
1 
 

Climate Impacts Research: Beyond Patchwork 1 

 2 

V. Huber1,2*, H. J. Schellnhuber1,3, N. W. Arnell4, K. Frieler1, A. D. Friend5, D. Gerten1, I. 3 

Haddeland6, P. Kabat7, H. Lotze-Campen1, W. Lucht1,8, M. Parry9, F. Piontek1, C. 4 

Rosenzweig10, J. Schewe1, L. Warszawski1  5 

 6 

1Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany 7 

2European Commission's Joint Research Centre, Institute for Prospective 8 

Technological Studies (IPTS), Seville, Spain 9 

3Santa Fe Institute (SFI), New Mexico, USA 10 

4Walker Institute for Climate System Research, University of Reading, Reading, UK 11 

5Department of Geography, University of Cambridge, Cambridge, UK 12 

6Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway 13 

7International Institute of Applied Systems Analysis, Laxenburg, Austria 14 

8Department of Geography, Humboldt-Universität zu Berlin, Berlin, Germany 15 

9Grantham Institute for Climate Change Research, Imperial College London, UK 16 

10NASA Goddard Institute for Space Studies, New York, USA 17 

 18 

* Correspondence to: huber@pik-potsdam.de 19 



2 
 

Abstract  20 

Despite significant progress in climate impacts research, the narratives that science 21 

can presently piece together of a 2-, 3-, 4-, or 5-degree warmer world remain 22 

fragmentary. Here we briefly review past undertakings to comprehensively 23 

characterize and quantify climate impacts based on multi-model approaches. We 24 

then report on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a 25 

community-driven effort to systematically compare impacts models across sectors 26 

and scales, and to quantify the uncertainties along the chain from greenhouse gas 27 

emissions and climate input data to the modelling of climate impacts themselves. We 28 

show how ISI-MIP and similar efforts can substantially advance the science relevant 29 

to impacts, adaptation and vulnerability, and we outline the steps that need to be 30 

taken in order to make the most of available modelling tools. We discuss pertinent 31 

limitations of these methods and how they could be tackled. We argue that it is time 32 

to consolidate the current patchwork of impacts knowledge through integrated cross-33 

sectoral assessments, and that the climate impacts community is now in a favourable 34 

position to do so. 35 
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1 Introduction 36 

Climate-change research has come a long way towards determining the magnitude of 37 

required emissions reductions given a politically chosen global warming limit (e.g., 38 

Rogelj et al., 2011), as well as the means and costs of achieving those reductions 39 

(e.g., Clarke et al., 2009; Edenhofer et al. 2010). However, despite a wealth of 40 

knowledge about climate change impacts, the scientific basis for describing the 41 

consequences of different global warming levels remains “seriously incomplete” 42 

(Rosenzweig and Wilbanks, 2010; Impacts World Conference, 2013).  43 

 44 

The current state of the art would notably benefit from comprehensive quantitative 45 

assessments of aggregate global climate change impacts (Schellnhuber et al., 2014). 46 

Addressing this knowledge gap would greatly strengthen the scientific underpinning 47 

of mitigation decisions, and is all the more urgent in light of a potential review of the 48 

internationally agreed target of stabilizing global mean temperature (GMT) rise 49 

below two degrees (UNFCCC, 2010). Climate research also is challenged to provide 50 

more robust and implementable information on climate change impacts – in 51 

particular at local and regional scales – for making science-based adaptation choices 52 

in a warmer world (Kerr, 2011).  53 

 54 

Progress is particularly needed in two research areas that have been largely 55 

neglected in the past – largely because of the complexity of the challenges involved.  56 

 57 

Firstly, climate impacts research should strive for stronger integration of different 58 

sectors (such as agriculture, water resources, forestry, infrastructure, industrial 59 
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production) and spatial scales (local, regional, global). Assessing the vulnerability of 60 

human and natural systems to climate change should account for the interactive 61 

effects of simultaneous and/or sequential impacts, which due to feedbacks and 62 

nonlinearities cannot be deduced from sector-specific studies alone (Smith et al., 63 

