Responses to the reviewers

We would like to thank the two reviewers for their thoughtful comments. We have addressed all these comments in our revised manuscript. The point-by-point responses to the comments are provided below.

Reviewer 1:

Some general comments:

- **Question 1**: My major concern is that it is rather a report of finds from readily available and published data and does not provide much added scientific value.

- Answer: Thank you for the comment. Although this study used the readily available and published data, it is not a simple illustration of the data. The objective of this study is to identify the high risk areas for crop production under climate change in China and to support adaptation to climate change at regional scale. Although ISI-MIP project has provided the model outputs, these gridded outputs are not readily useful for effective risk reduction and adaptation strategies. The adaptation strategies are usually carried out for different regions and administrative districts. The decision makers are interested in the risk assessment at administrative areas rather than the gridded outputs. Our results provide a starting point for regional studies on vulnerability and adaptation strategies to climate change. It bridges the gap between the modelers and policy-makers. Scientists always hope the model projections could help shape climate adaptation approaches. This study demonstrates an effort at regional scale. We have clarified the objective and scientific significance of this study in the introduction section. We have also added the risk and uncertainty assessments in the administrative districts of the China in order to better support decision making at regional scale (please see Fig.S1 and Fig.S3 in the Supplemental materials).

- **Question 2**: The title may need some adjustment. In the Discussion (P626/L3ff), the authors state that GGCMs show large differences in projected CC impacts and do not reproduce historic yields well. The title should hence include some reference to uncertainties.

- **Answer**: Thanks for the suggestion. We agree that uncertainty is very important in risk assessment and we have revised the title accordingly. We have replaced the title with "A multi-model analysis of change in potential yield of major crops in China under climate change" in the revision.

- **Question 3**: The language could be polished in various places in order to facilitate understanding.

- Answer: We have read through the manuscript and polished the language.

- Question 4: The Conclusions are rather a summary and need more elaboration.

- **Answer**: We have rewritten the Conclusions section. In the revised section, we have organized the conclusions in two respects: 1) risk of crop productions under climate and uncertainty of the assessment, 2) what could be done in the future. Please see the Conclusion part in the revision.

Some specific comments:

- **Question 5**: P618/L4: "... a couple of global gridded crop models ..." why does this not state the number of crop models being used, which is four?

- **Answer**: The crop models used in this study are EPIC, GEPIC, pDSSAT and PEGASUS. We have stated the number of crop models in the revision. It has been replaced with "4 global gridded crop models (GGCropMs)" in the revision.

- **Question 6**: P618/L9: "... show that the potential yields of rice may increase over ..." should be "... show that the yields of rice may potentially increase over ..." to make clear that not yield potential is meant.

- **Answer**: We have corrected it following the suggestion.

- Question 7: P618/L11: should be "which" instead of "where".

- Answer: We have replaced "where" with "which".

- **Question 8**: P618/ L11: should say "yields" instead of "production". Production is not necessarily impacted by CC, as it also depends on the harvested area, agronomic inputs, etc.

- **Answer**: Corrected. We have checked the use of 'yield' and 'production' throughout the manuscript.

- Question 9: P621/L2: "harvesting time" should be "number of cropping seasons".

- Answer: Revised.

- **Question 10**: P621/L15: There actually is partial adjustment in some models: GEPIC takes adaption into account in terms of decadal adjustment of planting and

harvest dates and the distribution of spring and winter wheat. PEGASUS and LPJ-GUESS adjust the GDD of their cultivars. You may need to check more carefully the descriptions of models that produced the data.

- **Answer**: We have revised the descriptions and made the statements more accurate. The sentence "All the GGCMs have taken into account the CO_2 fertilization effects and assumed no adaptation, i.e. the crop planting area and irrigation area do not change in the future." should be "All GGCropMs considered two scenarios: All GGCropMs run with two experiments: one takes into account the CO_2 fertilization effects but the other one does not."

- Question 11: P622/L7: "moving average": what kind of average?

- **Answer**: In order to remove inter-annual variability of yield, we used 30-year moving average of the data. We have replaced "moving average" with "30-year moving average" in the revision.

- **Question 12**: P623/L16: "This is likely due to the limitations of rice model in the GGCMs". How do you derive this conclusion? Apparently, also the other crops are not represented too well in the GGCMs in terms of reproducing historic reported yields. Besides actual crop growth algorithms, the global crop models also use different input data (e.g. soils, planting dates, growing season lengths) and various management assumptions. I'm not sure whether any conclusions on model performance in terms of bio-physical processes can be drawn from the ISI-MIP crop model outputs.

- **Answer**: Thanks for the insightful suggestion. We agree that no conclusions on performance of bio-physical processes in the models may be drawn from ISI-MIP outputs. We have rewritten the related discussions.

- Question 13: 626/L11: See comment on adaptation above.

- **Answer**: We have rewritten the sentence in the revision: "Furthermore, some GGCropMs assumed none adaptation to climate change."

- **Question 14**: P627/L8: The conclusions should draw new findings or provide an outlook on what further research or policy decisions, etc. may be needed in the future based on what has been presented and discussed in the foregoing sections. This Conclusions chapter however is rather a summary that has already been provided in the abstract.

- **Answer**: Thanks for the suggestion. We have rewritten the conclusion section following the suggestion. Please see the answer to Question 4.

- **Question 15**: P628/L10: various names in the references have been misspelled (e.g. Challiore, Izauurade, Lobel). The authors for "Future scenarios of European agricultural land use ..." are not correct. The authors should check all references carefully and correct them where necessary.

- **Answer**: We have checked the references throughout the manuscripts and corrected the misspells. Some modifications are shown as follows:

L1150: "Challiore" has been changed to "Challinor"

L1166 "Khabarow" has beenchanged to "Khabarov"

L1170: "Glotter, M." has beenchanged to "Kelly, D."

L1172: "Elliott, J. Glotter, M., Best, N., Wilde, M., Glotter, M., and Foster, I." has been changed to "Ewert, F., Rounsevell, M. D. A., Renginster, I., Metzger, M. J., Leemans, R."

L1206: "Izauurade" has been changed to "Izaurralde"

L1238: "Lobel, D. B." has been changed to "Lobell, D. B."

L1329: "Kin" has been changed to "Kim"

L1374: have deleted "Rodomiro, O., 2008."

L1355: "W arszawski" has been changed to "Warszawski"

L1437: "Yolozawa" has been changed to "Yokozawa"

L1441: "Tornton" has been changed to "Thornton"

L1446: "Wahaa" has been changed to "Waha"

L1453: "Pontek, F." has been changed to "Huber, V."

L1454: "Research Design of the Inter-Sectoral Impact Model Intercomparison Projection (ISI-MIP)" has been changed to "The Inter-Sectoral Impact Model Intercomparison Projection (ISI-MIP): project framework"

L1472: have deleted "Xiong, W., Balkovic, J.,, 2014."

L1544: "Yand" has been changed to "Yang"

- **Question 16**: References: Xiong, W. et al. (2012) Untangling relative contributions of recent climate and CO₂ trends to national cereal production in China. Environ. Res. Lett. 7 044014

- **Answer**: It is a closely related reference and we have added it in the Discussion in the revision.

Reviewer 2:

Some general comments:

- **Question 1**: The paper is a valuable, relevant and interesting contribution to the literature, however it presently merely reports the regional findings rather than discussing them in the context of existing knowledge or investigating the underlying causes of changes observed. Therefore to me it fails to clearly identify whether anything new was learned.

- **Answer**: Thank you for the comment. The objective of this study is to identify the high risk areas for crop production under climate change in China and to support adaptation to climate change at regional scale. Although the gridded outputs were provided by the ISI-MIP project, the decision makers are usually not well informed from the scientific results. Our results could show the risk assessments at the administrative zones (please see Fig.S1 and Fig.S3 in the Supplemental materials) and thus provide a starting point for regional studies on vulnerability and adaptation strategies to climate change. It bridges the gap between the modelers and policy-makers. We have clarified the objective and scientific significance of this study in the introduction section. Furthermore, we have enhanced the discussion on the underlying causes of the risk in the revision.

- **Question 2**: The paper would benefit from discussing the main climatic causes of the changes observed by comparing patterns in the changes in temperature, precipitation and CO_2 to the patterns observed in crop yields. I realize that it would go beyond the scope of this paper to do an in-depth analysis here, but it is not satisfying to not receive any information about how climate changes in different GCM projections. Do the crops that increase growth mainly benefit from CO_2 fertilization? Do the crops that show a decline of yields mainly suffer from increased water stress?

- **Answer**: As the reviewer kindly mentioned, an in-depth analysis of the causes is beyond the scope of the paper. We have added some additional analyses in order to better understand the causes of the changes of relative yields. More specifically, we have investigated the role of CO_2 fertilization in the risk assessments. Please see "3.3 Projected changes in crop yield" (Fig.3 to Fig.7).

- **Question 3**: I think it would be valuable to receive information from your analysis about leading reason for the grey areas of inter-model uncertainty behind the temporal plots of median crops yields. Are they mainly due to differences between the crop models, mainly due to differences between the GCMs, or a mix of both, and if so, in what relation?

- Answer: In the revision, the model spread was analyzed to understand the uncertainty of the assessment. The standard deviation from all the available GCM-GGCM pairs was used to quantify the model agreement. The model spread

caused by GGCMs and GCMs was separately evaluated. The standard deviation of the estimates from the GGCMs was firstly calculated for each GCM. The averaged GGCM standard deviations of the GCMs was then used to assess the model spread caused by GGCMs. Using the same calculation procedure, the model spread caused by GCMs was estimated and compared with the model spread caused by GGCMs. We have added the method in "2. Materials and methods", and the results in "3.5 Model spread and uncertainty" (please see Fig.10).

- Question 4: You announce at the end of the introduction that you intend to compare your results to those obtained from AR4-based studies but as far as I can detect, do not do so subsequently. More generally: the strength of your study is that it is multi-model, multi-GCM using AR5 scenarios. The important question left open by your paper is: what do we learn from such a multi-GCM, multi-GGCM AR5 analysis? Do the results simply confirm previous knowledge (if so, in what way is that significant? Were there doubts about earlier studies?) or add to it? I suggest that you more systematically discuss your results (a) with respect to the present state of knowledge about climate impacts on crops in China, identifying the advances made (even if it is an important confirmation of existing knowledge), (b) with respect to AR4 in particular (if that is important – you mention it in the introduction), (c) with respect to single model studies. In summary: what is the advance in knowledge you provide?

- **Answer**: Thanks for the suggestions. We have provided more systematically discussions in the discussion section. As the previous AR4 studies are under different climatic scenarios, we compared the differences between AR4 and AR5 assessments qualitatively. We have modified the statements in the introduction accordingly.

