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Abstract

Various interpretations of the notion of a trend in the context of global warming are
discussed, contrasting the difference between viewing a trend as the deterministic re-
sponse to an external forcing and viewing it as a slow variation which can be separated
from the background spectral continuum of long-range persistent climate noise. The5

emphasis in this paper is on the latter notion, and a general scheme is presented
for testing a multi-parameter trend model against a null hypothesis which models the
observed climate record as an autocorrelated noise. The scheme is employed to the
instrumental global sea-surface temperature record and the global land temperature
record. A trend model comprising a linear plus an oscillatory trend with period of ap-10

proximately 70 yr, and the statistical significance of the trends, are tested against three
different null models: first-order autoregressive process, fractional Gaussian noise, and
fractional Brownian motion. The parameters of the null models are estimated from the
instrumental record, but are also checked to be consistent with a Northern Hemisphere
temperature reconstruction prior to 1750 for which an anthropogenic trend is negligible.15

The linear trend in the period 1850–2010 AD is significant in all cases, but the oscilla-
tory trend is insignificant for ocean data and barely significant for land data. However,
by using the significance of the linear trend to constrain the null hypothesis, the oscilla-
tory trend in the land record appears to be statistically significant. The results suggest
that the global land record may be better suited for detection of the global warming20

signal than the ocean record.

1 Introduction

At the surface of things, the conceptually simplest approach to detection of anthro-
pogenic global warming should be the estimation of trends in global surface temper-
ature throughout the instrumental observation era starting in the mid-nineteenth cen-25

tury. These kinds of estimates, however, are subject to deep controversy and confusion
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originating from disagreement about how the notion of a trend should be understood.
In this paper we adopt the view that there are several, equally valid, trend definitions.
Which one that will prove most useful depends on the purpose of the analysis and the
availability and quality of observation data.

At the core of the global change debate is how to distinguish anthropogenically5

forced warming from natural variability. A complicating factor is that natural variabil-
ity has forced as well as internal components. Power spectra of climatic time series
also suggest to separate internal dynamics into quasi-coherent oscillatory modes and
a continuous and essentially scale-invariant spectral background. Over a vast range of
time scales this background takes the form of a persistent, fractional noise or motion10

(Lovejoy and Schertzer, 2013; Markonis and Koutsoyannis, 2013). Hence, the issue
is threefold: (i) to distinguish the climate response to anthropogenic forcing from the
response to natural forcing, (ii) to distinguish internal dynamics from forced responses,
and (iii) to distinguish quasi-coherent, oscillatory modes from the persistent noise back-
ground. This conceptual structure is illustrated by the Venn diagram in Fig. 1a. Fig-15

ure 1b illustrates three possible trend notions based on this picture. Fundamental for all
is the separation of the observed climate record into a trend component (also termed
the signal) and a climate noise component. The essential difference between these
notions is how to make this separation.

The widest definition of the trend is to associate it with all forced variability and os-20

cillatory modes as illustrated by the upper row in Fig. 1b. With this notion the method-
ological challenge will be to develop a systematic approach to extract the trend from
the observed record, and then to subtract this component to establish the persistent
noise component. The physical relevance of this separation will depend on to what ex-
tent we can justify to interpret the extracted trend as a forced response with internally25

generated oscillatory modes superposed. If detailed information on the time evolution
of the climate forcing is not used or is unavailable such a justification is quite difficult.
In this case we will first construct a parametrized model for the trend based on the
appearance of the climate record at hand and our physical insight about the forcing
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and the nature of the dynamics. The next step will be to estimate the parameters of the
trend model by conventional regression analysis utilizing the observed climate record.
The justification of interpreting this trend as something forced and/or coherent different
from background noise will be done through a test of the null hypothesis which states
that the climate record can be modeled as a long-range memory (LRM) stochastic pro-5

cess. Examples of such processes are persistent fractional Gaussian noises (fGns) or
fractional Brownian motions (fBms). LRM processes exhibit stronger random fluctua-
tions on long time scales than short-memory processes and hence a null model based
on LRM-noise will make it more difficult to reject the null hypothesis for a given esti-
mated trend. For comparison we will also test the null hypothesis against a conventional10

short-memory notion of climate noise, the first-order autoregressive process (AR(1)).
In general, rejection of the null hypothesis will be taken as an acceptance of the hy-
pothesis that the estimated trend is significant, and will strengthen our confidence that
these trends represent identifiable dynamical features of the climate system.

A trend can be rendered significant under the AR(1) null hypothesis, but insignifi-15

cant under an LRM-hypothesis, and then it could of course be argued that the value
of this kind of analysis of statistical significance is of little interest, unless one can es-
tablish evidence that favors one null model over another. One can, however, test the
null models against the observation data, and here analysis seems to favor the fGn/fBm
models over short-memory models. There are dozens of papers that demonstrate scal-20

ing properties consistent with fGn or fBm properties in instrumental temperature data
(see Rypdal et al., 2013, for a short review and some references). But, since the instru-
mental records may be strongly influenced by the increasing trend in anthropogenic
forcing, it is difficult to disentangle LRM introduced by the forcing from that arising from
internal, unforced variability. Detrending methods such as the detrended fluctuation25

