
Referee N°1
We thank once more the referee for his careful review and constructive criticism.
Most of the responses will be clearly clear/visible in the diff-document, and we
provide complementary information point by point below.

Major Comments

1 First point

page 8

3 sets of experiments with the same experiment design We understand the
point of view of the referee and appreciate that they may room for further
improvements of the experiment design. We, however, defend our choice
as follows: The following is the corresponding text in the paper

“Our initial intention was to build two distinct emulators, one using the
warm orbit as initial conditions, and one using the cold orbit. In prac-
tice, the two emulators ended up being redundant (sect. 3.1), and thus a
third of our computational budget was thus spent on replicating essentially
identical runs. However, this could not have been easily foreseen, and we
feel was worth the cost to avoid the risk of missing the existence of mul-
tiple steady-states. The third ensemble uses the same initial conditions as
the first, but uses the original ECBILT surface scheme with fixed vegeta-
tion (Opsteegh et al., 1998) and not the VECODE model. We built an
independent emulator in this case, but we note that ’multi-level emulation’
approaches, which associate similar but different simulators Cumming and
Goldstein (2009), could potentially have increased our predictive accuracy
by allowing us to make better use of the limited computational resource.
We leave this option as a possible subject for further investigation.”

Second and third points page 8 and 9

Section 2.3.2 is moved as suggested. This is followed by the definition of
the sensitivity measures as well as the clarification of different interpreta-
tions by adding the corresponding equations explicitly.

page 10

The estimation of sensitivity measures by the aid of a Gaussian process
emulator is expressed after the two points above.

Fourth point page 10

This part is detailed in a way to make the document self contained. Ex-
plicit equations and the corresponding interpretations are added in a way
to show where the emulator intervene in calculations of the sensitivity
measures.
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Fifth point page 21

This comment is taken into account and the text is set to:

“The oscillation itself could be of physical relevance for past climate vari-
ability, but the limits of the phase space region in which the oscillation
occurs are also likely to depend on many other uncertain parameters of
the model. One possible action would be to use a sequential design strat-
egy to delineate the region of occurrence of the phenomenon and develop
an emulator aimed at characterising this oscillation. In particular, his-
tory matching theory provides adequate concepts and methods to this end
Williamson et al. (2013). Given the likely sensitivity of the oscillation on
model parameters, the significance of this enterprise for palaeoclimate in-
terpretation is unsure. We rather choose to ignore the experiment for the
time being (the following diagnostics ignore experiment 20), but discuss
the possible consequences of this choice in the final discussion. In statisti-
cal terms, we provisionnally condition the analysis on the hypothesis that
these oscillations do not occur in the phase space.”

Sixth point page 27

A text is added in order to clarify the fact the results presented in the
section and paper are conditioned on the use of modeling strategy and
more specifically conditioned on the use of LOVECLIM model. That the
conclusions do not represent reality and is a guidance to interpret and
gain understanding of reality.

Minor Comments

1-4 points 1 to 4 are taken into account

5 these papers are now cited.

6-15 these points are taken into account

16 SVD

Let us denote by Yfull−space the N×n output matrix which contains simulation

results at the training design X of N distinct experiments and s values of the

output (multivariate). For example, in the case of LOVECLIM mean surface

temperature, the output per simulation has 2048 values (grid points). The

decomposition is realized on the centered output Y
′

= Yfull−space − µ1, where

the row mean µ is subtracted from the output training data and Y
′

is an

N × n = 27 ∗ 2048 matrix.

The singular value decomposition of Y
′

is UDVT where U,V are the left

and right singular vectors of Y
′
respectively;

U is a 27 ∗ 2048,
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V is a 2048 ∗ 27, and
D is a 27 ∗ 27.
D is diagonal and contains the non-negative singular values of Y

′
in decreas-

ing order : N values, a square matrix of 27 by 27 elements.
The principal components are the projection coefficients given by VD (2048*27x27*27)such

that the coefficient of the kth eigenvector uk(2048*1) in U for a given jth

experiment is VjkΓkk.(2048*1 x 1*1)

17 This is modified in pages 14 section 2.4.2, bottom of the paragraph. “and
the error associated with this assumption is accounted for in the covariance
of the estimator (see section 2.5).” See also In section 2.5: , equation 18
left-hand-side.

18 This is modified in the text and we no longer say it is standard.

19-23 in subsection 2.4.3, these points are modified/corrected and thus taken
into account

24 in page 14 subsection 2.4.3 a sentence is added to clarify this point : ?1 line
6

25 pages 14-15

In the present paper, νk is not considered an indicator of internal variabil-
ity. It is inappropriate to interpret it as so, as we use long climate averages
(500 years). Moreover, we anticipate that internal variability will be of
the same order as to the error associated with the truncation of principal
components.

The following is the text in the paper set to “(...) In climate model appli-
cations, the nugget may also be justified as a way to account for ’internal
variability’. Indeed, the chaotic dynamics of the simulator are such that
a particular climate average over a given time window, can be viewed as
a stochastic quantity, even though the simulator is deterministic. In the
climate modelling parlance, the effect is referred to as un- certainty asso-
ciated with the internal simulator variability. For example, in Araya-Melo
et al.(2015), we found that our estimate of the nugget variance is consis-
tent with the assumption that this term models the uncertainty associated
due to simulator variability. This is also the inter- pretation adopted by
Williamson et al. (2014) (both studies use the climate model HadCM3).
In the the present application, we use rather long climate averages (500
years) and we anticipate that internal variability will be of the same order
as to the error associated with the truncation of principal components. It
may thus not be appropriate to interpret νk as an indicator of internal
variability, and we therefore chose not to do so.”

26-28 All these points are taken into account and are changed in the text

29 Formula of C is explicitly given in the revised version.
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30 “Output variable” is changed to “output field (temperature, precipitation,
GDD)” in page 16, first bullet point

31 This is taken into account in section 2.6, page 16. The bullet point 2.6 is
split into two points and the third bullet point modified in purpose.

32 The term is suppressed

33 The point is suppressed

34-35-37-38 These points are taken into account and already corrected/changed
in the text

36 We changed “wrong predictions” into “prediction outside the 99th credible
interval”.

Referee N°2
General comments

1 First bullet point

It is correct that parallelizing the code is favorable for optimization com-
puting time, but here we downweighted the argument on computer speed
and further emphasized on the conceptual advantages, this is explained in
page 19.

2 see specific comments

Specific Comments11

1-2 These are corrected/changed inn the text

3 equations 15-19 , are moved into appendix. C expression is explicitly specified
in page 11, equation 9.

4 Argument is taken into account in section 2.6

the third bullet point is set to:

“In some regions there may be only small variation in the simulated out-
put as the input parameters change. If independent emulators are used for
each grid cell, estimating the hyper-parameters for these cells can be diffi-
cult without applying some sort of parameter regularisation, and besides,
the computational effort of building the emulator is unnec- essary (as the
output is constant). The global principal component emulator is therefore
preferable in these situations, as these constant regions are automatically
accounted for in the principal component variance decomposition.”

5 “diagnostic” is corrected

6 Stot is referenced now and pointed to equation (10) following the new nota-
tions.
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7 It is correct that a full probabilistic processing of hyperparameters (with pri-
ors and posterios), such as in Farah, 2011, is in principle needed to provide
a full Bayesian quantification of the uncertainty on variance indices. This
said, we noticed little sensitivity of sensitivity indices estimates on the
length scales, and in no case did we notice sensitivitity that would impact
the general scientific conclusions. On the other hand, most of the existing
literature focusing on emulators formulated through Gaussian process (as
here) considers, just as we did, semi-Bayesian estimate of the main effects
with fixed hyperparameters. This is, in particular, the approach of Oak-
ley and O’Hagan (2004). The penalised likelihood maximisation adopted
here follows quite exactly Andrianikis and Challenor (2012). Is summary,
we comply with mainstream literature and verified that reasonably small
changes in length-scales and nuggets have no scientific incidence. This was
enough to convince us that the semi-Bayesian approach adopted here is
adequate. Providing posterior bounds on hyperparameters would require
a computational cost that does not seem justified here.

Other changes

We added references to the important works of Tuenter and other collabora-
tors of the Utrecht group. The manuscript underwent an additional number of
further editorial corrections (typos, English, etc.)
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Abstract

A global sensitivity analysis is performed to describe the effects of astronomical forcing on the
climate-vegetation system simulated by the model of intermediate complexity LOVECLIM in
interglacial conditions. The methodology relies on the estimation of sensitivity measures, using
a Gaussian process emulator as a fast surrogate of the climate model, calibrated on a set of well
chosen

::::::::::
well-chosen

:
experiments. The outputs considered here are the annual mean temperature

and precipitation
:
, and the Growing Degree Days (GDD). The experiments were run on two

distinct land surface schemes to estimate the importance of vegetation feedbacks on climate
variance. This analysis provides a spatial description of the variance due to the factors and their
combinations, in the form of “fingerprints" obtained from the covariance indices. The results
are broadly consistent with the current understanding of Earth’s climate response to the astro-
nomical forcing. In particular, precession and obliquity are found to contribute equally to (GDD
)
::
in

::::::::::::
LOVECLIM

:::::::
equally

::
to

:::::
GDD

:
in the northern hemisphere, and the effects

:::::
effect

:
of obliquity

on the response of southern hemisphere temperature dominate precession effects. Precession
dominates precipitation changes in subtropical areas. Compared to standard approaches based
on a small number of simulationsfor well-defined past epochs, the methodology presented here
allows us to identify more systematically regions susceptible of

::
to

:
experiencing rapid climate

change in response to the smooth astronomical forcing change. In particular, we find that using
interactive vegetation significantly enhances the expected rates of climate change, specifically
in the Sahel (up to 50% precipitation change in 1,000 years) and in the Canadian Arctic region
(up to 3◦ in 1000 , years). None of the tested astronomical configurations were found to induce
multiple steady states, butwe observe, at low obliquity,

::
we

:::::::::
observed the development of an os-

cillatory pattern that has already been reported in LOVECLIM. Although the mathematics of
the analysis are fairly straightforward, the emulation approach still requires considerable care
in its implementation. We discuss the effects

:::::
effect of the choice of length scales

::::::::::::
length-scales,

the type of emulator,
:
and estimate uncertainties associated with specific computational aspects,

to conclude that the PC
::::::::
principal

::::::::::
component

:
emulator is a reasonable

:::::
good option for this kind

of application.
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1 Introduction

The seasonal and spatial distributions
::::::::::
distribution

:
of incoming solar radiation (insolation) at the

top of the atmosphere are
:
is

:
determined by three astronomical parameters: the Earth’s eccen-

tricity, the longitude of the perihelion, and Earth’s obliquity. The variation of these parameters
causes sufficient changes in insolation to significantly affect climate, in particular

:
, the distri-

bution of surface temperature, vegetation cover, monsoon rainfall, Arctic sea-ice etc. These
changes can be simulated and studied by means of experiments with global climate models.
One classical approach consists in identifying two epochs in the past for which sufficient data
are available, running the climate model (with the implicit assumption that simulated climate is
quasi-stationary with respect to the astronomical forcing), and then comparing the two resulting
simulated climates. This is, for example, the approach followed by the Palaeoclimate Modelling
Intercomparison project (Braconnot et al., 2007).

The difference between the two epochs may then be further decomposed into contributions of
several factors. Suppose we want to compare the beginning and the end of the last interglacial.
These two periods, distant by 11,000 years, are characterised by significant climatic differences
(e.g. Sanchez-Goñi et al., 1999). The difference in insolation forcing is caused by a change in the
position of the perihelion on Earth’s orbit (this is the precession process) and a decrease in obliq-
uity. One may then ask what are the individual effects of precession and obliquity, and whether
these effects combine linearly, or, to the contrary, whether second-order effects are significant.
In the climate literature the second order terms are often termed “synergy". In this particular
context the input factors are physical forcing parameters (Crucifix and Loutre, 2002; Henrot et al., 2010) ,
but the word synergy is also commonly used when input factors describe the possibility to
“activate" interactive model components such as dynamic vegetation or oceanic circulation
compared to a situation where vegetation or ocean temperatures are fixed (Ganopolski et al., 1998; Braconnot et al., 1999; Berger, 1999; Wohlfahrt et al., 2004) .
Returning to the example of the last interglacial

::::::
Based

::
on

::
a

:::::
series

::
of

::::::::
transient

::::::::::::
experiments, Crucifix and Loutre (2002) suggested that the sum

of individual effects of precession and obliquity during the Eemian are less than their combined
effects. In the model experiments discussed in that article, this is caused by feedbacks associ-
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ated with the responses of vegetation and sea-ice. However,
:::::::::::::::::::::::::::::
Tuenter et al. (2003) investigated

:::
the

:::::::::
difference

::::::::
between

:::::::::
individual

::::
and

:::::::::
combined

:::::::
effects

:::::
more

:::::::::::
generically,

:::::::
without

:::::::::
reference

::
to

:::::::
specific

:::::::
epochs

::
of

::::
the

:::::::::::
Quaternary.