- **Question 5**: You discuss the median behavior a lot, and the disagreement between model pairs. However, would not the "worst case" be of particular importance, too? If the best case happens, no problem. The median case is of interest. But the worst case could potentially really be a problem. It could be the real case. Maybe those models are right. So it is not just uncertainty, it is also a case where "the worst case cannot be excluded scientifically and is therefore a non-zero likelihood, i.e. a risk". So I suggest you also discuss the worst cases as such.

- **Answer**: We agree the worst case is meaningful for risk assessment. We have shown a figure of the worst case and have added a brief discussion regarding the risk of the 'worst case' (please see Fig.S2 in the Supplemental materials).

Some other, more minor comments:

- **Question 6**: I suggest to not use the abbreviation GGCM (global gridded crop model) because it is so similar to GCM. It can cause mistakes and confusion.

- Answer: We have replaced "GGCM (global gridded crop model)" with "GGCropM

(global gridded crop model)" throughout the manuscript.

- **Question 7**: The crop models used are established models described elsewhere, but the paper should very briefly describe what they do and what not.

- **Answer**: We have added a very briefly description about the crop models in the second paragraph of "2. Materials and methods" in the revision. The description is shown below.

The simulated crop yield data were taken from 4 GGCropMs (EPIC, GEPIC, pDSSAT and PEGASUS) (see table 1). These models may have different model types and different parameterizations of soil and crop processes. The dissimilarities of the models and the consequent caution needed in interpreting the model results are discussed in Rosenzweig et al. (2014).

- **Question 8**: Figures 6 and 7 are never mentioned in the text. You discuss Figs. 4 and 5, but not 6 and 7.

- **Answer**: It was corrected in the revision. Please see the fourth paragraph and fifth paragraph in "3.3 Projected changes in crop yield" in the revision.

- Question 9: How do results compare to discussions in the IPCC's AR5 WG2 report?

- **Answer**: Although our results are generally in line with the large pattern shown in the IPCC's AR5 WG2, our results have provided the risk assessment in details for different administrative zones. We have added a brief discussion in the revision.

- Question 10: The English is ok; however, there are quite a number of small but important language mistakes that are typical for non-native speakers. Often it is about the word "the", so let me explain once more, since it occurs many times: you use "the" before a noun when you mean a specific thing or group of things, one that you identify: you are talking about those things (for example: the coast of China, the GGCMs used). You do not use "the" if you are talking about a type of thing generally without a specific thing referred to (for example: "GGCMs simulate climate"). There are too many small language problems for me to list, so let me just do it for the abstract so you get an idea: (i) "a couple of" usually means: two. You mean: "a number of" (since there are 4). By the way: why not just say "four GGCMs"; (ii) "may benefit food production IN (not over)"; (iii) "where are outside"; you mean "which (or that) are outside"; (iv) "such as North China Plain" should be "such as the North China Plain"; (v) "new agronomic strategy"; better "nee agronomic strategies"

- Answer: Thanks for the comments. We have read through the manuscript and

polished the language.

1	<u>A multi-model analysisImpacts</u> of <u>change in potential yield</u> Future Climate Change on •		Formatted: Line spacing:
2	Potential Yields of major cropsMajor Crops in China under climate change	$\overline{\ }$	Formattad: Font: 45m
3		\frown	Formatted: Font: 小四
4	Y. Yin, Q. Tang, and X. Liu-		Formatted: Font: 小四
5	Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,		Formatted: Font: 小四
6	Beijing 100101, China		
7	Correspondence to: Q. H. Tang (tangqh@igsnrr.ac.cn)		
8			Formatted: Font: 小四
9	Abstract: Climate change may affect crop growthdevelopment and yield, which and consequently casts		
10	a shadow of doubt over China's food self-sufficiency efforts. In this study, we used the model		
11	projections derived from 4of a couple of global gridded crop models (GGCropMs)(GGCMs) to assess		
12	the effects of future climate change on the potential-yields of the major crops (i.e. wheat, rice, maize		
13	and soybean) inover China. The GGCropMsGGCMs were forced with the bias-corrected climate data		
14	from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5		
15	which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The		
16	results show that the potential yields of the crops would decrease in the 21 st century without carbon		
17	dioxide (CO ₂) fertilization effect. With CO ₂ effect, the potential yields of rice and soybean would may		
18	increase, while the potential yields of maize and wheat would decrease. The uncertainty of yields		
19	resulting from the GGCropMs is larger than the uncertainty derived from GCMs in the most part-over		
20	a large portion of China. Climate change may benefit rice and soybean yields in food productions over		
21	the-high-altitude and cold regions which where are not inoutside current main agricultural area.		
22	However, the potential yields of maize, soybean and wheat may decrease atin a large portion of the		
23	major food production area.eurrent main crop planting areas such as North China Plain. Development		
24	of new agronomic management strategiesstrategy may be useful for coping with climate change in the		
25	areas with high risk of yield reduction.		
26			
27	Keywords: climate change; global gridded crop model; crop yield; uncertainty; China		
28			
29	1. Introduction		
30	Global mean The linear trend of globally averaged combined land and ocean surface temperature		Formatted: Font: 五号
31	has increased by is 0.85 (0.68 to 1.06) °C/100 yr, over the period of 1880-2012, and it is likely to		Formatted: Indent: First line:
32	increase 1.5-2 °C at the end of 21 st century compared 1880-2012 (IPCC, 2013). According to the	\geq	Formatted: Font: 五号
33	period of 1850-1900assessment in the Fifth Assessment Report of the Intergovernmental Panel on	\geq	Formatted: Font: 五号
34	Climate Change (IPCC AR5), global surface temperature change at the end of the 21 st century		Formatted: Font: 五号
35	(relative to 1850-1900) is likely to exceed 1.5 °C in all but the lowest model scenario considered,		
36	and likely to exceed 2 °C for the two high scenarios (IPCC, 2013). In China, air temperature has		
i	V Vin		
	Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural		
	Resources Research, Chinese Academy of Sciences, Beijing 100101, China		
	<u>Q. Tang (🖂)</u>		
	Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China		
	Email: tangqh@igsnrr.ac.cn		

X. Liu Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 1

37	increased by 0.5-0.80.5-0.8 °C during the past 100 years (Qin et al., 2005; Ren et al., 2005a; Ren		Formatted: Font: 五号
38	et al., 2005b). In the end of 21 st century, surface, The nationwide air temperature increases will		Formatted: Font: 五号
39	exceed would increase by 1.3-2 °C -1 °C in 2020, 2.3-3.3 °C in 2050, and 3.9-6.0 °C in 2100 as		Formatted: Font: 五号
40	compared with a probability of over 60% in all regions of China (Yang et al., 2014). ir temperature		Formatted: Font: 五号
41	in 1961~1990 based on the model projections provided by China Meteorology Administration		Formatted: Font: 五号
42	(CMA) (Qin, 2007). The warming magnitude would increase from south to north. Particularly,		
43	significant temperature rise is projected in northwestern and northeastern China (Ren et al., 2005b;		
44	Qin, 2007).		
45	The impacts of climate change on crop yields and food production have prompted concern		Formatted: Font: 五号
46	worldwide. There are <u>numerous</u> large numbers of studies devoted to assessing the impacts of		Formatted: Font: 五号
47	climate change on agriculture production variation over the past few decades (Nicholls, 1997;		Formatted: Font: 五号
48	Lobell et al., 2007; Tao et al., 2008b; 2008; Joshi et al., 2011) and the potential impacts of future		Formatted: Font: 五号
49	climate change on agriculture production (Jones et al., 2003; Ewert et al., 2005; Lin et al., 2005;		
50	Tao et al., <u>2008a; 2008</u> ; Thornton et al., 2009; Liu et al., <u>2013b</u>). The projections 2013). A lot of		Formatted: Font: 五号
51	changesstudies had been carried out to project the change in crop yields in China are widely		Formatted: Font: 五号
52	reported using crop models (process-based or statistical) with GCM outputs which were generated		Formatted: Font: 五号
53	for the Fourth-Assessment Report of IPCC (i.e. Parry et al., 2004; Tao et al., 2008a; 2008; Wang et	$\overline{}$	Formatted: Font: 五号
54	al., 2011; Lv et al., 2013; Tao et al., 2013; Ju et al., 2013). It has been suggested that the yields of	\checkmark	Formatted: Font: 五号
55	maize and rice would decline while wheat yield would increase in some regions in China as global		Formatted: Font: 五号
56	mean temperature increases (i.e. Parry et. al., 2004; Lin et al., 2005; Rodomiro et al., 2008;		
57	Chavas et al., 2009; Challinor et. al., 2010; Ju et. al., 2013). Liu et al. (2013a) foundA few studies		Formatted: Font: 五号
58	suggested that the production of major food crops in China might increase under various emission		
59	scenarios generated for IPCC AR4 (Liu et. al., 2013) although the projections of climate change		Formatted: Font: 五号
60	impacts on crop yields may be inherently uncertain (Asseng et al., 2013).		
61	Understanding the effects of climate change on crop yield is are important for developing		Formatted: Font: 五号
62	adaptation and mitigation measures in agricultural regions of sector to climate change for-China.		Formatted: Font: 五号
63	However, most existing assessments have been were made based on a single crop model forced by		Formatted: Font: 五号
64	climate change experiments generated for IPCC AR4. In addition, only a and few studies have		Formatted: Font: 五号
65	examined the impacts of climate change on crop yield in China using crop models forced by the		
66	latest climate change experiments generated for IPCC AR5. Furthermore, most of model		
67	experiments focused on model grids rather than administrative areas. It is difficult for the decision		
68	makers, who are more interested in the risk at the level of administrative area, to use the model		
69	results. Therefore, an assessment of change in potential crop yield at the administrative areas is		
70	needed for climate adaptation and mitigation. Rice, maize and wheat are the major crops in China.		Formatted: Font: 五号
71	The statistics from the National Bureau of Statistics of China (NBSC) (http://data.stats.gov.cn)		Formatted: Font: 五号
72	show that the total area of the three major crops (rice, maize and wheat) occupies about 54% of		Formatted: Font: 五号
73	the total cropland area in China. Soybean is a globally important crop, providing oil and protein.		Formatted: Font: 五号
74	In recent years, China's rising demand for soybean has brought it to the top of the list of importers.		
75	China's import of soybean wasreaches 52 million tonstones in 2011, accounting for 58% of global		Formatted: Font: 五号
76	soybean trade (Food and Agricultural Organization (FAO), http://faostat3.fao.org). Therefore, the		Formatted: Font: 五号
77	yield changes of the four crops, i.e. rice, maize, wheat and soybean, are important for assessing the	$\overline{\ }$	Formatted: Font: 五号
78	climate change impact on food security in China.		Formatted: Font: 五号
79	ISI-MIP, The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a		Formatted: Indent: First line:
80	community-driven modeling effort with the goal of providing cross-sectoral global impact		Formatted: Font: 五号