analysis (Kantelhardt et al., 2001) are supposed to do this, but the short duration of
the instrumental records does not seem to allow us to make an undisputable distinc-
tion between AR(1) and fGn/fBm. We analyze this issue in Sect. 3.3, where we also
comment the methods and conclusions in a recent study by Vyushin et al. (2012).
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There are also other approaches that favor the LRM models for description of ran-
dom internal variability in global data on time scales from months to centuries. One
is based on analysis of temperature reconstructions for the last millennium prior to
the anthropocene (Rybski et al., 2006; Rypdal et al., 2013). These temperature data
are not influenced by an anthropogenic trend, but exhibit self-similar scaling properties5

with spectral exponent β ≈ 1 (to be explained in Sect. 2) on time scales at least up
to a century. Short-memory processes like the AR(1) will typically exhibit scaling with
β ∼ 2 up to the autocorrelation time, and a flat (β ∼ 0) spectrum on time scales longer
than this, but this is not observed in these data. Another line of investigation has been
to use available time-series information about climate forcing in a parametrized, linear,10

dynamic-stochastic model for the climate response (Rypdal and Rypdal, 2014). The
trend then corresponds to the deterministic solution to this model, i.e. the solution with
the known (deterministic) component of the forcing. In this model the persistent noise
component of the temperature record is the response to a white noise stochastic forc-
ing. In Rypdal and Rypdal (2014) analysis of the residual obtained by subtracting the15

deterministic forced solution from the observed instrumental global temperature record
shows scaling properties consistent with an fGn model and inconsistent with an AR(1)
model.

The method is described in Rypdal and Rypdal (2014), where only exponential and
scale-free long-range persistent responses are modeled, without allowing for quasi-20

coherent oscillations. The approach in that paper adopts the trend definition described
in the second row of Fig. 1b. Here the trend is the forced variability, while all unforced
variability is relegated to the realm of climate noise. It is possible, however, to incorpo-
rate forced and natural oscillatory dynamics into such a response model.

The lower row in Fig. 1b depicts the trend notion of foremost societal relevance;25

the forced response to anthropogenic forcing. Once we have estimated the parame-
ters of the forced response model, we can also compute the deterministic response
to the anthropogenic forcing separately. One of the greatest advantages of the forced-
response methodology is that it allows estimation of this anthropogenic trend/response
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and prediction of future trends under given forcing scenarios, subject to rigorous esti-
mates of uncertainty. On the other hand, that method is based on the assumption that
the forcing data employed are correct. The construction of forcing time series relies
heavily on uncertain observations and modeling, hence there is an obvious case for
complementary approaches to trend estimation that do not rely on this kind of informa-5

tion. This is the approach that will be explored in the present paper.

2 Trend detection methodology

2.1 The null models

The noise modeling in this paper makes use of the concept of long-range memory
(LRM), or (equivalently) long-term persistence (LTP) (Beran, 1994). In global tempera-10

ture records this has been studied in e.g. Pelletier and Turcotte (1999), Lennartz and
Bunde (2009), Rybski et al. (2006), Rypdal and Rypdal (2010, 2014), Efstathiou et al.
(2011) and Rypdal et al. (2013). Emanating from these studies is the recognition that
ocean temperature is more persistent than land temperature and that the 20th cen-
tury rising trend is stronger for land than for ocean. LRM is characterized by a time-15

asymptotic (t →∞) autocorrelation function (ACF) of power-law form C(t) ∼ tβ−1 for
which the integral

∫∞
0 C(t)dt diverges. Here β is a power-law exponent indicating the

degree of persistence. The corresponding asymptotic (f → 0) power spectral density
(PSD) has the form S(f ) ∼ f −β, hence β is also called the spectral index of the LRM
process. For 0 < β < 1 the process is stationary and is termed a persistent fGn. For20

1 < β < 3 the process is non-stationary and termed an fBm. As a short-memory alter-
native we shall also consider the AR(1) process which has an exponentially decaying
ACF and is completely characterized by the lag-one autocorrelation φ (von Storch and
Zwiers, 1999).
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2.2 Previous work using LRM null models

Bloomfield and Nychka (1992) studied the signficance of a linear trend in 128 years
of global temperature assuming different stochastic models, including fractionally inte-
grated white noise. They found that the trend in the record could not be explained as
natural variability by any of the models.5

Significance of linear trends under various null models, some exhibiting LRM, was
also studied by Cohn and Lins (2005). One of their main points was that trends clas-
sified as statistically significant under a short-memory null hypothesis might end up
as insignificant under an LRM hypothesis. The paper is a theoretical study of trend
significance and is motivated by the strong persistence which is known to exist in hy-10

droclimatic records. As an example they study the Northern Hemisphere (NH) temper-
ature record and find that their test renders the trend insignificant under the LRM null
hypothesis. They conclude that the trend might be due to natural dynamics. Analyses
with similar and other methodologies on other records indicate that the global trend
signal is significant in spite of LRM (Gil-Alana, 2005; Rybski et al., 2006; Lennartz15

and Bunde, 2009; Halley and Kugiumtzis, 2011; Rypdal et al., 2013). We show in the
present paper that the global land temperature record turns out to exhibit a stronger
trend and weaker LRM than the NH temperature which is sufficient to establish trend
significance. In contrast, the weaker trend and stronger LRM of global ocean tempera-
ture yield a less significant trend for this signal.20