:::::
They

::::::::::
performed

:
a
::::

set
::
of

::::::
seven

:::::::::::
experiments

:::::
with

::::::::
different

::::::::::::
combinations

:::
of

::::::::::
precession

::::
and

:::::::::
obliquity

::::::::
spanning

::::
the

::::::
range

:::
of

::::::
values

::::::::
reached

::::::
during

::::
the

::::::::::
Quaternary.

::::::
They

:::::
found

::::
that

:::::
“the

:::::::::
amplitude

:::
of

:::
the

:
[
:::::
North

::::::::
African]

:::::::::::
precipitation

:::::::::
response

::
to

::::::::
obliquity

::::::::
depends

::
on

:::::::::::
precession,

:::::
while

::::
the

:::::::::::
precipitation

:::::::::
response

::
to

::::::::::
precession

::
is

:::::::::::
independent

::
of

::::::::::
obliquity".

::::
One

:::::::::
problem,

:::::::
though,

::
is
:::::

that
::::
such

:
second-order effects may well be important

::
be

::::::::::
significant during certain epochs only, where non-linear transitions between different states

occur (e. g., Green Sahara vs White Sahara). One may therefore argue that more robust conclusions
will be obtained if

::
or

::
at

::::::
certain

:::::::
critical

:::::::::
locations.

::::::::::::
Consequently,

::
a
:::::
more

::::::
robust

:::
and

::::::::::::::
comprehensive

::::::::
approach

::
to

::::::::
estimate

::::::::::
individual

:::
and

::::::::::
combined

::::::::::::
contributions

::
of

::::::::::::
astronomical

:::::::
factors

::
to

:::::::
climate

::::::
change

::::::
would

:::
be

::
to

:::::
scan the whole domain of possible forcing configurationsis systematically

scanned. This is the purpose of the
:
.
:::
As

:::
we

:::::
show

::::
next

::::
this

::::::::
objective

::::
can

::
be

::::::::
reached

::
by

:::::::::
reference

::
to

:::
the

:::::::
concept

:::
of global sensitivity analysis (Homma and Saltelli, 1996; Saltelli et al., 2004). To

illustrate this concept, let us call ,
::::::
which

::::
may

:::
be

::::::::::
introduced

::
as

::::::::
follows.

::::
Call x a particular forc-

ing configuration — in the present context, x contains the astronomical configuration. Denote
the output of a model run at configuration x by f(x). The vector x varied in the past and we can
estimate its distribution by reference to existing astronomical solutions. If we assume that the
climate model is correct

:::::::::
represents

::::::
reality

:
and that the climate is quasi-stationary with respect

to the astronomical forcing, then f(x) reflects the past evolution of climate. We can in partic-
ular enquire about the variance of f(x) caused by the distribution of x, and decompose this
variance into contributions from individual factors (precession and obliquity in this example).

Here, we carry out a global sensitivity analysis of the climate model of intermediate com-
plexity LOVECLIM (Goosse et al., 2010) to the astronomical forcing. We provide geographic
distributions of the contributions of obliquity and precession on climate on precipitation and
temperature, and estimate synergy effects. We also attempt to detect regions where fast cli-
mate responses may occur in response to the slow changes of astronomical forcing. The ob-
jectives of this work are two-fold. The first objective is climatic.

::
is

::::::::
climatic:

:
We would like

to determine the respective roles of astronomical components
::::::
factors

:
on interglacial climate
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change
:
,
:
and contribute to the discussion on the mechanisms of glacial inception and inter-

glacial duration with a focus on climate-vegetation interactions, in the line of the works of
de Noblet et al. (1996); Claussen et al. (1999); Crucifix and Loutre (2002); Kageyama et al. (2004); Meissner et al. (2003) .
The

::::::
adding

::
to

:::
the

::::::::::
discussion

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
de Noblet et al. (1996); Claussen et al. (1999); Crucifix and Loutre (2002); Kageyama et al. (2004); Meissner et al. (2003) .

:::
Our

:
second objective is methodological. While global sensitivity

:::::::
analysis

:
is well-established in

statistics, it has only recently been applied to climate problems. Lee et al. (2011), for example,
performs a global sensitivity analysis of a global atmospheric model associated with a com-
plex aeorosol model, in order to decompose model output uncertainty into contributions from
eight uncertain parameters (see also Lee et al. (2013); Carslaw et al. (2013)). Although our
scientific objective is different (we want to decompose forced climate variances induced by
variances in forcing components

::::::
factors), the methodological approach is broadly similar to that

of Lee et al. (2011) and follows from Oakley and O’Hagan (2004)
::::
who

:::::::::
proposed

:::::::::::
probabilistic

:::::::::
sensitivity

::::::::
analysis

::
as

::
a

:::::::::::::
generalization

::
of

::::::
global

::::::::::
sensitivity

:::::::
analysis

:::
to

::::::::
complex

:::::::::
simulators: (a)

sample a space-filling experiment design ,
::::::
choose

::::
the

::::::::::::
experimental

:::::::
design

::
to

::::::::::
efficiently

:::
fill

:::
the

:::::
input

:::::
space

::::::
(here,

:::
the

::::::
space

::
of

::::::::::::
astronomical

:::::::::
forcings) (b) run LOVECLIM at these design

points
:::::::::::
experiments, (c) calibrate

::::
train

:
and validate an emulator, that is, a stochastic statistical

model used to predict the function f(x) at any input point, based on the output of the experi-
ments actually run,

:
; and (d) use the emulator to estimate sensitivity indices. Emulation has been

increasingly used in climate science in the recent years as a tool to explore input spaces with
the objective

:::
aim

:
of calibrating the model on observations and estimating climate sensitivity

(Rougier et al., 2006, 2009; Holden et al., 2010; Schmittner et al., 2011). We therefore want to
explore the potential of this methodology for our specific application, with a discussion of its
possible advantages, challenges, and drawbacks compared to more classical approaches.
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2 Methodology

2.1 Choice of input factors

In palæoclimatology
:
, it is common to refer to the time of the year using the true solar longitude

(λ), that is, the geocentric angle between the vernal equinox and the position occupied by the
Earth at any point during the year. For example, the June solstice corresponds to λ= 90◦, the
September equinox to λ= 180◦ etc. For the purpose of computing insolation at a given time of
year, we need the true solar longitude at perihelion, that is, the true solar longitude correspond-
ing to the shortest Earth-Sun distance. This quantity is denoted $.

:::
The

::::::
shape

:::
of

:::
the

:::::::
Earth’s

::::
orbit

::
is

:::::::
elliptic

::::
and

::::::::::::
characterised

:::
by

:::::::::::
eccentricity

::
e.

:::::::
Finally,

::::
the

:::::
angle

::::::::
between

:::
the

:::::::
ecliptic

::::
and

:::
the

:::::::
equator

::
is

:::::
called

:::
the

:::::::::
obliquity

:::
and

::::::::
denoted

::
ε. It may then be shown that the secular evolution

of the top-of-the-atmosphere incoming solar radiation at any latitude and any true solar longi-
tude is reasonably well approximated by a linear combination of i1 = esin$, i2 = ecos$ and
i3 = ε (Loutre, 1993). The quantity i1 is often referred to as the climatic precession parameter.
As i1, i2 and i3 are not correlated, the three inputs can be viewed as a canonical form of the as-
tronomical forcing parameters. In particular, their signature on the season-latitude distribution
of incoming solar radiation is characteristic: i1 and i2 control the Earth-Sun distance at any true
solar longitude with very little effect on annual mean insolation1, and i3 controls the seasonal
contrast as well as the annual mean insolation.

The time-evolution of the astronomical parameters over the Pleistocene is well known (Berger,
1978b; Laskar et al., 2004). Note thateccentricity e < 0.05

:
,
:
99 % of the time,

::::::::::
eccentricity

::::::::
e < 0.05 and the inner 99th percentile of ε is 22.3◦ to 24.3◦, these boundaries differing by
less than 0.1◦ whether the Berger (1978b) or the Laskar et al. (2004) solution is used as the
reference.

1a
:
A
:
small effect on the global , annual mean insolation emerges as a result of variations in eccentric-

ity.
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2.2 Experiment design

As specified above, the climate model
:::
we

::::
use

:
is the ocean-atmosphere-vegetation model of

intermediate complexity “LOVECLIM" (Goosse et al., 2010). The choice of inputs for the ex-
periments are encoded in a design

::::
input

::::::
factor

:
matrix denoted X, of which the three columns

correspond
::::::
which

:::
has

:::::
three

:::::::::
columns

:::::::::::::
corresponding to the inputs i1...3:::::

i1,2,3, and which has as
many rows as ensemble members (27 experiments in our case). There is a rich literature on ex-
periment design sampling techniques, and the monography

::::::::::
monograph by (e.g. Santner et al.,

2003) is specifically dedicated to computer experiments. As a general rule, given a fixed num-
ber of experiments to be run, one objective to achieve is to maximise the amount of information
to

:::::::::::
information

::::
that

::::
can be inferred from the experiment set. If we use an Gaussian process

:
a

::::::::
Gaussian

:::::::
process

:::::
(GP)

:
emulator (as here), this criteria corresponds to minimising the poste-

rior variance
::
in

:::
the

::::
GP

::::::::::
predictions

:
(Sacks et al., 1989). Another objective is to minimise the

bias in the quantities to be estimated. Sampling a good
::::::
Finding

:::
an

:::::::::
adequate design is thus an

optimisation problem, and generally not a straightforward onebecause, on the one hand, the
optimum solution may depend on parameters that

:
,
:::::::
because

::::
the

:::
GP

::::::::::::::::
hyper-parameters

:
are not

known a priori, and , on the other hand, efficient algorithms for finding optimal designs may
be difficult to find

::
so

:::
the

::::::
design

:::::
must

::::::::
trade-off

:::
the

:::::
need

::
to

:::::
learn

:::::
these

:::::::::::
parameters

::::
with

:::
the

:::::
need

::
to

:::::::::
minimise

:::
the

:::::::::
prediction

::::::::
variance. In practice, an effective approach consists in using latin-

hypercube designs (McKay et al., 1979; Morris and Mitchell, 1995; Urban and Fricker, 2010)
with specific properties, such as maxi-min latin-hypercubes

:::::::::
preporties

:
(where we maximize the

minimum Euclidean distances between any
:::::::
distance

::::::::
between

::::
any

::::
pair

::
of

:
design points) or or-

thogonality (in this case, maximizing XTX
:::::
X′X). Hybrid designs associate

::
use

:
several such

properties and may
:::
can

:
be theoretically justified as good solutions for Gaussian process emula-

tion (Joseph and Hung, 2008). Out of the box packages are available
:::::::::::::
Out-of-the-box

:::::::::
packages

:::
can

:::
be

::::
used

:
to produce latin hypercube designs (e.g. the lhs package (Carnell, 2012) ) but we

face here
:::::::::::::::::::::::::::::::::
(e.g., the lhs package, Carnell, 2012) ,

::::
but

:::
are

:::::::::
unsuited

::
to

::::
our

::::::
needs

::
as

::::
we

::::
face

:
an

additional constraint: We
:
.
::::::::
Namely,

:::
we

:
want to avoid wasting computing time

::::::::::::
computational

:::::
effort sampling eccentricities > 0.05, which translates into a constraint on the quantity i21 + i22.

7
12 of 60



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

The algorithm given in the Appendix Asatisfies this constraint , while attempting to satisfy
(near-)orthogonality

:::::::::::::::::::::
Vernon et al. (2010) and

:::::::::::::::::::::::::::
Draguljić et al. (2012) provide

:::::::::
examples

::
of

:::::::
designs

:::
for

::::::::::::::
non-rectangular

:::::
input

::::::
spaces.

::::
The

:::::::::
algorithm

:::::
used

::::
here

::::::::::
(Appendix

::
A)

::
is

:::::::
similar

::
to

:::::::::::::::::::
Vernon et al. (2010) :

:
it
::::::::
satisfies

:::
the

:::::::::
constraint

:::
on

::::::::::
eccentricity

::::::
while

::::::
aiming

::
at
:::::::::::::::::
near-orthogonality

:
and maxi-min prop-

erties. The choice of n= 27 experiments arises from the general recommendation of Loeppky
et al. (2009) to perform 10 experiments per input dimension. We used 27 members (and not 30),
in order to compare with a factorial design of 33 members (N. Bounceur, thesis in preparation,
not discussed here).

The resulting design is shown in Figure 1. It is executed three times. Two ensembles use the
standard version of LOVECLIM with the VECODE vegetation model (Brovkin et al., 1997),
but with two distinct sets of initial conditions. The first one is

::::::::
ensemble

::::
uses

:
the pre-industrial

conditions provided by default in the LOVECLIM model package. For the second ensemble,
initial conditions are

::::
The

::::::
second

::::
uses

:
the final state of the member #2 of the first ensemble. This

particular member is a so-called warm orbit (high obliquity, high eccentricity and$ ' 90◦) that
produces extensive vegetation cover in the northern hemisphere and in the Sahara region.