81	assessments based on the newly developed climate scenarios (Warszawski et al., 2014), 2013). It	Formatted	l	
82	provides an opportunity for assessing agricultural risks of climate change in the 21st century using			
83	the Representative Concentration Pathways (RCPs) for IPCC AR5 (Rosenzweig et al., 2014;2013; /	///		
84	Elliott et al., 2014). 2013). The main objective of GGCMs were forced with the bias-corrected	///		
85	climatic variables from RCP 8.5 outputs of 5 global climate models (GCMs). In this study is we			
86	used the model projections of a couple of GGCMs in ISI-MIP to assess the effects of future /	/ //		
87	climate change on the potential yields of the major corps crops (i.e. wheat, rice, maize and	//		
88	soybean) using the model outputs of 4 GGCropMs (i.e. EPIC, GEPIC, pDSSAT and PEGASUS)			
89	in ISI-MIP, over China implied by the IPCC AR5 climate change experiments. The model			
90	projected yield changes of the crops are illustrated <u>at administrative area level</u> and the uncertainty			
91	of model projections is was analyzed. The agricultural risks of elimate change in China were			
92	demonstrated and discussions have been made by comparing the assessments using IPCC AR5			
93	and AR4 climate change scenarios when the corresponding assessments using AR4 scenarios were			
94	available in the literature.			
95	2. Materials and methods			
96	The agricultural land and irrigated area data were obtained from MIRCA2000, the global monthly	Formatted	: Font: 五号)
97	irrigated and rain-fed crop area data (MIRCA2000) were obtained from the Institut für Physische	Formatted	: Indent: First	line:
98	Geographie, Goethe Universitat (http://www.uni-frankfurt.de/45218031). The s around the year	Field Cod	e Changed	
99	2000 (Portmann et al., 2010). The MIRCA2000 data consist of all major food crops including	Formatted	: Font: 五号	
100	wheat, rice, maize and soybean (Portmann et al., 2010). The data set refers to the period of	Formatted		
101	<u>1998-2002</u> and has been made available with a spatial resolution of $0.5^{\circ}\times$ degree by			()
102	0.5°, degree by ISI-MIP (Warszawski et al., 2014), 2013). The annual crop yields statistics from of			
103	the four crops in 1981 to 2010 were provided for each province of China by NBSC the National			
104	Bureau of Statistics of China (http://www.stats.gov.cn/). There annual harvesting time is one			
105	<u>cropping season of a year in most of 1 in the northern China and 2-or-3 seasons in the southern</u>	///		
106	China. The current GGCropMs cannot GGCMs can't simulate well the multiple harvestings of rice	///		
107	(i.e. (e.g. Priya et al., 2001; Xiong et al., 2014). For simplicity, we We used the yield in a single			
108	harvesting time, although there are three i.e. early season, mid season, or single cropping late rice	/		
109	yield of the different rice planting systems: single cropping rice, double cropping rice, and triple			
110	cropping rice in China (Mei et al., 1988). The yield in the single harvesting time was compared			
111	with the simulated potential rice yield of GGCropMs, GGCMs.			
112	The simulated potential crop yield data were taken from the simulations of 4 GGCropMs (GGCMs	Formatted	l	<u></u>
113	-EPIC, (Williams, 1995; Izaurralde et al., 2006), GEPIC, (Williams et al., 1990; Liu et al., 2007),			
114	pDSSAT (Jones et al., 2003; Elliott et al., 2013) and PEGASUS) (see Table 1). These models may			
115	have different model types and different parameterizations of soil and crop processes. The			
116	dissimilarities of the models and the consequent cautions needed in interpreting the model results			
117	are discussed in Rosenzweig et al. (2014)., (Deryng et al., 2011). The GGCropMsGGCMs were	Formatted	l	
118	forced with the bias-corrected climatic data (Hempel et al., 2013) for the historical period			
119	<u>1971-2005(1971-2005 (except EPIC of which was forit is 1980-2010)1980-2010)</u> and the RCP	Formatted		
120	8.5 for future climate scenario 2006-2099 (2006-2099 (except EPIC of which was forit is	/		
121	2011-2099) 2011-2099) climate scenario of 5 GCMs from the Fifth Coupled Model /			
122	Intercomparison Project (CMIP5) (Taylor et al., 2012). All GGCropMs run with two experiments:			
123	one takesthe GGCMs have taken into account the CO2 fertilization effects and the other	Formatted	l	
124	does assumed no adaptation, i.e. the crop planting area and irrigation area do not, change in the			

125 future. In order to assess the performance of GGCropMs, GGCMs, the GGCropMsGGCMs 126 simulations with the CO₂ fertilization effect in the historical period were compared with the yield statistics from NBSC statistical yields. Table 1 shows an overview of the 5 GCMs and 4 127 GGCropMs,GGCMs. All the 4 GGCropMs,GGCMs provided the simulated yields of maize, rice, 128 129 wheat and soybean except for PEGASUS which did not provide rice yield simulation. The yield simulations of EPIC were missing in 2066, 2067 and 2068. The GGCropMs provided the 130 simulated crop yields in irrigated and rain-fed cropland. For more detailed descriptions of the 131 main characteristics of the GGCMs, the readers are referred to Rosenzweig et al. (2013). The 132 133 GGCMs provide crop yield simulations in irrigated and rain-fed agriculture. Since irrigation 134 practice reduces water stress, the simulated crop yields in the irrigated agriculture are usually 135 larger than that in the rain-fed agriculture.

136 For each $0.5^{\circ} \times 0.5^{\circ}$ grid, crop yield was calculated as the area-weighted yield in the irrigated and 137 rain-fed portions of the grid according to the crop-specific irrigated and rain-fed areas. We divided China into 8 regions following the administrative boundary (Fig. 1), Fig. 1). 138 yield ofever a region was then calculated as the area-weighted yield in the irrigated and rain-fed 139 140 portions of the grids in the region. The crop yield of each grid or region for each year was 141 calculated for each GCM-GGCropMGCM-GGCM pair. There are 5-GCMs and 4-GGCMs, 142 making a total of 20 model pairs (5GCMs×4GGCropMs) for maize, wheat and soybean. Meanwhile, there are 15 GCM-GGCropMGCM-GGCM pairs for rice because the rice yield is 143 missing in PEGASUS simulations. The 30-year moving averages of the crop yield time series 144 from 1981-2099,1981-2099 were computed. The first 30-year moving average value was for the 145 period of 1981-2010,1981-2010 (denoted as 1995, the center year of the period). The _ and the 146 other moving average years were also denoted as the center year of the 30-year moving average 147 was used to denote the 30-year period, The relative crop-yield change was computed as the crop 148 149 yield difference between a 30-the moving average year period in future and 1995 (i.e. the 150 historical period of <u>1981-2010</u>, 1981-2010, divided by the erop yield in the historical period. We 151 computed the multimodel-ensemble medians (MMs) of the relative erop-yield change from all the available GCM-GGCropMGCM-GGCM pairs, together withpairs. We showed the 152 inter-quartileinterquartile range (the value of the 75th percentile minus that of the 25th percentile) 153 154 of the of the multimodel ensembles. The MMs of , to quantify the uncertainty of the model projections. If MM value of the relative* 155 erop-yield change with the CO_2 effect were calculated at the gridded outputs and prefectures in 156 China at the end of the 21_{14}^{st} century (2070-2099). If the MMs of relative yield change at the end of 157 158 the 21^{st} century (2070-2099) is larger than $\geq 10\%$ (smaller than (<-10%) and more than 75% model 159 pairs support a positive (negative) change, the model projections suggest that the specific crop has 160 a high resilience (risk) to climate change if no further adaptation measures were taken. The areas with high resilience (risk) to climate change for each crop were illustrated. Furthermore, the 25th 161 percentile, instead of the MMs, was used to show the possible risk of the model projected 162 worst-case. 163 164 The standard deviation (STD) of the relative changes from all the available GCM-GGCropM pairs was used to quantify the model uncertainty. The model uncertainties caused by GGCropMs and 165

166 GCMs were evaluated separately. The standard deviation of the relative change from 4

167 GGCropMs was calculated for each GCM. The averaged GGCropM standard deviation of the 5

168 GCMs was then used to assess the model spread caused by GGCropMs. Likewise, the averaged

{	Formatted:	Font:	五号
-{	Formatted:	Font:	五号
-{	Formatted:	Font:	五号
-(Formatted:	Font:	五号
-{	Formatted:	Font:	五号
ſ	Formatted:	Font:	五号
-{	Formatted:	Font:	五号

-{	Formatted:	Font:	五号
-	Formatted:	Font:	五号
-{	Formatted:	Font:	五号
-{	Formatted:	Font:	五号
-	Formatted:	Font:	五号
-	Formatted:	Font:	五号

Formatted:	Font: 五号	
Formatted:	Font: 五号	
Formatted:	Font: 五号	
Formatted: Formatted: 0 cm	Font: 五号 Indent: First line:	
Formatted: Formatted: 0 cm Formatted:	Font: 五号 Indent: First line: Font: 五号	
Formatted: Formatted: 0 cm Formatted: Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号	
Formatted: Formatted: 0 cm Formatted: Formatted: Superscript	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号,	
Formatted: Formatted: 0 cm Formatted: Formatted: Superscript Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号, Font: 五号	
Formatted: Formatted: 0 cm Formatted: Formatted: Superscript Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号, Font: 五号	
Formatted: Formatted: 0 cm Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号, Font: 五号 Font: 五号	
Formatted: Formatted: 0 cm Formatted: Formatted: Superscript Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号 Font: 五号 Font: 五号 Font: 五号	
Formatted: Formatted: 0 cm Formatted: Formatted: Superscript Formatted: Formatted: Formatted: Formatted: Formatted: Formatted: Formatted:	Font: 五号 Indent: First line: Font: 五号 Font: 五号, Font: 五号 Font: 五号 Font: 五号 Font: 五号 Font: 五号	

169 GCM standard deviation of 4 GGCropMs was used to assess the model spread caused by GCMs.

170 3. Analysis and Results

171 **3.1 Crop area in China**

Fig. 1 shows the <u>planting areas erop area</u> of maize, rice, soybean and wheat in China. The maize 172 173 planting area is mainly distributed in the Northeast China (NEC), North China (NC) and 174 Southwest China (SWC). The rice planting area spreads across the eastern China with large area in 175 the East China (EC), Central China (CC), South China (SC), NC and Central China (CC), and parts of the Northeast China (NEC), Xinjiang (XJ) and Sichuan Provinceprovince in the SWC. 176 The planting area of soybean is relative small compared comparing with the areas of maize, rice 177 178 andor wheat. The main planting area of soybean locates in the NEC and NC. The wheat planting area is mainly distributed in the NC, northern EC, parts of the NEC and Sichuan Provinceprovince 179

180 in <u>the</u> SWC.