Some recent papers on LRM and trends are Fatichi et al. (2009), Rybski and Bunde
(2009), Franzke (2009, 2010, 2012a, b), Franzke and Woollings (2011) and Franzke
et al. (2012). Fatichi et al. (2009) and Rybski and Bunde (2009) study station temper-
atures under different LRM null hypotheses, and find significant linear trends in some,
but not all, of the records. Franzke (2012b) applies a methodology similar to that of25

Cohn and Lins (2005) to single-station temperature records in the Arctic Eurasian re-
gion. He emphasises that almost all stations show a positive trend, and that the melting
of Arctic sea ice leaves no doubt about the reality of an anthropogenic warming signal
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in the Arctic. By evaluating all station data together, for instance by analysing the re-
gional averaged temperature, one would most likely arrive at a significant trend. His
point is that the natural variability for single stations is so large and long-range corre-
lated that it may mask the warming signal at the majority of individual stations at the
present stage of global warming. This is an important message to convey to those pol-5

icymakers who have got the impression that local climate projections universally are
sufficiently reliable to implement adaptive measures.

2.3 Hypothesis testing methodology

In the present paper our main objective is to establish beyond doubt the significance
of the global warming signal, and if possible also the multidecadal oscillation. From the10

studies discussed above, we know that there are many temperature records from which
this significance cannot be established under an LRM null hypothesis, so we should
search for a signal that is optimal for trend detection. Such an optimal signal seems
to be the instrumental global land temperature record HadCRUT3 (Jones et al., 2012).
We will contrast this with analysis of the global ocean record (Kennedy et al., 2011).15

These records are land-air and sea-surface temperature anomalies relative to the pe-
riod 1961–1990, with monthly resolution from 1850 to date. The analysis is made using
a trend model which contains a linear plus a sinusoidal trend, although the methodol-
ogy developed works for any parametrized trend model. We test this model against the
null model that the full temperature record is a realization of an AR(1) process, an fGn,20

or an fBm (the fBm model is of interest only for the strongly persistent ocean data).
The significance tests are based on generation of an ensemble of synthetic re-

alizations of the null models; AR(1) processes (φ< 1), fGns (0 < β < 1), and fBms
(1 < β < 3). Each realization is fully characterized by a pair of parameters; θ ≡ (σ,φ)
for AR(1) and θ ≡ (σ,β) for fGn and fBm, where σ is the standard deviation of the sta-25

tionary AR(1) and fGn processes and the standard deviation of the differenced fBm.
For an LRM null model the estimated value of β̂ depends on which null model (fGn
or fBm) one adopts. As we will show below, for ocean data, it is not so clear whether
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an fGn or an fBm is the most proper model (Lennartz and Bunde, 2009; Rypdal et al.,
2013), so we will test the significance of the trends under both hypotheses.

Technically, we make use of the R package by McLeod et al. (2007) to generate
synthetic fGns and to perform a maximum-likelihood estimation of β. Since generation
of fBms is not included in this package, synthetic fBms with memory exponent 1 < β < 35

are produced by generating an fGn with exponent β−2 and then forming the cumulative
sum of that process. This is justified because the one-step differenced fBm with 1 < β <
3 is an fGn with memory exponent β−2 (Beran, 1994). Maximum-likelihood estimation
of β for synthetic fBms and observed data records modeled as an fBm is done by
forming the one-time-step increment (differentiation) process, estimate the memory10

exponent βincr for that process and find β = βincr +2. There are some problems with
this method when β ≈ 1. Suppose we have a data record (like the global ocean record)
and we don’t know whether β < 1 or β > 1. For all estimation methods there are large
errors and biases for short data records of fGns/fBms for β ≈ 1 (Rypdal et al., 2013).
This means that there is an ambiguity as to whether a record is a realization of an fGn15

or an fBm when we obtain estimates of β in the vicinity of 1. For the MLE method this
ambiguity becomes apparent from Fig. 2. Here we have plotted the MLE estimate β̂
with error bars for an ensemble of realizations of fGns (for 0 < β < 1) and of fBms (1 <
β < 2) with 2000 data points. The red symbols are obtained by adopting an fGn model
when β is estimated. Hence, for β > 1 we find the estimate β̂ from a realization of an20

fBm with a model that assumes that it is an fGn. It would be expected that the analysis
would give β̂ ≈ 1 for an fBm, but we observe that it gives β̂ considerably less than 1
in the range 1 < β < 1.4, so if we observe a β̂ in the vicinity of 1 by this analysis we
cannot know whether it is an fGn or an fBm. The ambiguity remains by estimating with
a model that assumes that the record is an fBm, because this yields a corresponding25

positive bias as shown by the green symbols when the record is an fGn. This ambiguity
seems difficult to resolve for ocean data as short as the monthly instrumental record.

