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Abstract

Larger climate variability and more frequent extreme events (e.g. droughts) are ex-
pected to occur. Hence, assessing the sensitivity (response) of terrestrial net primary
productivity (NPP) to climate variability is crucial for future estimations of terrestrial
carbon sequestration. We hypothesize that land-use change (LUC) can modify this
sensitivity, defined here as the anomaly correlation between annual NPP and precip-
itation in the growing season. To assess this changing sensitivity, we use the LPJmL
model driven by observed climate variability and two different land-use sets.

We find that the effect of LUC is mostly extended in semi-arid grasslands: sensitiv-
ity increases with conversion into rainfed crops, but it does not change for managed
pasture expansion. Reforestation in temperate regions generally decreases sensitiv-
ity: trees are able to respond later to water deficit due to their deep root system. The
expansion of irrigation in northern India reduces sensitivity since water availability is
not a limiting factor for crop growth. Although we are able to identify spatial patterns
of changes in NPP-precipitation sensitivity, the significance of our results focusing at
isolation of the land-use effect is limited.

1 Introduction

Net Primary Productivity (NPP) is the process of accumulating atmospheric carbon
in the form of plant biomass (photosynthesis minus autotrophic respiration), and it is
a key element to evaluate terrestrial carbon sequestration. The interannual variability
(IAV) of NPP is associated with climate variability (Wu et al., 2013): large anomalies
in precipitation patterns can affect terrestrial productivity. For instance, the increasing
vegetation growth in mid- and high-latitudes of Eurasia (due to CO, fertilization and
warming) ceased between 1997 and 2006, which is attributed to a decline in the grow-
ing season (summer) precipitation (Piao et al., 2011). At the global scale, Zhao and
Running (2010) reported a NPP decline during the warmest decade ever recorded
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(2000-2009), which was related to large-scale droughts, especially in the Southern
Hemisphere.

The sensitivity (or response) of NPP to IAV of precipitation varies spatially (Vicente-
Serrano et al., 2013) and temporally. For example Wu et al. (2013) reported an increase
of NPP sensitivity to water availability in the dry regions of Europe from 1975 to 2009.
Their findings of changing climate sensitivity of NPP and climate variability enhance
the concern of future potential carbon sequestration by European ecosystems.

NPP sensitivity to precipitation also depends on the timing of precipitation deficit in
the annual cycle. Stronger sensitivity to changes in precipitation is generally found in
warm and dry regions or during the growing season (in boreal and temperate ecosys-
tems) than in wet regions and cold conditions (Gerten et al., 2008). Also, the relation-
ship between precipitation and NPP is not symmetric: low precipitation has a stronger
effect on NPP than higher normal precipitation amounts (Gerten et al., 2008). However,
this feature was not evident in the earlier study of Knapp and Smith (2001).

NPP sensitivity also varies with land-cover. But no consensus exists on which
ecosystems and regions are considered to be most vulnerable to precipitation variabil-
ity and climate extremes. Liu et al. (2013) suggested that the Amazon and the semi-
arid and semi-humid climate regimes in low- and mid-latitudes are the most vulnerable,
while Vicente-Serrano et al. (2013) postulated that humid biomes are more vulnerable,
as vegetation in arid and semiarid regions is considered to be better adapted to water
deficits.

Here, the intriguing question is to which extent changes in land-use may modify NPP
sensitivity to precipitation variability, particularly to droughts. For example, Schwalm
et al. (2010) related the distribution of croplands to the sensitivity of ecosystem produc-
tivity to droughts, being these systems the most sensitive to water deficit. Changes in
land-use can modify ecosystem productivity, its temporal variability and its sensitivity to
precipitation. For instance, forest clearing for agriculture modifies water requirements,
the rooting system and the timing of the growing season. Irrigation clearly reduces this
sensitivity to precipitation and generally increases annual productivity, as shown for
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instance in India (Nayak et al., 2013). Yields of rainfed crops have improved by CO,
fertilization, technological development and regionally specific climate warming, but
further warming and changes in precipitation variability and droughts may negatively
impact on crop productivity (Lobell et al., 2011; Osborne and Wheeler, 2013).

