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Abstract. Northern Hemisphere (NH) temperature records
from a paleoclimate reconstruction and a number of
millennium-long climate model experiments are investigated
for long-range memory (LRM). The models are two Earth
system models and two atmospheric-ocean general circula-5

tion models. The periodogram, detrended fluctuation anal-
ysis and wavelet variance analysis are applied to examine
scaling properties and to estimate a scaling exponent of the
temperature records. A simple linear model for the climate
response to external forcing is also applied to the reconstruc-10

tion and the forced climate model runs, and then compared
to unforced control runs to extract the LRM generated by
internal dynamics of the climate system. The climate mod-
els show strong persistent scaling with power spectral densi-
ties of the form S(f)∼ f−β with 0.8< β < 1 on time scales15

from years to several centuries. This is somewhat stronger
persistence than found in the reconstruction (β ≈ 0.7). We
find no indication that LRM found in these model runs are in-
duced by external forcing, which suggests that LRM on sub-
decadal to century time scales in NH mean temperatures is a20

property of the internal dynamics of the climate system. Re-
constructed and instrumental sea surface temperature records
for a local site, Reykjanes Ridge, are also studied, showing
that strong persistence is found also for local ocean tempera-
ture.25

1 Introduction

The presence of long-range memory (LRM) in climatic
records is well documented in the geophysics literature.
LRM is characterized by an algebraically decaying auto-
correlation function (ACF) limt→∞C(t)∝ t−γ such that30 ∫∞
0
C(t)dt=∞, i.e., 0< γ ≤ 1. Equivalently, the power

spectral density (PSD) of LRM time series follows a power
law limf→0S(f)∝ f−β , where β = 1− γ and 0< β < 1.
A typical model for an LRM stochastic process is the per-
sistent fractional Gaussian noise (fGn). This is a stationary35

process with 0< β < 1. The cumulative integral (or sum) of
such a process has the PSD of the form S(f)∼ f−β , but with
β→ β+2. Such a process with 1< β < 3 is a non-stationary
LRM process called a fractional Brownian motion (fBm).

In short time series the ACF estimator is biased and noisy,40

which makes it difficult to use it for estimating properties of
a power-law tail. The reason for the bias is that the sample
mean will have to be used, rather than the true mean, in the
estimation of the ACF (Lennartz and Bunde, 2009b; Rypdal
et al., 2013). In this paper we use the periodogram to estimate45

the PSD as the first crude characterization of the data, and
employ the periodogram, Fluctuation Analysis (DFA) and
Wavelet Variance Analysis (WVA) for parameter estimation.

Most of the LRM studies of climatic time series investigate
local time records (e.g., Pelletier, 1997; Weber and Talkner,50

2001; Eichner et al., 2003), but LRM has also been found in
global observed temperature records (Lennartz and Bunde,
2009a) and reconstructed temperature records for the North-
ern Hemisphere (Rybski et al., 2006; Mills, 2007). Some
surface temperature records from AOGCM climate models55

have been analyzed with the main result that LRM is not re-
produced in agreement with that of observational tempera-
ture (Syroka and Toumi, 2001; Bunde et al., 2001; Govindan
et al., 2001, 2002; Bunde and Havlin, 2002). Some of the
model experiments produce temperature with multiple scal-60

ing regimes, and some of them yield smaller scaling expo-
nents than the observational temperature. However, in (Sy-
roka and Toumi, 2001; Bunde et al., 2001; Govindan et al.,
2001) the model experiments all had greenhouse gas forc-
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ing as the only dynamic forcing, while remaining external65

forcings, such as total solar irradiance and volcanic effects,
were kept constant. Govindan et al. (2002) and Bunde and
Havlin (2002) used experiments (i) where all forcings were
fixed, (ii) with fixed forcings except greenhouse gas forc-
ing, and (iii) with fixed forcings except greenhouse gas plus70

aerosol forcing. Their main conclusion was that the temper-
ature from the model experiments fail to reproduce the scal-
ing behaviour found in observational data, and that the mod-
els display large differences in scaling from different sites.
Of these scenarios, the one with dynamic greenhouse gas75

plus aerosol forcing performed better with respect to produc-
ing the scaling observed in instrumental temperature records.
Global fields of observed and simulated surface temperatures
from an AOGCM climate model experiment were studied in
Fraedrich and Blender (2003). The experiment was run with80

fixed forcings. The result from observational data was mostly
in agreement with previous studies of temperature in oceanic
and coastal regions, but the authors found white noise scal-
ing (β ≈ 0) at continental interiors. Analysis of a 1000-year
temperature simulation from the model experiment produced85

similar scaling exponents to what was found for the observa-
tional data in this study. Blender and Fraedrich (2003) made
a similar analysis of temperature from two different model
experiments with dynamic greenhouse gas forcing, giving re-
sults in agreement with Fraedrich and Blender (2003).90

Temperature from model experiments with constant forc-
ings, and time-varying greenhouse gas, sulfate aerosol,
ozone, solar, volcanic forcing and various combinations was
studied in Vyushin et al. (2004). Scaling exponents for tem-
perature at 16 land sites and 16 sites in the Atlantic ocean95

were estimated. They found that inclusion of volcanic forc-
ing considerably improved the scaling behavior. Rybski et al.
(2008) used model experiments with all constant forcing and
with dynamic solar, volcanic and greenhouse gas forcing.
They analyzed data from grid cells all over the globe, but did100

not investigate global or hemispheric means. They found that
for the forced run experiment the temperature showed a scal-
ing exponent in agreement with observational temperature,
while the temperature from the control run showed generally
lower persistence.105

Studies of LRM in temperature records from climate
model experiments mostly use temperature from local sites,
and some also use temperature spatially averaged over larger
regions. Global mean temperature was studied by Syroka and
Toumi (2001), but hemispheric means have not been studied110

with regards to LRM. For observational and reconstructed
temperature, global and hemispheric means are also far less
studied than local data.