181 **3.2 Simulated and NBSC statistical yields in** <u>1981-2010</u><u>1981-2010</u>

2Fig. 2 shows the simulated and NBSC statistical yields inof China during 182 Fig. 1981-2010,1981-2010. The NBSC yields were reported at each province, and the crop yield 183 184 simulations were provided at 0.5 degree grids. Apparently, the simulated patterns demonstrate thatpreserve local details inside each province while the NBSC statistical patterns illustrate the 185 186 yield difference among the provinces. The average yields for the 8 regions are listed in Table 2. Both the simulated and NBSC maize yields are high at the main maize planting areas such as the 187 NEC, NC, and <u>NWC</u>. Northwest China (NWC) and are relatively low at the CC and SC (Fig. 2 188 a1,a2).a,b). It seems that GGCropMsthe GGCMs overestimate the maize yields in the most areas 189 190 of China, but underestimate-the maize yields in the high-altitude and cold regions such as the 191 Tibetan Plateau. The simulated rice yield is lower than NBSC yield in all regions (Fig. 2 b1,b2),e,d). This is likely due to the limitation of rice model in the GGCMs (Xiong et al., 2014). 192 193 In the EC eastern China, both simulation and NBSC data show high rice yield in a belt from the 194 southern NC to Sichuan Provinceprovince in the SWC, and low rice yield in the northernmost and 195 southern provinces. In the western China, GGCropMsthe GGCMs simulation suggests lower rice 196 yield in the high-altitude and cold regions than in the low-altitude areas. The NBSC data show low 197 rice yield at the high-altitude region such as Tibetan Plateau although the NBSC yield is generally 198 higher than the simulation. The yield of soybean is lowest among the 4 major crops. The simulated 199 soybean yields are generally higher than the NBSC yield in most areas of China (Fig. $2 c_1 c_2$), e.f. 200 In the main soybean planting areas of soybean in the NEC and NC, the simulated yield is about 90% and 65% of the NBSC yield, respectively. The yield of wheat is lower than those of maize 201 202 and rice but higher than that of soybean (Fig. 2 <u>d1,d2),g,h)</u>. The NBSC wheat yield is high in the 203 main wheat planting area such as the NC, partsand part of the NWC and XJ, but itand is low in the southern China. The simulated wheat yield shows some high values in the a mixed pattern with 204 205 higher yield in a belt from the NWC to Sichuan Province province in SWC. Although, the model 206 simulations are is imperfect in terms of its ability to reproduce the NBSC statistical yield, they can 207 state of art model can simulate the order of the crop yields and capture the difference among the 208 crops. The comparison between model simulation and NBSC vieldstatistics illustrates the inherent uncertainty of the state-of-art GGCropMs.GGCMs. Due to the large discrepancy between the 209 210 model simulated yield and NBSC statistical yieldstatistics in the historical period, the relative 211 changes rather than the absolute differences are analyzed for future changes in crop yields.

Formatted:	Font: 五号
Formatted: 0 ch	Indent: First line:
Formatted	

Formatted: 0 ch	Indent: First line:
Formatted:	Font: 五号
Formatted:	Font: 五号
Formatted	

212	3.3 Projected temporal evolution of changes in crop yields	
213	Fig. 3 shows the relative changes of the simulated yields of maize, rice, soybean, and wheat with	Formatted: Font: 五号
214	and without the CO ₂ fertilization effects in China. Without CO ₂ effect, the simulated yields of	Formatted: Indent: First line:
215	maize, rice, soybean and wheat would decrease by more than 10% while the simulated wheat yield	Formatted
216	would decrease largest by about 25% at the end-for the period of 21 st century. With CO ₂ effect,	
217	the 1995-2085. The simulated yields of rice and soybean would increase and yields of maize and	
218	wheat would decrease in the late 21 st century. The projected change directions are generally	
219	consistent with the previous studies (i.e. (e.g. Lin et al., 2005; Ye et al., 2013; Ju et al., 2013). The	
220	relative change of maize yield is small (between -10% and (~5%). The inter-quartile range _{25th}	
221	and 75th percentile envelope of maize yields coveringeovers the zero change line throughout the	
222	study period indicates, indicating that the model agreementeonsensus on the change direction is	
223	low_does not exist. The simulated maize yield decreases by 3.3% in the late 21 st century although	
224	the model uncertainty is high (Fig. 3a). There. In the ensemble median, there is a transition to a	Formatted
225	sustained higher yield for rice and soybean beginning that begins in the late 20 th century. The	
226	simulated rice yield would increase by 8% in the 2070s and the most model pairs support an	
227	increasing change. The model agreement on the rice yield increase is very high before the 2040s,	
228	which suggests that suggesting climate change may benefit rice production in the next a few	
229	decades. The MMsmedian of the simulated rice yield keeps at the high level after the 2070s	
230	although the model agreement becomes low. The simulated soybean yield would increase by 10%	
231	in the late 21 st century and <u>the most model pairs agree on the increase change</u> (Fig. 3c). The	
232	simulated wheat yield shows little change before the 2030s, slightly increase duringin the 2040s to	
233	2060s, and slightly2050s, and slight decrease after the 2060s2050s (Fig. 3d). The relative change	
234	in wheat yield is generally small (between -5% and (~5%) and the agreement of the model pairs	Formatted
235	inon the change direction is low.	
236	Fig. 4Fig. 4 shows the relative changes in maize yield at the <u>seight</u> regions of China. Without The	Formatted: Indent: First line:
237	median of the CO ₂ effect, the MMs of simulated maize yield would largely decrease in almost all	0 cm
238	the regions in China. With the CO ₂ effect, the MMs of simulated maize yield would increases	Formatted
239	increases slightly before the 2060s and decreases slightly thereafter in the main maize planting	Formatted
240	region NWC area NEC. However, there is no model consensus on the change trenddirection	
241	throughout the study period. In the NC, another main maize planting area, NC, the simulated	
242	maize yield would decreased decreases slightly with high model agreement before the 2030s, which	
243	suggestssuggesting that maize production in the NC may decrease in the next-a few decades. The	
244	simulated maize yield would decrease largely after the 2050s although the model agreement on the	
245	decrease is low. In the SC, there is a transition to a sustained lower yield for maize. The maize	
246	yield would decrease by 18% with high model agreement at the end of the 21 st century. In contrast,	
247	the maize yield in the NWC would increase by 5% before the 2030s. The maize yield after the	
248	2030s would keep the high level after the 2030s in the NWC although the model agreement	
249	becomes low. The simulated maize yields in the EC, CC, XJ SWC and SWC XJ show a general	
250	decreasely decreasing change withbut the model agreements on the change direction are low	
251	model agreements.	
252	Fig. 5 shows the relative changes in rice yield at the <u>seight</u> regions of China. Without the CO ₂	Formatted: Font: 五号
253	effect, the MMs of simulated rice yield would largely decrease in all regions in China. With the	Formatted: Indent: First line:
254	CO ₂ effect, the simulated rice yield would keep increase. The simulated rice yield shows generally	Eormetted
255	increasing trend with high model agreement in the northern and western China (i.e. NEC, NC,	

256	NWC, SWC, and XJ and NEC The simulated rice yield would increase by about 5% in the NC		Formatted
257	and XJ and increase by more than 10% in the SWC, NEC and NWC at the end of the 21 st century.		Formatted
258	In the southern and eastern China (i.e. SC, CC and EC, EC), the relative change in rice yield is		Formatted: Font: 五号
259	generally small (<5%) and the model agreement of the model pairs on the change direction is low.		Formatted
260	These results indicate that climate change may benefit rice yield production in the northern and		Formatted
261	western China while itsclimate change impact on rice yield in the southern and eastern China is		Formatted: Font: 五号
262	inconclusive.	()	Formatted: Font: 五号
263	Fig. 6 shows the relative changes in soybean yield at the 8 regions of China. The simulated yield		Formatted: Font: 五号
264	of soybean would decrease in all regions without the CO ₂ effect. With the CO ₂ effect, the		Formatted
265	simulated sovbean vield would increase in the NEC and NWC with high model agreement on the		Formatted: Font: 15
266	change direction. In the NEC and XJ, the soybean yield would increase by more than 10% at the		Formatted: Font: 五号
267	end of the 21 st century. In the NWC and SWC, the soybean yield would increase by about 7% and		Formatted: Font: 五号
268	14% The relative change in sovbean yield is generally small (<5%) with low model agreement in		Formatted
269	the southern and eastern China (i.e. SC, EC and CC). The simulated sovbean yield would increase		Formatted: Font: 五号
270	slightly before the 2050s and decrease slightly thereafter with low model agreement in the NC		Formatted
271	These results indicate that climate change would benefit soybean yield in the NEC NWC and XI		Formatted: Font: 五号
271	hut its impact in the other regions is inconclusive		Formatted: Font: 五号
212	ou us impact in the other regions is medicidarive.		Formatted: Font: 五号
273	4Fig.7 shows the relative changes in wheat yield at the 8 regions of China. Without the CO		Formatted: Font: 五号
274	effect the MMs of simulated wheat yield would decrease by more than 13% in all regions of		Formatted
274	Chipa at the end of 21^{st} century. With the CO ₂ effect the simulated wheat yield would decrease	$\langle $	Formatted
275	slightly with high model agreement on the change direction in the next two decades in the NC		Formatted
270	signify with high model agreement on the change direction in the next two decades in the NC region the main wheat planting area. The abange direction of wheat yield in the NC after the		Formatted
277	<u>region, the main wheat planting area. The change direction of wheat yield in the NC arter the</u>	//	Formatted
278	2050s, however, is unclear due to large uncertainty in model simulation. The feative change in		Formatted: Font: Times New Roman
279	wheat yield is small and the model agreement on the change direction is generally low in the other		Formatted: Normal, No bullets
280	regions (i.e. NEC, EC, NWC and XJ). There is a transition to a sustained low yield in the SC and a		or numbering
281	nigh yield in the SwC for wheat, which suggests that Discussions		Commetted, Font, Times New
282	Numerous studies have examined the effects of future climate change would threaten wheat		Roman, 五号
283	production in the SC and benefit wheat production in the SWC. The increase or decrease change is	$\backslash $	Formatted: Font: 五号, Font
284	inconclusive in the next decade due to large model uncertainty. However, the change direction		color: Auto
285	becomes obvious after the 2030s. The simulated yield in the CC region would increase from the		Roman
286	2000s to 2040s and decrease thereafter. The model agreement on the increase change before the		
287	2040s is high but the agreement on the decrease change after the 2040s is low.		
288	<u>3.4 Climate risk of on crop production</u>		Formatted: Font: 五亏
289	Fig. 8 shows the MMs of the relative yields of China. The projected changes in crop yield with the		Formatted: Font: 五号
290	$\underline{CO_2}$ effect at the end of the 21 st century. The simulated maize yield would decrease over a large		
291	portion of China while it would increase in a relative small area in the high-altitude and cold		
292	regions. The largest decrease is at the main planting areas in the northern and southern China (Fig.		
293	8a). The simulated rice yield would increase over a large portion of China with the largest increase		
294	in the high-altitude and cold regions (Fig. 8b). Rice would decrease in some of the current main		
295	rice planting areas such as the EC and SC. The relative change in soybean yield (Fig. 8c) shows a		
296	spatial pattern similar to that of rice yield. The soybean yield would increase in the regions outside		
297	the traditional agricultural areas but decrease in the main agricultural areas in the eastern China.		
298	The relative change in wheat yield (Fig. 8d) is negative across China except for a small area in the		