Previous studies analysing the relationship between NPP and precipitation used
satellite observations to estimate NPP (e.g. Lotsch, 2003; Zhao and Running, 2010).
These observational analyses do not allow disentangling the effect of different environ-
mental factors on plant growth such as the effects of LUC. The separate contributions
from climatic trends and land-cover change can be analysed using a modelling ap-
proach, which allows isolating and quantifying these individual effects. Process-based
dynamic global vegetation models (DGVMs) are prevailing tools to evaluate the effect
of climate and land-use changes on vegetation distribution/dynamics, and the associ-
ated carbon and water fluxes. They have been widely validated with observational data
(e.g. Piao et al., 2013), and used for the Intergovernmental Panel on Climate Change
(IPCC) assessment activities. Being driven by observed climate and land-use maps,
they allow an extension of the analysis period to the pre-satellite era.

In this study, spatio-temporal patterns of changes of the NPP sensitivity to precipita-
tion are examined, and the role of land-use change (LUC) in determining these patterns
is isolated. For this we use the DGVM LPJmL (Bondeau et al., 2007; Sitch et al., 2003).
We run the model throughout the 20th century with two different land-use sets repre-
senting 1901 and 2000 conditions respectively. We determine the spatial patterns of
these sensitivities in both runs, and assess the impact of LUC on NPP sensitivity by
comparing these runs. Specific hotspots of LUC are selected for further analysis.

The method is further explained in Sect. 2, and results are discussed in Sect. 3.
A discussion of the approach and concluding remarks are provided in Sects. 4 and 5,
respectively.
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2 Methods
2.1 Overview of LPJmL

The Lund—Potsdam—Jena (LPJ, Sitch et al., 2003) managed Land model (LPJmL;
Bondeau et al., 2007) is a biogeochemical process-based model that simulates the
dynamics of terrestrial ecosystems, the associated carbon and water cycles, and agri-
cultural productivity with a daily time step at 0.5° x 0.5° spatial resolution. LPJmL is
a well known and a widely used DGVM at the global (Friend et al., 2014; Mdller and
Robertson, 2014) and regional (Jung et al., 2007; Lapola et al., 2009; Poulter et al.,
2010) scales. Estimated carbon fluxes for natural and crop vegetation have been vali-
dated (Bondeau et al., 2007; Sitch et al., 2003) as well as water fluxes (Gerten et al.,
2004), irrigation requirements (Rost et al., 2008) and river discharges (Biemans et al.,
2009). It is a prevailing tool to analyse the impact of climate warming, climate extremes
and anthropogenic LUC on vegetation distribution (Warszawski et al., 2013), terrestrial
productivity (Rammig et al., 2014; Zscheischler et al., 2014), crop yields (Waha et al.,
2013), irrigation (Elliott et al., 2014) and the global water cycle (Haddeland et al., 2014;
Schewe et al., 2014).

Simulations are driven by a monthly climate forcing (temperature, precipitation, num-
ber of wet days and cloud cover) from the University of East Anglia’s Climatic Re-
search Unit (CRU) TS 3.10 climate data set that is disaggregated to daily values within
the model (Gerten et al., 2004). Additional inputs are the annual value of atmospheric
CO, concentration and soil properties. The fractional cover of natural vegetation (rep-
resented by nine plant functional types, PFTs; Sitch et al., 2003) is prescribed per grid
cell, but their distribution within this fraction is dynamically modelled, based on climatic
factors, competition for space and resources (water and light), and disturbances (e.qg.
fires or LUCs). Crops are represented by twelve different annual crops that cover most
of the important annual crop types (CFTs; Table 1), and management options such as
irrigation or removal of residues can be specified. Managed grasslands are modelled
as native grassland and management factors are applied to simulate grass harvest.
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Each grid cell is composed by several spatial simulation units (stands). One stand
is assigned to natural vegetation, represented by a mixture of PFTs (residing in a pre-
defined fraction of the grid cell area), and each rainfed and irrigated CFT has its own
stand, whose area depends on the chosen land-use scenario. All stands share the
same climatological forcing, but a separate carbon and water budget is computed for
each. This allows for competition for natural resources between different PFTs, but
no such competition exists between the individual CFTs that are assumed to grow on
separate patches. The land-use scenarios for 1901 and 2000 are based on Monfreda
et al. (2008) and will be described in more detail in the results section.

