtained in the designed

experiment, where xi is the input vector associated with the i th component of the
experimental design, and yi is the corresponding output. Let y = (y1, . . . ,yn)′ be the5

vector of all n outputs, and let H be the design matrix which has row i equal to the
regressors h(xi )

′. The assumed GP model then states that the prior distribution of y is
Gaussian, with y ∼ N(Hβ,σ2A), where A is the Gram matrix with Ai ,j = c(xi ,xj ). This
appears deceptively simple: although the distribution is restricted to being Gaussian,
GPs form an extremely rich class of models, incorporating functional behaviour ranging10

from Brownian motion, to cubic-splines.
This prior distribution can then be updated using the output of the simulator

experiments, D. Assuming the vague prior (β,σ2) ∝ σ−2 proposed by Berger et al.
(2001) and used by, e.g., Oakley and O’Hagan (2002) and Bastos and O’Hagan (2009),
the posterior distribution of the simulator output follows a Student−t distribution with15

n−q degrees of freedom, with mean and variance

m(x) = h(x)′β+ T (x?)′A−1(y −Hβ̂) (3)

V (x,x?) = σ̂2[c(x,x?)− T (x)A−1T (x)′ + P (x)(H′A−1H)−1P (x?)′], (4)

respectively, with20

σ̂2 =
1

n−q−2
(y −Hβ̂)′A−1(y −Hβ̂), and β̂ = (H′A−1H)−1H′A−1y, (5)

and T (x)j = c(x,xj ) and P (x) = h(x)′ − T (x)A−1H. Note that in the following we
conveniently approximate the Student t distribution by a normal distribution, which
although in principle is true only as n→∞, is accurate enough in practice for values of25

n−q larger than 10.
Within this framework, the choices of the regression functions h(x) and the Gaussian

process correlation function c are application dependent. This is where the user may
906
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inject knowledge of the expected response of the climate model, while reserving the
option of considering other choices if the emulator performs poorly.

Given that our purpose is to distinguish linear global trends from local non-linear
deviations, it is natural to set h(x)′ = (1,x′) (linear regressors), so that the local
stochastic component of the Gaussian process absorbs non-linearities.5

One possible choice for c is the squared exponential decay with nugget, discussed
in length in Andrianakis and Challenor (2012):

c(xi ,xj ) = exp[−(x′
iΛ

−2xj )]+ νIi=j , (6)

where Λ is a scaling matrix (commonly called the length-scales), chosen to be diagonal10

with components λi . A popular alternative is the Matérn covariance function Berger
et al. (2001), though it was not seen here to yield substantial improvement. The nugget
term, νIi=j , was originally introduced to account for measurement errors in geospatial
data analysis (Cressie, 1993). In emulators, it may also be introduced and justified,
either as a regularisation ansatz to avoid poor matrix conditioning (Pepelychev, 2010),15

as a way to account for non-explicitly specified inputs (in the present case: initial
conditions, sampling time and length), or as a way to account for the mis-specification
in the correlation function (Gramacy and Lee, 2012).

There is no universal recommendation for choosing λi and ν, and an analytical
treatment of priors and posteriors is intractable. A standard approach is to choose20

values that lead to high likelihoods and that the user is prepared to defend as
acceptable given what is already known about the simulator. The logarithm of the
likelihood is

logL(ν,Λ) ∝ −1
2

(log(|A||H′A−1H|)+ (n−q) log(σ̂2)). (7)
25

Andrianakis and Challenor (2012) further recommend the use of a penalised likelihood

logLp(ν,Λ) = logL(ν,Λ)−2
M̄(ν,Λ)

εM̄(∞)
, (8)
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with M̄(ν,λ) = ν2

n (y −Hβ̂)′A−2(y −Hβ̂) and M̄(∞) = 1
n (y −Hβ̂)′(y −Hβ̂). In effect this

rejects high nugget values, and allows us to avoid emulators with error larger than those
obtained in ordinary least-squares regression. We use ε = 1. An alternative approach
for ameliorating the problem with mis-specified covariance functions, is to integrate out
the uncertainty in hyper-parameters (Agarwal and Gelfand, 2005). This is not possible5

analytically, and a Monte Carlo approach has to be taken instead. This approach is
more computationally expensive, and not explored here.

2.2 Multivariate generalisation

We now focus on spatial resolution, and assume f : Rd →Rp, with m� 1. Typically,
the output will be a spatial field resolved onto a grid on the Earth’s surface, and so10

m will be large. We hence need a multivariate emulator capable of mapping from
multidimensional input to high dimensional output. The original version of Rougier
(2008)1, as well as Hankin (2012) provide useful summaries of available techniques.

For the present application we consider the PC emulator introduced by Higdon et al.
(2008) and Wilkinson (2010) – who both consider the additional problem of calibrating15

on actual observations. The formalism used here is that of Wilkinson (2010).
Let Y denote the matrix in which each column represents the output of one

experiment, i.e., Y = [y(x1), . . . ,y(xn)]. The singular value decomposition (SVD) of the
centered matrix Y? = Y−Y (where Y is the vector of row averages of Y), is

Y? = UDV′,20

where D is diagonal, and U and V are square and orthonormal. The columns of U
represent the basis vectors, {uk}, and the projection coefficients are given by VD. For
the j th experiment, the coefficient for the kth basis vector is ak(xj ) = Vj ,kDkk .