____)

299 Tibetan Plateau and NEC. Fig. S1 shows the MMs of the relative changes of the simulated yield of maize, rice, soybean and wheat with the CO_2 effect at the prefectures of China at the end of the 300 21st century. The maize yield would decrease in most prefectures of the SWC, NC and NEC, and 301 would increase in most prefectures of the NWC, NEC and SC (Fig. S1a). The yields of rice and 302 303 soybean would increase in the most prefectures in China (Fig. S1b,c). The relative change in 304 wheat yield (Fig. S1d) is negative in China except for some prefectures in the SWC, NWC, and EC. 305 The relative change of the 25th percentiles of maize and wheat yield is negative across China 306 except a small area in the SWC region (Fig. S2). In the worst-case, the yields of rice and soybean 307 308 would decrease as well across the southern and eastern China and the XJ region (Fig. S2). The worst-case assessment shows high risk of production of all types of the main crops and in all the 309 310 main planting areas. This worst-case shows the upper boundary of the risk assessment taking the 311 large uncertainties in the model pairs. 312 There are large high climate risk areas for maize and wheat yields under a warming climate. The 313 high risk areas for maize yield extends across most agricultural areas in China including the NC, SC, XJ, and some parts of the NEC and NWC, suggesting that a high climate risk for maize 314 production (Fig. 9). The high risk areas for wheat yield include the SC, XJ and a part of EC. The 315 316 high risk areas for maize and wheat are in the current main agricultural area, indicating that maize 317 and wheat production in China would face great challenge in the future if no further adaptation measures were taken. The high risk area for rice and soybean yields is quite small. The high 318 319 resilience areas for the 4 crops are generally located in a belt from the NEC to SWC which is outside the traditional agricultural area. The prefectures with high resilience of crop yield are 320 321 mainly located in the western and Northeast China (Fig. S3). The prefectures with high risk of 322 crop yield are located in the eastern China. 3.5 Model spread and uncertainty 323 324 Fig. 10 shows the model spread in the relative change of maize, rice, soybean, and wheat yields across all the available GCM-GGCropM pairs and the model spread induced by GCMs and 325 GGCropMs at the end of 21st century. The STDs from the crop model ensembles are more than 326 60% in the Tibet Plateau, suggesting the model uncertainty is large in this region. The model 327 328 spread for maize is generally less than 40% and the model spread for rice and wheat is generally 329 less than 30% in the eastern China. The model spread for soybean and wheat is more than 50% in many parts of the eastern China, suggesting the model uncertainty is especially large for these 330 crop types. The model spread (i.e. STD of in the relative change of yield) arising from the 331 GGCropMs is larger than that arising from the GCMs in most part of China. The uncertainty 332 333 arising from the GCMs is generally small (less than 20%) in the eastern China, while is the uncertainty is more than 30% for soybean and wheat over a large area in the eastern China. 334 335 4. Discussion There are large discrepancies between the NBSC statistics and the model simulated crop yields in4 336 337 the historical period. The uncertainty of the gridded from various crop models is still high (i.e.,under different climate change experiments often show large differences (e.g. Guo et al., 2010; 338 Tao & Zhang, 2011; Wang et al., 2011; Ye et al., 2013). It seems the state of art of GGCMs cannot 339 simulate well the crop yield in the historical period and there is a large model spread in the 340 projected future crop yield change. Moreover, change in future water availability (Tang & 341 Lettenmaier, 2012; Schewe et al., 2014;2013; Piontek et al., 2014), which 2013), which is not 342

Formatted: 0 ch	Indent: First line:
Formatted:	Font: 五号
Formatted:	Font: 五号

	Formatted:	Font:	五号
1	Formatted:	Font:	五号

343	accounted for in this study, might lead to a cropland conversion of cropland from irrigated to		Formatted: Font: 五号
344	rain-fedrainfed management and a consequent reduction of crop yield (Elliott et al., 2014), are not		Formatted: Font: 五号
345	2013). Furthermore, no adaptation options are considered in this study. Furthermore, we used the		Formatted: Font: 五号
346	model outputs from ISI-MIP and no further adaptation measures are considered the GGCMs. It is		Formatted: Font: 五号
347	possible that the adaptation measures such as changing sowing date and planting area couldean		Formatted: Font: 五号
348	partially or even totally offset the negative effects of climate change (Yun et al., 2007; Meza et al.,		Formatted: Font: 五号
349	2009; Olmstead et al., 2011). These suggest that the inherent model uncertainty would be a major		Formatted: Font: 五号
350	issue in assessing climate change impacts on crop yield (Asseng et al., 2013; Rosenzweig et al.,		
351	2014),2013). Future assessment of climate change impacts on crop yield should applyuse the		Formatted: Font: 五号
352	further improved models-applied in a localized setting in China and consider a wide variety of		Formatted: Font: 五号
353	adaptation options.		
354	The simulated crop yields with the CO2 effects would generally increase inover the high-altitude		Formatted: Font: 五号
355	and cold regions in a warming climate. It suggests that climate warming may in the future would		Formatted: Font: 五号
356	allow agriculture to move northward or upward into regions where are currently less unsuitable for	$\overline{}$	Formatted: Font: 五号
357	the crops. The simulated crop yields show mixed patterns of increasing and decreasing changes in	\swarrow	Formatted: Font: 五号
358	the current main agricultural area in the eastern China. The simulated crop yield may decrease in a	$\backslash \backslash$	Formatted: Font: 五号
359	warming climate if present agronomic management was kept because present agronomic		Formatted: Font: 五号
360	management has adapted to the current climate (Xiong et al., 2007). Maize and wheat seem		Formatted: Font: 五亏
361	sensitive to the rise in temperature in the eastern China. Climate change is unlikely to benefit		
362	maize and wheat productions in the traditional main agricultural area in the-eastern China but		
363	might benefit rice production. The results are in line with previous studies (Xiong et al., 2007) and		
364	the IPCC reports (Parry et al., 2007; Field et al., 2014).		
365	The CO ₂ fertilization effect would favor crop yields in the future. The simulated crop yields		
366	without the CO ₂ effect would largely decrease while the simulations with the CO ₂ effect might		
367	increase. The important role of the CO ₂ effect is also discussed in the previous results (i.e. Lin et		
368	al., 2005; Sakurai et al., 2014). It should be noted that the dominant effects of climate change on		
369	crop yield are still inconclusive. The effects of different climatic variables (i.e. temperature,		
370	precipitation, radiation, CO ₂) on crop yield were assessed in many researches (i.e. Tao et al., 2008;		
371	Lobell and Gourdji, 2012; Xiong et al., 2012). The dominant variable that affects change in crop		
372	yield may vary in different regions. The causes of the climate risk in crop yield should be further		
373	investigated in the future.		
374	5. Conclusion		
375	Based on the model projections of 4 GGCropMs, the impact of future climate change on the yields		Formatted: Indent: First line:
376	of the major crops (wheat, rice, maize and soybean) in China was assessed. The projections		U CH
377	without the CO ₂ fertilization effect suggest that the yield of maize, rice, soybean and wheat would		
378	decrease by up to 25%, while the projections with the CO2 effect show that the yield would		
379	decrease by less than 5% for maize and wheat and increase by 10% for rice and soybean under		
380	<u>RCP8.5</u> at the end of the 21^{st} century in China. With the CO ₂ effect, the model <u>The changes in</u>		Formatted: Font: 五号
381	potential yield of the major crops (maize, rice, wheat, and soybean) in China under future climate		
382	change are assessed by using crop models forced by the latest climate change experiments		
383	generated for IPCC AR5 and made available by ISI-MIP. The results show that the area-weighted		
384	yields of rice and soybean in China would increase in the next a few decades with high model		
385	agreement. The changes in area-weighted yield of maize and wheat in China are small and the		
386	model agreement of the model pairs on the change direction is low. The response of potential crop_		Formatted: Font: 五号

Formatted:	Font:	五号
Formatted:	Font:	五号

Formatted:	Font:	五号
Formatted:	Font:	五号

Formatted:	Font: 五号
Formatted:	Font: 五号

Formatted: Font: 五号 388 yields arising from the GGCropMs is approximately twice as large as that arising from GCMs, The potential yield of maize would decrease in NC, CC and SC and increase in NWC in the next a few 389 decades. The potential yield of rice shows generally increasing trend with high model agreement 390 391 in NEC, NC, NWC and XJ. The potential yield of soybean would increase in NEC, SWC, NWC and XJ. The analysis shows a transition to a sustained lower yield in SC and a higher yield in 392 SWC for wheat. The wheat yield decrease in SC and increase in SWC become obvious after the 393 2030s. 394 The response of crop yield to In summary, the analysis shows climate change shows large Formatted: Indent: First line: 395 0 ch, Don't adjust right indent 396 differences between regions. Climate changemight benefit rice production as the potential rice when grid is defined, Don't adjust space between Latin and 397 yields may increase in a large portion of China. It is possible climate change would benefit Asian text, Don't adjust space between Asian text and numbers 398 soybean and rice yields inwheat productions over the high-altitude and cold regions where are 399 currently unsuitable for agriculture. Expanding rice and soybean planting areas to the NEC and Formatted: Font: 五号 400 SWCthe crop productions to those regions, when applicable, might be a good adaptation option to Formatted: Font: 五号 401 climate change. The crop yields in the current main grain production area, i.e. the high risk Formatted: Font: 五号 402 area, However, the potential yield of maize, soybean and wheat would largely decrease in a Formatted: Font: 五号 403 warming world large portion of eastern China, the current main crop planting areas such as NC. Formatted: Font: 五号 404 The risk for maize production is high in NC, SC, XJ, and parts of NEC and NWC, and the risk for Formatted: Font: 五号 wheat production is high in SC, XJ and a part of EC. Development of new agronomic Formatted: Font: 五号 405 management strategy for maize and wheat may be useful for coping with climate change in these Formatted: Font: 五号 406 407 above high risk areas. There are large uncertainties among the model projections. Better 408 understanding of the difference of the crop models, which is the major source of the uncertainty, is Formatted: Font: 五号 409 essential in interpreting the model results.-410 411 Acknowledgements 412 This work was supported by the National Basic Research Program of China (Grant No. Formatted: Font: 五号 Formatted: Indent: First line: 413 2012CB955403), National Natural Science Foundation of China (Grant Nos. 41425002 and No. 0 ch 414 41171031), and Hundred Talents Program of the Chinese Academy of Sciences. This work has Formatted: Font: 五号 415 been conducted under the framework of ISI-MIP. The ISI-MIP Fast Track project was funded by 416 the German Federal Ministry of Education and Research (BMBF) with project funding reference Formatted: Font: 五号 417 number 01LS1201A. Responsibility for the content of this publication lies with the author. WeFor 418 their roles in producing, coordinating, and making available the ISI-MIP model output, we 419 acknowledge the modeling groups (listed in Table 1 of this paper) and the ISI-MIP coordination Formatted: Font: 五号 420 team for the model outputs. We are grateful to Yam Prasad Dhital for his comments. 421 422 References Formatted: Font: 小五, Font 423 Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., color: Black 424 Rotter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., 425 426 Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stockle, C., 427 Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W., Williams, J. R., 428 and Wolf, J.: Uncertainty in simulating wheat yields under climate change, Nat. Clim. Change, 3, 429 Formatted: Font: 小五 827-832,827-832,2013. 430 Formatted: Font: 小五, Font Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, color: Black

yield to climate change shows large regional differences. The uncertainty of relative change in the