2.2 NPP calculation in LPJmL

NPP (gC m~2d™") is simulated at a daily time scale for each PFT and CFT as the
net daily gross assimilation or photosynthesis (GPP) minus maintenance (mresp) and
growth (gresp) respiration:

NPP = GPP — mresp — gresp. (1)

GPP (gC m™2 d'1) is based on the Farquhar-Collatz scheme (Collatz et al., 1992;
Farquhar et al., 1980), and it depends on the response to the Rubisco enzyme activity
(differing between C3 and C4 plants) and on the absorbed photosynthetically active
radiation (APAR), which is related to the leaf area index (LAI). Daily LAl is controlled by
the daily phenology status and the annual biomass allocation, being water stress a key
factor for this allocation. For crops LPJmL prescribes a CFT-specific optimal LAI growth
curve as a function of phenological development (Bondeau et al., 2007); a maximum
LAI value is prescribed per CFT and country (for more information see Fader et al.,
2010). A more detailed explanation on the calculation of the carbon and water cy-
cles by LPJmL can be found in Sitch et al. (2003), Bondeau et al. (2007) and Gerten
et al. (2004).
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2.3 Experimental set up

To achieve an equilibrium state of all carbon pools, a spin up of 900 years driven by pre-
industrial CO, concentration and a repeated cycle of the first 30 years of the climate
data set was carried out. This spin up was applied for each of two land-use scenarios,
where the land-use selected for 1901 is referred to as “no-LUC”, while the land-use for
2000 is the “LUC” simulation. This set-up is different from the traditional application of
LPJmL, where transient land-use scenarios are usually applied to account for historic
LUCs in soil carbon pools at the beginning of each simulation. However, the focus here
is not on soil carbon pools but on the land cover effect on the precipitation-sensitivity
of NPP, for which a static land use description is more appropriate.

2.4 Land-use scenarios and definition of land-use transitions

Changes in land-cover and land-use between both scenarios are shown in Fig. 1. For
each class of PFTs or CFTs the difference in the cover fraction is displayed. Defor-
estation occurs especially in temperate regions of South America and China, and in
the tropical Central America. Reforestation of agricultural lands takes place in eastern
United States and Western Europe (Fig. 1a). Pastures show a large increase of cov-
ered area (Fig. 1e), and irrigation clearly expands in Asia, particularly northern India
(Fig. 1d).

We have isolated land-use transition per grid cell as the change in land-use between
the LUC and no-LUC runs that exceeds 20 % of the cover (Fig. 1f). For that, we first
calculate the difference of the fraction cover between the LUC and no-LUC runs per
land-cover type, and select those differences that exceed 20 % of the grid cell area.
The land cover type that exhibits the greatest decrease is considered as the previous
land-use, and the land-cover type with the highest increase is assigned as the new
land-use. A two-letter transition label is assigned to every grid cell that reflects these
dominant changes (Table 2). The first letter (sometimes supplemented by subscripts)
defines the preceding land-use, while the second describes the new one. Hence, the
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transition GC,,;, for example, denotes that grasslands are replaced by non-irrigated
crops. Table 2 summarizes the main transitions that are considered in this study. This
classification is used to identify regions with considerable LUC, such as India, southern
Australia, United States, Inner Asia (Mongolia and Kazakhstan) and the Argentinian
Pampas.

2.5 Standard Precipitation Index (SPI)

Monthly precipitation from the CRU TS 3.10 data set for the period 1901-2009 is used
to calculate the Standardized Precipitation Index (SPI), a drought index that quanti-
fies precipitation anomalies in terms of duration and intensity. SPI is defined as the
number of standard deviations that the cumulative precipitation in a given period of
time deviates from the climatological mean for that period (Mckee et al., 1993). It re-
quires a minimum of data and is flexible in its time scale definition. An alternative mea-
sure is the standardized precipitation and evaporation index (SPEI; Vicente-Serrano
et al., 2013b), which adds the effect of temperature on droughts via evaporation. Since
LPJmL computes evaporation it cannot be considered to be an external forcing of the
(also model determined) NPP anomalies. To avoid contamination between internal and
external information, we used the model-independent SPI index instead. For its cal-
culation a gamma distribution is fitted to the monthly precipitation data, and its cumu-
lative probability distribution is normalized (for a more detailed description of on SPI
calculation see Lloyd-Hughes and Saunders, 2002). SPI values between -1 and -2
imply moderate to severe dryness, and SPI below -2 denotes an extremely dry period.
A 3month SPI is considered a short-term drought index, useful for agricultural drought
analysis; values aggregated over 12 months SPI are intermediate term droughts, and
longer scales are long-term droughts.
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2.6 Standardized NPP anomalies

We calculate monthly and annual standardized NPP anomalies (NPP’) similar to the
SPI as the monthly/annual anomaly relative to the climatological mean (u), normalized
by the by the standard deviation (o):

NPP, — i,
NPP = — L =/ i @)

i
where the index / refers to the monthly/annual time scale. This standardization allows
NPP anomalies comparable across space.