1Still available as http://www.mucm.ac.uk/Pages/Downloads/Technical%20Reports/07-12.
pdf, last access: 11 July 2014.
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Wilkinson (2010) keeps the first n′ eigenvectors ordered by decreasing eigenvalues
only. This is sometimes known as “hard-thresholding regularization” (Silverman, 1996),
and results in a reduced-order model:

y(x) ≈
n′∑
k=1

ak(x)uk .
5

By using the SVD, we guarantee that the loss of information caused by this procedure
is minimized, as the SVD gives the best low rank approximation to the full matrix as
measured by the Frobenius norm.

If we model

ak(x) ∼ GP (mk(·),Vk(·, ·)),10

then y(x) is a multi-output Gaussian process with mean and covariance function

m(x) =
n′∑
k=1

mk(x)uk (9)

V (x,x?) =
n′∑
k=1

Vk(x,x?)uku
′
k︸ ︷︷ ︸

V (gp)

+
n∑

k=n′+1

D2
kk

n
uku

′
k︸ ︷︷ ︸

V (pc)

, (10)

15

respectively.
Two options are considered for estimating Λ and ν: (1) optimise, for every principal

component independently, the penalised maximum likelihood Eq. (8), and (2) use the
same ν and Λ for all principal components.

Although option (2) may not be attractive because it does not maximise the20

likelihood of the emulator taken as a whole, it is shown in Sect. 2.5.4 that it presents
strong computational benefits in the context of global sensitivity analysis. Hence,
its performance for reconstructing spatial fields needs to be critically assessed with
respect to option (1).
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2.3 Input factors

The astronomical forcing is determined by three parameters relating to the Earth’s orbit:
eccentricity e, the heliocentric longitude of the perihelion $, and obliquity ε.

The time-evolution of astronomical parameters over the Pleistocene is well known
(Berger, 1978b; Laskar et al., 2004). Relevant to our purpose, eccentricity e < 0.055

over 99 % of the time, and the inner 99th percentile of obliquity is 22.3–24.3◦, with
differences of less than 0.1◦, regardless of whether the Berger (1978b) or the Laskar
et al. (2004) solution is used as the reference.

In palæoclimatology it is common to refer to the time of the year using the true
solar longitude (λ), that is, the heliocentric angle between the vernal equinox and the10

position occupied by the Earth at any point during the year. For example, the June
solstice corresponds to λ=90◦, the September equinox to λ=180◦ etc. For the purpose
of computing insolation at a given time of year, we need the true solar longitude at
perihelion, that is, the true solar longitude corresponding to the shortest Earth-Sun
distance. This quantity is denoted $. It may then be shown that the secular evolution15

of the top-of-the-atmosphere incoming solar radiation at any latitude and any true solar
longitude is well approximated as a linear combination of i1 = esin$, i2 = ecos$ and
i3 = ε (Loutre, 1993). The quantity i1 is often referred to as the climatic precession
parameter. As i1, i2 and i3 are not correlated, the three inputs can be viewed as
a canonical form of the astronomical forcing parameters. In particular, their signature20

on the season-latitude distribution of incoming solar radiation is characteristic: i1 and
i2 control the Earth–Sun distance at any true solar longitude with very little effect on
annual mean insolation2, and i3 controls the seasonal contrast and the annual mean
insolation.

2A small effect on the global, annual mean insolation emerges as a result of variations in
eccentricity
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2.4 Experiment design

The climate model is the ocean-atmosphere-vegetation model of intermediate
complexity “LOVECLIM” (Goosse et al., 2010). We concentrate here on the choice of
inputs for the experiments to be run. This information is encoded in the design matrix
X, which has three columns (corresponding to the inputs i1...3), and as many rows as5

ensemble members.
Finding the experimental design that minimises the posterior variance of a Gaussian

process emulator was first formalised by Sacks et al. (1989). This however, is only one
aspect of the problem: one also wants minimum bias in the emulator prediction. Thus,
finding a good design is largely a heuristic process based on good practice rules and10

a posteriori evaluation of algorithmic choices (e.g., Santner et al., 2003).
Theoretical considerations and experience both suggest that Latin-hypercube

designs (McKay et al., 1979; Morris and Mitchell, 1995) are a good choice for computer
experiment design. Urban and Fricker (2010) compare Latin-hypercube and factorial
designs of the same size in the context of emulation. They find a small but significant15

improvement in emulator performance when using a Latin hypercube design, both for
emulator prediction and for the estimation of first-order sensitivity indices.

This said, there are many possible Latin-hypercube designs for a given set of factors,
and they are not all equally satisfactory. One generally fruitful approach consists in
combining a Latin hypercube design with a maxi-min property. The maxi-min property20

consists in maximising the minimum Euclidean distance between two design points,
and is thus a space-filling criteria. Johnson et al. (1990) showed that maximising
the minimum distance is asymptotically equivalent to maximising the determinant of
the covariance matrix A associated with the design points (assuming some generally
met conditions on the covariance function). Joseph and Hung (2008) then propose25

an algorithm to combine maxi-min with the property of orthogonality, i.e., minimise
pairwise correlation between design points, and show how this approach effectively
leads to maximising the determinant of the information matrix.
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Unfortunately these algorithms cannot be straightforwardly applied here, because we
need to exclude the region e > 0.05 from the input space defined by ecos$, esin$.
The good news, however, is that the number of input factors (3) is sufficiently small to
adopt a search of the optimal design by Monte Carlo generation of independent trials.
The following hybrid-design generation algorithm provided satisfactory results.5

1. The three factors are first standardised so that they cover the ranges [−1,1]. Let
x = (x1,x2,x3) be a point of the input space, where the xi are the three factors.