:::::
Every

::::::::::
experiment

::
is

:::
run

::::::
2,000 years

:::
and

:::
the

::::
last

:::
the

::::
data

:::::
used

:::
for

:::
the

:::::::::
following

::::::::
analysis

:::
are

::::::::
obtained

::
by

:::::::::
averaging

::::
the

:::
last

::::
500 years

:
.

The purpose of using two distinct initial conditions is to detect potential co-existence of
distinct steady state solutions.

:::::::
multiple

:::::::::::
steady-state

:::::::::
solutions.

::::::::::::::::::::
Brovkin et al. (1998) ,

:::
for

::::::::
example,

:::::
found

::::
two

::::::
stable

:::::::::
equilibria

:::
for

:::::::
certain

::::::
orbital

::::::::::::::
configurations

:::::
when

::::::
using

:::
the

:::::
same

::::::::::
vegetation

::::::
model,

:::
but

::
a
::::::::
different

:::::::::::::::::
atmosphere-ocean

:::::::
system.

::
If

:::::
such

::::::::
multiple

:::::
states

:::::
were

:::
to

::::::::
co-exist,

::::
then

:::
the

:::::::::
simulator

::::::
output

::::::
would

:::::
need

:::
to

:::
be

:::::::::
emulated

:::::
using

::
a
::::::::::::
multi-modal

::::::::
process,

::::::
rather

::::
than

::
a

::::::::::
(uni-modal)

:::::::::
Gaussian

::::::::
process

:::
as

:::::
used

:::::
here.

::::
Our

::::::
initial

:::::::::
intention

::::
was

:::
to

:::::
build

:::::
two

:::::::
distinct

:::::::::
emulators,

::::
one

::::::
using

:::
the

::::::
warm

:::::
orbit

:::
as

::::::
initial

:::::::::::
conditions,

::::
and

::::
one

::::::
using

:::
the

:::::
cold

:::::
orbit.

:::
In

:::::::
practice,

::::
the

:::
two

:::::::::
emulators

::::::
ended

:::
up

:::::
being

:::::::::
redundant

:::::
(sect.

:::::
3.1),

:::
and

::::
thus

::
a

::::
third

::
of

::::
our

:::::::::::::
computational

::::::
budget

::::
was

::::
thus

::::::
spent

:::
on

::::::::::
replicating

::::::::::
essentially

::::::::
identical

:::::
runs.

:::::::::
However,

::::
this

::::::
could

:::
not

:::::
have

::::
been

::::::
easily

::::::::
foreseen,

::::
and

:::
we

::::
feel

::::
was

::::::
worth

:::
the

::::
cost

:::
to

:::::
avoid

:::
the

::::
risk

:::
of

:::::::
missing

:::
the

:::::::::
existence

::
of

::::::::
multiple

::::::::::::
steady-states.

:
The third ensemble uses the same initial conditions as the firstset,

but uses ,
:::
but

:::::::::
considers

:
the original “ECBILT" surface scheme with fixed vegetation (Opsteegh
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et al., 1998) and not the VECODE model.
::
We

::::::
chose

::
to

:::::
build

:
a
:::::
third

:::::::::::
independent

::::::::
emulator

::
in

::::
this

::::
case,

::::
but

:::
we

::::
note

::::
that

:::::::::::
“multi-level

::::::::::
emulation"

:::::::::::
approaches,

::::::
which

::::::::
associate

:::::::
similar

:::
but

::::::::
different

:::::::::
simulators

:::::::::::::::::::::::::::::::
(Cumming and Goldstein, 2009) ,

:::::
could

:::::::::::
potentially

:::::
have

:::::::::
increased

::::
our

:::::::::
predictive

::::::::
accuracy

:::
by

::::::::
allowing

:::
us

::
to

::::::
make

:::::
better

::::
use

:::
of

:::
the

:::::::
limited

:::::::::::::
computational

:::::::::
resource.

::::
We

:::::
leave

:::
this

::::::
option

:::
as

:
a
::::::::
possible

:::::::
subject

:::
for

::::::
further

:::::::::::::
investigation.

2.3 Global variance measures

2.3.1 Definition

To investigate the effect of each component of the astronomical forcing on the simulator outputs,
it is necessary to partition the

::
In

:::
the

:::::::
present

:::::::::::
application

:::
the

::::::
inputs

::::
(the

::::::::::::
astronomical

::::::::
forcing)

:::
are

:::::::
known,

::::
and

:::
we

:::::
want

::
to

::::::::
estimate

:::
the

:::::::::
simulator

:::::::
output

::::::::
variance

:::::::
induced

:::
by

::::::::
separate

::::::
and/or

:::::::::
combined

:::::::::
variations

:::
of

:::
the

:::::::::
different

:::::::
forcing

:::::::
factors.

:::::::
Recall

::::
that

:::
we

::::::::
defined

:::::
f(x)

:::
to

:::
be

:::
the

::::::::
simulator

::::::::
response

:::
at input vector xinto components. Let xi denote a subset of the components

in x (with Xi the space of possible values of xi), and let x-i be the remaining components
(taking values in X−i),::::::

which
::::::::
contains

::::
the

::::::
values

::
of

:::
the

::::::
three

:::::::::::
astronomical

:::::::
forcing

::::::
terms. Let

ρ(x) be the time-wise occupation density of the input space during the Pleistocene, which can
be estimated from standard astronomical solutions (Berger, 1978b; Laskar et al., 2004). Using
this probability distribution for

:::
The

:::::
total

::::::::
variance

::
of

:::
the

::::::
output

::::::::::
associated

:::::
with

:::
the

:::::::::
variations

::
of

::::::
factors

:::::
may

::::
then

:::
be

:::::::::
expressed

::
as

:

V := Var(f(x)),
:::::::::::::::

(1)

:::::
where

::::
the

::::::::
variance

:::::::
operator

:::::::
means

:::
that

::::
we

:::
are

::::::::
sampling

:::::::::
(varying)

:
x

::::::::
following

:::
the

:::::::::::
distribution

:::::
ρ(x).

:::
As

:::::
f(x)

::
is

::
a

::::::
vector,

:::
V

::
is

:
a
::::::
matrix

:::::
with

::::::::
elements

::::::
giving

:::::::::::
covariances

::::::::
between

::::
any

::::::
output

::::
pair.

::::::::
Suppose

:::
we

:::
are

::::
now

:::::::::
interested

::
in

:::
the

::::::::
variance

:::
of

:::
the

::::::::
simulator

:::::::
output

::::::
caused

:::
by

:::
the

::::::::
variation

::
of

:
a
::::::
subset

:::
of

:::
the

:::::
input

:::::::
factors

:::::
only.

:::
Let

:::
xi ::::::

denote
::
a

::::::
subset

::
of

:::
the

:::::::::::
components

:::
in

::
x,

::::
and

:::
let

:::
x-i

::
be

:::
the

::::::::::
remaining

::::::::::::
components.

::::
For

::::::::
example,

::
if
::
i
::
is

:::::::::
obliquity,

::-i::::
will

:::
be

:::
the

:::::::
indices

::::::::::
associated

::::
with

:::::::::::
eccentricity

:::
and

::::::::::
precesion.
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:::
We

::::::
define

:::
the

:::::::::
following

::::::::::
quantities:

::::
The

:::::
main

:::::
effect, we can ask what is the average state of

the system given a value for a particular component of the astronomical forcing. That is , we
want to find the main effect

::::::
η(xi),

::
is

:::
the

::::::::
expected

::::::
output

:::::::::::
conditional

::
on

::::
the

:::::
value of xi, defined

as

η(xi) :=

∫
X-i

f(x)ρ(x-i|xi)dx-i,

where ρ(x-i|xi) is the probability density function of forcing terms
:::
i.e.,

:::::::::::::::::::
η(xi) = E[f(x)|xi].

:::
The

:::::
main

::::::
effect

::::::::
variance

::
is

:::
the

::::::::
variance

::
of

:::
the

:::::
main

::::::
effect

::::
with

:::::::
respect

::
to

:::
xi:::::::::::::::::

Vi = Var[η(xi)].

:::
On

:::
the

:::::
other

::::::
hand,

:::
the

:::::::
output

::::::::
variance

:::::::::
associated

:::::
with

::::::
factors

:::
xi::::::::

varying
:::::
while

:::
the

:::::::
factors

x-i given
::
are

::::::
fixed,

::
is

::::::::
denoted

::::::::::::::
Var(f(x)|x-i).

:::::
This

::
is

::
a
::::::::
function

::
of

:
the value of xi.:::

the
:::::
fixed

::::::
factors

::::
x-i.::

If
:::
we

:::::::
further

:::::::
average

::::
this

::::::::
variance

::::
over

::::::::
possible

::::::
values

:::
of

::::
x-i,::::

that
::
is,

:::
we

:::::
take

:::
the

::::::::::
expectation

:::
of

:::
this

::::::::
quantity

:::::
with

::::::
respect

:::
to

::
to

::::
x-i,:::

we
::::::
obtain

:::
the

:::::
total

::::::::
variance

::::::::::
associated

::::
with

:::::
factor

:::
xi,::::::::

denoted
:::
Ti:

Ti := E
::::::

[Var(f(x)|x-i)
:::::::::::::

]. Similarly, T-i = E[Var(f(x)|xi)].
::::::::::::::::::::::::::::::::

(2)

In order to relate output variances to input variances, we are interested in quantities such as
V i := Vari(η(xi)) where the variance is with respect to xi (see interpretation in section ??).
However, because

:::
The

::::
law

::
of

:::::
total

::::::::
variance

:::::::
implies

:::::::::::::
Vi := V −T-i,:::

so
::::
that

:::
we

:::
can

::::
see

::::
that

:::
the

::::
main

::::::
effect

::::::::
variance

::::
may

:::
be

::::::::::
interpreted

:::
as

:::
the

::::::::
expected

::::
loss

:::
of

::::::
output

::::::::
variance

::::::::
resulting

:::::
from

:::::
fixing

::::::::::
(knowing)

:::
the

::::::
value

::
of

:::
xi.::::

The
::::::::::::

standardised
::::::::
quantity

:::::
Vi/V:::

is
::::::::::
commonly

:::::::
referred

:::
to

::
as

:::
the

:::::
main

:::::
effect

::::::
index,

::::
and

::::::
Ti/V ,

:::
the

::::
total

:::::::::
sensitivity

:::::
index

::::
(cf.

::::::::::::::::::::::::::::
Homma and Saltelli (1996) and

:::::::::::::::::::
Saltelli et al. (2004) ).

:

::
To

::::::::
estimate

:::::
these

:::::::::
sensitivity

::::::::
indices,

:::
we

::::::
extend

:::
the

::::::::::
framework

::::::::::
established

:::
by

::::::::::::::::::::::::::::
Oakley and O’Hagan (2004) for

:::
one

::::::::::::
dimensional

:::::
scalar

:::::::::
simulator

:::::::
outputs

:::
to

::::::::::::::::
multi-dimensional

:::::::
vector

:::::::
outputs.

::::
Let

:::
X ,

:::
Xi,::::

and

:::
X-i:::

be
:::
the

::::::::
domains

:::
of

:::
the

:::::
input

:::::::
factors

::
x,

:::
xi::::

and
::::
x-i,::::::::::::

respectively.
::::
The

:::::
total

::::::::
variance

:::
can

:::
be
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::::::::
explicitly

:::::::
written

::
as

:

V =

∫
X

f(x)f(x)′ρ(x)dx−
∫∫
X×X

f(x)f(x?)′ ρ(x)ρ(x?)dxdx?.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::
The

:::::
main

::::::
effect

::
is

:::::::::
computed

::
as

::::::::
follows:

:

η(xi) =

∫
X-i

f(x)ρ(x-i|xi)dx-i,

::::::::::::::::::::::::::::

(4)

:::::
where

:::::::::
ρ(x-i|xi):::

is
:::
the

:::::::::::
conditional

:::::::
density

::
of

::::
x-i:::::

given
::::
xi.::::::::

Because
:
our knowledge of f(x)

is limited to the ensemble of model runs, we are uncertain about the value of η(xi) for every
value

::
all

::::::
values

:
of xi. Suppose, however, that we already have an emulator which,

::::
The

::::::::
approach

::::::::
described

:::
in

::::::::::::::::::::::::::::
Oakley and O’Hagan (2004) is

::
to

:::::
build

:::
an

:::::::::
emulator

::
of

::::::
f(x)

::::
that

:::
can

:::::::
predict

:::
its

:::::
value for any input value

::::::::::::
configuration

:
x, provides an estimate of the model output f in the

form of a mean .
:::::
They

::::
use

:
a
:::::::::
Gaussian

:::::::
process

:::::
(GP)

::::::
model

:::
for

:::
the

:::::::::
emulator,

::::
with

:::::
mean

::::::::
function

m(x) , and a covariance between two inputs Σ(x,x?). Then
:::
and

::::::::::
covariance

::::::::
function

::::::::
between

:::::
f(x)

::::
and

:::::::
f(x∗)

::::::
which

:::
we

:::::
will

::::::
denote

:::
by

:::::::::::
Σ(x,x∗).