2001). So far, cascading impacts across sectors – such as the effects of climate-64 

induced yield loss on malnutrition, the effects of ecosystem change on malaria 65 

distribution, or the propagation of local damages along the global supply network – 66 

are poorly understood (Warren, 2011). Better understanding these multi-sectoral 67 

interactions and involved trade-offs is especially important in the light of adaptation 68 

planning, as coping resources (such as land area, public and private funds, and 69 

political will) are often limited. 70 

 71 

Improved integrative analysis across different spatial scales would help to bridge the 72 

gap between global impact assessments, currently not apt for local adaptation 73 

planning, and local or regional approaches, which so far leave many parts of the 74 

world 'unexplored'. Using data from local and regional models , for example, provides 75 

a large potential for the improvement and better parameterization of global models 76 

(Challinor et al. 2014a), which could eventually become appropriate tools for devising 77 

global as well as local adaptation measures.   78 

 79 

Secondly, more emphasis could be put on the systematic and rigorously quantitative 80 

assessment of uncertainties, which is indispensable if scientific findings are to 81 

effectively support the climate-policy process as it moves towards quantitative 82 
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risk assessment (Schneider and Mastrandrea, 2005; Kunreuther et al., 2013). Hence, 83 

error ranges stemming from climatic and socio-economic projections should be 84 

considered alongside uncertainty in the current understanding of impacts per se. 85 

 86 

 87 
 88 
Figure 1 State of global climate impact modelling in terms of sectoral integration and existing 89 
model intercomparison projects. Most studies to date were based on one single-sector 90 
impact model, limited to exploring the uncertainty in climate projections by using input from 91 
different climate models (lower left quadrant). Only a few studies have included several 92 
sectors within one common scenario setup, using one impact model per sector (lower right 93 
quadrant). Likewise, only a few studies have compared impact models within one sector 94 
allowing for the analysis of structural uncertainties (upper left quadrant). The recently 95 
initiated Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) considers impact 96 
model ensembles in several sectors simultaneously (upper right quadrant).  97 
 98 

Statistical (meta-)analyses and expert judgments (e.g., Challinor et al., 2014b; Smith 99 

et al., 2009), building on a wealth of specific case studies and empirical data, are 100 

important elements of the necessary toolkit for addressing these research gaps. Here 101 

our focus is on modelling approaches, which are particularly well suited to integrate 102 
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existing knowledge and to quantitatively assess uncertainties.  It is worth noting that 103 

the discussion about economic modelling frameworks (i.e., integrated assessment 104 

models), including the controversial debate on the representation of climate impacts 105 

in these models (e.g., Pindyck, 2013; Stern, 2013), is beyond the scope of this study, 106 

albeit their significance for the aggregation of climate impacts and important 107 

contribution to uncertainty assessments. 108 

 109 

To begin with we describe efforts to extend first-generation impact modelling 110 

schemes, based on just one (biophysical) impact model for one sector, to include (i) 111 

several sectors, and (ii) an ensemble of impact models (Fig. 1). We then turn to 112 

recent studies that combine a coherent analysis of climate impacts across sectors 113 

with a comprehensive, multi-model assessment of uncertainties. Many of these 114 

studies have come out of the recently initiated Inter-Sectoral Impact Model 115 

Intercomparison Project (ISI-MIP). In the main part of the paper, we discuss some of 116 

the most important results from ISI-MIP and similar projects in light of the two major 117 

knowledge gaps related to sectoral integration and characterization of uncertainties. 118 

Despite well-acknowledged shortcomings of existing model intercomparison efforts, 119 

we argue that the climate impacts, adaptation and vulnerability (IAV) community 120 

should continue along the multi-sector, multi-model road it has now taken.  121 

 122 

2 Integrative, model-based assessments of climate impacts – established 123 

approaches 124 

2.1 Several sectors, one model 125 
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Significant progress has been made recently in the cross-sectoral synthesis of climate 126 

impacts knowledge based on either single, internally-consistent multisectoral models 127 

or suites of independent sectoral models. These two approaches complement each 128 

other. The former class of integrated models obviously allows for the direct 129 

simulation of cross-sectoral feedbacks and interactions, but often suffers from a less-130 

detailed representation of processes due to computational limitations. Also, despite 131 

some progress in constructing more comprehensive integrated modelling platforms 132 