2. Set dm0 = 0, and detinit = 0.

3. Sample a Latin hypercube design of N = 27 points in the 3-dimensional cube
[−1,1]3, as follows:10

(a) Divide the interval [−1,1] into N equal-width intervals and number the middle
of each interval. Let x(i ) be the midpoint of the i th interval.

(b) Generate three random permutations of i = 1...N, denoted nj = {ni ,j}
N
i=1 for

j = 1,2,3.

(c) Form the design matrix X, with Xi ,j = x
(
ni ,j
)

15

4. For every point of the design, check if the constraint on e is verified. If not, omit
the point and keep the design with N∗ simulations

5. Sample a Latin hypercube of N −N∗ points in [−1,1]3 and augment the design X

6. Repeat steps 4. and 5. until the dimension of the design X equals N

7. Calculate the minimum distance dm between any two points of the design X. If20

dm > dm0:

(a) Set dm0 = dm.

(b) Set X̃ = X.
912
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(c) If det(X̃′X̃) > detinit

i. Set detinit = det(X̂′X̂).
ii. Set X̃ = X̂.

8. Repeat steps 3. to 7. 1000 times. Keep the design X̃.

The choice of n = 27 experiments came from the general recommendation of5

Loeppky et al. (2009) to perform 10 experiments per input dimension. We used 27
members (and not 30), in order to compare with a factorial design of 33 members
(N. Bounceur, thesis in preparation, not discussed here).

The resulting design is shown in Fig. 1. It is executed three times. Two ensembles use
the standard version of LOVECLIM with the VECODE vegetation model (Brovkin et al.,10

1997), but with two distinct sets of initial conditions. The first one is the pre-industrial
conditions provided by default in the model package. For the second ensemble, initial
conditions are the final state of the member #2 of the first ensemble. This particular
member is a so-called warm orbit (high obliquity, high eccentricity and $ '90◦) that
produces extensive vegetation cover in the Northern Hemisphere. The purpose of15

using two distinct initial conditions is to detect the potential co-existence of distinct
steady state solutions. For all ensemble members but two (experiments 20 and 27),
the runs with distinct initial conditions converged to the same output, modulo small
variations that can be attributed to sampling variability. Experiments 20 and 27 are
discussed separately in the Supplement. At this stage, we retain the experiment20

design with standard initial conditions for analysis. The third ensemble uses the same
standard initial conditions, but uses the original ECBILT surface scheme with fixed
vegetation (Opsteegh et al., 1998) and not the VECODE model. Each experiment is
run 3000 years. The last 500 years are averaged and used in the following analysis.
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2.5 Global variance measures

2.5.1 Definition

Recall that we are modelling the simulator f (x) as a Gaussian process, and that after
training the model we have

f (·)|D ∼ GP (m(·),V (·, ·)).5

To investigate the effect of each component of the astronomical forcing on the simulator
outputs, it is necessary to partition the input vector x into components. Let xp denote
a subset of the components in x (with xp taking values in Xp), and let xp be the
remaining components. Let ρ(x) be the time-wise occupation density of the input space10

during the Pleistocene, which can be estimated from standard astronomical solutions
(Berger, 1978b; Laskar et al., 2004). Using this probability distribution for x, we can
ask what is the average state of the system given a value for a particular component of
the astronomical forcing. That is, we want to find the main effect of xp, defined as

η(xp) := E(f (x)|xp) =
∫
Xp

f (x)ρ(xp̄|xp)dxp̄15

where ρ(xp̄|xp) is the distribution of forcing terms xp̄ given the value of xp. In the
following to keep the notation as light as possible, we sometimes abuse notation and
write dρ(xp̄|xp) = ρ(xp̄|xp)dxp̄ when necessary and if the meaning is clear.

In order to relate output variances to input variances, we are interested in quantities20

such as Var(η(xp)) where the variance is with respect to xp (see interpretation in
Sect. 2.5.2). However, because our knowledge of f (x) is limited to the ensemble of
model runs, we are uncertain about the value of η(xp) for every value of xp. Note that
η(xp) is a linear transformation of a Gaussian process, and is thus itself a Gaussian
process with mean and covariance function found by applying the same transformation25
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to the original mean and covariance. That is,

η(xp) ∼ GP (mp(xp),Vp(xp,x∗
p))

where

mp(xp) := Ef (η(xp)) =
∫
Xp

m(x)ρ(xp̄|xp)dxp̄ (11)5

Vpp(xp,x?
p) := Varf (η(xp)) =

∫ ∫
Xp×Xp

V (x,x?)ρ(xp̄|xp)ρ(x?
p̄|xp)dxp̄dx?

p̄ (12)

with Ef and Varf denoting expectation and variance with respect to the Gaussian
process model for f . The function mp(xp) describes the expected main effect, i.e.,
the mean state of the system assuming that component xp is known. Vpp(xp,x∗

p) is the10

variance of our knowledge of the main effect due to using an emulator rather than the
simulator itself.