In the present study we analyze scaling properties of sur-
face temperature for the Northern Hemisphere from paleocli-115

mate simulations and compare to those of temperature recon-
struction by Moberg et al. (2005) which spans the last two
millennia. Hemispheric temperature records from four dif-
ferent Earth system climate models are analyzed, and both

forced runs and control runs are investigated. In order to120

avoid effects of anthropogenic forcing only data up to the
year 1750 is used. This will give an idea of what role other
natural external forcing like solar, CO2, volcanic and aerosol
forcing play in producing LRM, and indicate if LRM can
arise from internal dynamics alone.125

Separation of the LRM arising from internal dynamics
from the LRM induced by external forcing can also be
achieved from reconstructed and simulated temperature data
if the forcing data are known. The method makes use of
a simple linear model for the global temperature response130

(Rypdal and Rypdal, 2013). The response to the external
forcing can then be computed and subtracted from the ob-
served or modeled temperature record to yield a residual
which represents the internal variability of the climate sys-
tem. Analysis of this residual and temperature from forced135

runs and control runs are compared for those models where
temperatures from both forced runs and control runs are
available.

This paper is organized as follows: Section 2 describes the
DFA and WVA methods and the response model. Informa-140

tion about the models and the data used can be found in Sec-
tion 3, and the results from the analysis are presented in sec-
tion 4. Discussion and conclusion follow in section 5.

2 Methods

2.1 Estimation of Power Spectral Density145

The periodogram for the evenly sampled time series
x(1),x(2), . . . ,x(n) is defined in terms of the discrete
Fourier transform Hm as

Sm =
2|Hm|2

N
, m= 1,2, . . . ,N/2.

Since our time unit here is the sampling time, the frequency150

measured in cycles per time unit is fm =m/N . The smallest
frequency which can be represented in the spectrum, and the
frequency resolution, is 1/N , and the highest frequency that
can be resolved (the Nyquist frequency) is fN/2 = 1/2.

The periodogram has been heavily criticized as an esti-155

mator for PSD for a number of reasons, but mainly because
of its poor signal to noise ratio. Standard error for a sin-
gle frequency is of the order of the mean, and it will not
be improved by a longer time series, because the number of
frequencies to which one can distribute the power increases160

proportionally to N . This is a problem if we are interested
in estimating the power in spectral peaks that are resolved
by the frequency resolution 1/N , but here we are concerned
with the overall shape of the spectrum. Windowing applied
to numerical realizations of fGns before computing the pe-165

riodogram has a weak tendency to suppress the lowest fre-
quencies in the spectrum and hence destroy the scaling. For



Østvand et al.: Long-Range Memory in Model Experiments 3

this reason we show the log-binned periodogram in log-log
plots to give an intuitive feeling for the power-law and LRM-
character (β > 0) of the spectra.170

When estimating the spectral index from the periodogram,
one needs to keep in mind that the points will appear with
increasing density towards high frequencies in log-log plots
and hence, if there is imperfect scaling in the form of dif-
ferent slopes of the log-log curve in different parts of the175

spectrum, such a fit will emphasize the higher end. In deal-
ing with LRM, however, we are mainly concerned with the
lower end of the spectrum, so a better approach would be
to compute the power in frequency bins which appear with
constant width on a logarithmic scale. Straight lines fitted to180

frequency-binned power spectra will give a better representa-
tion of the overall scaling properties of the signal. The same
idea applies to all the other techniques that will be described
in the following. These represent the scaling in terms of time
scale τ , rather than frequency, but when fitting is done in log-185

log plots we fit to curves where the scales are represented by
points with constant separation on the log scale.

2.2 Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) (Peng et al.,
1994; Kantelhardt et al., 2001) was explicitly designed to190

remove polynomial trends in the data. The method can be
summarized in four steps. First, we construct the cumula-
tive sum (the “profile”) of the temperature time series x(t);
Y (i) =

∑i
t=1x(t)−〈x〉, where 〈x〉 denotes the mean. In

the second step the profile is divided into Nτ =N/τ non-195

overlapping segments of equal length τ . This is done both
starting at the beginning and at the end of the profile, so 2Nτ
segments are obtained altogether. In the third step, an n’th
order polynomial is fitted to, and then subtracted from, each
segment. Thus, at this stage we have formed the detrended200

profile Yτ (i) = Y (i)− pν(i), where pν(i) is the polynomial
fitted to the ν’th segment. In the final step, the variance of
each segment, F 2(ν,τ) = 1

τ

∑τ
i=1Y

2
τ [(ν− 1)τ + i], is com-

puted. The fluctuation function is given by the square root of
the average over all the segments,205

F (τ) =

[
1

2Nτ

2Nτ∑
ν=1

F 2(ν,τ)

] 1
2

.

The scaling parameter β is found through the relation

F (τ)∝ τ (β+1)/2.

What we have described is the n’th order detrended fluctua-
tion analysis, denoted DFAn. It has the property of eliminat-210

ing the effect of an n− 1’th order polynomial trend. In this
paper we employ second order DFA, denoted DFA2, which
eliminates linear trends. DFA estimates of β has also been
shown to be rather weakly affected by oscillatory trends, pro-
vided the oscillation period is well inside the range of scales215

investigated Hu et al. (2001).