2.7 Calculation of monthly and annual sensitivities and the effect of land-use
change

Monthly SPI was calculated from the precipitation data for 1 to 12 monthly time scales.
Both SPI and NPP anomalies were calculated after removing the linear trend from
the 109 year time series to avoid effects of gradual changes in other environmental
factors (such as global temperature rise). For each calendar month and each grid point,
Pearson correlations were calculated using the 109 annual values.

As an illustration, we show these monthly correlations for three different grid cells
covering different climates and terrestrial ecosystems (Fig. 2, bottom row) together with
their NPP and precipitation climatologies (top row). For the Amazonian cell (Fig. 2, first
column), the strongest correlation occurs between June and August at SPI-2 (Fig. 1d).
This 2 months time-scale can be also observed in Fig. 2a: a 2month lag is seen be-
tween changes in precipitation (April-September) and NPP (June—November) in the
dry season (months with a maximum precipitation average of 100 mm; Marengo et al.,
2011). For the cell in Kazakhstan (Fig. 2, second column), significant correlations only
occur in summer, independent on the SPI-time scale (Fig. 2e). The strongest correla-
tion for 2months SPI occurs in June. For the grid cell in Spain (Fig. 2, third column),
two periods of high correlations can be distinguished (Fig. 2f): spring (the strongest
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occurring in May for SPIs between 1 and 5months time scale) and in autumn (the
highest value in September for SPIs from 1 to 3 months). Precipitation peaks in these
two seasons, but it is highly variable (Fig. 2c). NPP can be affected by precipitation
anomalies of recent as well as previous months (up to 5-6 months).

For most areas in the globe the strongest monthly correlation was found using the
2 month time-scale (SPI2). This index was selected as the drought index in our anal-
ysis. Assuming that precipitation variability during the growing season affects annual
NPP, we correlate annual NPP anomalies and SPI2 of the growing season. Thus, we
chose the SPI2 of the growing season defined here as the month with the maximum
climatological NPP within every grid cell. By this dependence on NPP, the reported
annual SPI2 may vary if LUC modifies the seasonality of NPP. Next, for both runs we
compute correlations between annual SPI2 and annual NPP anomalies at the grid cell
level (onpp-spi2) @nd per land cover type (e.g. forest, grass). We refer to pypp.gpi2 @S
the NPP sensitivity to precipitation. Changes in this sensitivity due to LUC (5| y¢) are
calculated by the difference of sensitivities between both runs:

SLuc = (Onpp-spiz)Luc — (PNPP-sPI2)no-LUC (3)

3 Results and discussion
3.1 NPP sensitivity to precipitation for natural vegetation

Figure 3 first depicts the timing of the growing and the dry seasons (first row), and next
it shows the spatial distributions of NPP sensitivity to precipitation for trees (second
row) and grasses (third row) during these two periods. In mid-latitudes the productivity
(NPP) of trees is more sensitive to precipitation variability (high onpp.gpi2) during the
growing season (Fig. 3c) than in the dry season (Fig. 3d). Droughts and heat waves in
this period can strongly affect terrestrial productivity, as found for instance during the
2003 heat wave in Europe (Ciais et al., 2005). Likewise, evidence of enhanced NPP
of forest during wet episodes in the growing season is found by Tang et al. (2010).
594
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In high-latitude regions, temperature is the dominating factor determining the growing
season, but water shortage in that period can limit tree growth. This is found here by
a high pypp.spi2 in the growing season (Fig. 3c).

In the tropical regions, especially in the Amazon, anomalies during the dry season
have the largest effect (Fig. 3d). Negative impacts on NPP have been found when
droughts occur in the dry season, for example the 2005 and 2010 droughts in the
Amazon (Lewis et al., 2011; Phillips et al., 2009). In the wet season, solar radiation
and not precipitation is the main limiting factor for tropical forest growth (as shown by
Holmgren et al., 2013; Nemani et al., 2003; Schuur, 2003) and thus we find a small
Pnpp-spi2 (Fig. 3c).