It is then possible to estimate the variance of the main effects associated with the
variance of the different input factors. We define two measures of sensitivity of the
outputs to input xp:15

Sp := EfVar(η(xp))

and

S̄p := Ef
[
Var(η(x))−Var(η(xp))

]
.

20

Interpretations of these measures are given below. Oakley and O’Hagan (2004) show
how to estimate these quantities using Gaussian process emulators in the case of
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one-dimensional outputs. We need to define

Σp =
∫
Xp

[
mp(xp)2 + Vpp(xp,xp)

]
dρ(xp) = E(mp(xp)2 + Vpp(xp,xp)), (13)

Σ0 =
[
m0(x)2 + V00(x,x)

]
, and (14)

Σ =
∫
χ

[
m(x)2 + V (x,x)

]
dρ(x) (15)

5

where the notation m0, V00 implies that the space Xp that appears in Eqs. (11) and (12)
is the whole input domain X . It can then be shown that

Sp = Σp −Σ0

and10

S̄p = Σ−Σp.

2.5.2 Interpretation in the case of known inputs

The measures Sp and S̄p are essentially those introduced by Homma and Saltelli
(1996), further illustrated in Saltelli et al. (2004), chap. 1, and adapted to emulator15

theory by Oakley and O’Hagan (2004), except for the fact that these authors define
scaled indices:

– Tp = Sp/Σ is known as the main effect index associated with p, and

– Tp̄ = Sp/Σ, the corresponding total effect index.

The main effect index quantifies the expected reduction in the variance of the output20

f (x) if we were to learn xp, and the total effect index quantifies the expected reduction
in the variance of the output f (x) if we were to learn everything but xp.

916

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/901/2014/esdd-5-901-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/901/2014/esdd-5-901-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 901–943, 2014

Climate–vegetation
response to

astronomical forcing

N. Bounceur et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In the present application the inputs (the astronomical forcing) are known, and
want to estimate the simulator output variance induced by separate and/or combined
variations of the different components of this forcing. This particular context requires
some reinterpretation of the sensitivity measures:

– Sp is the estimated simulator output variance lost by fixing p, all other forcings5

varying.

– Sp is the estimated simulator output variance induced by varying p, all other
forcings fixed.

Sp and Sp differ if there are non-linear interactions between the different factors, or
when the inputs are correlated. Only the first case is potentially relevant here.10

Observe that Eqs. (13) and (14) contain two contributions: one from the squared
mean of the emulator output, and one attached to the emulator variance. The sensitivity
measure Sp may be split as follows:

Sp = S
m
p +S

v
p. (16)

The term S
m
p measures the estimated sensitivity of the simulator to the input15

variations, while S
v
p is a measure of the uncertainty introduced by using an emulator

rather that the simulator itself. Specifically, we will refer to

– S
m
1,2 as the variance induced by climate precession (esin$ and ecos$ taken

together),

– S
m
3 as the variance induced by obliquity,20

– S
m
1,2,3 as the variance induced by all astronomical forcing components, and

– S
m
1,2,3 −S

m
1,2 −S

m
3 as the second-order term representing the synergy between

climatic precession and obliquity.
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Finally, the computation of m2
p needed to compute S

m
may be rewritten as follows (cf.

Eq. 3):

mp(xp)2=
∫
Xp

m(x)dρ(x|xp)
∫
Xp

m(x?)dρ(x?|xp)=
∫ ∫

Xp×Xp

m(x)m(x?)dρ(x|xp)dρ(x?|xp). (17)

Concentrating on the product m(x)m(x?), we observe from Eq. (3) that:5

m(x)m(x?) = β̂′h(x)h′(x?)β̂︸ ︷︷ ︸
linear regression

+ β̂′h(x)T ′(x?)E+β̂′h(x?)T ′(x)E+E′T (x)T ′(x?)E︸ ︷︷ ︸
higher order terms

, (18)

where E = A−1(y −Hβ̂). Thus, the simulator sensitivity S
m

may be split into
a contribution originating from the linear regression terms (h′

β̂) and an additional non-
linear contribution as follows:10

S
m
p = S

m,l

p +S
m,nl

p , with l and nl for linear and non-linear. (19)

The values taken by S
m,nl

are illustrated for three specific cases in Fig. 3.
Note also that the matrices hh

′, hT ′, TT ′ are outer products that do not depend on
the calibration data y, whereas the vectors E and β̂ are independent of x but depend
on the calibration data y. This observation will be useful for simplifing the computations15

of variance measures with the PC emulator.

2.5.3 Generalisation to PC emulator

For the PC emulator, we have that

y(x) = GP

 n′∑
k=1

mk(x)uk ,
n′∑
k=1

Vk(x,x)uku
′
k

 .

20
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The covariance matrix is thus of dimension m×m. In practice, the diagonal of this
matrix, which expresses uncertainties about individual output components, will be
insightful enough for our purpose. Thus, we restrict our attention to variance measures
on individual output components and ignore covariances between different outputs.
Specifically, the quantity Sp̄ is defined to be a vector, computed following Eq. (13)5

except that the terms entering the integrals now have the following from (dropping the
p indices):

m2 =
n′∑
k=1

n′∑
k′=1

mkmk′(uk �uk′) (20)

V =
n′∑
k=1

Vk(uk �uk), (21)
10

where the notation uk �uk is the component-wise multiplication of the two vectors
(Hadamard product). These vectors may be efficiently computed in the particular case
where all the components of the PC emulator use the same parameters Λ and ν.
Indeed, as observed after Eq. (18), the terms β̂ and E are independent of x. Hence,
integrals only need be carried over hT

′, TT ′, and hh
′. As the latter are independent15

of the calibration data, they can be taken out of the summation and only need to be
computed once.