2.3 Wavelet Variance Analysis

The continuous wavelet transform is the convolution between
a time series x(t) and the rescaled wavelet Ψ(t/τ);

W (t,τ ;x(t),Ψ(t)) =

∞∫
−∞

x(t′)
1√
τ

Ψ

(
t′− t
τ

)
dt′.220

The mother wavelet Ψ(t) and all rescaled versions of it
must fulfill the criteria

∫∞
−∞Ψ(t′)dt′ = 0. For LRM time se-

ries, the variance VW (τ) = (1/N)
∑N
t=1W

2(t,τ) scales as a
power-law (Flandrin, 1992; Malamud and Turcotte, 1999),

VW (τ)∼ τβ .225

The method is therefore known as the wavelet variance anal-
ysis (WVA). In this study we have used the Mexican hat
wavelet, which is capable of eliminating linear trends, and
denote the method WVA2. The properties of the WVA2 anal-
ysis are similar to the DFA2 in that it usually yields similar230

values of β. It is, however, much more sensitive to the pres-
ence of additional oscillations in the data, which show up as
wavy structures in the function VW (τ). We use it in this pa-
per mainly as a tool (in addition to the periodogram) to detect
such oscillations.235

2.4 The response model residual analysis

For the preindustrial period the most important contributions
to the external radiative forcing F (t) are orbital, solar vari-
ability, and aerosols from volcanic eruptions. Orbital forcing
can be computed with high accuracy, and total solar irradi-240

ation has been reconstructed for the last ten millennia. Ex-
isting reliable reconstructions of volcanic forcing cover the
last millenium. The forcing data used here are further de-
scribed in Section 3. The evolution of the global mean sur-
face temperature anomaly T on decadal to millennial time245

scales can tentatively be modeled as a linear response to F (t)
in addition to a response to stochastic forcing from unre-
solved spatiotemporal “turbulence” (e.g., forcing of the sea-
surface temperature from atmospheric weather systems). A
simple stochastic-dynamic model (SDM) with an LRM re-250

sponse function is (Rypdal and Rypdal, 2013):

T (t) = µ[

t∫
0

(t− s)β/2−1F (s)ds

︸ ︷︷ ︸
deterministic solution

+σ

t∫
0

(t− s)β/2−1dB(s)

︸ ︷︷ ︸
1/fβ noise

].

Here B(s) is the Wiener stochastic process whose incre-
ments dB(s) is a Gaussian white noise process and σdB(s)
represents the stochastic component of the forcing. T (t) is255

the temperature relative to the temperature T0 at time t= 0
(the beginning of the record) and F = F̃ +F0 is perturbed
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forcing F̃ relative to that of a radiative equilibrium at sur-
face temperature T0 plus the actual radiative imbalance F0

at t= 0. By definition F̃ (0) = 0. F0 is a model parameter260

which is estimated from the data along with the other model
parameters β, µ, and σ. The stochastic part of this solution
(the term to the right) has a power spectral density of the
form S(f)∼ f−β , and is fractional Gaussian noise (a sta-
tionary process) if β < 1 and a fractional Brownian motion265

(nonstationary) if 1< β < 3.
Estimates of past changes in global climate forcing and

its various components exist for the instrumental period as
well as for the last millennium. This information can be used
in conjunction with the observed temperature records to per-270

form maximum-likelihood estimates (MLE) of the parame-
ters of the model. The details of the MLE method applied
to this response model are explained in Rypdal and Rypdal
(2013). In a short-range memory response model, the power-
law kernel (t− s)β/2−1 in the response model is replaced275

with an exponential e−(t−s)/τ , where τ is the time constant.
In this case the parameter µ−1 can be interpreted as the effec-
tive heat capacity of the climate system. In the LRM response
model µ−1 does not have a simple physical interpretation, al-
though it is (in combination with β) a measure of the thermal280

inertia of the system. The memory parameter β estimated
from this model should be interpreted as the LRM parameter
for the internal temperature response, and hence the problem
of separating the LRM contribution from the forcing and the
internal LRM has been eliminated. The β estimated in Ryp-285

dal and Rypdal (2013) is β ≈ 0.75, which is not much lower
than the value estimated for the full temperature record from
detrending techniques like DFA and WVA. This shows that
the detrending techniques effectively eliminate the contribu-
tion to β from the anthropogenic trend.290

For the response model analysis in the present paper, all
forced temperature time series are provided together with
time series for the solar, volcanic and greenhouse gas forc-
ings. Other forcings may be included in the model simula-
tions, but they are not included in the analysis. If the exact295

forcings used in the model experiments are not available, the
forcing described in Crowley (2000) is used, hereafter re-
ferred to as the ”Crowley forcing“. For the ECHO-G forced
run and the Moberg reconstructed temperature Moberg et al.
(2005), the Crowley forcing is applied. For the forced runs by300

COSMOS and HadCM3, the prescribed model forcings were
used as input to our response model. For the LOVECLIM
experiment, solar and volcanic forcings prescribed for the
model were used together with CO2 and tropospheric aerosol
forcings corresponding to the Crowley forcing. The full forc-305

ing data in these four cases are shown in Figure 1.

3 Data

3.1 The reconstruction of Moberg et al. (2005)

The reconstructed temperature presented in Moberg et al.
(2005) is a Northern Hemisphere reconstruction covering the310

time period 1-1979 AD. The reconstruction is created from
11 low-resolution proxy time series (e.g. ice cores and sedi-
ments, 1-180 year resolution) and 7 tree-ring records (annual
resolution). The 18 local reconstructed temperature time se-
ries were first divided into an Eastern and a Western part.315

Linear interpolation was then applied to all time series in or-
der to create annual mean values. The beginning and end of
the time series were padded with surrogate data so that they
all covered the time period 300 BC - 2300 AD to minimize
edge effects of the wavelet transform. The wavelet transform320

(WT) with the Mexican hat wavelet basis function was then
applied using the set of 22 scales to generate 22 time series.
For each scale 1-9 (Fourier timescales <80 years), the WT
from the tree-ring proxy series were averaged. For the scales
10-22 (Fourier timescales >80 years), the WT from the low-325

resolution proxy series were averaged. Scale 1-22 were then
merged, creating two full WT time series, one for the Eastern
and one for the Western Northern Hemisphere. The two sub-
sets were then averaged, and the inverse WT was calculated,
creating a dimensionless NH temperature reconstruction. Fi-330

nally, the mean and variance of the reconstructed temperature
time series were calibrated to correspond to the instrumental
data available for the time period 1856-1978.