::::::::
Because

:::
the

:::::::::
emulator

::
is
::

a
:::::::::
Gaussian

:::::::
process, the main effect is

:::::
η(xi),

::::::
which

:::
is

:
a
::::::
linear

:::::::::::::
transformation

:::
of

::::::
f(x),

::
is also a Gaussian

process,
:
and has mean and variance as follows:

::::::::
functions

M i(xi) =

∫
X-i

m(x)ρ(x-i|xi)dx-i, and (5)

Si(xi,x
?
i ) =

∫∫
X-i×X-i

Σ(x,x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-i. (6)

It follows that (Oakley and O’Hagan, 2004) :

Ef (Vi) =

∫
Xi

[
M i(xi)M

′
i(xi) +Si(xi,xi)

]
ρi(xi)dxi−C,Ef (V )=M2

tot+Stot−, (7)
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where Ef denotes expectation and variance with respect to the emulator, and

ρi(xi) =

∫
X-i

ρ(xi|x-i)dxi, (8)

M tot =

∫
X
:
m(x)ρ(x)dx, (9)

Stot=

∫
Σ(,)ρ()d,C =

∫
X
:
m(x)m(x)′ρ(x)dx+

∫∫
X×X
::::

Σ(x,x′)ρ(x)ρ(x′)dxdx′.(10)

The total sensitivity variances T i := V −V -i (see again interpretation in section ??) are
estimated as EfTi := EfV −EfV -i, where the index −i represents the factors complementary
to the i. The main effect η being a vector of p components (p, the number of simulator outputs),
the quantity Var(η) introduced above isa p× p matrix, and so will be

:::
The

:::::::::::
expectation

:::
of the

quantities V,T etc. Equations -are consistent with this, if MM ′ is interpreted as an outer
product of M with itself, and if the multivariate emulator indeed provides covariance matrices
Σ(x,x?) that are also p× p, for any couple of inputs (x,x?). The diagonal elements of these
matrices provide sensitivities associated with each output considered independently. This is
what we refer in the following as the grid-point-wise approach.

::::
total

::::::::
variance

::
V

::
of

:::
the

:::::::::
simulator

::::::
output

::
is:

:

Ef (
:::

V
:

) =
:

[
M2

tot +Stot

]
−C,with Stot =

∫
::::::::::::::::::::::::::::::::

Σ
:

(x,x)ρ(x)dx.
::::::::::::

(11)

(12)

2.3.1 Interpretation in the case of known inputs

:::::
From

::::
now

:::
on,

::
it
::::
will

:::
be

:::::::
implicit

::::
that

::::
the

:::
V ,

::
Vi::::

and
::
Ti::::

are
:::::::::
estimated

::::
with

::::
the

::::::::
emulator

::::
and

:::
the

::::::
symbol

::::
Ef :::

will
:::
be

::::::::
dropped.

::::::::::::
Specifically,

:::
we

::::
refer

::
to

::::::
T{e$}:::

as
:::
the

::::
total

::::::::
variance

::::::::::
associated

::::
with

::::::::::
precession,

::::
and

:::
Tε,

::::
that

:::::::::
associated

:::::
with

::::::::
obliquity.

:
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The measures Vi and Ti are essentially those introduced by Homma and Saltelli (1996) ,
further illustrated in Saltelli et al. (2004) , chap. 1, and adapted to emulator theory by Oakley and O’Hagan (2004) ,
except for the fact that these authors define scaled indices: Vi/V is known as the main effect
index associated with i, and Ti/V , the corresponding total effect index. The main effect index
quantifies the expected reduction in the variance of the output f(x) if we were to learn xi, and
the total effect index quantifies the expected reduction in the variance of the output f(x) if we
were to learn everything but xi.

In the present application the inputs (the astronomical forcing) are known, and we want to
estimate the simulator output variance induced by separate and/or combined variations of the
different components of this forcing. This particular context requires some reinterpretation of

:::::::
Finally,

:::
we

:::::
refer

::
to

:
the sensitivity measures: Vi is the output variance lost by fixing

:::::::
quantity

::::::::::::::::::::::::
V −T{e$}−Tε = Tε−Tε ::

as
::::
the

:::::::
synergy

::::
term.

::::::
More

:::::::::
generally,

:::::::
Ti−Vi::

is
::
a
::::::::
measure

:::
of

::::
how

:::::
much

:::
the

::::::
factor

:
i , all other forcings varying. Ti is the output variance induced by varying

i, all other forcings fixed. Vi and Ti differ if there are non-linear interactions between the
different factors

:
is
::::::::
involved

:::
in

::::::::::
interactions

:::::
with

::::
any

:::::
other

:::::
input

::::::::
variable.

::::
The

:::::
word

:::::::::
“synergy"

::
is

:::::::::
commonly

:::::
used

::
in

::::
the

:::::::
climate

::::::::
literature

:::
to

:::::::
express

:::
the

:::::::::
difference

::::::::
between

::::
the

::::::
model

::::::::
response

::
to

::::::::
different

:::::::
factors

::::::
varied

:::::::::
together,

::::
and

::::
the

::::
sum

:::
of

::::
the

:::::::::
responses

:::
to

:::::::
factors

::::::::::
considered

:::
or

:::::
varied

::::::::::::
individually.

:::::::
Unlike

::::
the

::::::
global

::::::::::
sensitivity

:::::::
indices

:::::::::
discussed

:::::
here, or when the inputs

are correlated. Only the first case is potentially relevant here. Concretely, we note: Te$ := T1,2

is the variance induced by climate precession (esin$
:::::::
synergy

:::::
terms

:::
are

::::::::::
classically

::::::::
estimated

:::
on

:::
the

:::::
basis

::
of

::
a

::::::::
reference

:::::::::::
experiment,

:
and ecos$ taken together), Tε is the variance induced by

obliquity, V is the variance induced by all astronomical forcing components, and V −Te$ −Tε
is the second-order term called here the synergy between climatic precession and obliquity.

In the following, the expectation operator Ef in front of V
:::::::::
comparing

::::::::::::
one-at-a-time

::::::::
changes

::::
with

:::::::::
combined

::::::::
changes

:::
in

:::
the

:::::::::
different

:::::::
factors,

:::::::::
following

::
a
:::::::
method

::::::
called

::::::
factor

::::::::::
separation

:::::::
analysis

::::::::::::::::::::::::::::::::::::::::::::::::::
(Stein and Alpert, 1993; Alpert and Sholokhman, 2011) .

:::::
See,

:::
e.g., Ti etc.will be dropped

but we keep in mind that these quantities are estimated with the emulator.In particular, the
quantity Stot may be used as an informal measure of the amount of variance that is being
introduced by using the emulator as a surrogate for the actual simulator : we expect this quantity
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to remain small compared to the quantities of interest Ti and V .
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Crucifix and Loutre, 2002; Ganopolski et al., 1998; Claussen*, 2009; Braconnot et al., 1999; Berger, 1999; Henrot et al., 2010; Wohlfahrt et al., 2004) .

2.4 Emulator

2.4.1 Motivation

A pragmatic solution could be

2.4.1
::::::::::
Motivation

::
As

::::
the

:::::::
outputs

:::
of

:::
our

:::::::::
simulator

:::
are

:::::::::
spatially

::::::::
resolved

:::::::
climate

::::::::::
quantities,

:::
we

:::::
need

::
to

:::::
build

:::
an

::::::::
emulator

:::::::
capable

:::
of

::::::::::
modelling

:::::::::::
multivariate

::::::::
outputs.

::
A

:::::::
simple

::::::::::
pragmatic

:::::::
solution

:::
is

:
to train

independent emulators for each grid point. This is the strategy followed
:
,
::::::
which

::
is

:::::
done

:
by

Lee et al. (2011). There are, however, several other possibilities for multivariate emulation
(e.g. Rougier, 2008) .

:::::::::::::::::::::::
(see, e.g., Rougier, 2008) .

::::
The

:::::
main

:::::::::
challenge

::
is
::::::::
defining

::
a
::::::::::
covariance

:::::::
function

:::
for

::::::::::
generating

:::
the

::::::::::
covariance

::::::
matrix

::::::::::
Σ(x,x∗),

::
in

:::::
order

::
to

:::::::::
produces

:
a
:::::
valid

::::::::::
covariance

:::::::
function

:::
for

:::
the

:::::::::
Gaussian

:::::::
process.

::::
See

:::::::::::::::::::::
Fricker et al. (2013) for

::::::::::
discussion.

:
Here, we propose the

principal component (PC) emulator (Higdon et al., 2008; Wilkinson, 2010) as a cost-effective
and statistically reasonable alternative to point-wise emulation. The potential advantages of this
choice are commented on in section 2.6. The derivation of sensitivity indices with PC emula-
tion is largely based on published material, which we elaborate on here in order to introduce
the notation leading to the final equation (19). To our knowledge, the latter

:::
this

:
has not been

given elsewhere. The reader mainly interested in the emulator performance and climatological
analysis may immediately jump to section 3.

2.4.2 Principal components decomposition

Let Y denote the matrix in which each column represents the output of one experiment, i.e.,
Y = [y(x(1)), . . . ,y(x(n))], and

::::::::::::::::::::::::
Y = [f(x(1)), . . . ,f(x(n))],

::::::
where

:
x(j) is the input of ex-

periment j. For example, if we want to emulate surface annual mean temperature, y
::::::
annual
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:::::
mean

:::::::
surface

:::::::::::
temperature,

::
f
:
is a vector of p= 2048 components (the number of grid points).

Denote Ȳ, the vector
::
the

::::::::
p-vector

:
of row averages of Y . The

::
by

::::
Ȳ.

::::
We

::::
now

::::::
define

::::
the

:::::::
centered

:::::::
matrix

:::::::::::::::
Y? = Y− Ȳ1′p,

:::::
with

:::
1p::

a
::::::
vector

:::
of

::::::
length

::
p
:::::
with

:::
all

:::::::::::
components

::::::
equal

::
to

::
1,

:::
and

::::::::
consider

:::
the

:
singular value decomposition (SVD) of the centered matrix Y? = Y− Ȳ is

Y? = UDV′, where D is diagonal
:
a

::::::::
diagonal

::::::
matrix, and U and V are square and orthonormal

:::::::::::
orthonormal

::::::::
matrices. The columns of U represent the basis vectors, {uk}, and the projection

coefficients are given by VD. For the jth experiment, the coefficient for the kth basis vector
is ak(x(j)) = Vj,kDkk. Wilkinson (2010) keeps the first n′ eigenvectors

:̀:::::::::::
eigenvectors

:::::
only

:
(ordered by decreasing eigenvaluesonly). This is sometimes known as ‘hard-thresholding regu-
larization’ (Silverman, 1996), and results in a reduced-order model:

yf
:

(x)≈
∑
k=1

n′`ak(x)uk.

Thus, one assumption of our emulator is that for any input x, the output is expected to
::::::::
emulator

::::::
output

:::::::::
prediction

::::
will lie in the space spanned by the {u1 . . .un′}.

::::::::::
{u1 . . .u`}.::::

The
:::::
error

:::::::::
associated

::::
with

::::::::::::::::
hard-thresholding

::
is

:::::::::
accounted

::::
for

::
in

:::
the

::::::::::
covariance

::
of

::::
the

::::::::
estimator

::::
(see

:::::::
section

:::::
2.5).

2.4.3 Emulation of PC scores

We then need to predict the ak(x) based on the experiment output ak(xi). This is done by
considering n′

:̀
Gaussian process (GP) models (Rasmussen and Williams, 2005), following the

Bayesian treatment given by Oakley and O’Hagan (2002) , which has become a standard for
climate model emulation. We suppose the prior mean of each GP ish(x)h

::::::::
h(x)′βk, whereh(x)

is a vector of q a priori known regression functions and beta
::
βk:is the vector of corresponding

regression coefficients.
::::
This

::::
prior

::::::
mean

::
is

::::::::::
conditional

:::
on

::::::::::
parameters

::::
βk,

::::::
which

::::
will

::::
then

:::::
need

::
to

:::
be

:::::::::
estimated.

:
For the present application, h(x) is simply defined as (1,x1,x2,x3)′ (linear

regressors), such
::
so

:
that h(x)′βk = 1 +βk,1x1 +βk,2x2 +βk,3x3.

Define, then :
::
We

:::::
then

::::::
define

– H: the design matrix which has row i equal to the regressors h(xi)
′
::::::
h(xi).
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– ck(x,x?)
::::::::::::::::::::::::::
yk = (ak(x1), . . . ,ak(xn))′,

:::
the

::::::
vector

::
of

:::
PC

::::::
scores

::::
we

::::
wish

::
to

::::::::
emulate.