Likewise, the calibration data y enter the posterior variance only through σ̂2, which
is independent of x. Again, the triple integrals need be computed only once for all the
components of the emulator if the hyperparameters are constant across the different20

PCs.
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2.5.4 Practical computation

Saltelli et al. (2010) reviews practical algorithms for the computation of the triple
integrals needed to compute Σp. These integrals have the general form

∫
Xp

 ∫ ∫
Xp×Xp

g(x|xp,x?|xp)dρ(x|xp)dρ(x?|xp)

 dρ(xp) (22)

A Monte Carlo estimate of this expression may then be obtained with the following5

algorithm (Homma and Saltelli, 1996):

1. Sample m vectors, xi=1...m and x
?
i=1...m following the density ρ(x),

2. Modify the components [p] of x? to make them equal to those of x, i.e., xp → x
?
p.

3. The sum

1
2m

(
m∑
i=1

g(xi ,x
?
i )+

m∑
i=1

g(x?
i ,xi )

)
(23)10

converges to the integral Eq. (22) as m→∞.

The sample size m is chosen empirically to be large enough to yield acceptable
estimator variance.

3 Results

3.1 Validation and choice of PC emulator15

We concentrate on three outputs: annual precipitation, growing degree days (GDD),
and annual mean temperature. GDD is defined here as the annual sum of daily
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temperatures (in Celsius) exceeding 0 ◦C. It is used as a calendar-independent
indicator of summer intensity and length in extra-tropical regions. Namely, the
vegetation model VECODE, used in LOVECLIM, uses GDD and annual precipitation
to predict the dynamics of vegetation Brovkin et al. (1997). For simplicity GDD
is estimated here from monthly means, that is, 30× the sum of monthly mean5

temperatures for which this temperature is above zero. In equatorial and subtropical
regions this information is equivalent to annual mean temperature. On the other hand,
we use the logarithm of annual precipitation rather than precipitation, as the first
quantity is closer to being Gaussian distributed than the second one.

Note that in the following analysis, experiment 20 (the experiment with lowest10

obliquity, Fig. 1) is taken out of the experimental design. It is an outlier, in the sense that
it is poorly predicted by the other experiments, and its inclusion degrades the predictive
performance of the emulator. The case is further discussed in the Supplement.

Two options are considered for the calibration of hyperparameters Λ and ν: (i) use
different hyperparameters for each PC, each obtained by maximising the penalised15

likelihood (Eq. 8), (ii) use the same value for each of the first 10 PCs, in which case this
is the product of the likelihoods of each PC that is maximised. The resulting Λ, ν and
log-likelihoods are shown on Fig. 6. One observes PC scores becoming decreasingly
informative about the model sensitivity as their index increases. Indeed, later PCs are
more design dependent, and their response is difficult to predict. This is reflected by20

the overall decreasing trend in the components of Λ, the occurrence of high values of ν
(some are out of the y-axis range) and the decrease in the likelihood. In fact, likelihood
stabilises around PC #10 to a minimum value that indicates that the calibrated GP is
not more informative than assuming independence of outputs and inputs.

Figure 4 shows the resolved and unresolved variances as a function of n′, for the25

different fields. Generally, around 99 % of the mean variance is already well-captured
by the first 3 PCs. However, the lower-variance PCs need to be taken into account
as well: they represent variability modes such as related to tropical circulation or north-
Atlantic convection sites that are locally important, even if their contribution to the mean
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global variance is small. Using more PC scores consequently reduces the number of
grid points that are incorrectly predicted by the PC emulator. Furthermore, the scores of
the first 10 PCs can generally be correctly predicted with a suitably calibrated Gaussian
process, which suggests that they are actually informative and should be retained.
Hence our final choice is n′ = 10.5

The evaluation strategy relies on the leave-one-out approach: for each member of
the experimental design, a PC emulator is trained using the hyperparameters defined
above. Based on Eqs. (9) and (10), the means and standard deviation are predicted for
each grid point of the member left out. Figure 7 shows (bars) the number of grid points
correctly predicted within 1, 2 or 3 standard deviations. A well-calibrated emulator10

would get 66, 95 and 99 %, respectively, in each category. Points incorrectly predicted
within 3 standard deviations (in red) are outliers. The result is satistfactory overall.
Some specific remarks:

1. Using constant rather than PC-specific hyperparameters does not significantly
affect the overall performance. This is explicitly shown for GDD, but this is also15

true of the other fields.

2. However, all fields exhibit an excessive number of outliers, compared to the ideal
frequency of 1 %. Annual mean precipitation is, in this respect, less well predicted
than the others, perhaps not surprisingly given that precipitation responds less
straightforwardly to radiation changes than temperature.20

3. The existence of outliers is compensated for by a larger-than-expected number
of errors with less than 1 standard deviation. This is typical of heavy-tailed
distributions.

4. Experiment 20 of the original ensemble was discarded based on this diagnostic.
Inclusion of this experiment significantly increases the number of outliers, as is25

shown in the Supplement.