3.2 Marine sediment SST reconstruction; Reykjanes
Ridge335

The local sea surface temperature (SST) reconstruction ap-
plied in the following study is presented in detail in Mietti-
nen et al. (2012). Past August SST has been reconstructed by
analyzing marine planktonic diatoms from a composite ma-
rine sediment core, recovered at the Reykjanes Ridge in the340

western subpolar North Atlantic, (57◦27.09’N, 27◦54.53’W,
at 2630 m water depth). The composite core consist of a 54.3
cm long box core, and a 3.725 m long gravity core. The gen-
eral assumption is that the down-core diatomic microfossil
assemblages are related with past environmental conditions345

at the core site. Marine diatoms are unicellular, photosyn-
thetic algae with siliceous frustules. For this particular anal-
ysis, the down-core diatomic assemblages were converted to
August SST estimates by the weighted-average partial least
squares technique of ter Braak and Juggins (1993). The SST350

reconstruction has an average temporal resolution of 2 years
for year 1770-2000 (box core), and 8-10 years for year 1000-
1770 (gravity core).
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3.3 SST reconstruction from observations; Reykjanes
Ridge355

A reconstruction based on instrumental observations was de-
veloped in Smith and Reynolds (2005). For the ocean, sea
surface temperature (SST) was used, while surface marine
air temperatures where left out due to biases in the day-
time temperatures. The SST analysis and a separate land sur-360

face air temperature analysis were merged to form a monthly
merged analysis from 1880 to 1997. The International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS) SST ob-
servations release 2 was the primary SST data, but the com-
bined satellite and in situ SST analysis of Reynolds et al.365

(2002) was also included. The reconstruction was separated
into low- and high-frequency components, which were added
for the total reconstruction. The low frequency was recon-
structed using spatial and temporal filtering, with a time fil-
ter of 15 yr. The low-frequency component was subtracted370

from the data before reconstrucion of the high-frequency
component using spatial covariance modes. The method for
reconstructing the data is described in detail in Smith and
Reynolds (2004). This reconstruction contains improvements
over many earlier studies: It is globally complete, incorpo-375

rates updates in ICOADS, the analysis variance have less
dependence on sampling compared to some earlier analysis,
and uncertainty estimates indicate when and where the anal-
ysis is most reliable.

3.4 LOVECLIM model and experiment380

The Earth system model LOVECLIM version 1.2 contains a
quasi-geostrophic model for the atmosphere (ECBilt2), cou-
pled to an ocean GCM (CLIO3) (Goosse et al., 2010). The
two models have 3 and 20 vertical levels, respectively. A ther-
modynamic sea-ice model is incorporated into the OGCM,385

and the vegetation model VECODE is used to simulate the
dynamics of trees, grasses and deserts. It includes the evo-
lution of the terrestrial carbon cycle, while a separate model
LOCH simulates the ocean carbon cycle. Both the solubility
and the biological pumps are included in this model. Incor-390

porated in LOVECLIM is also the ice-sheet model AGISM,
which consists of 3 modules; ice sheet flow, visco-elastic
bedrock and mass balance at the ice-atmospehere and ice-
ocean interfaces.

We apply surface temperature data from one experiment395

with this model; “LOVECLIM Climate Model Simulation
Constrained by Mann et al. 2009 Reconstruction” (Goosse
et al., 2012). In this experiment, simulations are constrained
by the mean surface temperature reconstruction of Mann
et al. (2009). External forcing includes TSI (total solar irra-400

diance), volcanic eruptions, land cover changes, orbital forc-
ing, greenhouse gases and aerosols. When we implement the
response model to these data, time series for the solar, vol-
canic and greenhouse gas forcing are applied. The solar forc-
ing time series is based on the reconstruction by Muscheler405

et al. (2007). The volcanic activity time series originate from
Crowley et al. (2003) , while the greenhouse gas forcing used
is obtained from Crowley (2000).

3.5 COSMOS ESM model and experiments

The COSMOS ESM model consists of GCMs for the at-410

mosphere and the ocean (Jungclaus et al., 2010). The atmo-
spheric model ECHAM5 (Roeckner et al., 2003) has 19 ver-
tical levels, while the ocean model MPIOM (Marsland et al.,
2003) has 40. A thermodynamic sea-ice model is incorpo-
rated into the OGCM. Additional modules include the ocean415

biogeochemistry model HAMOCC5 (Wetzel et al., 2006),
and the terrestrial biosphere model JSBACH (Raddatz et al.,
2007).

The surface temperature data applied in our analysis are
extracted from one experiment in a set of experiments re-420

ferred to as “Ensemble Simulation of the Last Millenium
using the Comprehensive COSMOS Earth System Model”
(Jungclaus et al., 2010). External forcing used in the forced
simulations include TSI, volcanoes, orbital forcing, green-
house gases and land use change. An unforced control run is425

also included in the comparative LRM study.
For the response model, time series for solar, volcanic and

greenhouse gas forcing are applied. The forcing time series
used are created specifically for this model and experiment
(Jungclaus et al., 2010). The solar forcing time series is based430

on a combination of reconstructions; from the Maunder Min-
imum (1647-1715 AD) until today the total solar irradiance
(TSI) is based on historical sunspot records (Krivova and
Solanki, 2007; Balmaceda et al., 2007), and between 800 AD
and the Maunder Minimum the TSI is reconstructed from es-435

timates of the solar open magnetic flux based on 14C con-
centrations in tree rings (Solanki et al., 2004; Krivova and
Solanki, 2008; Usoskin et al., 2011). An 11-year solar cycle
has been superposed on this part of the reconstruction.