387

431	I. A. Hoose C. and Kristiánsson, I. E. The Norwegian Earth System Model, NorFSM1-M – Part 1: Description		
432	and basic evaluation of the physical climate. Geosci Model Dev. 6 687-720 687 720-	_	Formatted: Font: 小五
433	doi:10.5194/gmd-6-687-2013. 2013.	<	Formatted: Font: 小五, Font
434	Cammarano, D., Pavero, J., Basso, B., Stefanova, L., and Grace, P.: Adapting wheat sowing dates to projected		color: Black
435	climate change in the Australian subtropics: analysis of crop water use and yield, Crop Past. Sci., 63,		
436	974-986 ,974-986, 2012.		Formatted: Font: 小五
437	Challinor, Challiore, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., and Collins, M.: Increased crop failure due		Formatted: Font: 小五, Font
438	to climate change: assessing adaptation options using models and socio-economic data for wheat in China, Environ.	\searrow	color: Black
439	Res. Lett., 5, <u>1-8, 1-8, 2010.</u>		Formatted: Font: 小五 Font
440	Deryng, D., Sacks, W. J., Barford, C. C., and Ramankutty, N.: Simulating the effects of climate and agricultural	\bigvee	color: Black
441	management practices on global crop yield, Global Biogeochem. Cy., 25, GB2006, doi:10.1029/2009GB003765,	$\langle \rangle$	Formatted: Font: 小五
442	2011.		Formatted: Font: 小五, Font color: Black
443	Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R., W., Shevliakova, E., Stouffer, R. J., Cooke, W.,		Formatted: Font: 小五, Font
444	Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C., Phillipps, P. J., Sentman, L. T., Samuels,		color: Black
445	B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL's ESM2 Global Coupled		
446	Climate-Carbon Earth System Models, Part I: Physical Formulation and Baseline Simulation Characteristics, J.		
447	Climate, 25, <u>6646-6665</u> <u>6646-6665</u> 2012.		Formatted: Font: 小五
448	Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C., Sentman, L.		Formatted: Font: 小五, Font
449	T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, W. Q., Harrison, M. J., Levy, H., Wittenberg,		coror. brack
450	A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models, Part II:		
451	Carbon System Formulation and Baseline Simulation Characteristics, J. Climate, 26, 2247-2267 2247-2267 2013.		Formatted: Font: 小五
452	Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Florke, M., Wada, Y., Best,		Formatted: Font: 小五, Font
453	N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, Khabarov, N.,		Formatted: Font: 小五
454	Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q. H., and		Formatted: Font: 小五, Font
455	Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production under		color: Black
456	climate change, P. Natl. Acad. Sci. USA, 111, <u>3239-3244, 3239-3244</u> doi:10.1073/pnas.1222474110, 2014.	\langle	Formatted: Font: 小五
457	Elliott, J., Kelly, D., Glotter, M., Best, N., Wilde, M., Glotter, M., and Foster, I.: The Parallel System for Integrating		Formatted: Font: 小五, Font color: Black
458	Impact Models and Sectors (pSIMS), Proceedings of the 2013 XSEDE Conference, 2013.	\searrow	Formatted: Font: 小五
459	Ewert, F., Rounsevell, M. D. A., Renginster, I., Metzger, M. J., Leemans, R., Elliott, J., Glotter, M., Best, N., Wilde,		Formatted: Font: 小五, Font
460	M., Glotter, M., and Foster, I.: Future scenarios of European agricultural land use I. estimating changes in crop	\mathbb{N}	color: Black
461	productivity, Agr. Ecosyst. Environ., 107, <u>101-106, 101-106,</u> 2005.	\mathbb{N}	Formatted: Font: 小五
462	Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L.,	\mathbb{N}	color: Black
463	Estrada, Y. O., Genova, R. C., Girma, B, Kissel, E. S., Levy, A. N., MacCracken, S., Manstrandrea, P. R., White, L.		Formatted: Font: 小五
464	L.: Working Group II contribution to the IPCC Fifth Assessment Report Climate Change 2014: Impacts,		Formatted: Font: 小五, Font
465	Adaptation, and Vulnerability, Cambridge, United Kingdom and New York, NY, USA, 2014.		COTOL: DIACK
466	Gao, Y. G., Wang, Y. G., Nan, R., Yan, P., and Yang, X. Q.: Identification and application of thermal indexes of		Formatted: Font: 小五, Font color: Black
467	main cultivated soybean varieties in Heilongjiang Province, Chinese J. Agrometeorol., 26, 200-204, 200-204,		Formatted: Font: 小五
468	2005.		Formatted: Font: 小五, Font
469	Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction - the		color: Black
470	ISI-MIP approach, Earth Syst. Dynam., 4, <u>219-236</u> <u>219-236</u> doi:10.5194/esd-4-219-2013, 2013.	<	Formatted: Font: 小五
471	IPCC – Intergovernmental Panel on Climate Change: Summary for Policymakers, in: Climate Change 2013: The		Formatted: Font: 小力, Font color: Black
472	Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the		
473	Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, GK., Tignor, M., Allen, S.		
474	K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK		

475	and New York, NY, USA, USA., 2013.		Formatted: Font: 小五
476	Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjansson, J. E.,		Formatted: Font: 小五, Font
477	Medhaug, I., Sand, M., and Seierstad, I. A.: The Norwegian Earth System Model, NorESM1-M - Part 2: Climate		COTOL: DIACK
478	response and scenario projections, Geosci. Model Dev., 6, <u>389-415, 389-415, doi:10.5194/gmd-6-389-2013, 2013.</u>		Formatted: Font: 小五
479	Izaurralde, Izaurrade, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., and Quiroga Jakas, M. C.: Simulating		Formatted: Font: 小五, Font color: Black
480	soil C dynamics with EPIC: Model description and testing against long-term data, Ecol. Model., 192,	$\langle \rangle$	Formatted: Font: 小五
481	<u>362-384,362-384,2006.</u>		Formatted: Font: 小五, Font
482	Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M.,	$\langle \rangle$	Formetted: Font: 47
483	Andres, R. J., Bell, C., Boo, KO., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M.,		Formatted: Font: 小五 Font
484	Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, JF., Law, R. M.,		color: Black
485	Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer,		Formatted: Font: 小五
486	A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of		Formatted: Font: 小五, Font
487	CMIP5 centennial simulations, Geosci. Model Dev., 4, <u>543-570</u> , doi:10.5194/gmd-4-543-2011, 2011.	<	color: Black
488	Jones, J. W., Hoogenboom, G., Poter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, W.,		Formatted: Font: 小五, Font color: Black
489	Gijsman, A. J., and Ritchie, J. T.: The DSSAT cropping system model, Eur. J. Agron., 18, <u>235-265</u> , <u>2003</u> .		Formatted: Font: 小五
490 401	Jones, P. G. and Thornton, P. K.: The potential impacts of climate change on maize production in Africa and Latin Amorica in 2055. Clobal Environ. Change. 12, 51, 50, 51, 50, 2003.		Formatted: Font: 小五, Font
491	America in 2000, Giodal Environ. Change, 15, <u>51-57, 51-57, 2005.</u>		Formatted: Font: 小五
492	time series analysis. Graduate school for international development and cooperation. Hiroshima University		Formatted: Font: 小五, Font
495	Hiroshima 2011		color: Black
495	In H J in F D Wheeler T Andrew C and Jiang S: Climate change modeling and its roles to Chinese cross	/	Formatted: Font: 小五
496	vield I Integrat Agr 12 892-902 892-902 2013		Formatted: Font: 小五, Font color: Black
497	Li K. N. Yang, X. G. Mu, C. Y. Xu, H. J. and Chen, F.: The possible effects of global warming on cropping	, ,	Formatted: Font: 小五
498	systems in China VIII – the effects of climate change on planting boundaries of different winte-spring varieties of		Formatted: Font: 小五, Font
499	winter wheat in China. Scient. Agr. Sin., 46, 1583-1594, <u>1583-1594</u> , 2013.		color: Black
500	Lin, E. D., Xiong, W., Ju, H., Xu, Y. L., Li, Y., Bai, L. P., and Xie, L. Y.: Climate change impacts on crop yield and		color: Black, Subscript
501	quality with CO ₂ fertilization in China, Philos. T. Roy. Soc., $360, \underline{2149}, \underline{2154}, \underline{2149}, \underline{2154}, \underline{2005}$.		Formatted: Font: 小五, Font
502	Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Impli- cations of	\bigtriangledown	Color: Black
503	accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4,	$\backslash \setminus$	Formatted: Font: 小五 Font
504	<u>385-407, 385-407,</u> doi:10.5194/esd-4-385-2013, 2013.		color: Black
505	Liu, J. G.: A GIS based tool for modeling large scale crop water relations, Environ. Model. Softw., 24, 411-422,	\mathbb{N}	Formatted: Font: 小五, Font color: Black
506	2009.	\backslash / \rangle	Formatted: Font: 小五
507	Liu, J. G., Williams, J., Zehnder, A. J., and Yang, H.: GEPIC - modelling wheat yield and crop water productivity	$\left \right\rangle$	Formatted: Font: 小五, Font
508	with high resolution on a global scale, Agricult. Syst., 94, 478-493, 2007.		color: Black
509	Liu, J. G., Zehnder, A. J., and Yang, H.: Global consumptive water use for crop production: the importance of		Formatted: Font: 小五 Formatted: Font: 小五 Font
510	green water, Water Resour. Res., 45, W05428, doi:10.1029/2007WR006051, 2009.		color: Black
511	Liu, J. G., Folberth, C., Yang, H., Rockstrom, J., Abbaspour, K., and Zehnder, A. J.: A global and spatially explicit	/ /	Formatted: Font: 小五
512	assessment of climate change impacts on crop production and consumptive water use, PLOS, 8, 1-13,1-13,		Formatted: Font: 小五, Font
513	2013a 2013.		Formatted: Font: 小五
514	Liu, J. G.: A GIS-based tool for modeling large-scale crop-water relations, Environ, Model, Softw., 24, 411-422,		Formatted: Font: 小五. Font
515	2009.		color: Black
516	Liu, Z. J., Hubbard, K. G., Lin, X. M., and Yang, X. G.: Negative effects of climate warming on maize yield are		Formatted: Font: 小五, Font color: Black
517	reversed by the changing of sowing date and cultivar selection in Northeast China, Global Change Biol., 19,		Formatted: Font: 小五
518	<u>3481-3492, 2013b, 3481-3492, 2013, </u>		Formatted: Font: 小五 Font