922

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/901/2014/esdd-5-901-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/901/2014/esdd-5-901-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 901–943, 2014

Climate–vegetation
response to

astronomical forcing

N. Bounceur et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 Total variance

3.2.1 Choice of m for integration

We focus first on the variance of GDD, and to be specific, consider the precession

induced component S
m
1,2. As explained in Sect. 2.5.4 this quantity is estimated from

a Monte Carlo sum. To limit the computational expense we limit the reconstruction5

to the first two PCs, and consider different realisations of this Monte Carlo estimator,
ordered by increasing Monte Carlo sample size (Fig. 2). A 10 000-member ensemble

size generates a dispersion of the estimate of S
m
1,2 of the order of 2 %. The dispersion of

the integrals associated with individual PC scores (not shown) is of the order of 5–8 %,
so one may consider 5 % as a rough estimate of the uncertainty on variance estimates10

discussed in the following.

3.2.2 Contributions to total variances

Figure 5 decomposes the variances of the different fields (grid-point averages) into
their contributions from the different inputs, and compares these quantities to different
elements of variances associated with the PC emulator. The following observations can15

be made:

1. Variances explicitly associated to inputs (precession and obliquity) largely
dominate both the variances associated with using the PC emulator, and the
variance associated with the choice of initial conditions. Annual precipitation is
the field for which the variance associated with the discarded PCs is the largest,20

but even in that case it is much smaller than the variance associated with obliquity
and precession.

2. Annual mean temperature is more controlled by obliquity than by precession.
This result is reasonable, considering that annual mean insolation is exclusively
controlled by obliquity. By contrast, precipitation is more controlled by precession25
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than obliquity. Again this matches the general understanding of climate dynamics,
given the importance of monsoonal systems for annual precipitation, reportedly
sensitive to precession. Finally, GDD is equally controlled by these two
parameters, because this is a measure that is both sensitive to the peak insolation
value (which is dominated by precession) and to the integrated incoming energy5

over the warm season (which more obliquity controlled).

3. The synergy term is extremely small. In fact it is not quantifiable given that
it is smaller than uncertainties associated with the PC emulator and sampling
variability.

4. In these diagrams the two components that contribute to S
v
1,2,3 in the PC emulator,10

that is, the variance associated with the Gaussian process of the explicitly
resolved PCs (V (gp), see Eq. (10), and the variance associated with the discarded
PCs (V pc) are distinguished. For n′ = 10, V pc dominates. As n′ is increased V pc is
gradually transferred to V gp until the latter absorbs all the variance.

3.3 Geographical distribution of obliquity and precession effects15

Figure 8 reproduces the geographical distributions of variances associated with
precession and obliquity, based on Eq. (9). It is observed that:

1. Precipitation variance is dominated by some monsoon regions, namely Western
Africa and Australia. The absence of large variance patterns in South-East Asia
and South America is most reasonably attributed to the limitations of LOVECLIM20

in simulating tropical weather systems. Note also the significant influence of
obliquity in the most western part of North Africa.

2. GDD exhibits distinctive responses across the hemispheres. While this quantity
is controlled in the Northern Hemisphere by both precession and obliquity
(precession dominates), southern ocean temperature variance is almost25

exclusively controlled by obliquity.
924
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3. Annual mean temperature has the highest variance near the poles. Again,
Northern Hemisphere temperature is evenly controlled by precession and
obliquity, while obliquity dominates the variance in the Southern Hemisphere.

3.4 Non-linearity indices

To illustrate the potential interest of non-linearity indices we compare two sets of5

experiments. The first is the one which has been discussed so far, using interactive
vegetation VECODE. The second set of experiments is run along the same design
(with, for consistency, exp. 20 similarly omitted), but uses the original surface scheme
of ECBILT Opsteegh et al. (1998) where soil properties are fixed (hereafter termed
“VOFF"). An improved experimental design would admittedly have been based on10

VECODE with fixed-vegetation, but the current software configuration of LOVECLIM
made it technically challenging.

Results are shown on Fig. 9. The immediate impression is that the VECODE scheme
produces more non-linearity than the original ECBILT scheme (VOFF), in spite of
total variances being broadly similar for GDD and annual temperature (not shown).15

Specifically:

1. VOFF does not produce the precipitation non-linearity spot in western Africa. In
this region, the response of vegetation is essential to produce large response
patterns. The non-linearity index is positive, typical of a sigmoid response (Fig. 3)
and this effect was earlier documented in this model (Renssen et al., 2003). It is20

also consistent with the findings of Claussen et al. (1999).

2. In North America, the non-linearity index produced by the VECODE scheme is
negative. This is typical of a saturation effect. It was also seen (but not shown
here) that the total variance in this region is also slightly smaller with VECODE
than with VOFF. This effect is unexpected and not easily explained: it may25

be a consequence of the difference in hydrological surface properties, and/or
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a consequence of the difference in mean state between VON and VOFF, with
possible consequences for the amplitude of the snow albedo positive feedback.

3. Runs with VECODE show significant non-linearity in the North Atlantic and over
the Arctic. This implies that the model with VECODE is being brought into
a regime where large sea-ice responses may occur, and play a larger amplifying5

role than in the VOFF experiments.