The relative radiative forcing from volcanic eruptions is440

calculated from aerosol optical depth (AOD) and effective ra-
dius Reff. Satellite data from the 1991 Mt. Pinatubo eruption
is the basis for these estimates. The greenhouse gas forcing
includes CO2, where concentrations are computed within the
model, based on historical records of fossil fuel emissions by445

Marland et al. (2003).

3.6 ECHO-G model and experiments

The coupled model ECHO-G (Legutke and Voss, 1999) ver-
sion 4 consist of GCMs for the ocean/sea ice and the atmo-
sphere. The atmospheric model ECHAM4 (Roeckner et al.,450

1996) includes 19 vertical levels, while the ocean model
HOPE-G (Legutke and Maier-Reime, 1999) includes 20 lev-
els. External forcing includes volcanoes, solar irradiance and
greenhouse gases. Suitable time series for the model forc-
ings were not available, and for this reason the Crowley455

(2000) forcings are used in the response model study. Surface
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temperature from two experiments is used for analysis; one
forced run and one control run with forcing values fixed to
year 1990 (Zorita et al., 2003; González-Rouco et al., 2003;
von Storch et al., 2004).460

3.7 HadCM3 model and experiment

The Hadley Centre coupled model 3 is an AOGCM (Gor-
don et al., 2000), with 19 levels in the atmospheric compo-
nent HADAM3 (Pope et al., 2000) and 20 levels on the ocean
HADOM3 component. External forcing includes volcanoes,465

solar irradiance, greenhouse gases, land use change and or-
bital variations. In the response model study, the time series
for volcanic forcing (Crowley et al., 2008), solar irradiance
(Steinhilber et al., 2009), and greenhouse gases (Schmidt
et al.) from the model experiment were applied. The com-470

plexity, time period covered, and temporal and spatial reso-
lution for each model experiment are given in Table 1.

4 Results

When applying periodogram, DFA2 and WVA2 directly to
the temperature reconstruction records, all data up to the year475

1750 are used. Because the Crowley forcing record starts at
1000 AD, only data from this year and forward were used in
the response model residual analysis of the Moberg recon-
structed temperature and the temperature from the LOVE-
CLIM experiment. Therefore the scales shown in the plots480

may differ somewhat between the full record and the resid-
ual from the deterministic response. Table 2 shows the re-
sulting β from applying periodogram, DFA2 and WVA2 di-
rectly to the full temperature and to the residuals from the
deterministic response. The β estimated using the response485

model is also given, where the parameters of the response
model are estimated with the MLE method (Rypdal and Ryp-
dal, 2013). The response model residual analysis is applied
to the temperature reconstructions and the temperature from
forced climate model experiments, while the direct analysis490

also includes control simulations. The scaling ranges used to
find β are shown in the figures and not given in the table.
Figures 2-13 show the analysis of the temperature records.
For the full records, the figures show (a) the temperature
data, and (b) PSD, (c) DFA2, and (d) WVA2 applied to the495

data set. For the response model results, the figures show
(a) the temperature data and deterministic response, (b) the
residual, and (c) PSD and (d) DFA2 applied to the resid-
ual. The residual is the deterministic response interpolated
to have the original time resolution subtracted from the full-500

resolution temperature data. 95% confidence areas are shown
for all three methods, computed from Monte Carlo ensem-
bles of synthetic fGns. For the response-model analysis with
PSD and DFA2, the synthetic fGns are generated with the β-
value estimated by MLE, otherwise they are generated with505

β found from fitting straight lines to the log-log plots of the

PSD, DFA2 and WVA2 analysis, respectively. The values of
β used are indicated in each figure.

We have not given error bars on the estimated β-values
in each case. Such error bars can easily be estimated from510

fitting straight lines to each realization in the Monte Carlo
ensembles, and computing PDFs of their slopes. This was
done in Rypdal et al. (2013) for time series samples of simi-
lar lengths as studied here and error bars of ∆β =±0.2 (95%
confidence) was generally found for all estimation methods.515

Hence, even though the β estimates in this paper are given
with two decimals, the last decimal is hardly significant. The
discrepancies in the β estimates between the methods are
within these error bars, and hence there is no point in trying
to explain these differences.520

4.1 Results from paleoreconstruction of Moberg et al.
(2005)

Figure 2 shows the Moberg reconstructed temperature
record, its power spectral density (PSD) and the results of
DFA2 and WVA2 applied to the full record. As discussed525

above the scales up to ∼ 10 years are not representative for
the temperature, and this is seen as a cross-over in the slope
of the log-log periodogram and DFA2 and WVA2 fluctuation
functions. The deviation from a straight line at the largest
scales (lowest frequencies), which is most prominent in the530

WVA2 fluctuation function, is caused by a nonlinear trend as-
sociated with the two well known climatic features of the last
2000 years: Medieval climate anomaly and the Little ice age.
The three methods yield β ≈ 0.63, β ≈ 0.69 and β ≈ 0.60,
respectively.535

In principle the LRM properties due to internal dynamics
can be separated from those induced by the external forcing
by applying the response model method of Rypdal and Ryp-
dal (2013) described in section 2. This method allows esti-
mation of the model parameters β, σ, and µ from the Crow-540

ley forcing data and the Moberg reconstruction record. Then
we can compute the deterministic response and the residual
obtained by subtracting this deterministic response from the
Moberg record. The residual represents the response to the
stochastic forcing and hence the internal variability of the545

climate system. The scaling properties of this residual can
be assessed with the periodogram or the DFA method which
also provides a consistency test on the maximum-likelihood
estimate of β.