The standard method for establishing a trend in time-series data is to adopt
a parametrized model T (A;t) for the trend, e.g. a linear model A1+A2t with parameters
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A = (A1,A2), and estimate the model parameters by a least-square fit of the model to
the data. Another method, which brings along additional meaning to the trend con-
cept, is the MLE method. This method adopts a model for the stochastic process;
x(t) = T (A;t)+σw(t), where w(t) is a correlated or uncorrelated random process and
establishes the set of model parameters A for which the likelihood of the stochastic5

model to produce the observed data attains its maximum. The method applied to un-
correlated and Gaussian noise models is described in many standard statistics texts
(von Storch and Zwiers, 1999), and its application to fGns is described in McLeod et al.
(2007). If w(t) is a Gaussian, independent and identically distributed (i.i.d.) random
process, the MLE is equivalent to the least-square fit. If w(t) is a strongly correlated10

(e.g. LRM) process, and the trend model provides a poor description of the large-scale
structures in the data, MLE may assign more weight to the random process (greater σ)
than the least-square method. On the other hand, if the trend model is chosen such that
it can be fitted to yield a good description of the large-scale structure, the parameters
estimated by the two methods are quite similar, even if w(t) used in the MLE method15

is an LRM process. In this case we can use least-square fit to establish the trend pa-
rameters without worrying about whether the residual noise obtained after subtracting
the estimated trend can be modeled as a Gaussian, i.i.d. random process.

In the following, we make some definitions and outline the methodology we adopt
to assess the significance of the estimated trend. Concepts defined are named with20

bold-face fonts. Our methodology is based on standard hypothesis testing, where the
trend hypothesis (termed the “alternative hypothesis”) is accepted (although not ver-
ified, which is stronger) by rejection of a “null hypothesis.” Failure of rejection of the
null hypothesis implies failure of acceptance of the alternative hypothesis, and hence
the trend will be characterized as insignificant under this null hypothesis. Hence, it is25

clear that the outcome of the significance test will depend on the choice of alternative
hypothesis (trend model) as well as on the null hypothesis (noise model).

Let us take the pragmatic point of view that a trend is a simple and slowly varying
(compared with a predefined time scale τ) function T (A;t) of t, parametrized by the
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trend coefficients A = (A1, . . . ,An). It is also required that for the optimal choice of pa-
rameters, A = Âobs the trend T (Âobs;t) makes a good fit to the large-scale structure of
the data record. In practice, this means that the trend should be close to a low-pass fil-
tered version of the signal, for instance a moving average over time-scale τ. The trend
is significant with respect to a particular null model if the fitted T (Âobs;t) is very unlikely5

to be realized in an ensemble of fits T (Â;t) to realizations of the null model.
The alternative hypothesis can be formulated as follows: The observed record x(t)

is a realization of the stochastic process

T (A;t)+σw(t), (1)
10

where the trend T (A;t) is a specified function of t depending on the trend coefficients
A = (A1, . . . ,An), and w(t) is a Gaussian stationary random process of unit variance.
These coefficients are estimated from a least-square fit to x(t) and have the values
Âobs. We assume that the trend model can be fitted so well to the data that MLE-
estimates of A with different noise models (white noise vs. strongly persistent fGn) give15

approximately the same Âobs.
The null hypothesis states that the record x(t) is a realization of a stochastic process

ε(θ;t), (2)

e.g. an AR(1), fGn, or fBm process. Like for the alternative hypothesis, the parameters20

θ should be restricted to be close to the values θ̂obs found from estimating it from fitting
the null model (Eq. 2) to the data record by means of MLE.

The Monte Carlo null ensemble is the collection of realizations xi (θ) , i = 1,2, . . . , of
the null model process (Eq. 2).

The best choice of null model would be to utilize all our possible knowledge about25

the true parameter set θ. This implies considering θ as a random variable, and hence
a Bayesian approach (Gelman et al., 2004). We generate the null ensemble by drawing
θ from the conditional distribution P (θ|θ̂obs), i.e. the probability that the “real” param-
eters of the observed process are θ given that the estimated parameters from the
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observed data are θ̂obs. One way of establishing this distribution is to generate an en-
semble of realizations of the noise process with θ varied in a range around θ ≈ θ̂obs
and establish the conditional distribution P (θ̂|θ). From Bayes’ theorem one then has
P (θ|θ̂) = P (θ̂|θ)P (θ)/P (θ̂). By setting θ̂ = θ̂obs, and assuming a flat prior distribution
P (θ) in the range in the vicinity of θobs corresponding to the width of the distribution we5

the find P (θ|θ̂obs) = P (θ̂obs|θ).
As an alternative to the Bayesian ideas described above one could employ a fre-

quentist approach. This means that we assume that the null model has a fixed true
parameter value θ. This parameter value is unknown, and the strategy is to create
the Monte Carlo null ensemble xi (θ̂obs) , i = 1,2, . . . , using the θ values estimated from10

the observed data. We must then take the uncertainty in the θ-estimates into account,
since θ̂obs may deviate from the true θ. This estimation error can be quantified using
the bootstrap method, which assumes that the error in the parameter estimates in the
null model with parameters θ can be well approximated by the corresponding errors
for the null model with parameters θ̂obs. When estimation errors are quantified one can15

easily adjust for these in the hypothesis tests.
Pseudotrend estimates Â(i ) are the coefficients obtained by least-square fit of the

trend model T (A;t) to the realizations xi (θ;t) of the null ensemble.
Pseudotrend distribution is the n-dimensional PDF P (Â) over the null ensemble.
Null-hypothesis confidence region is the region Ω in n-dimensional A-space for which20

P (A) > Pthr, where Pthr is chosen such that
∫
ΩP (A)dA = 0.95.