:

–
::::::::::::::::::::::::::::
ck(x,x?) = cor(ak(x),ak(x∗)): the correlation function defined between any two inputs,

:::
for

:::::
ak(·).

::::
This

::
is
:
typically a monotone decreasing function of the distance between the two

points. Let
:::
We

:::
let Ak be the Gram matrix

:::::
n×n

::::::
Gram

::::::
matrix,

:
with Ak[i, j] = ck(xi,xj),

and yk = (ak(x1), . . . ,ak(xn))′.

Under the assumed GPmodel for the PC scores, ak::
If

::::
each

:::::
ak(·)

:::
is

::::::::
modelled

:::
as

:
a
::::

GP,
::::
then

:
we

have a Gaussian prior predictive distribution for y , with yk ∼N(Hβk,σ
2Ak)

::::::::::
conditional

:::
on

:::
βk :::

and
::::
σk,

::::
with

::::::::::::::::::::
yk ∼N(Hβk,σ

2
kAk).

The interpretation of this model is that the simulator response is the sum of a mean response
function, expressed as the linear combination of regressions, and a stochastic component (a
zero-mean Gaussian process) that absorbs deviations from the mean response. Assuming the
vague prior (β,σ2)∝ σ−2 proposed by Berger et al. (2001) and used by, e.g., Oakley and O’Hagan (2002) and
Bastos and O’Hagan (2009) , the

::
In

:::::
order

:::
to

::::::::
estimate

:::
σ2
k ::::

and
::::
βk,

:::
we

:::::::
assume

::
a

:::::::::
conjugate

:::::::::::::::
non-informative

:::::
prior

:::::::::::
distribution,

:::
i.e.,

::::::::::::::::
π(βk,σ

2
k)∝ σ−2

k :::::::::::::::::::
(Berger et al., 2001) .

::::
This

::::::
allows

:::
σ2
k::::

and
:::
βk::

to
:::
be

:::::::::::
marginalised

::::
out

::
of

:::
the

::::::::
analysis,

::::::::
resulting

::
in

::
a posterior distribution of the simulator output follows

:::
that

::
is a Student−t

distribution with n− q degrees of freedom, with mean and variance
::::::::
functions

mk(x) = h(x)′β̂k + tk(x)′ek, and (13)

Σk(x,x?) = σ̂2
k[ck(x,x?)− tk(x)′A−1

k tk(x?) +pk(x)′(H ′A−1
k H)−1pk(x?)], (14)

respectively, with
:::::
where

:

σ̂2
k =

1

n− q− 2
(e′kA

−1
k ek), β̂k = (H ′A−1

k H)−1H ′A−1
k yk,

tk(x)j = ck(x,xj), pk(x)′ = h(x)′− tk(x)′A−1
k H , and ek =A−1

k (yk−Hβ̂k).
We primarily used

:::
use the squared exponential covariance function for c in this work, with a

nugget term ,
:::
for

::::
each

:::
ck :::

(as discussed at length in Andrianakis and Challenor (2012):
:
):
:

ck(xi,xj) = exp[−(x′iΛ
−2
k xj)] + νkIi=j , (15)
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where Λ
:::
Λk:

is a scaling matrix chosen to be diagonal,
::::

and
:::
νk::

a
:::::::::
“nugget"

::::::
which

:::
we

:::::::
discuss

::::::
shortly. The diagonal elements

::
of

:::
Λk are commonly called the length-scales. A popular alternative

is the Matérn covariance function (Stein, 1999) , though it was not seen here to yield substantial
improvement.

:::
The

:::::::::::
parameters

:::
Λk ::::

and
::
νk::::

are
::::
then

::::::
found

:::
by

::::::::::
optimising

:
a
::::::::::

penalized
:::::::::
likelihood

::::::
L

(pen)
k ::

of
:::
the

:::::::::
Gaussian

:::::::
process

::::::::::
associated

::::
with

::::
the

::::::::
principal

::::::::::
component

:::
k,

::
as

::
a

::::::::
function

::
of

:::
Λk

:::
and

:::
νk.

::::
The

::::::::::
expression

:::
of

:::
Lk ::

is
:::::
given

::
in

::::::::::::::::::::::::::::::::
Andrianakis and Challenor (2012) :

logLk(νk,Λk)
::::::::::::

=−1
2(log(|Ak||H ′A−1

k H|) + (n− q) log(σ̂2
k),

::::::::::::::::::::::::::::::::::::::::

(16)

logL
(pen)
k (νk,Λk)

:::::::::::::::
= logLk(νk,Λk)− 2ν2

k

(yk−Hβ̂k)′A−2
k (yk−Hβ̂k)

::::::::::::::::::::::::::
(yk−Hβ̂k)′(yk−Hβ̂k)
::::::::::::::::::::::

.(17)
::::
The

:::
role

:::
of

:::
the

:::::::
penalty

:
is
:::
to

::::::::
guarantee

::::::
smaller

:::::::::
Gaussian

:::::::
process

:::::::::
variances

::::
than

::::::
would

:::
be

::::::::
obtained

:::
by

::::::::::::
least-squares

::::::::::
regression.

The nugget term, νkIi=j , was originally introduced to account for measurement errors in
geospatial data analysis (Cressie, 1993). In emulators , it

::
of

::::::::::::
deterministic

::::::::
systems,

:::
the

:::::::
nugget

may also be introduced and justified , either
:::::::
justified

:
as a regularisation ansatz to avoid poor ma-

trix conditioning (Pepelychev, 2010) ,
::
or as a way to account for non-explicitly specified inputs

(in the present case: initial conditions, sampling time and length), or
:::
the

::::::::::::::::
mis-specification

::
in

:::
the

::::::::::
correlation

::::::::
function

::::::::::::::::::::::::
(Gramacy and Lee, 2012) .

:::
In

:::::::
climate

::::::
model

::::::::::::
applications,

:::
the

:::::::
nugget

::::
may

::::
also

:::
be

:::::::
justified

:
as a way to account for the mis-specification in the correlation function

(Gramacy and Lee, 2012) .
::::::::
“internal

:::::::::::
variability".

:::::::
Indeed,

:::
the

:::::::
chaotic

:::::::::
dynamics

::
of

:::
the

:::::::::
simulator

:::
are

::::
such

::::
that

:
a
:::::::::
particular

:::::::
climate

:::::::
average

::::
over

::
a

:::::
given

::::
time

::::::::
window,

:::
can

:::
be

:::::::
viewed

::
as

:
a
:::::::::
stochastic

::::::::
quantity,

::::
even

:::::::
though

:::
the

::::::::
simulator

::
is
:::::::::::::
deterministic.

::
In

:::
the

:::::::
climate

:::::::::
modelling

:::::::::
parlance,

:::
the

:::::
effect

:
is
::::::::

referred
::
to

:::
as

::::::::::
uncertainty

::::::::::
associated

:::::
with

:::
the

:::::::
internal

:::::::::
simulator

::::::::::
variability.

::::
For

:::::::::
example,

::
in

:::::::::::::::::::::::
Araya-Melo et al. (2015) ,

:::
we

::::::
found

::::
that

:::
our

::::::::
estimate

::
of

::::
the

::::::
nugget

::::::::
variance

::
is
::::::::::
consistent

::::
with

:::
the

::::::::::
assumption

:::::
that

::::
this

::::
term

::::::::::
represents

::::
the

::::::::::
uncertainty

::::
due

:::
to

:::::::::
simulator

::::::::::
variability.

:::::
This

::
is

::::
also

:::
the

::::::::::::
interpretation

::::::::
adopted

::
by

::::::::::::::::::::::::::::
Williamson et al. (2014) (both

::::::
studies

::::
use

:::
the

:::::::
climate

::::::
model

:::::::::
HadCM3).

:::
In

:::
the

:::::::
present

:::::::::::
application,

:::
we

::::
use

:::::
rather

:::::
long

:::::::
climate

::::::::
averages

:::::
(500

:
years

:
)
::::
and

:::
we

:::::::::
anticipate

::::
that

:::::::
internal

::::::::::
variability

::::
will

:::
be

:::
of

:::
the

:::::
same

::::::
order

:::
as

:::
the

:::::
error

::::::::::
associated

:::::
with

:::
the
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:::::::::
truncation

:::
of

:::
the

:::::::::
principal

::::::::::::
components.

::
It

::::
may

:::::
thus

:::
not

:::
be

:::::::::::
appropriate

::
to

:::::::::
interpret

:::
νk ::

as
:::
an

::::::::
indicator

::
of

:::::::
internal

::::::::::
variability,

::::
and

:::
we

:::::::::
therefore

:::::
chose

:::
not

:::
to

::
do

:::
so.

:

There is no universal recommendation for choosing Λk and νk, and an analytical treatment of
priors and posteriors is intractable. Here, we chose to maximise a Gaussian process penalized
likelihood Lk(Λk,νk), the expression of which is given in Andrianakis and Challenor (2012) .
More precisely

::::::
Finally, two options are considered

::::
will

::
be

::::::::::
considered

:::
to

::::::::
estimate

:::
the

::::::::
different

:::
Λk :::

and
:::
νk::::::::::

associated
::::
with

:::
the

::::::::
different

:::::::::
principal

:::::::::::
components: (1) maximise Lk independently

for each k, or (2) use the same parameters for all k, i.e., Λk = L
:::::::
Λk = Λ and νk = ν and optimise∑n′

k=1Lk:::::::::

∑`
k=1Lk. Although option (2) does not maximise the likelihood of the emulator taken

as a whole, it presents computational benefits in the context of global sensitivity analysis as we
show next.

::::::::::
Whichever

::::::
option

::
is
::::::
used,

:::
the

:::
Λk::::

and
:::
νk::::

are,
:::::
once

:::::::
chosen,

::::::::::
considered

:::
as

:::::::
known.

::
In

:::::::::
particular,

::::
the

::::::
means

::::
and

:::::::::
variances

:::::
given

::
in

::::::::::
equations (13)

:::
and (14)

::
are

:::::::::::
conditional

:::
on

:::
the

::::::
values

::
of

:::::
these

:::::::::::
parameters.

2.5 Recombination of PC scores

The posterior
::::::::
emulator

::::::::
posterior

:::::::::::
distribution

:::
for

::::::::::
predictions of LOVECLIM’s outputs f(x)then

follow
:
,
::::
then

:::::::
follows a distribution with mean and co-variances given by :

::::::::::
covariances

:::::::::
functions

:::::
given

:::
by

m(x) =
∑
k=1

n′`mk(x)uk (18)

Σ(x,x?) =
∑
k=1

n′`Σk(x,x?)uku
′
k︸ ︷︷ ︸

Σ(gp)

+
∑

k=n′+1k=`+1
:::::

nD2
kk

n
uku

′
k︸ ︷︷ ︸

Σ(pc)

,respectively.. (19)

The covariance matrix of the emulator for LOVECLIM is thus of dimension p× p and pro-
vides information on the joint uncertainty of any two simulator outputs, if the product uku

′
k is

interpreted as an outer-product.
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Let us now derive the sensitivity indices . If the Gaussian process parameters ν and Λ are
independent of the principal component k, then, similar to Oakley and O’Hagan (2002) , one
may define

Ai =

∫
Xi

∫∫
X-i×X-i

h(x)h(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

Bi =

∫
Xi

∫∫
X-i×X-i

t(x)h(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

Ci =

∫
Xi

∫∫
X-i×X-i

t(x)t(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

Di =

∫
Xi

∫∫
X-i×X-i

c(x,x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

Ei =

∫
Xi

∫∫
X-i×X-i

p(x)′(H ′A−1H)−1p(x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi.

such that

Vi =
n′∑
k=1

n′∑
k?=1

(
β′kAiβk? +β′kBiek? + e′kBiβk? + e′kCiek?

)
uku

′
k?+

n′∑
k=1

σ̂k(Di− tr(A−1
k Ci) + Ei)uku

′
k−C,
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where the formula for C involves quantities A, B etc. similar to the above but where X−i
is the whole domain and there is no integral over Xi.::::::::

Variance
:::::::
indices

:::::
may

::::
now

:::
be

::::::::
obtained

::
by

:::::::::
plugging

:::
mk::::

and
::::
Σk ::::::::::

(equations (13)
:::
and

:
(14)

:
)
::::
into

:::::::::
equations

:
(18)

:::
and

:
(19),

:::
to

::::::
obtain

:::
m

:::
and

:::
Σ,

::::
and

::::
then

::::::
using

:::::
these

:::::::::::
expressions

:::
in (7).

:::::::::
Although

::::::
these

::::::::::
operations

:::
can

:::
be

::::::::::
performed

:::::::::::
numerically,

:::::
there

::
is

:
a
:::::::::::::
computational

:::::::::
advantage

::
in

::::::::::
processing

:::
the

:::::::::
equations

::::::::::::
symbolically.

:::::::
Details

:::
are

:::::
given

::
in

:::::::::::
Appendices

::
B

::::
and

::
C.