4 Conclusion and discussion

Our ability to relate input to output variances is one of the elements that characterises
our understanding of a model, in general, and of a computer model (simulator), in
particular.10

In the current study we focused on output variances that are related to variations
in the inputs caused by the slow changes in Earth’s orbital parameters. The primary
purpose is to compare the effects, and possible synergies between precession and
obliquity. We thus ignored a number of sources of uncertainty, including the structural
choice of the climate model (i.e., using LOVECLIM rather than another model and15

errors in LOVECLIM), and the values of the parameters involved in parameterisations.
This is thus not a full global sensitivity analysis, but it is nevertheless a significant step

forward, because it allows us to approach the variety of astronomical configurations
experienced during the Quaternary with no need to explicitly consider a reference state.
The conclusions may be summarised as follows.20

First, we note that the results shown in Figs. 8–9, which depicts LOVECLIM’s
sensitivity to astronomical forcing, are generally consistent with current knowledge on
the actual climate system:

1. Precession and obliquity both contribute to annual temperature. Precession has
generally more effect in the Northern Hemisphere and tropical regions, and25

obliquity is the dominant forcing in the Southern Hemisphere. This is physically
926
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reasonable: precession has virtually no effect on annual mean insolation. It
may thus only affect annual temperature through non-linear effects, for example
associated with albedo forcing, which are more easily solicited in the Northern
Hemisphere, given the presence of large continental areas. This result is also
consistent with the predominance of obliquity signals in Antarctic cores, be it5

CO2 concentration (Petit et al., 1999; Siegenthaler et al., 2005; Luethi et al.,
2008) or Deuterium excess (Vimeux et al., 2002). This dichotomy between
Northern and Southern Hemisphere sensitivities to obliquity and precession is
a reasonable basis to explain the contrasting dynamics between southern records
and a northern continental records, such as Baïkal’s, during isotopic stage 1110

(Prokopenko et al., 2002). Our results are also consistent with an explanation of
the mid-Brünhes events based on this difference between northern and southern
ocean responses (Yin, 2013).

2. GDD is used here as a measure of summer length and intensity. We primarily
used it because it is implemented in VECODE as predictor for vegetation changes.15

However, GDD is also mathematically equivalent to the positive-degree days
index (PDD) used as a predictor of net snow accumulation balance over ice
sheets sometimes used as a boundary condition to ice-sheet models (e.g.: Pollard
and DeConto, 2005). We see here that GDD is, in the Northern Hemisphere,
approximately equally sensitive to precession and obliquity. Crucifix (2011), based20

on Berger (1978a), noted that the Milankovitch’s caloric season insolation is also
equally sensitive to precession and obliquity. Hence, this result is consistent with
Ruddiman (2007)’s proposal to use caloric season insolation as a predictor for ice
age inception.

3. The approach identifies non-linearity response spots associated with the25

vegetation and sea-ice. This is again generally consistent with our current
understanding of climate dynamics, and in particular how slow variations in
astronomical forcing may induce fairly rapid climate transitions (Claussen et al.,
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1999). Non-linear responses are, by the very nature of being non-linear, sensitive
to the climate background state, which itself is determined by numerous explicit
and implicit modelling choices. Therefore, the location of a non-linear event in the
input space – thus, here, the timing of the event, since the input space is the
astronomical forcing – is generally highly sensitive to those modelling choices.5

This is where global sensitivity analysis shows a specific advantage compared to
local approaches: as the input space is explored systematically, it does not rely on
the model simulating the event with the correct timing. It rather characterises the
nonlinearity of the response, and offers the possibility to locate non-linear events
a posteriori (and possibly probabilistically if uncertain inputs are included in the10

analysis), hence yielding a much more robust analysis.

In addition, one result contrasts with previously published conclusions:

4. The current analysis reveals no synergy between obliquity and precession. Such
synergy had been previously proposed as an important contributor to climate
change during interglacials (Crucifix et al., 2002; Crucifix and Loutre, 2002). In15

fact, we have seen climate does indeed respond non-linearly to insolation, but this
non-linearity is not specific to the association of precession and obliquity changes.
This is the reason why the synergy measure is here essentially null.

The spirit of sensitivity analysis in general, and of global sensitivity analysis in
particular, is to aim for robustness and uncertainty quantification. This can be achieved,20

but at the cost of added conceptual and technical complexity compared to conventional
approaches. Indeed, we used an emulator that involves a number of validation steps
that are not immediately related to the climate model itself (namely, the number of
principal components, the methodology for finding hyper-parameters, and the quality
of the experiment design). Paradoxically, while aiming for robustness it is necessary to25

introduce additional assumptions and parameters in the analysis process. In fact, some
of the assumptions made explicit here are implicit in the more conventional approaches,
in particular the smoothness of the simulator response, or the representativeness of the
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reference experiment. This may be appreciated through the case of experiment “20”,
which was rejected as an outlier. Admittedly, this experiment is useful because it may
reveal significant dynamics occurring at low obliquity, but the emulator shows that it
does not represent the simulator’s response over most of the input space. A simpler
experiment design, that would have only compared experiment 20 with a reference5

state, would have missed this point.