小五, Font 小五 Formatted: Font: 小五, Font color: Black

519	Lobell Lobel, D. B. and Field, C. B.: Global scale climate-crop yield relationships and the impacts of recent		Formatted: Font: 小五
520	warming, Environ. Res. Lett., 2, <u>1-8, 1-8,</u> 2007.		Formatted: Font: 小五, Font
521	Lobell, D.B. and Gourdji, S.M., 2012. The Influence of Climate Change on Global Crop Productivity. Plant	\sim	Formatted: Font: 小五
522	<u>Physiology, 160(4): 1686-1697.</u>		Formatted: Font: 小五, Font
523	Lv, Z. F., Liu, X. J., Cao, W. X., and Zhu, Y.: Climate change impacts on regional winter wheat production in main		color: Black
524	wheat production regions of China, Agr. Forest Meteorol., 171, 234-248, 234-248, 2013.		Formatted: Font: 小五, Font
525	Mei, F. Q., Wu, X. Z., Yao, C. X., Li, L. P., Wang, L., and Chen, Q. Y.: Rice cropping regionalization in China,	\sim	Formatted: Font: 小五
526	Chinese J. Rice Sci., 2, <u>97-110, 97-110, 1988.</u>		Formatted: Font: 小五, Font
527	Meza, F. J. and Silva, D.: Dynamic adaptation of maize and wheat production to climate change, Climatic Change,	\smallsetminus	color: Black
528	94, <u>143-156, 143-156, 2</u> 009.	$\langle \rangle$	Formatted: Font: 小五
529	Mignot, J. and Bony, S.: Presentation and analysis of the IPSL and CNRM climate models used in CMIP5, Clim.		Formatted: Font: 小五, Font color: Black
530	Dynam., 40, 2089, doi:10.1007/s00382-013-1720-1, 2013.		Formatted: Font: 小五
531	Nicholls, N.: Increased Australian wheat yield due to recent climate trends, Nature, 387, <u>484-485, 484-485</u> , 1997.		Formatted: Font: 小五, Font
532	Olmstead, A. L. and Rhode, P. W.: Adapting North American wheat production to climatic challenges, 1839–2009,		color: Black
533	P. Natl. Acad. Sci. USA, 108, <u>480-485, 480-485, 2011.</u>	$\langle \rangle$	Formatted: Font: 小五
534	Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M.,		Formatted: Font: 小五, Font color: Black
535	Ortiz-Monasterio, J. I., and Reynolds, M.: Climate change: Can wheat beat the heat?, Agr. Ecosyst. Environ., 126,	$\langle \rangle$	Formatted: Font: 小五
536	<u>46-58,46-58,</u> 2008.		Formatted: Font: 小五, Font
537	Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E.: Contribution of working		color: Black
538	group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007, Cambridge,	\sim	Formatted: Font: 小五
539	United Kingdom and New York, NY, USA, 2007.		formatted: Font: 小五, Font color: Black
540	Parry, M. L., Rosenzweig, C., Igleias, A., Livermore, M., and Fischer, G.: Effect of climate change on global food	_	Formatted: Font: 小五, Font
541	production under SRES emissions and socio-economic scenarios, Global Environ. Change, 14, 53-67,53-67, 2004.		color: Black
542	Piontek, F., Müller, C., Pugh, T. A., Clark, D. B., Deryng, D., Elliott, J., Gonzalez, F. J., Florke, M., _Folberth, C.,		Formatted: Font: 小五 Formatted: Font: 小五 Font
543	Franssen, W., Frieler, K., Friend, A. D., Gosling, S. N., Hemming, D., Khabarov, N., Kim, Kin, H., Lomas, M. R.,		color: Black
544	Masaki, Y., Mengel, M., Morse, A., Neumann, K., Nishina, K., Ostberg, S., Pavlick, R., Ruane, A. C., Schewe, J.,		Formatted: Font: 小五, Font
545	Schmid, E., Stacke, T., Tang, Q. H., Tessler, Z. D., Tompkins, A. M., Warszawski, L., Wisser, D., and Schellnhuber,	$\backslash/$	Color: Black
546	H. J.: Multisec-toral climate impact hotspots in a warming world, P. Natl. Acad. Sci. USA, 111,	$\langle \rangle$	Formatted: Font: 小五 Font
547	<u>3233-3238,3233-3238,</u> doi:10.1073/pnas.1222471110, 2014.	\sum	color: Black
548	Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 - Global monthly irrigated and rain-fed crop areas around	/)	Formatted: Font: 小五, Font
549	the year 2000: A new high-resolution data set for agricultural and hydro-logical modeling, Global Biogeochem.	$\langle \rangle$	Formatted: Font: 小五, Font
550	Cy., 24, <u>1-24, 1-24, 2010.</u>		color: Black
551	Priya, S. and Shibasaki, R.: National spatial crop yield simulation using GIS-based crop production mode, Ecol.	$\langle \rangle$	Formatted: Font: 小五
552	Mlodel., 135, <u>113-129, 113-129,</u> 2001.	$\langle \rangle$	Formatted: Font: 小五, Font
553	Qin, D. H.: Climate change sciences into the 21st century: facts, impact and strategies addressing climate change,		Formatted
554	Sci. Technol. Rev., 7, 4–7, 2004.	$\langle \rangle \rangle$	Formatted: Font: 小五
555	Qin, D. H.: Climate and environmental evolution in China (I), Resour. Environ. Develop., 3, 1-2, 2004.	$\langle \rangle$	Formatted
556	Qin, D. H., Ding, Y. H., Su, J. L., Ren, J. W., Wang, S. W., Wu, R. S., Yang, X. Q., Wang, S. M., Liu, S. Y., Dong,	$\langle \rangle \rangle$	Formatted: Font: 小五
557	G. R., Lu, Q., Huang, Z. G., Du, B. L., and Luo, Y.: Assessment of climate and environment changes in China (I):	()	Formatted
558	climate and environment changes in China and their projection, Adv. Clim. Change Res., 1, 4-9, 4-9, 2005.	$\langle \rangle$	Formatted: Font: 小五
559	Ren, G. Y., Guo, J., Xu, M. Z., Chu, Z. Y., Zhang, L., Zou, X. K., Li, Q. X., and Liu, X. N.: Climate changes of	\backslash	Formatted
560	China's mainland over the past half century, Acta Meteorol. Sin., 63, 942-956, 2005a.		Formatted: Font: 小五
561	Ren, G. Y., Chu, Z. Y., Zhou, Y. Q., Xu, M. Z., Wang, Y., Tang, G. L., Zhai, P. M., Shao, X. M., Zhang, A. Y., Chen,	$\overline{)}$	Formatted
562	Z. H., Guo, J., Liu, H. B., Zhou, J. X., Zhao, Z. C., Zhang, L., Bai, H. Z., Liu, X. F., and Tang, H. Y.: Recent		Formatted: Font: 小五
l			Formatted

. . .

(...

....

(...

...)

(

	progresses in studies of regional temperature changes in China, Clim. Environ. Res., 10, 701-716, 701-716, 2005b.		Formatted	
	Ren, G. Y., Guo, J., Xu, M. Z., Chu, Z. Y., Zhang, L., Zou, X. K., Li, Q. X., and Liu, X. N.: Climate changes of			
;	China's mainland over the past half century, Acta Meteorol. Sin., 63, 942-956, 2005a.			
;	Rodomiro, O., Kenneth, D. S., Bram, G., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M.,		Formatted: Font: 小	E.
	Ortiz Monasterion, J. I., and Reynolds, M.: Climate change: can wheat beat the heat?, Agr. Ecosyst. Environ., 126,			
	46 -58, 2008.			
	Rosenzweig, C., Elliot, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., Boote, K. J., Fol-berth, C., Glotter, M.,		Formatted	
	Khabarov, A. C., Neumann, K., Piontek, F., Pugh, T. A., Schmid, E., Stehfest, E., Yang, H., and Jones, J. M.:			
	Assessing agricultural risks of climate change in the 21 st century in a global gridded crop model intercomparison, P.	\nearrow	Formatted	
	Natl. Acad. Sci., <u>111(15)</u> . <u>3268-3273</u> , <u>111, 3268-3273</u> , doi:10.1073/pnas.1222463110, 2014.			
	Sakurai, G., Lizumi, T., Nishimori, M., and Yokozawa, M.: How much has the increase in atmospheric CO ₂ directly			
	affected past soybean production?, Scientific Reports, 4, doi:10.1038/srep04978, 2014.			
	Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M.,		Formatted	
	Colon-Gonzalez, F. J., Gosling, S. N., Kim, H., Liu, X. C., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang,			
	Q. H., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P.: Multimodel	/ -		
	assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245-3250,3245-3250,	//		
	doi:10.1073/pnas.1222460110, <u>2014</u>	/		
	2014.		Formatted: Font: 小	E.
	Tang, Q. H. and Lettenmaier, D. P.: 21st century runoff sensitivities of major global river basins, Geophys. Res.		Formatted: Font: 小	后, Font
	Lett., 39, L06403, doi:10.1029/2011GL050834, 2012.		color: Black	
	Tao, F. L. and Zhang, Z_; Climate change, wheat productivity and water use in the North China Plain: A new	\nearrow	Formatted	
	super-ensemble-based probabilistic projection, Agr. Forest Meteorol., 170, <u>146-165, 146-165, 2013</u> .			
	Tao, F. L., Hayashi, Y., Zhang, Z., Sakamoto, T., and Yolozawa, M.: Global warming, rice production, and water			
	use in China: developing a probabilistic assessment, Agr. Forest Meteorol., 148, 94-110, 94-110, 2008a.		Formatted	
	Tao, F. L., Yokozawa, Yolozawa, M., Liu, J. Y., and Zhang, Z.: Climate-crop yield relationships at provincial scales	\sim	Formatted	
	in China and the impacts of recent climate trends, Clim. Res., 38, <u>83-94, 83-94</u> , 2008b.			
	Taylor, K., Stouffer, R., and Meehl, G: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc.,			
	93, <u>485-498,485-498,</u> 2012.		Formatted	
	Thornton, Tornton, P. K., Jones, P. G., Alagarswamy, G., and Andresen, J.: Spatial variation of crop yield response	1	Formatted	
	to climate change in East Africa, Global Environ. Change, 19, 54-65, 54-65, 2009.			
	Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., and Colls, J.: Comparative assessment of crop cultivar			
	and sowing dates as adaptation choice for crop production in response to climate change in Cameroon, Afr. J. Plant			
	Sci. Biotechnol., 2, <u>10-17, 10-17,</u> 2008.		Formatted	
	Waha, Wahaa, K., Muller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., and Lotze- Campen, H.:		Formatted	
	Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa.			
	Global Environ. Change, 23, <u>130-143</u> , 130-143, 2013.			
	Wang, M., Li, Y. P., Ye, W., Bornman, J. F., and Yan, X. D.: Effects of climate change on maize production and			
	potential adaptation measures: a case study in Jilin Province, China, Clim. Res., 46, 223-242, 223-242, 2011.		Formatted	
	Wang, Y. Q. and Ma, S. M.: Technological options of regional agricultural adaptation to climate change in China,			
	Chinese J. Agrometeorol., 30, <u>51-56, 51-56, 2009</u> .		Formatted	
	Warszawski, L., Frieler, K., Huber, V., Pontek, F., Piontek, F., Serdeczny, O., and Schewe, J.: The	1	Formatted	
	Inter-Sectoral Research Design of the Intersectoral Impact Model Intercomparison Projection (ISI-MIP): project	\square	-	
	framework (ISI-MIP), P. Natl. Acad. Sci., 111, <u>3228-3232, 3228-3232,</u> doi:10.1073/pnas.1312330110, 2014.			