:

If the emulators for the different principal components use different Gaussian process parameters,
then the integrals Ai etc. need be to computed for all possible combinations k,k?, that is , for
10 PCs, an increase in computing cost by a factor of 45.

2.6 Short discussion of possible advantages over the independent emulator approaches
:::::::::
approach

Now that the notation and relevant concepts have been introduced, the potential advantages
and drawbacks of the PC emulator and the independent emulator approaches may briefly be
summarised as follows:

– The PC emulation is based on the calibration of n′
:̀

Gaussian process models per output
variable

::::
field

::::::::::::
(temperature,

::::::::::::
precipitation,

::::::
GDD). We use n′ = 10

::::::
`= 10 (justified below).

We noted
::::
note

:
that computational cost may be saved by using the same length-scales

for all Gaussian processes, though in practice computational costs remain affordable even
when using independently optimised length scales

:::::::::::
length-scales. Consequently, the impact

of the same length-scale assumption may be assessed more easily than it would be if we
used 2048 independent emulators (i.e., the number of grid points) for each output.

– The PC emulator implicitly assumes a covariance structure across the model outputs, equal
to the covariance of the outputs of the experiment design. This may effectively reduce
the emulator posterior variance, especially if experiment outputs are noisy (e.g.: short
averages in a model with high inter-annual variability). However, this may also exacerbate
the dependency of the analysis on the specific choice of experiment design

::
As

::::
the

:::
PC
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:::::::::
emulation

:::::::::
approach

:::::::
requires

::::::
fewer

::::::::::
emulators,

::::::
more

::::
time

::::
can

:::
be

:::::
spent

::::
for

:::::::::::
individually

:::::::::
validating

::::
each

:::
of

:::::
them.

:

–
::
In

:::::
some

:::::::
regions

:::::
there

:::::
may

:::
be

::::
only

::::::
small

::::::::
variation

:::
in

:::
the

::::::::::
simulated

::::::
output

::
as

::::
the

:::::
input

::::::::::
parameters

:::::::
change.

::
If

::::::::::::
independent

:::::::::
emulators

:::
are

:::::
used

:::
for

:::::
each

::::
grid

:::::
cell,

::::::::::
estimating

:::
the

:::::::::::::::
hyper-parameters

:::
for

:::::
these

:::::
cells

::::
can

::
be

::::::::
difficult

:::::::
without

::::::::
applying

:::::
some

::::
sort

:::
of

:::::::::
parameter

:::::::::::::
regularisation,

:::
and

::::::::
besides,

:::
the

:::::::::::::
computational

:::::
effort

::
of

::::::::
building

:::
the

::::::::
emulator

::
is

:::::::::::
unnecessary

:::
(as

:::
the

::::::
output

::
is

:::::::::
constant).

:::
The

::::::
global

::::::::
principal

:::::::::::
component

::::::::
emulator

::
is

::::::::
therefore

:::::::::
preferable

::
in

:::::
these

:::::::::
situations,

::
as

:::::
these

::::::::
constant

:::::::
regions

:::
are

::::::::::::
automatically

:::::::::
accounted

:::
for

::
in

::::
the

::::::::
principal

::::::::::
component

::::::::
variance

:::::::::::::
decomposition.

– Finally, the PC emulator provides co-variance
:::::::::
covariance

:
indices between any two simula-

tor outputs. It therefore allows us to analyse the spatial structure of the simulator response
to individual and combined factors.

3 Results

3.1 Sensitivity to initial conditions

For all ensemble members but two (experiments 20 and 27), the runs with distinct initial condi-
tions converged to the same output, modulo small variations that can be attributed to sampling
variability (cf. supplementary material). Experiment 27 shows a higher-amplitude variability
pattern, but clearly oscillates around one mean value and, as we will shorty see, this mean is
correctly captured by the emulator. It is therefore kept without further discussion for all subse-
quent analyses. Experiment 20 is

::::
used

:
the lowest configuration of obliquity (22◦). This is in fact

lower than any actual obliquity that occurred during the Pleistocene (22.07◦ following Laskar
et al. (2004)). In this configuration, LOVECLIM develops a slow oscillation pattern that may be
reminiscent of Dansgaard-Oeschger oscillations: millennial transitions between a warm and a
cold North Atlantic phase, with fast warming and slow cooling (Figure 2). The phenomenon is
a known feature of LOVECLIM (Goosse et al. (2002); Loutre et al. (2014)). It can be described
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as the apparition of a cold North-Atlantic phase that is being visited stochastically and increas-
ingly frequently as obliquity decreases. This cold phase is being visited shortly once during an
entire (additional) experiment at obliquity of 22.5 ◦ (lowest 7th percentile of Pleistocene obliq-
uities). The obliquity threshold below which such events may occur is likely to depend on the
value of precession. The oscillation itself could be of physical relevance for past climate vari-
ability, but the limits of the phase space region in which the oscillation occurs are also likely
to depend on many other uncertain parameters of the model. One possible action would be to
use a sequential design strategy to delineate the region of occurrence of the phenomenon and
develop an emulator specifically aimed at characterising this oscillation.

::
In

:::::::::
particular,

:::::::
history

::::::::
matching

::::::
theory

::::::::
provides

::::::::
adequate

:::::::::
concepts

:::
and

::::::::
methods

::
to

::::
this

::::
end

:::::::::::::::::::::::
(Williamson et al., 2013) .

Given the likely sensitivity of the oscillation on model parameters, the significance of this en-
terprise for palaeoclimate interpretation is unsure. We rather

:::::::
unclear.

:::
We

:
choose to ignore the

experiment for the time being (the following diagnostics ignore experiment 20), but discuss the
possible consequences of this choice

:::::::
decision

:
in the final discussion.

::
In

:::::::::
statistical

::::::
terms,

:::
we

::::::::::::
provisionally

::::::::
condition

::::
the

:::::::
analysis

:::
on

:::
the

::::::::::
hypothesis

::::
that

:::::
these

::::::::::
oscillations

:::
do

:::
not

::::::
occur

::
in

:::
the

:::::
phase

::::::
space.

3.2 Validation and choice of PC emulator

We concentrate on three outputs
:::::
output

::::::
fields: annual precipitation, growing degree days (GDD),

and annual mean temperature. GDD is defined here as the annual sum of daily temperatures (in
Celsius) exceeding 0◦C. It is used as a calendar-independent indicator of summer intensity
and length in extra-tropical regions. Namely,

:
,
::::
and

:
the vegetation model VECODE, used in

LOVECLIM, uses GDD and annual precipitation to predict the dynamics of vegetation (Brovkin
et al., 1997). For simplicity

:
,
:
GDD is estimated here from monthly means, that is, 30 ×

:::::
times

the sum of monthly mean temperatures for which this temperature is above zero. In equatorial
and subtropical regions this information is equivalent to annual mean temperature. Furthermore,
we use the logarithm of annual precipitation rather than precipitation, as the former is closer to
being Gaussian distributed than the latter.
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The decomposition in principal components is effective, with 99% of the variance on average
over all grid points captured by the first 4 (annual temperature) to 8 principal components (Fig-
ure 3). As discussed in the methodology section, two options are considered for the estimation
of the scale lengths and nugget

:::::::::::
length-scales

::::
and

::::::
nugget

::::::::
variance

:
Λ and ν: .

:
We first attempt to

use different correlation parameters obtained by maximising the penalised likelihood for each
of principal component

::::::::
principal

:::::::::::
component

::::::::
emulator, independently of the others. It is then

observed that the Gaussian process likelihood decreases with the index of the PC (Figure 4).
This is a natural result if we think of the fact that as the index of the PC increases, its spatial
pattern becomes more noisy and dependent on idiosyncrasies of the analysis such as the specific
experiment design, experiment length and initial conditions. They are thus less informative of

:::::
about the model itself

:
, and scores are more difficult to predict with a smooth Gaussian process.

The likelihood stabilises around PC #10 to a minimum value that indicates that the calibrated
GP is not more informative than assuming independence of outputs on inputs. We therefore
use n′ = 10

::::::
`= 10. The alternative approach consists in using the same correlation parameters

for all PC
:::
PCs, in which case they are found by maximising the product of Gaussian process

likelihoods.
Our evaluation strategy is based upon the leave-one-out cross-validation approach: for each

member of the experiment design, a PC emulator is trained using the remaining design runs
(using the correlation parameters defined

:::::::::
estimated above). The means and standard deviations

of the resulting emulator are then found for the design member left out. Figure 5 shows (bars)
the number of grid points correctly predicted within the central 66th, 95th and 99th credibility

::::::::
credibile intervals. A well-calibrated emulator wouldthus get ,

:::
on

::::::::
average,

::::::::
correctly

:::::::
predict 66,

95 and 99 % of the points, respectively, in each category. Predictions off the 99th credibility
interval may be considered as “incorrect". Some specific remarks

:::::
Some

::::::::
ramarks

:::
are

::
in

:::::
order:

1. Based on this diagonstic
:::::::::
diagnostic

:
only, using constant rather than PC-specific correla-

tion parameters does not significantly affect the overall performance. This is explicitly
shown for GDD, but this is also true of the other fields.

2. However, all fields exhibit an excessive number of incorrect predictions , compared to the
ideal frequency of 1 %

::::::::::
predictions

::::::
outside

::::
the

::::::
central

:::::
99th

:::::::
credible

:::::::
interval. Annual mean
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precipitation is, in this respect, less well predicted than the others, perhaps not surpris-
ingly,

:
given that precipitation responds less straightforwardly to insolation changes than

temperature.

3. There is
::
are

:
an excessive number of predictions within the 66th central credible interval.

3.3 Astronomically-forced variance vs other effects

The total variance V resulting from the astronomical forcing can be estimated from eq. (7). Here
we compare the estimated total variance V with other effects that may broadly be described as
sources of uncertainties on this quantity (Figure 6). Note that for

:::
For

:
the assessment specific

to this subsection we considered the uniform distribution ρ(x) = 1 over the cube in order to be
able to provide analytical integrals, and hence isolate the effects associated with Monte-Carlo
sampling. The following observations can be made:

– The variance associated with the input factors largely dominates other sources of uncer-
tainty.

– The error caused by the Monte-Carlo approximation of the integrals, estimated by com-
paring these Monte-Carlo integrals with the analytical solution in the particular case of
the uniform distributions of ρ

:
a
::::::::
uniform

:::::::::::
distributions

::::
for

::
x

::::::::::
(ρ(x)∝ 1), is of the order of

0.5% of the total variance.

– Slightly different variance estimates are obtained depending on whether we use the same
length scales for all PC or not, or whether we use independent emulators or the PC emula-
tor. The difference over a grid point is on average 2.5 % of the mean grid-point variance.
Note that different estimates will be also

::::::::
Different

:::::::::
estimates

::::
will

::::
also

:::
be

:
obtained with

the independent emulators over all grid-boxes depending on the length scales being used;
only one length-scale was tested here. The supplemental

:::::::::::::
supplementary material further

shows that the patterns of the global sensitivity indices are similar whichever emulator is
used, so that this choice is of no consequence for the scientific interpretation.
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– The term “GP var" explicitly refers to the Stot ::::::
defined

::
in

:
(11) : shown here is the mean of

the diagonal of this matrix, equal to the mean of the Gaussian Process variance over all
grid points, averaged over the input space. Again this is a small term, which is of the same
order of magnitude as the grid-box mean uncertainty associated with the choice of initial
conditions.

– Finally, we refer to synergy as the
:::
The absolute value of the

:::::::
synergy

:::::
term,

:::::::::
measured

::
as

:::
the

difference between the total variance and the sum of the mean sensitivity indices . This
difference is associated with second-order effects. Perhaps surprisingly (see concluding
discussion), this term is small,

::
is

::::
also of the same order as the different sources of uncer-

tainty just discussed.

3.4 Grid-point-wise variance analysis

The variance indices over the different grid points are the diagonal elements of the matrices V ,
Te$ ::::::

T{e$} and Tε. They provide essentially the same information as could be obtained using
emulators independently calibrated over all grid boxes. Namely (see Figure 7):

1. Precipitation is mainly controlled by precession over Western Africa and Australia. This
is expected given the known control of precession on monsoon dynamics (e.g. Zhao et al.,
2007). The absence of large variance patterns in South-East Asia and South America is
probably to be attributed to the limitations of LOVECLIM in simulating tropical weather
systems. Note also the significant influence of obliquity in the most western part of North
Africa.

2. GDD exhibits distinctive responses across the hemispheres. While this quantity is con-
trolled in the northern hemisphere by both precession and obliquity (precession domi-
nates), southern ocean temperature is almost exclusively controlled by obliquity.