(Howells et al. 2013) so far such studies have focused on closely related sectors only, 133 

such as water and ecosystems (e.g., Gerten et al., 2013), or ecosystems and 134 

agriculture (e.g., Gervois et al., 2008).  By contrast, the latter approach of combining 135 

offline simulations of different uncoupled impact models currently allows for more 136 

comprehensive impact assessments, covering a higher sectoral diversity.  137 

 138 

Here, we mention as examples a number of projects (forming an incomplete list) that 139 

fall into the latter category. It is worthwhile noting that some of these projects 140 

comprise some element of model intercomparison (albeit not to the extent ISI-MIP 141 

does) and thus fulfil some criteria of the subsequently discussed integration 142 

approaches. 143 

 144 

Within the European project PESETA, which has just completed its second 145 

phase,consequences of climate change across the continent have been quantified in 146 

eight sectors (agriculture, energy, river floods, forest fires, transport infrastructure, 147 

coastal areas, tourism, and human health) by integrating a set of separate high-148 

resolution climate-change projections into a single economic modeling framework 149 
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(Ciscar et al., 2011; Ciscar et al., 2014). Similar integrated assessments of climate 150 

impacts in the United States are underway, as part of the Climate Impact and Risk 151 

Analysis (CIRA) project (Waldhoff et al., 2014). The CIRA project employed over 152 

twenty detailed impacts models with the primary goal to assess the regional benefits 153 

of global mitigation efforts across six broad impacts sectors. Early examples of multi-154 

sectoral, model-based climate change risk assessments at the global scale are the UK 155 

Fast Track project (Parry et al., 1999) and the Climate Impact Response Functions 156 

(Füssel et al. 2003) initiative, but there are very few other comparable studies. More 157 

recently, the study by Arnell et al. (2013) provides projections of climate impacts in 158 

six sectors (water availability, river flooding, coastal flooding, agriculture, ecosystems, 159 

and energy demands) at the global scale, using a coherent set of climatic and socio-160 

economic scenarios. However, the majority of these studies used only one impact 161 

model per sector, and were thus unable to address uncertainties beyond those 162 

arising from climatic and socio-economic input data. 163 

 164 

2.2 Several models, one sector 165 

On the other hand, impact model intercomparison efforts, which provide a basis for 166 

quantifying and classifying these uncertainties, have so far typically focused on one 167 

specific sector or region. Examples of global studies include the assessment of 168 

uncertainty in the response of the global terrestrial biosphere to increasing CO2 169 

concentrations and rising temperatures, by comparing simulations of a suite of 170 

Dynamic Global Vegetation Models (DGVMs; Cramer et al., 2001; Sitch et al., 2008). 171 

More recently, a large number of global hydrological and land-surface models were 172 

compared in the WaterMIP initiative (Haddeland et al., 2011; Hagemann et al. 2012), 173 
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building upon earlier model comparison efforts in the water sector (Dirmeyer et al., 174 

1999; Hoff et al., 2010). An important ongoing community initiative is the Agricultural 175 

Model Intercomparison and Improvement Project (AgMIP), an ambitious multi-scale, 176 

multi-model impacts assessment in the agricultural sector (Rötter et al. 2011; 177 

Rosenzweig et al. 2013). Several other research projects have combined impact 178 

model ensembles with observational records to analyse causes of past climate effects 179 

(e.g., on the carbon and water cycles) (Vetter et al., 2008; Jung et al., 2010), rather 180 

than provide future projections. Regional examples include the comparison of 181 

modelling schemes to assess climate change consequences for the hydrological cycle 182 

in the US (Xia et al., 2012) and in the monsoon-dominated countries of West Africa 183 

(Ruti et al., 2011).  184 

 185 

3 The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) 186 

The ISI-MIP, launched in 2012 (Schellnhuber et al., 2014), is an example of a new type 187 

of community effort situated in the otherwise largely unpopulated upper right corner 188 

of the impacts integration matrix (Fig. 1). It builds upon existing sectoral model 189 

intercomparison efforts, such as the WaterMIP and AgMIP initiatives, but is designed 190 

to integrate these and other impacts simulation schemes across sectors and scales. 191 