A caveat here is the low-pass filtered nature of the Moberg550

record. The MLE method tends to emphasize the shorter
scales on which the reconstruction record is smooth, and this
will spuriously yield β ≈ 1. A way to avoid this could be to
coarse grain both temperature and forcing time series by av-
eraging over successive time windows of a certain length tA,555

such that the temperature series is no longer smooth. This
will give a more reasonable maximum-likelihood estimate of
β, but the coarse-grained data cannot capture the causal con-
nection between the almost instantaneous volcanic forcing
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spikes and the temperature response to them. The resulting560

blurring of the causal connection on time scales shorter than
a decade has the effect that the MLE method interprets the
variability on these short scales as stochastic, and hence over-
estimates the stochastic forcing strength σ, and also yields
incorrect estimates of µ and β. The lesson to learn from this565

is that we cannot expect to obtain a correct separation of de-
terministic and stochastic forcing and correct parameter es-
timates from the low-resolution reconstruction data. Another
approach to circumvent this problem was suggested in Ryp-
dal and Rypdal (2013), where the response model parame-570

ters computed from the annual-resolution instrumental data
were applied to the millennium-long annual-resolution forc-
ing record to produce a deterministic-response record with
annual resolution. The Moberg record and this deterministic
response is shown in Figure 3(a). The residual obtained by575

subtracting the deterministic response from the reconstructed
record is shown in Figure 3(b), and provides a good represen-
tation of the internal variability on time-scales longer than a
decade. On shorter time-scales the residual is strongly influ-
enced by the forced response due to the smooth character of580

the temperature reconstruction, but we do not need to use
those scales to estimate model parameters if we do not insist
on using MLE. The PSD of the residual is shown to exhibit
good scaling in Figure 3(c), and the DFA2 fluctuation func-
tion of this residual on the longer time-scales should provide585

good estimates of β for the internal variability, as shown in
Figure 3(d).

4.2 Results from LOVECLIM experiment

The NH temperature record for the period 1000-1750 AD
for the LOVECLIM experiment, its power spectral density590

(PSD), and the DFA2 and WVA2 fluctuation functions are
shown in Figure 4. There appears to be good scaling with
β ≈ 1 at least on time scales up to a few hundred yr. The re-
sponse model gives similar value of β, which suggests that
the persistence observed in the modeled record is due to595

LRM in the internal dynamics and not a reflection of LRM
in the forcing. In this model simulation both forcing input
and simulation output are given with annual resolution. This
allows us to handle volcanic forcing and the response to vol-
canic eruptions in a realistic manner. The results from the600

response model estimates with annual resolution are shown
in Figure 5.

4.3 Results from COSMOS experiment

The temperature from the COSMOS forced run experiments
exhibits some oscillations. In particular a prominent peak605

corresponding to a multiannual mode is seen in the PSD in
Figure 6(b), and in the WVA plot in Figure 6(d). Otherwise
scaling is fairly good with β ≈ 0.8−0.9. For the control sim-
ulation (Figure 7) β is almost the same as in the forced sim-
ulation, but PSD, DFA2, and WVA2 show some signs of loss610

of memory on scales longer than a century. The multiannual
oscillation influences the maximum-likelihood estimation of
model parameters in the response model, so in Figure 8 these
estimates have been performed on a 4-yr coarse-grained time
series, while the residual has been computed on monthly615

scale. As discussed above such coarse-graining creates a mis-
representation of the response to volcanic eruptions, which
we believe is the main reason for the lower estimate β ≈ 0.6
from the response model.

In a recent paper Henriksson et al. (2014) analyse COS-620

MOS global temperature series and obtain lower spectral ex-
ponents than we do, in particular for the unforced simula-
tion. The reasons for this discrepancy are the following: The
COSMOS simulation has a very strong ENSO-like signal,
considerably stronger than in instrumental or reconstruction625

data. This leads to a distinct spectral “hump” in the global
temperature on frequencies in the range 1/6< f < 1 yr−1,
but with a long tail towards lower frequencies. The spec-
tral shape of the ENSO signal is apparent from their spectra
from locations in the tropical oceans while away from this630

region there is a much wider power-law range with β ≈ 1.
The globally averaged temperature is a superposition of sig-
nals having these two spectral shapes, and the result is that
the range of frequencies f < 1/6 yr−1 are influenced both by
the ENSO hump and the underlying power law which dom-635

inates on higher lattitudes. This leads to an apparent lower
slope (lower β) of the log-log spectrum in this range. Hen-
riksson et al. (2014) make a point of splitting the spectrum
of a non-scaling global signal into short pieces (ranges) and
compute slopes for each of these ranges. We cannot see that640

this has physical meaning, since what appears as different
ranges are results of combining (averaging over) signals with
different scaling properties; in this case power-law scaling
signals from temperate and polar zones, and quasi-oscillatory
signals from the tropical oceans.645

The goal of our analysis has been to uncover the underly-
ing power-law scaling which prevails away from the ENSO
region, and is why we have focused on DFA, which is rela-
tively insensitive to oscillatory perturbations. In comparison,
the WVA is much more sensitive to the ENSO perturbation.650

However, the underlying scaling also becomes apparent from
the power spectrum if we analyse monthly, deseasonalised,
data, as shown in of Figures 6b, 7b and 8c.