3. Annual mean temperature has the highest variance near the poles. Again, northern hemi-
sphere temperature is equally controlled by precession and obliquity, while obliquity dom-
inates the variance in the southern hemisphere.
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3.5 Fingerprint analysis

The PC emulator, however, allows us to go one step further than the independent emulator strat-
egy. As the full covariance matrices V and Ti are available, linear fingerprints may be obtained
by performing a SVD of these covariance matrices (Figure 8). Specifically, we refer to “finger-
prints" of precession and obliquity, respectively, the eigenvectors of Te$ ::::::

T{e$} and Tε. The first
fingerprint of obliquity explains more than 90 % of the variance of all three variables consid-
ered here. Precession aggregates two inputs (esin$ and ecos$). It can therefore be expected
to have at least a second significant fingerprint. This is the case, but this second component
represents less than 30 % of the variance. We come to that shortly. Compared to the point-wise
variance analysis above, the main advantage of the fingerprint analysis is to provide information
on the in-phase or anti-phase relationships between climate variables, namely

– Obliquity produces in-phase effects on monsoon-related precipitation both in the northern
and in the southern hemisphere (compare Africa and, e.g., northern Australia or southern
America), while precession causes opposite-phase effects. This pattern is easily explained
by reference to insolation. Indeed, obliquity causes in-phase responses of summer insola-
tion in both hemispheres, while precession causes anti-phased responses.

– Obliquity produces an equator-pole see-saw response of annual mean temperature, with,
however, a weaker-amplitude response in the equator than in the extratropical regions.
Again, this consistently reflects the pattern of annual mean insolation (Loutre et al., 2004).

Note also that fingerprints of precession and obliquity are not orthogonal, and thus cannot
be readily recovered by principal component analysis of the model outputs. For reference, we
estimated the variance decomposition of the PC scores associated with precession and obliq-
uity (decomposition and maps of principal components available in supp. mat.). The variance
analysis reveals a mixture of precession and obliquity effects on each principal component.

Coming back to precession, we expect the simulated response phase to differ from place to
place. To illustrate this point, we plot the emulated precipitation as a function on

::
of

:
the longi-

tude of the perihelion for three points along the African monsoon flow. We assume obliquity and
26
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eccentricity typical of the Holocene (Figure 9), and indicatively denote longitudes of perihelion
corresponding to the time of the beginning of the Holocene (11,000 years ago) , as well as that
of 6,000 years ago, a reference period used for model intercomparison exercises (Braconnot
et al., 2007). The timing of the maximum response is gradually shifted towards a late phase re-
sponse as one travels northwards. This observation can be explained by considering the seasonal
development of monsoon dynamics, along with the course of the zenithal sun. According to this
analysis, the most favourable epoch for a “Green Sahara"

:
”
:
experiment with a global climate

model would therefore be around 9,000 years, corresponding to the choice of early modelling
experiments on this subject (Street-Perrott et al., 1990).

3.6 Detection of fast changes

Assuming that the climate system responds fast enough to changes in astronomical forcing, the
time evolution of the climate system may in principle be simulated by forcing the emulator
with a realistic evolution of astronomical forcing. Unfortunately, the output cannot be readily
compared to observations because we are neglecting here other significant forcing elements,
such as changes in land ice cover and greenhouse gas concentrations (Araya-Melo et al. (2015),
as well as N. Bounceur, thesis in preperation

::::::::::
preparation, take this into account). This exercise

mayhowever ,
:::::::::

however,
:
help us to detect regions where, potentially, the climate system may

respond with steep gradients to the smooth astronomical forcing changes in interglacial condi-
tions. Specifically, we estimate the maximum rate of change of a climate variable, expressed
in terms of units per ky (Figure 10). In order to enhance the palaeoclimatological interest of
this discussion, we compare the experiments ,with interactive vegetation, with those with fixed
land-surface properties, hereafter referred to as VOFF. As a reading guide, a climate variable
responding linearly and exclusively to precession with standard deviation 1, would show a max-
imum rate of change of 0.82ky−1; a variable responding linearity

::::::
linearly

:
and exclusively to

obliquity with standard deviation 1 would show a maximum rate of change of 0.35ky−1. On this
basis, comparing Figure 10 with 7 allows us to detect two regions of potentially rapid changes:
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The western Sahara: Rate of changes expressed on the log scale are of the order of 0.4 per
thousand years, that is, about 50 % precipitation change in 1,000 years. This is a well-
known feature explained by feedbacks between vegetation and climate (Brovkin et al.,
1998), discussed specifically in LOVECLIM by Renssen et al. (2003),

The American sector of the Arctic,
:
, including both northern Canada and sea-ice covered re-

gions: rates of temperature changes are of the order of 3 ◦C per thousand years.

These hotspots almost disappear with the fixed-land-cover scheme, underlining the role of veg-
etation response. However, the fact that the North-American hotspot region extends over the
Arctic ocean suggests also a role for sea-ice cover, which further amplifies vegetation-induced
effects. Such interactions were between Arctic vegetation and sea-ice were already suggested
to have played a role in Arctic climate change during the Holocene (Ganopolski et al., 1998).

4 Discussion

Let us first review and comment upon the results of palaeoclimate significance presented here.

:::::::::
Naturally,

::::
they

:::
are

::::::::::
conditional

:::
on

:::
the

:::
use

::
of

::::
the

:::::::
specific

::::::::
simulator

::::::::::
considered

::::
here

::::::::::::::
(LOVECLIM)

:::
and

:::::
must

:::
be

:::::::::::
considered

::::::::
critically

::::::
given

::::
that

::::::::::::
LOVECLIM

:::
is

:::
an

:::::::::
imperfect

:::::::::::::
representation

:::
of

::::::
reality:

1. Precession and obliquity both contribute to annual temperature. Precession generally has
a greater effect in the northern hemisphere and tropical regions, and obliquity is the dom-
inant forcing in the southern hemisphere. The fact that obliquity has proportionally more
influence on southern than northern annual mean temperature in the extra-tropical lati-
tudes is physically reasonable. Indeed, precession does not affect annual mean insolation,
but it may affect the annual mean climate by acting on the seasonal cycle of albedo associ-
ated associated with sea-ice, snow, and vegetation feedbacks. The latter two naturally de-
pend on the presence of continental masses, which occupy a larger fraction of the northern
than the southern hemisphere. In turn, this result is

::::
This

::::::::::
dichotomy

:::::::
between

::::::::
southern

::::
and
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:::::::
northern

:::::::::::
hemisphere

:::::::::
responses

::::
was

::::::::::
previously

:::::
noted

:::
by

:::::::::::::::::::::
Yin and Berger (2012) ,

:::::
based

:::
on

:::::::::::
LOVECLIM

:::::::::::
simulations

::
of

::::::::
previous

::::::::::
interglacial

::::::::
periods,

::::
who

::::
then

::::::::
referred

::
to

::
it

::
as

::::
one

::
of

:::
the

::::::::
elements

:::::::
needed

::
to

:::::::
explain

::::
the

::::::::::
occurrence

::
of

::::
the

:::::::::::::
“Mid-Brünhes

::::::
event"

::::::::::::
(Yin, 2013) .

:
It
::
is
::::
also

:
consistent with observations, in particular

:::::::
namely:

– the prominence of obliquity signals in southern hemisphere records, and more partic-
ularly Antarctic cores, be it CO2 concentration (Petit et al., 1999; Siegenthaler et al.,
2005; Luethi et al., 2008) or deuterium excess (Vimeux et al., 2002),

– the contrasting dynamics between southern records and a northern continental records,
such as Baïkal’s, during isotopic stage 11 (Prokopenko et al., 2002).

It is also consistent with the proposed explanation of the mid-Brünhes event (Yin, 2013) .

2. GDD is used here as a measure of summer length and intensity. We considered it because it
is used in VECODE as a predictor for vegetation changes. This quantity is also mathemat-
ically equivalent to the positive-degree days index (PDD) used as a predictor of net snow
accumulation balance over ice sheets (e.g.: Pollard and DeConto (2005)). We see here
that GDD is, in the northern hemisphere, approximately equally sensitive to precession
and obliquity. Crucifix (2011), based on Berger (1978a), noted that the Milankovitch’s
caloric season insolation is also equally sensitive to precession and obliquity. Hence, this
result is consistent with Ruddiman (2007)’s proposal to use caloric season insolation as a
predictor for ice age inception.

3.
:::
We

::::
find

::
a
::::::
fairly

::::::
strong

:::::::::
obliquity

:::::
effect

::::
on

::::::
North

:::::::
African

:::::::::::::
precipitation.

::::
This

::::
has

:::::
been

:::::
noted

:::::::
before,

:::
in

:::::::::
particular

:::
by

:::::::::::::::::::::::::
Tuenter et al. (2003) (using

:::
the

::::::
same

:::::::::::
atmosphere

::::::
model

::
as

::::::::::::
LOVECLIM,

::::
but

:
a
:::::::::

different
:::::
ocean

:::::::
model)

::::
and

::::::::::::::::::::::::::
Bosmans et al. (2015) (using

::
a
::::::
higher

:::::::::
resolution

::::::
model

::::::
called

::::::::::::
EC-EARTH).

:::::
Both

:::::::
studies

:::::::::
emphasise

::::
the

::::::
global

::::::::
character

:::
of

:::
the

::::::
climate

:::::::::
response

::
to

:::::::::
obliquity

::::
and

::::::::
interpret

::::
the

::::::::
response

:::
of

::::::
North

:::::::
African

::::::::::::
preciptiation

::::::
pattern

::
to

::::::::
changes

::
in

::::::::::
large-scale

:::::::::::
atmospheric

::::::::::
circulation

::::::::
patterns.

:
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4. Vegetation feedbacks substantially increase the climate change rate in the Arctic and in
the Sahel. The response is slightly non-linear (best seen, e.g., on Figure 9), but not to the
point of generating multiple steady states in response to a same astronomical configura-
tion. Namely, all 27 experiments of the design converge to the same state (the particular
case of exp. 20 is discussed in a next point). This is consistent with previous transient
simulations with this model (Renssen et al., 2003), but we note that Brovkin et al. (1998)
reports multi-stability of the Western-Sahara in the Early Holocene, leading to a bifur-
cation associated with the abrupt desertification of the Sahara during the mid-Holocene
(Claussen et al., 1999). It remains unclear whether possible multiple stable states persist
when more sophisticated land-surface-vegetation schemes associated with finer spatial
resolution are used (see, e.g.

:
,
:
Kleidon et al. (2007); Dekker et al. (2010)). On the other

hand, model intercomparisons support the existence of a single stable state in the high
latitudes (e.g. (Brovkin et al., 2003)). .

5. Our methodological approach allows us to document response phases of precipitation pat-
terns associated with the African monsoon. In particular, we found that the northward pen-
etration of African monsoon is at a maximum when the perihelion is reached in August.
Indeed, in this configuration, average levels of spring insolation can prevent excessive
warming of the Ocean surface during this season, while high positive June-July-August
insolation anomalies effectively enhance the warming of the subtropical continent. This
combination maximises the contrast between ocean and continental temperature during
the monsoon season. Again, the result needs to be qualified with the usual cautionary
remarks about the simplification of tropical dynamics in a model like LOVECLIM.

6. Instabilities of the North Atlantic circulation develop at very low obliquities. The effects
of these instabilities have not been taken into account in the variance diagnostics discussed
here. We note in particular that obliquities as low as those necessary to trigger the oscil-
lations would, in the real world, also be associated with the development of ice sheets.
The latter could further complicate the dynamics in the North Atlantic region. We there-
fore limit ourselves to observe that such oscillation dynamics, if they were to occur in
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specific interglacial configurations, would dominate the astronomical sources of variance
examined here.

A perhaps more surprising result of our analysis is the smallness of the synergy terms. Cru-
cifix and Loutre (2002) outlined the significance of

:
a
:
synergy between precession and obliqutiy

::::::::
obliquity (Crucifix and Loutre, 2002) during the last interglacial period. They noted that effects
of precession and obliquity may combine and produce non-linear effects associated with the
taiga-tundra transition in the Arctic area, not incompatible with what we find here about rates of
changes in the Canadian Arctic. We explain this paradox by observing that metrics provided by
global sensitivity analysis are aimed at determining whether the total variances, assessed over
the whole Pleistocene, would add up linearly or not. With LOVECLIM, the answer turns out
to be yes, even if

::
In

:::::::::::::
LOVECLIM,

::::
total

:::::::::
variances

::::::
indeed

::::
add

:::
up

:::::::
roughly

::::::::
linearly.

::::
This

:::::
does

:::
not

:::::::
exclude

::::
that non-linear effects may episodically dominate

::
at

::::::
critical

:::::::
periods.