Integration pursued in ISI-MIP entails running models of different sectors and scales 192 

with a minimum level of harmonization and common input data, rather than 193 

dynamically linking these models. 194 

In its recently concluded fast-track phase the ISI-MIP involved more than thirty 195 

international modeling teams and covered five sectors (agriculture, water, 196 

ecosystems, coastal infrastructure, and health) (Warszawski et al., 2014). Global 197 
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impacts projections were based on common bias-corrected climate input data 198 

(Hempel et al., 2013) and socio-economic indicators, using state-of-the-art climate-199 

change and socio-economic scenarios (Representative Concentrations Pathways 200 

(RCPs) (Moss et al., 2011) and Shared Socio-Economic Pathways (SSPs) (Van Vuuren 201 

et al., 2012).  202 

 203 

Major results of the ISI-MIP fast track have recently been discussed by Schellnhuber 204 

et al. (2014). Here we present a synopsis of important advances made by ISI-MIP and 205 

other recent multi-model efforts with regards to (i) the integration of impacts 206 

projections across sectors and spatial scales, and (ii) the quantification and 207 

classification of uncertainties.  We also define related research challenges, which 208 

should now be addressed by the scientific community. 209 

 210 

4 Cross-sectoral intercomparison of impact models – major advances and future 211 

challenges 212 

4.1 Integrating impacts projections across sectors and spatial scales 213 

Juxtaposing impacts measures from different sectors in order to synthesize impacts 214 

requires a common scenario framework. Earlier approaches, such as the summaries 215 

of impacts at different levels of GMT rise presented by Hare (2006) and Warren 216 

(2006) , constitute important steps forward but were not always based on 217 

harmonized input (in particular with regard to non-climatic drivers such as 218 

populations scenarios and land-use patterns). Integrative efforts that function as 219 

inter-sectoral exercises from the outset circumvent such inconsistencies. For 220 

example, based on ISI-MIP multi-model ensembles, Piontek et al. (2014) presented 221 



11 
 

an analysis of coinciding biophysical impacts in four different sectors (agriculture, 222 

water, ecosystems, health) to identify regional hotspots. Their analysis included 223 

estimates of the number of people exposed to ‘severe’ changes in one or several 224 

sectors, measured as significant departures from the historical norm. The areas 225 

identified as hotspots in this analysis are of course contingent on the limited number 226 

of sectors considered, and the employed definitions of severe change.  227 

 228 

An important development towards a more general map of climate change hotspots 229 

would be to move from ‘exposure analyses’ to actual impacts assessments that 230 

account for vulnerabilities and adaptive responses. As a first step, the results from 231 

ISI-MIP allow for the assessment of inter-sectoral interactions and adaptation trade-232 

offs (Fig. 2), based on consistent multi-sector, multi-model data. Using output of up 233 

to 11 global hydrological models and 7 crop models, two recent studies (Elliott et al., 234 

2014; Frieler et al., in preparation) have, for example, investigated the effect of 235 

climate change on food production – directly, through climate-induced yield changes, 236 

and indirectly, through the constraint that changing availability of freshwater puts on 237 

the enhancement of irrigation. Complementing the multi-sectoral ensemble by 7 238 

global vegetation models, Frieler et al. (in preparation) have additionally studied the 239 

loss of natural carbon sinks resulting from the expansion of cropland required to 240 

meet the projected food demand. The necessary simulation data are now available to 241 

explore further important inter-sectoral interactions and trade-offs, such as the loss 242 

of arable land to sea-level rise, or the effect of river floods on agricultural production 243 