Significance of the trend model is established if the null hypothesis is rejected,
e.g. the full n-dimensional trend is 95 % significant if Âobs /∈Ω.

If the null hypothesis is rejected by this procedure, we are rejecting only those as-
pects of the null model that are relevant to the full trend model, i.e. the trend model25

(alternative hypothesis) produces trend coefficients Âobs that give a good fit to the
large-scale structure of the data, while it is very improbable that the null model can
produce Â in the vicinity of Âobs.
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2.4 The trend model explored in this work

We will apply the method described in the previous subsection to global temperature
record using the following trend model:

T (A;t) = δ +A1t+A2 sin(2πf t+ϕ). (3)
5

This is a simplified version of the models used in several works by N. Scafetta (e.g.
Scafetta, 2011, 2012) and the oscillation is supposed to model the 60 yr cycle observed
in the instrumental record (Schlesinger and Ramankutty, 1994). The frequency f is not
to be considered as a free model parameter to be estimated from the observed record
and from realizations of the null ensemble. When estimating pseudotrends it has little10

meaning to let f be a free parameter, since the synthetic noise records contain no pre-
ferred frequencies. We rather treat f as a fixed quantity which is an inherent part of
the alternative hypothesis. In practice we select f from a least-square fit of the trend
model to the observed record varying all five parameters including f , but this is not es-
sential. We could just as well have hypothesized a reasonable value of f by inspection15

of the record or from other evidence of this oscillation presented in the literature. The
important thing to keep in mind is that the value of f is part of the hypothesis. Of the es-
timated pseudotrend coefficients (Â1, Â2, δ̂,ϕ̂) only (Â1, Â2) quantify the strength of the
trend, so the relevant pseudotrend distribution to establish is P (Â1, Â2) irrespective of
the values of irrelevant parameters (δ̂,ϕ̂). Table 1 shows the estimated θ̂obs according20

to the null model in Eq. (2) using AR(1), fGn and fBm as the stochastic process ε(θ;t).
Also in this table are the estimated trend parameters (Â1, Â2) from applying the trend
model in Eq. (3) and the period T = 1/f of the oscillatory trend. Since, as mentioned
above, this period has been selected from a fitting procedure it has slightly different
values for the ocean and land records.25
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2.5 Results

The results of the analysis are shown in Fig. 3. We observe that the trend parameters
(Â1, Â2)obs are outside the null-hypothesis 95 % confidence region for all three noise
models and for ocean as well as land records. But we also observe that the significance
is more evident for land than for ocean, and is reduced as more strongly persistent5

noise models are employed. For the fBm model applied to ocean data the trend is
barely outside the 95 % confidence region.

It is the full trend model (Eq. 3) that is accepted by this test, but something can also
be said about the separate significance of the individual trends represented by the in-
dividual trend coefficients from the pseudotrend distribution P (Â1, Â2). For the AR(1)10

and fGn null models it is apparent from Fig. 3a–d that the linear trend is highly sig-
nificant since Â1,obs is located far to the right of the confidence region. On the other
hand, except for the AR(1) model applied to land data in Fig. 3b, A2,obs is not to-
tally above the confidence region. This means that the linear pseudotrends observed
in the null ensemble has negligible chance of getting near the observed trend, while15

there is some chance to find oscillatory trends in the null ensemble which are as large
as Â2,obs. The significance of those separate trends against these null models is de-
termined by forming the separate one-dimensional PDFs, P (Â1) ≡

∫
P (Â1, Â2)dÂ2 and

P (Â2) ≡
∫
P (Â1, Â2)dÂ1 and form the confidence intervals in the standard way. In Fig. 4

we have formed the corresponding one-dimensional cumulative distribution functions20

(CDFs) from the two-dimensional PDFs for ocean data shown in Fig. 3a, c, and e. We
observe that the linear trend is significant for the AR(1) and fGn null models, but barely
significant for the fBm model. The oscillatory trend is insignificant for all models.

The corresponding CDFs for land data are shown in Fig. 5. The linear trend is even
more significant than for ocean data, while the oscillatory trend is significant for the25

AR(1) model, but barely significant for the fGn model.
One important lesson to learn from this analysis is that the stronger persistence in

the ocean temperature record makes it harder to detect significant trends as compared
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to the land record. This effect outweighs the increased trend significance from the lower
noise levels in the ocean record compared to the land record. Another is that the land
record analysis establishes beyond doubt that there is a significant global linear trend
throughout the last century, and that the reality of an oscillatory trend is probable, but
not beyond the 95 % confidence limit.5

3 Constraining and evaluating the null hypothesis

By estimating the parameters for the null model from the full observed record (without
detrending), and allowing this model to be an LRM noise, we have selected the frac-
tional noise model that is most likely to explain the variance of the full record. Hence it
can be considered as the null model for the climate noise that is least likely to be re-10

jected by the observed trend. If this null model is rejected, i.e. if the trend is found to be
significant under this null, it is very unlikely that it will be found insignificant under other
reasonable null hypotheses. Since we have found that the linear trend in the global land
record is significant under this null, we should have very high confidence in this result.
The non-significance of the oscillatory trend, however, deserves a reassessment in the15

light of the established significance of the linear trend. In a Bayesian spirit, it would be
appropriate to investigate the oscillatory trend further by including the linear trend as
an established fact and construct a null model constrained to accept the existence of
the linear trend.