606 Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M.,

607	Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model	
608	description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845-872,845-872,	For
609	doi:10.5194/gmd-4-845-2011, 2011.	For
610	Williams, J. R.: The EPIC Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water	C01
611	Resources Publications, Highlands Ranch, Colorado, 1995.	
612	Williams, J. R., Jones, C. A., and Dyke, P. T.: EPIC-Erosion/Productivity Impact Calculator, United States	
613	Department of Agriculture Publications, Littleton, CO, 909-1000, 1990.	
614	Williams, J. R.: The EPIC Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water	
615	Resources Publications, Highlands Ranch, Colorado, 1995.	
616	Xiong, W., Balkovic, J., Velde, M., Zhang, X. S., Izaurralde, R. C., Skalsky, R., Lin, E. D., Mueller, N., and	
617	Obersteiner, M.: A calibration procedure to improve global rice yield simulations with EPIC, Ecol. Mlodel., 273,	For
618	<u>128-139, 2014.</u>	C01
619	Xiong, W., Holman, I., Lin, E. D., Conway, D., Li, Y., and Wu W. B.: Untangling relative contributions of recent	
620	climate and CO2 trends to national cereal production in China, Environ. Res. Lett., 7,	
621	<u>doi:10.1088/1748-9326/7/4/044014, 2012.</u>	
622	Xiong, W., Matthews, R., Holman, I., Lin, E. D., and Xu, Y. L.: Modelling China's potential maize production at	For
623	regional scale under climate change, Climate Change, 85, <u>433-451,433-451,</u> 2007.	C01
624	Xiong, W., Balkovic, J., Velde, M. et al. A calibration procedure to improve global rice yield simulations with	For
625	EPIC, Ecol, Mlodel., 273, 128–139, 2014.	col
626	Yang, X. G., Liu, Z. J., and Chen, F.: The possible effects of global warming on cropping systems in China VI.	For
627	possible effects of future climate change on northern limits of cropping system in China, Scient. Agricult. Sin., 44,	For
628	<u>1562-1570 1562 1570 2012.</u>	For
629	Yang, X., Li, D. L., and Tang, X.: Probability assessment of temperature and precipitation over China by CMIP5	For
630	multi-model ensemble, J. Desert Res., 34(3): 795-804, 2014.	col
631	Ye, L. M., Tang, H. J., Wu, W. B., Vand Yang, P., Nelson, G. C., Croz, D. M., and Palazzo, A.: Chinese food	For
632	security and climate change: agriculture futures, Economics Discussion Papers No. 2013-2, Kiel Institute for the	For col
633	World Economy, Kiel, 2013.	For
634	Yun, Y. R., Fang, X. Q., Wang, L. Y., and Tian, Q.: The changes of crop planting boundaries response to climate	col
635	warming in China, Crops, 3, 20-23, 2007.	For
636	Yun, Y. R., Fang, X. Q., Wang, Y., Tao, J. D., and Qiao, D. F.: Main grain crops structural change and its climate	col
637	background in Heilongjiang Province during the past two decades, J. Nat. Resour., 20, <u>697-695, 697-695, 2005.</u>	For
638	Yun, Y. R., Fang, X. Q., Wang, L. Y., and Tian, Q.: The changes of crop planting boundaries response to climate	col
639	warming in China, Crops, 3, 20–23, 2007.	For
640	Zhou, Q. F, Dai, E. F., Wu, S. H., Pan, T., and Chen, X. W.: Risk assessment on food crops supply-demand balance	col
641	under climate change in China, Acta Scientiarum Naturalium Universitatis Pekinensis, 47, 1105-1115,1105-1115,	For

642 2011.

ormatted: Font: 小五 ormatted: Font: 小五, Font blor: Black

Formatted: Font: 小五, Font color: Black

Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五, Font color: Black
Formatted
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black
Formatted: Font: 小五
Formatted: Font: 小五, Font color: Black

Fig. 1 The 8 regions in China and the crop area (% of grid area) of maize (a), rice (b), soybean (c) and wheat (d). NEC, NC, EC, SC, CC, SWC, NWC and XJ denote Northeast China, North China, Eastern China, South China, Central China, Southwest China, Northwest China and Xinjiang, respectively

Fig. 2 The MMs of the simulated yields with the CO_2 effect and NBSC reported yields of the 4 major crops in China during 1981-2010. The upper panels are the NBSC yields and lower panels are the simulated yields. The median of the simulated crop yield among the GCM-GGCropM pairs are provided at 0.5-degree grids. The NBSC yields at each province were plotted at the crop area shown in Fig. 1

Fig. 3 The relative change of the yield of maize (a), rice (b), soybean (c), and wheat (d) in China under RCP8.5. The blue (green) shade area denotes the inter-quartile range for the simulations with (without) CO_2 effect and the solid line shows the median of the GCM-GGCropM pairs

Fig. 4 The relative change of the simulated maize yield at the 8 regions with (without) the CO_2 effect. The MMs and the 25th and 75th percentiles of the model pairs are shown

Fig. 5 The relative change of the simulated rice yield at the 8 regions with (without) the CO_2 effect. The MMs and the 25th and 75th percentiles of the model pairs are shown

Fig. 6 The relative change of the simulated soybean yield at the 8 regions with (without) the CO_2 effect. The MMs and the 25th and 75th percentiles of the model pairs are shown

Fig. 7 The relative change of the simulated wheat yield at the 8 regions with (without) the CO_2 effect. The MMs and the 25th and 75th percentiles of the model pairs are shown

Fig. 8 The MM of the relative change of the simulated yield of maize (a), rice (b), soybean (c), and wheat (d) with the CO_2 effect at the end of the 21^{st} century (2070-2099) comparing with the simulated yield in the historical period (1981-2010)

Fig. 9 The high climate resilience areas (left column) and high climate risk areas (right column) for the major crops in China at 0.5 degree grids

Fig. 10 The model spread of the relative change of the simulated yield of maize, rice, soybean, and wheat with the CO_2 effect at the end of the 21st century (top row) and the model spread induced by GCMs (middle row) and GGCropMs (bottom row)

1 Tables:

2 3

Table 1 Overview of the GCMs and GGCropMs

	Name	Institute	References
	HadGEM2-ES	Met Office Hadley Centre	Jones et al. (2011)
	IPSL-CM5A-LR	Institute Pierre-Simon Laplace	Mignot et al. (2013)
GCMs	MIROC-ESM-CHEM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies	Watanabe et al. (2011)
	GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory	John et al. (2012); John et al. (2013)
	NorESM1-M	Norwegian Climate Centre	Bentsen et al. (2013); Iversen et al. (2013)
	EPIC	BOKU, University of Natural Resources and Life Sciences, Vienna	Williams (1995); Izaurralde et al. (2006)
GGCropMs	GEPIC	EAWAG Swiss Federal Institute of Aquatic Science and Technology	Williams et al. (1990); Liu et al. (2007)

pDSSAT	Univers	ity c	of	Chicago	Elliott et al. (2013); Jones		
	Computation Institute				et al. (2003)		
PEGASUS	Tyndall Centre, University of						
	East	Anglia	UI	K/McGill	Deryng et al. (2011)		
	University, Canada						

4 Note: EPIC: short for the Environmental Policy Integrated Climate Model (originally the Erosion Productivity Impact Calculator);

5 GEPIC: short for the Geographic Information System (GIS)-based Environmental Policy Integrated Climate Model; pDSSAT:

6 short for the parallel Decision Support System for Agro-technology Transfer (using the Crop Environment Resource Synthesis

7 (CERES) models for maize, wheat, and rice and the Crop Template approach (CROPGRO) for soybean); PEGASUS: short for

8 the Predicting Ecosystem Goods and Services Using Scenarios model.

9

10 Table 2 Simulated and statistical yields in the 8 regions of China in 1981-2010 (kg/hm²)

Region -	Maize		Rice		Soybean		Wheat		
	Simulation	Statistic	Simulation	Statistic	Simulation	Statistic	Simulation	Statistic	
NEC	4575	5228	3970	6346	1993	1798	3249	2671	
NC	6473	4733	5136	6237	2483	1609	3156	4113	
EC	4866	4006	4414	6082	2238	1981	3015	3025	
SC	3650	2832	4146	4677	1816	1343	2468	1795	
CC	4158	3604	4593	6350	2167	1824	2885	2345	
SWC	4162	4016	4094	5484	1827	1827	3560	2866	
NWC	5400	4565	4270	6403	1693	1165	3494	2579	
XJ	4596	5450	3662	6072	1938	2309	2845	4020	

11 Note: NEC, NC, EC, SC, CC, SWC, NWC and XJ denote Northeast China, North China, Eastern China, South China, Central

12 China, Southwest China, Northwest China and Xinjiang, respectively (see Fig. 1)

Formatted: Font: 小五, Font color: Auto