The annual productivity of grasslands is highly sensitive to changes in precipitation
in the growing season, and thus a high pypp.spi2 (Fig. 3e), especially for semi-arid
grasslands (regions with a mean annual precipitation below 600 mm). In contrast, we
find a low pnpp.gpi2 iN the dry season (Fig. 3f). Grasslands can adapt to water shortage
during this period by suppressing their growth.

3.2 Regional changes in sensitivity due to land-use (6 uc)

Figure 4a shows the spatial distribution of the NPP-precipitation sensitivity (onpp-spi2)
for the mixture of PFTs and CFTs in each grid cell, in which at least 20 % of the area
was subject to land-use transition. Areas with a high onpp.gpj2 CoOiNcide with semi-arid
grassland regions. This is consistent with Zeng et al. (2013) who mapped strong posi-
tive correlations between NDVI-precipitation anomalies in regions covered by grass- as
well as by croplands for the period 1982—2010.

Figure 4b shows the difference in pypp.gpi2 between the LUC and no-LUC run (6, y¢),
highlighting a number of regions where LUC and a difference in sensitivity coincide.
Positive (negative) 6, ,c implies an increase (decrease) in NPP sensitivity to precipita-
tion variability after implantation of the LUC signal.
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Below we analyse selected regions in more detail. For that, we identify the grid cells
by their main land-use transition, and analyse spatial patterns of §, . Table 2 summa-
rizes the main characteristics of these regions.

3.2.1 India

In India two types of LU transitions can broadly be discerned: the conversion of grass-
lands to rainfed crops (GC,;), and the expansion of irrigation in rainfed croplands
(C,iC)). In areas where the first LU transition predominates (central semi-arid region
of the Deccan Plateau; Fig. 5a) 6, ¢ is positive (Fig. 5¢). Crops appear to be more
sensitive than tropical grasses in these cells. This is not consistent with the findings
of Nayak et al. (2013) who reported higher correlations for grasslands than for crops.
However, their definition of croplands is a mix of pastures, dry and irrigated crops, and
this does not allow a straightforward comparison with our findings. In grid cells with
the C,,,C; transition, found in northern humid subtropical region (known as the Indo-
Gangetic plains, IGP: Fig. 5a), 6, ¢ is generally negative. Irrigation promotes crop
productivity in the dry season (highest productivity peak in March for the LUC run in
Fig. 6a), which implies a change of the timing of maximum growth between the LUC
and no-LUC runs. The introduction of irrigation reduces the sensitivity in the dry season
(November—May; Fig. 6b), but it has no effect in the rainy season (August).

3.2.2 Australia

Australia has diverse climatic regions covered with different natural ecosystems (vary-
ing from deserts to rainforest), being grasslands the greatest contributors to the na-
tional NPP (Haverd et al., 2013). In our simulations, natural tropical grasslands in north-
west Australia are converted to pastures (GP), while temperate grasslands are mainly
converted to rainfed croplands (GC,;) in the southern part (Fig. 5d and f). Both land-
use transitions lead to a positive 5, ¢ (Fig. 5e and f): crops are more sensitive than
native grasslands, and the intensive mowing scheme applied for managed grasslands
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in LPJmL increases py\pp.sp2 for pastures. Besides, the additional expansion of crops
in the GP cells in the southern part may have also increased the sensitivity at the
aggregated area.

3.2.3 United States

Grasslands that originally cover the semi-arid areas of the west and central US are
converted to pastures (GP) and rainfed crops (GC,;) (Fig. 5g). The spatial median of
onep-spiz for GC,; cells increases with LUC (positive 6, ), but it does not change
for GP grid cells (Fig. 5i). Nevertheless, there is a positive pattern of §, ¢ in central
US (Fig. 5h) due to grazing and the additional expansion of crops, which enhances
PNPP-sPI2-

For the period 1989-1997, Wang et al. (2003) evaluated the correlation between
precipitation and NDVI for different land cover types (prairie, croplands, forests and
grasses) in the state of Kansas in the central Great Plains. Within the growing season,
grasslands showed higher correlations than prairies and forests. Croplands had the
lowest values, but they did not distinguish between irrigated and rainfed crops. They
pointed out that croplands are faster to respond to changes in precipitation, and forests
respond slower due to their adaptive strategies, such as deep roots (crucial for drought
events).