3.1 A constrained null model yields significant oscillation20

δ̂obs + Â1,obst+ε(θ;t) (4)

We now first estimate a new θ̂obs by fitting the new null model (Eq. 4) to the observed
land record. The new estimated noise parameters are shown in Table 2. Then we
produce a new null ensemble of records from the null model by drawing θ from the25

341

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 327–362, 2014

Statistical
significance of trends
in global temperature

L. Østvand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

conditional distribution P (θ|θ̂obs). Finally we fit the trend model (Eq. 3) to each realiza-
tion in the ensemble and form P (Â1, Â2). The result is shown for land data and ε(θ;t)
modeled as an fGn in Fig. 6a. The inclusion of the linear trend in the null model will
imply that we shall fit ε(θ;t) to the record x̃(t) ≡ x(t)− (δ̂obs + Â1,obst) rather than to
x(t). Since we already have established that x(t) contains a significant linear trend, the5

variability of x̃(t) may be considerably less than the variability of x(t) and hence the
new estimated noise parameters θ̂obs may correspond to smaller σ̂obs and β̂obs than
we obtained for the original null model. This reduction in noise parameters leads to
narrowing of P (Â1, Â2), and a narrower CDF for the oscillation trend parameter Â2, as
shown in Fig. 6b. The result is that this constrained test establishes that the oscillatory10

trend is also significant.

3.2 Evaluation of the null model

The long-range memory associated with fractional noises and motions gives rise to
larger fluctuations on long time scales that allows description of such variability as part
of the noise background rather as trends. The implication is that variability which has to15

be described as significant trends under white noise or short-memory noise hypothe-
ses may have to be classified as insignificant trends under an LRM null hypothesis.
The issue of the most proper choice of null hypothesis was touched upon in Sect. 2,
but let us re-examine the issue in the light of the results we have obtained so far.

One way to deal with this issue is to apply an estimator that characterizes the cor-20

relation structure of the observed record and compare the outcome with those arising
from applying the same estimator to different models for the climate-noise background.
There are several estimators, for instance wavelet variances and detrended fluctuation
analysis, that are well suited for extracting the scaling properties of a time series and
estimating a β-exponent. For LRM processes such as fBm and fGn (which are respec-25

tively self-similar processes and the differences of self-similar processes) the fluctua-
tion level of a time series varies as a power law vs. time scale τ, and one can there-
fore analyze data using double-logarithmic plots of the so-called fluctuation functions.

342

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 327–362, 2014

Statistical
significance of trends
in global temperature

L. Østvand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For processes with a characteristic time scale τc, such as the AR(1) processes, the
fluctuation functions will not be power laws, and this can be seen from the estimated
fluctuation functions. For an AR(1) process, which has an autocorrelation function on
the form e−t/τc , the time series behaves like a Brownian motion (β = 2) for time scales
t � τc and a white noise process (β = 0) for t � τc. If a time series is sufficiently long,5

the crossover between these two scaling regimes is clearly visible in the estimated fluc-
tuation functions, and since we do not observe such crossovers in global temperature
records, we can use fluctuation functions to illustrate that LRM processes are better
suited than AR(1) processes as models for the global temperature. This idea is pur-
sued in Rypdal and Rypdal (2014), where detrended fluctuation analysis is employed10

to show that a residual signal (constructed by subtracting the deterministic response to
the external forcing) is inconsistent with an AR(1) process, but consistent with an LRM
process.

The test described above utilizes a method designed to estimate the scaling expo-
nent β in LRM processes. As an alternative, we can use a test based on an estimator15

for the correlation time τc in an AR(1) process. For this test we should think of our
time series as a discrete-time sampling of a continuous-time stochastic process. The
continuous-time analog of an AR(1) process is the Ornstein–Uhlenbeck (OU) process.
If a time series Tk is obtained from an OU process by sampling it at times tk = k∆t, then

the one-lag autocorrelation of Tk is φ(∆t) = e−∆t/τc . We can obtain a standard sample20

estimate φ̂(∆t) of the lag-one autocorrelation, and from this we obtain an estimate of
the correlation time:

τ̂c =
∆t

− logφ̂(∆t)
. (5)

Monte Carlo simulations show that this estimate is independent of ∆t, as long as25

∆t < τc. However, if the process is an fGn rather than an OU process, then the au-
tocorrelation function of the time series Tk is approximated well by (β+1)β(k∆t)β−1,
and hence the lag-one autocorrelation is
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φ(∆t) ≈ (β+1)β∆tβ−1 .

If τc is defined via τc = ∆t/(− logφ(∆t)), then

τc =
∆t

− log(β+1)β− (β−1) log∆t
.