(Fig. 2). 244 
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 245 

Figure 2 Climate-impact cascades across sectors. Each arrow, overlain on the 246 
standard impacts table from the 4th IPCC assessment report (Parry et al., 2007), 247 
illustrates an exemplary inter-sectoral feedback. Whereas previous studies have 248 
commonly focused on individual sectors in isolation (along the horizontal dimension), 249 
integrative efforts – such as ISI-MIP and AgMIP – now also allow for the analysis of 250 
feedbacks and interactions across sectors (along the vertical dimension). *Feedbacks 251 
recently studied in the context of ISI-MIP (Davie et al., 2013; Wada et al., 2013; Elliott 252 
et al., 2014; Frieler et al., in preparation). 253 
When integrating different sectors, it is important to include those that are socially 254 

relevant but have largely been ignored in the past. Climate impacts on agriculture, 255 

hydrology, ecosystems and forestry have been the subject of intensive research. It is 256 

questionable whether the concept of more or less clearly distinct sectors is a good 257 

one to start with. However, the broad areas of human health, migration, transport, 258 

infrastructure (also beyond coastal areas), energy production and distribution, 259 

settlements (including mega-cities), and marine ecosystems clearly require the 260 

attention of the impacts-research community. For some of these areas, not even one 261 

global-scale model exists yet, let alone ensembles of comparable models. 262 

 263 
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Regarding the integration across different spatial scales, it is generally agreed that 264 

process-based impact models operating on different spatial scales are yet to be 265 

systematically tested and compared (Challinor et al., 2014a). Global models often 266 

agree on large-scale patterns of change, but diverge in their projections of specific 267 

changes at the regional scale (where even the sign of change often differs between 268 

models) (Warszawski et al., 2013; Dankers et al., 2014). Comparing global and 269 

regional models in selected areas (e.g., major river basins or critical biomes such as 270 

the Amazon or boreal forests) may contribute to constraining these large regional 271 

uncertainties. Global models may “learn” from the regional ones and help to 272 

generalize their results by extrapolations to other regions not covered by regional 273 

simulations. Driving global impact models with higher-resolution climate input (so-274 

called hyper-resolution global modelling) is another avenue to potentially improve 275 

local and regional projections (Wood et al., 2011). Pin-pointing and reducing the 276 

existing scale dependency (Boone et al., 2004) constitutes an important step towards 277 

the eventual use of global models for on-the-ground adaptation planning. 278 

 279 

4.2 Quantifying and classifying uncertainties 280 

'Perturbed physics ensembles’ commonly explore parametric uncertainties 281 

associated with a single model (e.g., Challinor et al., 2009), with the major advantage 282 

that causes of model spread can often be traced back to specific parameters and 283 

processes. ‘Ensembles of opportunity’, based on the comparison of several process-284 

based impact models, constitute another wide-spread approach for deriving 285 

probabilistic assessments of climate change impacts. The challenge lies in 286 

appropriately interpreting these multi-model simulations (Sanderson and Knutti, 287 
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2012). The conventional approach, which has been adopted by the majority of ISI-288 

MIP-related studies (e.g., Haddeland et al., 2014; Schewe et al., 2014), is to treat all 289 

model output equally – despite model interdependencies and common genealogies. 290 

This issue has been widely discussed in the global climate modelling community 291 

(Knutti, 2010), but requires more attention from climate impact modellers in light of 292 

the increasing number of multi-model assessments in this field. 293 

 294 

If some models share more code or concepts than others, or multiple versions of one 295 

model enter the ensemble, a simple average of model outputs is necessarily biased, 296 

as these models are implicitly given greater weight (Knutti et al., 2013). 297 

Understanding model genealogy is thus important to assess the significance of this 298 

bias. Yet, it has rarely been made transparent for ensembles of global impact models 299 

(GIMs); but see Rosenzweig et al. (2014) for a genealogy of global crop models.  300 

 301 

A complementary approach, often adopted by global climate modellers, is weighting 302 

simulation output based on model performance compared to observations. In this 303 

context, a robust definition of what constitutes a ‘better’ or ‘poorer’ model 304 

performance (Tebaldi and Knutti, 2007) would be required. One important question 305 

with regard to GCMs is, for example, to what extent the models’ ability to represent 306 

current climate is related to their ability to represent future climate (Knutti, 2010). To 307 

our knowledge the only example of weighting impacts models based on performance 308 

so far can be found in a recent AgMIP study (Asseng et al., 2013) on the uncertainty 309 

of simulating wheat yields under climate change. Previous studies have rather relied 310 
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on weighted GCM output for deriving probabilistic impact assessments (e.g., Rammig 311 