The Supplement related to this article is available online at
doi:10.5194/esdd-5-901-2014-supplement.
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Figure 1. Experiment design. The experiment marked in red was discarded from the analysis (cf. sup-
plementary material).
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Figure 1. Experiment design. The experiment marked in red was discarded from the analysis
(cf. the Supplement).
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Figure 2. Monte Carlo estimates of S
m

1,2 associated with GDD, averaged over all grid cells, as
a function of the sample size of the Monte Carlo estimator. We hereafter use 10 000 members.
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Figure 3. Estimate of linear and non-linear variance indices (Sm and Sm,nl) in three toy examples,
where an emulator is calibrated on three distinct one-dimensional datasets (open circles). Full line is
the emulator prediction and red lines its linear component. Note that the sigmoid response produces a
positive non-linearity index, and the exponential, a negative one.
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Figure 3. Estimate of linear and non-linear variance indices (Sm and Sm,nl) in three toy
examples, where an emulator is calibrated on three distinct one-dimensional datasets (open
circles). Full line is the emulator prediction and red lines its linear component. Note that the
sigmoid response produces a positive non-linearity index, and the exponential, a negative one.
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Figure 4. PCA decomposition of the logarithm of annual precipitation, GDD and annual temperature
fields based on the experiment design. Shown are the cumulated variance resloved by the PC (red) and
the left variance (blue), which is modelled as white noise in (10), as a function of n′. Quantities are
grid-cell averages.
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Figure 4. PCA decomposition of the logarithm of annual precipitation, GDD and annual
temperature fields based on the experiment design. Shown are the cumulated variance
resloved by the PC (red) and the left variance (blue), which is modelled as white noise in
Eq. (10), as a function of n′. Quantities are grid-cell averages.
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Figure 5. Total variances associated to inputs (S̄m
1,2,3), averaged over all grid points, and its contributions

associated with precession (S̄1,2), obliquity (S̄1,2), and synergy (S̄m
1,2,3− S̄m

1,2− S̄m
1,2). These variances

are then compared to different elements of variances associated with the PC emulator, namely : output
dependency to initial conditions (exp. 20 excluded), the sensitivity of S̄m

1,2,3 to the choice of hyperpa-
rameters (constant for all PC, or PC-dependent), and the field variance associated to the emulator S̄v

1,2,3,
split into the contribution assiated with the discarded PC (V (pc) in (10)) and to the co-variance of the
Gaussian process (V (gp)) of the PCs explicitly resolved.
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Figure 5. Total variances associated to inputs (S
m

1,2,3), averaged over all grid points, and its

contributions associated with precession (S1,2), obliquity (S1,2), and synergy (S
m

1,2,3−S
m

1,2−S
m

1,2).
These variances are then compared to different elements of variances associated with the PC
emulator, namely: output dependency to initial conditions (exp. 20 excluded), the sensitivity of

S
m

1,2,3 to the choice of hyperparameters (constant for all PC, or PC-dependent), and the field

variance associated to the emulator S
v

1,2,3, split into the contribution assiated with the discarded

PC (V (pc) in Eq. 10) and to the co-variance of the Gaussian process (V (gp)) of the PCs explicitly
resolved.
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Figure 6. Hyperparameters maximising the penalised log-likelihood ((8)) for three variables : GDD,
log(Annual Precipitation) and Annual temperature, either (black) optimised for each PC independently
or (blue) optimised based on the product of the likelihoods of the first 10 PC, assuming that the same
hyperparameters are used on all PCs. The log-likelihood associated with each PC is given for reference
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Figure 6. Hyperparameters maximising the penalised log-likelihood (Eq. 8) for three variables:
GDD, log(Annual Precipitation) and Annual temperature, either (black) optimised for each PC
independently or (blue) optimised based on the product of the likelihoods of the first 10 PC,
assuming that the same hyperparameters are used on all PCs. The log-likelihood associated
with each PC is given for reference.
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Figure 7. Evaluation of the PC emulators. The bars give the fractions of grid points for
which the emulation correctly predicts the value of the experiment left out of the calibration,
within 1, 2, 3 standard deviations, or more. The light and dark blue lines correspond to the
fractions corresponding to 1, 2, and 3 standard deviations in the case of perfect Gaussian
distributions. Dots are root mean squares of the differences between predicted and actual
values. The graphical layout is adapted from the recommendation of the “Modelling Uncertainty
in Computer Model” project, http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=
ExamMultipleOutputsPCA.html. Remark that experiment 20 is omitted (see the Supplement.)
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Figure 8. Geographical distribution of total variance S̄m
1,2,3, split into contributions from precession S̄m

1,2

and obliquity S̄m
3 . Color schemes are consistent accross each variable and the right-hand side scale gives

the range of values covered.
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Figure 8. Geographical distribution of total variance S
m

1,2,3, split into contributions from

precession S
m

1,2 and obliquity S
m

3 . Color schemes are consistent accross each variable and
the right-hand side scale gives the range of values covered.
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Figure 9. Geographical distribution of total variance associated with non-linear effects S̄m,nl
1,2,3 , with the

current surface scheme using interactive vegetation (the current LOVECLIM standard), and with the
original ECBILT surface scheme, with fixed vegetation (deprecated). Color schemes are consistent with
Figure 8.
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Figure 9. Geographical distribution of total variance associated with non-linear effects S
m,nl

1,2,3,
with the current surface scheme using interactive vegetation (the current LOVECLIM standard),
and with the original ECBILT surface scheme, with fixed vegetation (deprecated). Color
schemes are consistent with Fig. 8.
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