5 Conclusions

We presented a global sensitivity analysis of the effects of astronomical forcing on the climate
model LOVECLIM in interglacial conditions. The work is based on three experiment plans of
27 experiments each, and we rely on the methodology of PC-Gaussian process emulation to
explore the input space and deliver spatially resolved variance indices . In particular, we intro-
duce the fingerprints as the eigenvectors of the covariance indices obtained from global sensi-
tivity analysis to provide a spatial description of the effects of the individual factors. From a
palaeoclimatological prospective, the results shown here are broadly consistent with the current
understanding of Earth’s climate response to the astronomical forcing. Compared to standard
approaches based on a small number of simulations for well-defined past epochs, the method-
ology presented here allows us to identify more systematically regions susceptible of

::
to ex-

periencing rapid climate change in response to the smooth astronomical forcing changes, and
examine the response phase of climate change to precession. We do not have to rely on transient
experiments, hence the methodology is readily applicable to more complex climate models, but
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we have to rely on the assumption of quasi-stationarity of the climate response to the astro-
nomical forcing. Although the mathematics are fairly straightforward, the emulation approach
requires considerable care in its implementation. We discussed the effects

:::::
effect

:
of the choice

of length scales
::::::::::::
length-scales, the type of emulator, and estimated uncertainties associated to

specific computational aspects such as the Monte-Carlo estimates of integrals, to conclude that
the PC emulator is a reasonable option. We therefore recommend its use for further

::::::
future ap-

plications.

Appendix A: Experiment design algorithm

The following algorithm was used to generate the experiment design.

1. The three factors are first standardised so that they cover the ranges [−1,1], i.e., we use
i1 = esin$/0.05, we use i2 = ecos$/0.05, and i3 = ε− 23.5)/1.5

::::::::::::::::::
i3 = (ε− 23.5)/1.5.

Let x = (x1,x2,x3) be a point of the input space, where the xi are the three factors.

2. Set dm0 = 0, and detinit = 0.

3. Sample a Latin hypercube design of N = 27 points in the 3-dimensional cube [−1,1]3, as
follows:

(a) Divide the interval [−1,1] into N equal-width intervals and number the middle of
each interval. Let x(i) be the midpoint of the ith interval.

(b) Generate three random permutations of i= 1...N , denoted nj = {ni,j}Ni=1 for j =
1,2,3.

(c) Form the design matrix X, with Xi,j = x(ni,j)

4. For every point of the design, check if the constraint i21+i22 < 1 is verified (i.e., eccentricity
smaller than 0.05). If not, omit the point and keep the design with N∗ simulations

5. Sample a Latin hypercube of N −N∗ points in [−1,1]3 and augment the design X
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6. Repeat (4− 5) until the dimension of the design X equals N

7. Calculate the minimum distance dm between any two points of the design X. If dm > dm0:

(a) Set dm0 = dm.

(b) Set X̃ = X.

(c) If det(X̃′X̃)> detinit

i. Set detinit = det(X̂′X̂).
ii. Set X̃ = X̂.

8. Repeat (3− 7) 1000 times. Keep the design X̃.

Appendix B: Monte-Carlo estimates of integrals
:::::::::::

Analytical
::::::::::::
expressions

:::
for

:::::::::
variance

::::::
indices

:
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:
If
::::
the

::::::::
Gaussian

:::::::
process

::::::::::
parameters

::
ν

::::
and

::
Λ

:::
are

:::::::::::
independent

::
of

::::
the

::::::::
principal

::::::::::
component

::
k,

:::::
then,

::::::
similar

::
to

:::::::::::::::::::::::::::
Oakley and O’Hagan (2002) ,

::::
one

::::
may

::::::
define

Ai
::

=
:

∫
Xi

∫∫
X-i×X-i

h(x)h(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

:::::::::::::::::::::::::::::::::::::::::::::::

(B1)

Bi
::

=
:

∫
Xi

∫∫
X-i×X-i

t(x)h(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

::::::::::::::::::::::::::::::::::::::::::::::

(B2)

Ci
:

=
:

∫
Xi

∫∫
X-i×X-i

t(x)t(x?)′ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

::::::::::::::::::::::::::::::::::::::::::::::

(B3)

Di
::

=
:

∫
Xi

∫∫
X-i×X-i

c(x,x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi,

::::::::::::::::::::::::::::::::::::::::::::

(B4)

Ei
:

=
:

∫
Xi

∫∫
X-i×X-i

p(x)′(H ′A−1H)−1p(x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B5)

::::
such

::::
that

Vi =
∑̀
k=1

∑̀
k?=1

(
β′kAiβk? +β′kBiek? + e′kBiβk? + e′kCiek?

)
uku

′
k?+

∑̀
k=1

σ̂k(Di− tr(A−1
k Ci) + Ei)uku

′
k−C,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B6)

:::::
where

::::
the

:::::::
formula

:::
for

:::
C

::::::::
involves

:::::::::
quantities

::::
A0,

:::
B0 :::

etc.
:::::::
similar

::
to

::::
the

:::::
above

::::
but

::::::
where

::::
X−i::

is

:::
the

::::::
whole

:::::::
domain

:::
and

:::::
there

::
is
:::
no

:::::::
integral

:::::
over

:::
Xi.:::::

That
::
is,

:::
we

:::::::
define:
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A0
::

=
:

∫∫
X×X

h(x)h(x?)′ρ(x)ρ(x?)dxdx?,

::::::::::::::::::::::::::::::

(B7)

B0
::

=
:

∫∫
X×X

t(x)h(x?)′ρ(x)ρ(x?)dxdx?,

::::::::::::::::::::::::::::::

(B8)

C0
::

=
:

∫∫
X×X

t(x)t(x?)′ρ(x)ρ(x?)dxdx?,

::::::::::::::::::::::::::::::

(B9)

D0
::

=
:

∫∫
X×X

c(x,x?)ρ(x)ρ(x?)dxdx?,

::::::::::::::::::::::::::::

(B10)

E0
::

=
:

∫∫
X×X

p(x)′(H ′A−1H)−1p(x?)ρ(x)ρ(x?)dxdx?.

:::::::::::::::::::::::::::::::::::::::::::

(B11)

:::
and

:

C =
∑̀
k=1

∑̀
k?=1

(
β′kA0βk? +β′kB0ek? + e′kB0βk? + e′kC0ek?

)
uku

′
k?+

∑̀
k=1

σ̂k(D0− tr(A−1
k C0) + E0)uku

′
k.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B12)

::
If

:::
the

:::::::::
emulators

:::
for

:::
the

::::::::
different

::::::::
principal

:::::::::::
components

:::
use

::::::::
different

:::::::::
Gaussian

:::::::
process

::::::::::
parameters,

::::
then

:::
the

::::::::
integrals

:::
Ai:::

etc.
:::::
need

::
to

:::
be

:::::::::
computed

:::
for

:::
all

:::::::
possible

:::::::::::::
combinations

:::::
k,k?,

::::
that

::
is,

:::
for

:::
10

::::
PCs,

:::
an

:::::::
increase

:::
in

::::::::::
computing

::::
cost

::
by

::
a
::::::
factor

::
of

:::
45.

:
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Appendix C:
::::::::::::
Computation

:::
of

:::::::::
integrals

Integrals (B1)–(B5) have the general form:∫
Xi

∫∫
Xi×Xi

g(x,x?)ρ(x-i|xi)ρ(x?
-i|x

?
i )dx-idx

?
-idxi (C1)

The integrals may be computed analytically in the particular case of ρ= 1 over the cube
[0,1]3 for the astronomical forcing (i.e., ρ(x) = 1 over the cube [0,1]3), and use the

::::::::
assuming

squared-exponential (RDW) correlation function ,
::::::::::
correlation

::::::::
function and linear regressors, as

used here. The computations involve the erf and the incomplete-gamma functions, which can
be computed with the gsl scientific library (Galassi and Gough, 2009) made available in the
“gsl" R package by R. Hankin. The more complex density function ρ associated with the actual
course of astronomical forcing must be accounted for by means of a Monte-Carlo algorithm,
based on Homma and Saltelli (1996) :

1. Sample q vectors, x(j), j = 1 . . . q following the density ρ(x), that is:

– either the uniform distribution if we suppose ρ(x) = 1,

– or either by computing the history of astronomical forcing (e.g.: between−107 years
to 0 by interval of 1000 years) with the astronomical solution of Berger (1978b),

2. Shuffle the vectors x to produce a sequence x?(j), j = 1 . . . q

3. For every j, modify the components [i] of x?(j) to make them equal to those of x(j) i.e.,
x
?(j)
i ← x

(j)
i .

4. The sum
∑q

j=1 g(x(j),x?(j)) converges to the integral (C1) as q→∞.

By comparison with analytical integrals we found that accurate estimates are obtained in this
application for q = 10,000. In this case, all the computations of sensitivity indices needed for

36
41 of 60



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

the scientific discussion take about 10 minutes on a laptop at time of writing if all PC compo-
nents use the same Gaussian process parameters ν and Λ, a couple of hours if parameters are
different for each component.

We carried out the analytical computations to compare independent vs PC emulators, and also
to have a reference for estimating the accurracy of our Monte-Carlo simulations. The Monte-
Carlo simulations accounting for the true astronomical forcing distribution are used for the
palaeoclimatological discussion.
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Figure 1. Experiment
::::
Two

::::::::::
dimensional

::::::::::
projections

::
of

:::
the

:::::::::::
experimental design. The experiment marked

in red (experiment 20) was discarded from the analysis.
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Figure 2. Slow oscillations developing in experiment 20 (e= 0.040, $ = 334.6◦, ε= 22◦). The surface
annual temperature over one of the North Atlantic grid points is shown (inset, in ◦ C) along with the
geographic distribution of the difference between the warm and the cold phases. The horizontal red line
in the inset is the emulator prediction, calibrated on the 26 remaining experiments.
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Figure 3. PCA decomposition of the logarithm of annual precipitation, GDD and annual temperature
fields based on the experiment design. Shown are the cumulated normalised variances resolved by the
principal components (red) and the left

::::::::
remaining

:
variance (blue), which is modelled as white noise in

(19), as a function of n′
:̀
. Quantities are grid-cell averages.
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Figure 4. Gaussian process parameters maximising the penalised log-likelihood for three variables :
GDD, log(Annual Precipitation) and Annual temperature, either (black) optimised for each PC indepen-
dently or (blue) optimised based on the product of the likelihoods of the first 10 PC

:::
PCs, assuming that

the same correlation parameters are used on all PCs. The
::::::::
maximized

:
log-likelihood associated with each

PC is given for reference.
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Figure 5. Evaluation of the PC emulators. The bars give the fractions
::::::
fraction

:
of grid points for which

the emulation correctly predicts the value of the experiment left out of the training set, within the 66th,
95th and 99th inner quantiles of the distribution. The horizontal lines indicate the theoretical position of
the percentiles for well-calibrated emulators. Dots provide root mean squares of the differences between
predicted and actual values. The graphical layout is adapted from the recommendation of the “Modelling
Uncertainty in Computer Model" project, http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?
page=ExamMultipleOutputsPCA.html.

50
55 of 60



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

To
ta

l v
ar

ian
ce

Disc
ar

de
d 

PC 

M
C sa

m
pli

ng

GP va
r 

GP p
ar

am
s

PC e
m

us
 vs

 in
de

p. 
em

ul

ini
tia

l c
on

d.

Syn
er

gy

0.5% 0.5% 0.9% 2.4% 5.6% 1.0% 2.6%

Annual precipitation (log)

0

5000

10000

15000

20000

To
ta

l v
ar

ian
ce

Disc
ar

de
d 

PC 

M
C sa

m
pli

ng

GP va
r 

GP p
ar

am
s

PC e
m

us
 vs

 in
de

p. 
em

ul

ini
tia

l c
on

d.

Syn
er

gy

0.3% 0.6% 1.0% 2.9% 2.6% 0.5% 1.5%

GDD (°C)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

l v
ar

ian
ce

Disc
ar

de
d 

PC 

M
C sa

m
pli

ng

GP va
r 

GP p
ar

am
s

PC e
m

us
 vs

 in
de

p. 
em

ul

ini
tia

l c
on

d.

Syn
er

gy

0.1% 0.5% 0.6% 1.9% 1.2% 0.6% 0.8%

Annual temperature (°C)2

Figure 6. Total variances associated to inputs (V ), averaged over all grid points. These variances are then
compared to different elements of variances associated with the PC emulator, namely : variance of the
discarded principal components, error estimated from Monte-Carlo sampling (estimated by comparison
with analytical integrals), Gaussian Process variance (Σtot), difference in variance associated with the
choice of correlation parameters (constant for all PC, or PC-dependent), or the choice of emulator (PC
emulator vs independent emulators), difference due to the choice of initial conditions (exp. 20 excluded),
and synergy

::::
term defined as V −Te$ −Tε::::::::::::::

V −T{e$}−Tε.
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Figure 8. First eigenvectors of Te$ :::::
T{e$} and obliquity Tε for annual precipitation (log) and annual sur-

face temperature, along with the fraction of the explained variance by these eigenvectors. These eigen-
vectors are referred to here as the fingerprints.
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Figure 9. Emulated annual precipitation for three locations at the North Atlantic / African sector, as a
function of the longitude of the perihelion. For easy reading

::::
ease

::
of

::::::::::::
interpretation, the longitude of the

perihelion is here denoted as the time of the year at which perihelion (closest point to the Sun) is reached.
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Figure 10. Maximum rate of change, in units per thousand years, estimated using the PC emulator and
assuming a quasi-stationary climate and interglacial conditions.
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