et al., 2010).  312 

 313 
 314 
Figure 3 Uncertainty due to global climate 315 
models (GCMs) (red) and global impact models 316 
(GIMs) (black) in four different impact sectors 317 
at 2°C (top) and 4°C (bottom) GMT rise. 318 
Coefficients of variation were calculated based 319 
on data of model spread from Piontek et al. 320 
(2014), who compute climate impacts as the 321 
fraction of global land surface subject to 322 
‘severe’ changes in 30-year averages of river 323 
discharge, crop yields, ecosystem 324 
characteristics, and the length of the malaria 325 
transmission season at given GMT levels. Multi-326 
model ensembles consist of 11 hydrological 327 
models, 7 crop models, 4 malaria models, and 328 
7 vegetation models. Climate input data were 329 
taken from 3 GCMs. 330 
 331 

 332 

Beyond probabilistic interpretation of multi-model ensembles, integrative modelling 333 

frameworks such as ISI-MIP allow for the identification of contributions to 334 

uncertainty from different sources. A major finding emerging from these recent 335 

multi-model assessments of climate impacts is that the uncertainty stemming from 336 

GIMs is generally larger than the uncertainty stemming from GCMs (e.g., for 337 

hydrology models: Schewe et al., 2014; for crop models: Rosenzweig et al., 2014; for 338 

malaria models: Caminade et al., 2014; for vegetation models: Warszawski et al., 339 

2013; see also Fig.3). One could deduce from this finding that investment in impact 340 

model development and improvement – rather than further constraining climate 341 

input data – is paramount in order to reduce overall uncertainty of climate impacts 342 

projections. This conclusion would also be supported by the argument that great 343 

effort has already been put into the development of GCMs, but that there might be 344 
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much to be gained with regard to the improvement of GIMs for comparably little 345 

investment. 346 

 347 

However, there are several important caveats to this statement. Firstly, bias 348 

correction applied to GCM output will reduce the inter-GCM variability, thereby 349 

potentially reducing the contribution of GCMs to total uncertainty of impacts 350 

simulations (Dankers et al., 2014; Wada et al., 2013). A recent study using global 351 

hydrological models concluded that the uncertainty related to statistical bias 352 

correction is of the same order of magnitude as the uncertainties related to the 353 

choice of the GCM or GIM (Hagemann et al., 2011). More in-depth studies on the 354 

role of bias correction should definitely be high up on the agenda of climate impacts 355 

research. (As a matter of fact, all statements about the relative contributions of 356 

GCMs and GIMs to total impact uncertainty made here would need to stand the test 357 

of using non-bias-corrected GCM data.) Secondly, the proportion of uncertainty due 358 

to GIMs and GCMs is contingent on the respective ensemble sizes and characteristics 359 

(also pointed out by Prudhomme et al., 2014). ISI-MIP relied on a subset of 5 GCMs 360 

out of nearly 30 GCMs participating in the latest phase of the Coupled Model 361 

Intercomparison Project (CMIP5) (Taylor et al., 2011), which points to the need of 362 

more comprehensive analyses in the future. Thirdly, what is true for globally 363 

aggregated metrics may not apply at the regional scale. For example, while GIMs 364 

contribute the largest proportion to the total uncertainty in the length of the malaria 365 

transmission season across most of the globe, variations between GCMs dominate in 366 

regions where their precipitation projections diverge most strongly (Caminade et al., 367 

2014). Fourthly, the decomposition of uncertainty may change with both time and 368 
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the magnitude of GMT change (cf., Fig. 3 top and bottom). In support of this 369 

argument, Wada et al. (2013) have found that the contribution of GCMs to overall 370 

uncertainty in simulations of global irrigation water demand is greater at higher GMT 371 

change. It follows from the third and fourth caveats that the task of constraining 372 

uncertainty may differ strongly depending on whether the goal is to inform near-373 

term, regional adaptation or long-term, global mitigation decisions.  374 

 375 

Finally, exploring the reasons for inter-model differences can contribute to an 376 

improved understanding of the mechanisms that produce specific climate impacts. 377 