In the temperate northern central area, deforestation for crop expansion (TC,;) is the
main LU transition, while reforestation of croplands (C,,T) predominates in the eastern
part. Because trees have more access to water in deeper soil layers in LPJmL, crops
are more sensitive to precipitation. Grid cells with the TC,,; transition show positive
OLuc, and conversely a negative value for grid cells with the C,;T transition.

3.2.4 Inner Asia

The climate regime in Inner Asia varies between continental and arid, but a signifi-
cant LUC in the semiarid areas in northern Kazakhstan, Mongolia and north of Inner
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Mongolia make us focus on this region (Fig. 5j). NPP anomalies of these areas highly
correlate to SPI2 (Fig. 3a), which agrees with the finding of Mohammat et al. (2013).
For the period 1982-2009, they showed that 82 % of variance in the vegetation growth
in Inner Asia is explained by water availability during the summer (growing) season,
explaining more variance than temperature fluctuations.

In our model experiments, grid cells under GC,,; transition show positive 6 ¢ (Fig. 5k
and l). GP transition is widely spread in Inner Asia but no changes in spatial median
values of pypp.gpio between runs are found (Fig. 5I).

3.2.5 The Pampas of South America

The Pampas, located in northern Argentina and Uruguay, are characterized by a tem-
perate climate, with rainfall distributed over the whole year. Agriculture greatly ex-
panded in the Argentinian area, becoming one of the main global crop production
regions. In our simulations, rainfed crops replaced trees and grasslands (Fig. 5m),
and both LU transitions (TC,,;, GC,;) showed higher pnpp.gp» for the LUC run (Fig. 50)
and thus a positive 6 ¢, owing to a larger sensitivity of crops to precipitation variabil-
ity. Trees were also converted to pastures (TP), mainly in Uruguay, causing a slight
negative 6 yc.

4 Discussion of our approach

Correlation analysis between observed NPP and precipitation has been previously
applied with mean annual values or coefficients of variation (e.g. Fang et al., 2001;
Peng et al., 2010; Wang et al., 2013; Zhu and Southworth, 2013), monthly anomalies
(e.g. Zeng et al., 2013) or drought indexes (e.g. Chen et al., 2013; Pei et al., 2013; Zhao
and Running, 2010). Here we expand on this by using the dynamic global vegetation
model LPJmL to isolate the effect of the land-use forcing, and to evaluate and compare
the effect of different land-use transitions on the sensitivity of terrestrial productivity
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to precipitation variability in the growing season. These specific transition sensitivities
are obviously inherently included in the LPJmL code, and not necessarily reflect the
ecosystem behaviour in the real world. However, the main mechanisms could be well
explained and justified.

The results of our study are partially dependent on the chosen time characteristics of
our correlation analysis: we use a two-month SPI, and take the moment in the annual
cycle where NPP is maximum, which is assumed to maximize the correspondence be-
tween SPI and annual NPP. Vicente-Serrano et al. (2013b) pointed at the importance to
discern different time-scales to understand the response of biomes to droughts. While
most ecosystems responded at fairly short time-scales (between 2 and 4 months), they
suggested that humid biomes respond to longer time-scales than arid ones. Such a dis-
tinction was not clearly found from our (modelling) results. Our selection of two-month
SPI agreed with the findings of Zeng et al. (2013), who also found the two-month cu-
mulative precipitation as the highest and most extended positive correlation between
precipitation and NDVI anomalies.

Various studies recently have addressed the issue of the timing of changes in pre-
cipitation (precipitation seasonality) and droughts. Examples are the negative impact
on forest growth due to summer precipitation decrease (Poulter et al., 2013) and sum-
mer droughts (Mohammat et al., 2013) in Inner Asia, and the lower summer/autumn
precipitation in Kazakhstan (Eisfelder et al., 2014). Here, we explored how precipitation
variability in the growing season affects the annual terrestrial productivity. This is based
on the assumption that droughts in the growing season affect annual NPP anomalies
most, since they affect the NPP during its maximum seasonal value, except for tropical
regions, where water shortage becomes more significant in the dry season.

Although the impact of LUC has low significance at the global scale, we can dis-
tinguish spatial 6, ¢ patterns in regions that have undergone large LUC. Low levels
of significance have been also found when investigating the biogeophysical impact of
LUC on climate. For instance, the role of LUC on changes in precipitation is uncertain
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and of low statistically significance (Pitman et al., 2012), and divergence exists among
models (de Noblet-Ducoudré et al., 2012; Pitman et al., 2009).