4.4 Results from ECHO-G experiments

The temperature from the forced experiment “Erik1” shows655

good scaling with β ≈ 0.9 in Figure 9. The temperature from
the control run (Figure 10) also scales well with a similar
value for β. The response model yields a slightly smaller β
(Figure 11). Here a 1-yr coarse graining has been applied
before the parameters have been estimated, since the forcing660

data have 1-yr resolution.
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4.5 Results from the HadCM3 experiment

The HadCM3 experiment consists of only a forced simula-
tion, and the scaling properties of the NH temperature series
from this experiment differs from the other experiments in665

some respects. Figure 12 shows a β slightly greater than 1
but a cross-over to a regime with lower β regimes for τ ∼ 30
yr. The analysis with the response model, however, indicates
a more consistent scaling with β ≈ 0.8− 0.9, as shown in
Figure 13. The discrepancy between the scaling of the forced670

signal and the residual is attributed to the strong solar forcing
signal employed in the HadCM3 simulation.

4.6 Scaling in local data; Reykjanes Ridge

In our experience, analysis of instrumental local station data
from continental interiors typically yields very low persis-675

tence on time scales up to a few decades. On the other hand,
coastal and oceanic observations in the temperate regions of
the Northern Hemisphere present persistent β-values closer
to those found for the hemispheric average. We also believe
that this feature extends beyond the decadal scales, i.e., that680

good scaling with strong persistence prevails on scales up
to several centuries in the Northern oceans. As an illustra-
tion we present in Figure 14 analysis of the Reykjanes ridge
reconstruction from marine sediments described in Section
3.2 and the ECHO-G Erik1 experiment for the period 1000-685

1750 AD, and of the monthly SST reconstruction for the pe-
riod 1880-1997 as described in Section 3.3. The figure shows
DFA2 plots for the three data sets. ECHO-G shows good
scaling in the range 1-100 yr with β ≈ 0.67, as compared
to β = 0.91 for the NH-average. The marine sediment re-690

construction yields β ≈ 0.45, and the instrumentally-based
reconstruction β ≈ 0.56. The greatest uncertainty in the β-
estimate is in the marine sediment reconstruction, for which
a very limited range of scales is available for analysis. The
record has uneven time spacing, but the time step is mostly695

almost the same, slightly below 10 years. The data points in-
consistent with this are ignored, and DFA2 applied to the re-
maining record. A maximum-likelihood estimation method
for time series with uneven time spacing yields β close to
what was found with DFA2. In spite of these uncertainties700

the analysis demonstrates consistently persistent scaling over
time scales from years to centuries in these local data from
model experiment and reconstruction data.

5 Conclusions

The temperatures from all model experiments yield higher705

values of β than the Moberg reconstruction when scales
longer than a decade are considered. The reconstruction is
stated to represent temperature in the Northern Hemisphere,
but most of the proxies used are in land and coastal areas. In
this sense they may be considered more like representations710

of land or coastal temperature. Studies of observational data

show higher persistence in sea surface temperature than land
air temperature, and the value for β found for the Moberg
record is more in agreement with the one found for the North-
ern Hemisphere land temperature than ocean temperature715

(Eichner et al., 2003; Lennartz and Bunde, 2009a). Our es-
timate is in agreement with Rybski et al. (2006). The tem-
perature from the model experiments is averaged over grid
cells from both land and ocean areas, and the influence of the
ocean might be what yields the higher value of β than found720

for the Moberg reconstruction.
The temperatures from the COSMOS experiments (both

forced and control run) clearly show an influence of a quasi-
periodic variability with a 2-3 year period, which can be asso-
ciated with ENSO. The ECHO-G and HadCM3 experiments725

show less influence of this oscillation, and in LOVECLIM
it is not noticeable. For the reconstructed temperature the
ENSO time scales are not resolved.

The temperatures from the forced ECHO-G experiment
and the LOVECLIM experiment show a more distinct Lit-730

tle Ice Age anomaly, in agreement with the temperature re-
construction, than the temperature from the COSMOS and
HadCM3 forced run experiment. This anomaly may also in-
fluence the estimation of β.

All the NH-averaged temperatures from forced experi-735

ments show clear persistent scaling with 0.8< β < 1.2 on
most of the available scales, i.e., from a decade to several
centuries. The control runs and the response model estimates
from the forced runs, which reveal the memory properties of
the internal climate dynamics, do not show systematically740

less persistence than obtained directly from the simulated
forced temperature records (there is a difference in HadCM3,
but the difference is within the error bars). This observa-
tion does not support the notion that the observed long-range
memory to great extent is generated by the forcing. Such a745

suggestion was made by Rybski et al. (2008), based on a
global map for the parameter α= (β+ 1)/2 computed from
both forced runs and control runs of the ECHO-G model. We
believe that this discrepancy is caused by the reduction of
spatiotemporal noise implied in performing an NH-average.750