For example, Friend et al. (2014) found that the implementation of plant respiration 378 

and mortality processes in global vegetation models is key to explaining the different 379 

carbon source-sink dynamics simulated by these models. Taking a closer look at 380 

ensemble spreads by comparing the output of different model classes (e.g., site-381 

based and ecosystem-type global crop models: Rosenzweig et al., 2014; hydrological 382 

models with and without dynamic vegetation: Davie et al., 2013) forms an important 383 

basis for future model development and improvement. 384 

 385 

5 General limitations of model intercomparison approaches 386 

Despite being powerful means of integration and uncertainty assessment, multi-387 

model approaches are no panacea for the currently incomplete patchwork of impacts 388 

knowledge. CMIP, which now provides global climate projections in its fifth phase 389 

(Taylor et al., 2011), is a suitable reference point to judge not only the successes of, 390 

but also the risks involved in tightly integrated approaches.  Ensemble convergence 391 

often results from consensus on metrics and observational datasets rather than a 392 
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converging understanding of processes. Knutti (2010) suggested that there may even 393 

be an ‘element of social anchoring’: Without any deliberate adjustment of models, 394 

participating groups tend to produce results that fall in the middle of the ensemble 395 

instead of representing an outlier. It is also worth noting that uncertainty in global 396 

climate projections (e.g., GMT, seasonal and spatial pattern of temperature and 397 

precipitation change) has not been considerably reduced between CMIP3 and CMIP5 398 

(Knutti and Sedláček, 2013), despite continuing efforts into model development and 399 

improvement.  400 

 401 

Another potential shortcoming may arise in the communication of results to policy 402 

makers. Individual models and small ensembles consisting of only a few models can 403 

of course provide policy-relevant information. However, the general risk involved is 404 

that critical information on the assumptions and characteristics of single models or 405 

model ensembles is not conveyed to policy makers, making results appear more 406 

general than they actually are. One example stems from the intercomparison of 407 

integrated assessment models led by the Energy Modeling Forum (EMF), which 408 

provided estimates of the economic costs of stringent mitigation policies for the 4th 409 

IPCC assessment report. Since not all models were able to run the lowest emission 410 

reduction scenario, it was later controversially discussed whether these estimates 411 

were biased due to the selection of specific model types in the considered EMF sub-412 

ensemble (Tavoni and Tol, 2010; Knopf et al. 2012).  413 

 414 

6 Conclusions 415 
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Keeping these caveats in mind, systematic and integrative model intercomparisons in 416 

climate impacts research (such as initiated by ISI-MIP, AgMIP, and similar projects) 417 

nonetheless constitute a major step forward. As demonstrated here, they are already 418 

on the road to delivering significant progress towards an improved quantitative and 419 

consistent view of a world exposed to a 2, 3, 4, or 5 degree higher GMT.  420 

 421 

In the short term, improved understanding of climate impacts across sectors and 422 

scales will support policy-makers in their review of the 2-degree temperature target 423 

(UNFCCC 2010). Inter-sectoral considerations can make a difference in policy-making, 424 

as recently demonstrated, for example, by an integrated analysis of climate change, 425 

land use, energy and water strategies with regard to the establishment of a local 426 

biofuel industry in Mauritius (Howells et al., 2013). 427 

 428 

In the longer term, establishing a community-driven process that compares and 429 

evaluates impact models regularly according to well-defined procedures will bring 430 

climate impacts research on an equal footing with the corresponding climatological 431 

and climate-economical sciences. In the latter fields, intercomparisons of GCMs and 432 

Earth system models (such as in CMIP), and of integrated assessment models (as 433 

through the Integrated Assessment Modelling Consortium, IAMC), respectively, have 434 

evolved into community benchmarks. As such, they advance the science and 435 

contribute significantly to an increasing transparency and accessibility of modelling 436 

results. A comprehensive, publicly accessible archive of climate-change impacts 437 

simulations, similar to that provided by the CMIP archive, would synthesize the state-438 

of-the art in impacts modelling and would guide the scientific community in further 439 
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addressing crucial model gaps and inconsistencies among models. The ISI-MIP data 440 

archive, which is now openly available, provides a good starting point, but would 441 

require a much broader involvement of the IAV research community to live up to its 442 

full potential. 443 
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