This shows that OU processes and fGns can be distinguished by how an estimator
of the correlation length depends on the sampling rate for the time series: For an OU5

process the estimate of τc is independent of ∆t as long as ∆t < τc, and for fGns the
estimates of τc grow with ∆t. In Figs. 7 and 8 we have plotted the estimates of τc ac-
cording to Eq. (5) for ocean and land temperatures respectively, with and without linear
detrending. For the land temperature, full detrending (removing the trend Eq. 3) is also
included. The estimates are shown as the circular plot markers in the figures. There is10

a clear increase in the τc estimate as ∆t varies from 1 to 30 months. We have com-
pared the results with Monte Carlo simulation of a white noise process, OU processes,
fGns and fBms. Here the synthetic temperature series are constructed using param-
eters obtained by MLE. For the ocean temperature without detrending the test shows
that the data is most consistent with a nonstationary fBm, and after linear detrending it15

is more consistent with an fGn than with an OU process. For the land temperature we
observe that neither of the processes fit the data unless we perform a detrending, and
for the detrended data there are only small differences between a white noise process,
an OU process and the fGn with β = 0.54. The reason for this is that the ML estimate of
τc is so small (close to the monthly time resolution of the temperature record) that the20

model OU process is effectively reduced to a white noise on all resolved time scales.
The white noise process is a special case of an fGn, so the fGn class of processes is
clearly preferred in this case as well, although the test presented here is not suitable
for estimating the β exponent. There are other tests that are better suited for accurate
estimation of β, and if we apply these we will see that a persistent process (β > 0) is25
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a better model for detrended land temperatures than white noise (β = 0) (Rypdal et al.,
2013).

The model selection test we have described here illustrates the important point that
if one decides to model global temperature fluctuations as OU processes, then the
choice of optimal model depends strongly on the time resolution of the time series. The5

same is not true for fGns and fBms, and this reflects the fact that global temperature
data to a good approximation are scale invariant.

The method presented here can be seen as a generalization of the method pre-
sented by Vyushin et al. (2012), who attempt to distinguish between scale-free pro-
cesses and AR(1) processes by considering estimates of φ(∆t) for two different time10

resolutions ∆t (monthly and annual). However, our results show that this test fails if the
estimated τc is less than a year, which turns out to be the case for the land record.
Vyushin et al. (2012) analyze a large number of local and regional time series and find
that some are consistent with fGns, other with AR(1)s, but most are inconsistent with
both. It is reasonable to expect that many of these records are in the category for which15

the test fails.

4 Conclusions

In this paper we have attempted to classify the various possible ways to understand
the notion of a trend in the climate context, and then we have focused on the detection
of a combination of a rising and oscillatory trend in global ocean and land instrumental20

data when no information about the climate forcing is used. It is well known that the sta-
tistical significance of the trends depends on the degree of autocorrelation (memory)
assumed for the random noise component of the climate record (Cohn and Lins, 2005;
Rybski et al., 2006; Rybski and Bunde, 2009). It is also known that the linear trends are
easier to detect and appear to be more significant in global than in local data (Lennartz25

and Bunde, 2009), although local records exhibit weaker long-term persistence than
global records. Despite this fact, much effort is spent on establishing trends and their
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significance in data from local stations (e.g. Franzke, 2012b) with variable results. The
failure of detecting consistent trends in local data records reflects the tendency of in-
ternal spatiotemporal variability to mask the trend that signals global warming, and
we believe therefore that investigation of such trends should be performed on glob-
ally averaged data. For global data records our study demonstrates very clearly that5

the long-range memory observed in sea-surface temperature data leads to lower sig-
nificance of detected trends compared to land data. This does not mean, of course,
that the global warming signal and internal oscillations are not present in all of those
records. It is just not possible to establish the statistical significance of these trends
from these records alone, since the large short-range weather noise in local tempera-10

tures and the slower fluctuations in ocean temperature both reduce the possibilities of
trend detection. Hence, one needs to search for the optimal climate record to analyze
for detection of the global warming signal, and our results suggest that the global land
temperature signal may be the best candidate for such trend studies.

While a linear trend is only marginally significant under the long-range memory null15

hypothesis in ocean data, it is clearly significant in land data. Hence, there should be
no doubt about the significance of a global warming signal over the last 160 years even
under null hypotheses presuming strong long-range persistence of the climate noise.

Assessment of the statistical significance of a linear trend is of course not the only
way to detect the global warming signal in temperature records. An alternative hypoth-20

esis in the form of a second- or third-order polynomial trend would give a more precise,
but more technically complex assessment. Other approaches are not based on trend
estimates at all. Some methods compare spatiotemporal observations to patterns of
natural variability obtained from global climate models. These patterns represent the
null model, and the detection is typically performed through “fingerprint methods” rather25

than using just single observable such as the global temperature (Hasselmann, 1993;
Hegerl, 1996). The validity of the method depends, of course, on the assumption that
the climate model correctly describes the relevant aspects of the pattern of natural
variability, e.g. the long-range correlation structure in space and time. This is not an

346

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 327–362, 2014

Statistical
significance of trends
in global temperature

L. Østvand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

obvious assumption, since there are significant differences between climate models in
this respect (Govindan et al., 2001; Blender and Fraedrich, 2003).