5 Summary and concluding remarks

In this study, we carried out a model experiment to evaluate the effect of land-use
change (LUC) in the sensitivity of terrestrial net primary productivity (NPP) to precipita-
tion variability. We used 20th century simulations with the LPJmL model, run with two
different LU scenarios (hamed as LUC and no-LUC runs), and calculate their sensitivi-
ties (anomaly correlations between NPP and precipitation). Differences in sensitivities
between these two runs were assessed and attributed to LUC. We focused on the
growing season to pick the fraction of the seasonal cycle that contributes most to the
annual mean NPP production. We selected areas where LUC exceeded 20 % of the
grid cell, and we characterized the main land-use transition.

We found low significance of changes in sensitivity due to LUC, but regional pat-
terns could be identified. The most extended effect of LUC was located in semi-arid
grasslands: their conversion to croplands enhanced sensitivity, but limited response
was modelled when pastures expanded. These results highlight the role of LUC on
sensitivity to water deficit in semi-arid regions, where the climate can become drier
(e.g. in Australia; Zhao and Running, 2010), and where changes in precipitation and
more frequent drought events are expected in the future (IPCC, 2007, 2012). For the
two selected temperate areas (the Pampas and eastern United States), sensitivity in-
creased with trees/grass conversion to crops, and it decreased with the reforestation
of croplands.

No tropical regions were selected for two main reasons: (1) our definition of NPP-
precipitation sensitivity was related to precipitation anomalies in the growing season,
a period in which tropical productivity is poorly correlated to precipitation variability,
and (2) the low LUC in these regions in the data set we used. Nevertheless, more
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focus needs to be given to these regions since future deforestation in these areas will
likely have large effects on NPP variability and sensitivity.

In order to increase the robustness of our results, we suggest to expand this analysis
with a larger ensemble of ecosystem models, such as currently explored in the LUCID
(Pitman et al., 2009) and TRENDY (Sitch et al., 2013) programs. An analysis of effects
of LUC in recently performed global climate projections (Brovkin et al., 2013) is subject
of ongoing work.
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Table 1. Definition of land-use transitions.

LU transition

Definition

TC,
TC;
TP
GC,
GC;
GP

From trees to rainfed crops

From trees to irrigated crops

From trees to pastures

From grass to rainfed crops

From grass to irrigated crops

From grass to pastures

From rainfed crops to trees

From rainfed crops to grass

From rainfed crops to irrigated crops
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Figure 1. Differences in the extent cover of trees (a), natural grasslands (b), rainfed and irri-
gated croplands (¢ and d) and pastures (e) between the two land-use scenarios. (f) Map of
land-use transitions (see Table 1 for acronyms).
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Figure 2. Climatology of net primary productivity (NPP — green line) and precipitation (blue
line) (top row panels) and contour plots of Pearson correlation coefficients between detrended
monthly NPP anomalies and the 1- to 12-detrended SPI (bottom row panels) for three grid cells
located in the Amazon (left panels; 8.75° S—58.25° W), in Kazakhstan (middle panels; 50.25° N—
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Figure 3. (a) Timing of the growing (month with the maximum NPP) and (b) the dry (month
with the lowest precipitation) seasons. Spatial distribtution of Pearson correlation coefficient
between annual NPP anomalies and the SPI2 of the growing season and the SPI2 of the dry
season for trees (¢ and d) and for grasses (e and f).

613

Printer-friendly Version

Interactive Discussion

Jaded uoissnosiq

(®
{o


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/585/2014/esdd-5-585-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/585/2014/esdd-5-585-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

T
-150 -100 -50 0 50 100 150

Figure 4. Spatial distribution of (a) onpp.spi2 at the grid level for the LUC run; and (b) the
difference of pypp.gp2 between LUC and no-LUC runs (6, ) over the time period of 1901—
2009. For both maps just grid cells that follow our definition of LU transition (see Sect. 2.4) are

shown.
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Figure 5. Maps of land-use transitions (first column); Spatial distributions of 6, ¢ (second col-
umn); and the frequency of LU transition types and the spatial medians of pypp_gpi» Per land-use
transition for the LUC and no-LUC runs over time period of 1901-2009 (third column).
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Figure 6. Seasonality of (a) NPP, (b) precipitation and (¢) pnpp.gpi2 for cells with the LU transi- o
tion C,,C, in India. ?
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