The differences in estimated α between forced and unforced
simulations for local data may not be in the persistence of the
underlying global signal, but rather in differences related to
the amplitudes of spatiotemporal modes for the two types of
simulations.755
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Fig. 1. The different forcings used as input to the response model,
(a) Crowley forcing used with the Moberg reconstruction and the
ECHO-G simulation (b), forcing used in the COSMOS experiment,
(c) in the LOVECLIM experiment , and (d) in the HadCM3 experi-
ment.
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Fig. 2. (a) The Moberg reconstructed temperature. (b) PSD, (c)
DFA2, and (d) WVA2 applied to the record. The shaded areas are
the 95% confidence range for synthetic fGn with β estimated by
PSD, DFA2 and WVA2. The β-values are estimated from the slopes
of the straight lines and the range of scales used for estimation is
indicated by the length and position of these line segments. The es-
timated β-values are indicated in the figure.
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Fig. 3. (a) The Moberg reconstructed temperature (black) and the
determinstic response (red). (b) The residual from the determinis-
tic response. (c) PSD from the residual (black crosses) and linear
fit to the PSD in the scale range indicated by the red line segment.
The value β = 0.75 estimated from this line segment is indicated
in the figure. (d) DFA2 applied to the residual (black crosses). The
straight line segment is a linear fit to the dots in the range indi-
cated by the length, and position of the line segment and the slope
yields an alternative estimate β = 0.59 for the residual, indicated
in the figure. The shaded area in (c) and (d) is the 95% confidence
range for synthetic fGn with β = 0.75 estimated by MLE using the
response model.
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Fig. 4. (a) The temperature from the LOVECLIM experiment. (b)
PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSD, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 5. (a) Temperature from the LOVECLIM experiment with 1-
year resolution (black) and deterministic response (red). (b) The
residual from the deterministic response. (c) PSD from the resid-
ual (black crosses) and linear fit to the PSD in the scale range indi-
cated by the red line segment. The value β = 1.07 estimated from
this line segment is indicated in the figure. (d) DFA2 applied to the
residual (black crosses). The straight line segment is a linear fit to
the dots in the range indicated by the length, and position of the
line segment and the slope yields an alternative estimate β = 1.01
for the residual, indicated in the figure. The shaded area in (c) and
(d) is the 95% confidence range for synthetic fGn with β = 0.95
estimated by MLE using the response model.
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Fig. 6. (a) The temperature from the COSMOS experiment. (b)
PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSD, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 7. (a) The temperature from the COSMOS control simulation.
(b) PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSD, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 8. (a) 4-year average of the temperature from the COSMOS ex-
periment (black) and deterministic response (red). (b) The residual
from the deterministic response. (c) PSD from the residual (black
crosses) and linear fit to the PSD in the scale range indicated by
the red line segment. The value β = 0.88 estimated from this line
segment is indicated in the figure. (d) DFA2 applied to the residual
(black crosses). The straight line segment is a linear fit to the dots
in the range indicated by the length, and position of the line seg-
ment and the slope yields an alternative estimate β = 0.77 for the
residual, indicated in the figure. The shaded area in (c) and (d) is the
95% confidence range for synthetic fGn with β = 0.61 estimated by
MLE using the response model.
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Fig. 9. (a) The temperature from the ECHO-G experiment Erik1. (b)
PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSD, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 10. (a) The temperature from the ECHO-G control simulation.
(b) PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSd, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 11. (a) 1-year average of the temperature from the experiment
Erik1 (black) and deterministic response (red). (b) The residual
from the deterministic response. (c) PSD from the residual (black
crosses) and linear fit to the PSD in the scale range indicated by
the red line segment. The value β = 0.86 estimated from this line
segment is indicated in the figure. (d) DFA2 applied to the residual
(black crosses).The straight line segment is a linear fit to the dots in
the range indicated by the length, and position of the line segment
and the slope yields an alternative estimate β = 0.72 for the resid-
ual, indicated in the figure. The shaded area in (c) and (d) is the
95% confidence range for synthetic fGn with β = 0.74 estimated
by MLE using the response model.
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Fig. 12. (a) The temperature from the HadCM3 experiment. (b)
PSD, (c) DFA2, and (d) WVA2 applied to the record. The shaded
areas are the 95% confidence range for synthetic fGn with β esti-
mated by PSD, DFA2 and WVA2. The β-values are estimated from
the slopes of the straight lines and the range of scales used for es-
timation is indicated by the length and position of these line seg-
ments. The estimated β-values are indicated in the figure.
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Fig. 13. (a) The temperature from the HadCM3 experiment (black)
and deterministic response (red). (b) The residual from the deter-
ministic response. (c) PSD from the residual (black crosses) and
linear fit to the PSD in the scale range indicated by the red line seg-
ment. The value β = 0.89 estimated from this line segment is indi-
cated in the figure. (d) DFA2 applied to the residual (black crosses).
The straight line segment is a linear fit to the dots in the range indi-
cated by the length, and position of the line segment and the slope
yields an alternative estimate β = 0.90 for the residual, indicated
in the figure. The shaded area in (c) and (d) is the 95% confidence
range for synthetic fGn with β = 0.82 estimated by MLE using the
response model.
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Fig. 14. DFA2 applied to sea surface or air surface temperature at
Reykjanes Ridge. The upper curve is the result for the air surface
temperature from Erik1 experiment. The lower left curve is based on
the monthly reconstructed data for sea surface temperature, and the
lower right curve on the marine sediment reconstruction of ocean
temperature. The red lines indicate the scales used to estimate β.
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Table 1. Information on temperature from model experiments

Climate model LOVECLIM ESM v.
1.2

COSMOS ESM ECHO-G HadCM3

Complexity Interm. GCM GCM GCM
Time period covered 500-1750 AD 800-1750 AD 1000-1750 AD 850-1750 AD
Temp.res annual monthly monthly monthly
Spat.res 5.63x5.63 degrees 3.75x3.75 degrees 3.75x3.75 degrees 2.55x3.75 degrees

Table 2. Estimated β from applying the PSD, DFA2 and WVA2 directly to the full temperature record (all temperatures), from PSD, DFA2
and WVA2 applied to the residuals from the deterministic response, and from the response model using MLE (temperature reconstruction
and temperature from the forced climate model run experiments). The error bars on all estimates are approximately ∆β±0.2 (see main text).

Full record Residual Response model
PSD DFA2 WVA2 PSD DFA2 WVA2 MLE

Moberg 0.63 0.69 0.60 0.75 0.59 0.42 0.75
LOVECLIM forced 1.10 0.98 0.96 1.07 1.01 0.97 0.95
COSMOS forced 0.90 0.82 0.79 0.88 0.77 0.72 0.61
COSMOS ctrl 0.87 0.82 0.86
ECHO-G forced 0.99 0.91 0.90 0.86 0.72 0.84 0.75
ECHO-G ctrl 0.85 0.85 0.87
HadCM3 forced 1.14 1.12 1.17 0.89 0.90 0.86 0.82