Other methods are based on null models like those considered in the present pa-
per, but rather than estimating trends one estimates the probability of observing the
recent clustering of record-breaking temperatures at the end of the instrumental record5

(Zorita et al., 2008). The method is conceptually and technically simpler than the trend
assessment, but it depends crucially on the assumption that the null model is strictly
true on the shortest inter-annual time scales, since it assumes that the probability of
variation from one year to the next is determined by this model. In contrast, the trend
assessment emphasizes the properties of the null model on time scales up to a cen-10

tury, so it rather assumes the null model is strictly true on multi-decadal to century
scales. The two approaches are complementary, but we believe the trend approach is
better designed to detect the smooth, monotonic global warming signal, since it will be
insensitive to particular interannual to decadal variability such as ENSO, or variability
due to forcing from clusters of volcanic eruptions or solar-cycle variations. The elimi-15

nation of these variabilities may be important for detection of the anthropogenic trend,
as was shown by multiple regression techniques by Foster and Rahmstorf (2011) and
Lean and Rind (2009). Moreover, in the approach of Zorita et al. (2008) inclusion of
the 70 year oscillation in the null model would lead to enhanced probability of clus-
tering of record-breaking temperatures at the end of the twentieth century, and hence20

a reduction of the significance of the warming signal. These are examples illustrating
that one may arrive at misleading results without careful selection of the alternative as
well as null models based on the data at hand and existing knowledge. In a Bayesian
framework this is obvious.

Our initial analysis leaves some doubt about the significance of the 70 year oscilla-25

tory mode in the global signal, as shown in Figs. 4d, f and 5d. By means of a Bayesian
iteration, however, utilizing the established significance of a linear trend to formulate
a constrained null hypothesis, we are able to establish statistical significance of the os-
cillatory trend in the land data record. We believe this is an important result, because
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it means that we cannot dismiss this oscillation as a spontaneous random fluctua-
tion in the climate noise background. By the analysis presented here we cannot de-
cide whether this oscillation is an internal mode in the climate system or an oscillation
forced by some external influence. Such insights can be obtained from a generalization
of the response model of Rypdal and Rypdal (2014) by employing information about5

the climate forcing, and will be the subject of a forthcoming paper. There are various
published hypotheses about the nature of this oscillation. The least controversial is that
this is a global manifestation of the Atlantic Multidecadal Oscillation (AMO) which is
essentially an internal climate mode (Schlesinger and Ramankutty, 1994). Some au-
thors go further and suggest that this oscillation is synchronized and phase locked10

with some astronomical influence (Scafetta, 2011, 2012). Although some of these sug-
gestions seem very speculative, there are some quite well-documented connections
between periodic tidal effects on the Sun from the motion of the giant planets and ra-
dioisotope paleorecord proxies for solar activity on century and millennium time scales
(Abreu et al., 2012). So far there exists no solid evidence that these, and multidecadal,15

variations in solar activity have a strong influence on terrestrial climate, but the issue
will probably be in the frontline of research on natural climate variability in the time
to come. The work presented here cannot shed light on the physical cause of this
oscillation, but it presents evidence that it is a phenomenon that stands out from the
long-memory background of random temperature fluctuations. Its importance for our20

assessment of anthropogenic global warming is obvious from the observation that the
oscillation seems to peak at the turn of the millennium and hence provides a possible
explanation of the current hiatus in global temperature.
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Table 1. Estimated noise parameters θ̂obs from the null hypotheses in Eq. (2) and trend param-
eters Âobs estimated from the trend model (Eq. 3). The units for the trend estimation are months
for τ̂obs, 10−3 ◦C yr−1 for Â1,2,obs, and yr for the oscillation period T .

AR(1) fGn fBm Trend
τ̂obs β̂obs σ̂obs β̂obs σ̂obs Â1,obs Â2,obs T

Ocean 21.3 0.994 0.25 1.45 0.086 4.21 0.128 69.7
Land 3.43 0.654 0.49 6.34 0.186 73.4
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Table 2. Estimated noise parameters θ̂obs from the new null hypotheses in Eq. (4). The units
are same as in Table 1.

AR(1) fGn
τ̂obs β̂obs σ̂obs

Land 2.04 0.584 0.391
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Fig. 1. Venn diagrams illustrating the interplay between forced, internal, and natural variability
and various definitions of trend. (a) Natural variability can be both forced and internal. Forced
variability can be both anthropogenic and natural. Internal variability is natural, but can consist
of quasiperiodic oscillatory modes as well as a continuum of persistent noise. (b) The three
different trend notions discussed in the text.
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Fig. 2. The red symbols and 95 % confidence intervals represent the maximum-likelihood es-
timate β̂ for realizations of fGns/fBms with memory parameter β by adopting an fGn model.
Hence, for β > 1 we find the estimate β̂ from a realization of an fBm with a model that assumes
that it is an fGn. The green symbols represent the corresponding estimate by adopting an fBm
model, i.e. for β < 1 we we find the estimate β̂ from a realization of an fGn with a model that
assumes that it is an fBm. “Adopting an fBm model” means that the synthetic record is differ-
entiated, then analyzed as an fGn by the methods of McLeod et al. (2007) to obtain β̂incr, and
then finally β = β̂incr +2.
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Fig. 3. In (a)–(e) the red dots represent the estimated trend coefficients (Â1, Â2)obs and the
dashed, closed curve the 95 % confidence contour of the distribution P (Â1, Â2). (a) Ocean data
and AR(1) null model. (b) Land data and AR(1) null model. (c) Ocean data and fGn null model.
(d) Land data and fGn null model. (e) Ocean data and fBm null model. (f) Black curves: the
global ocean and land temperature records. Red curves: the linear and sinusoidal trends.
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Fig. 4. Curved lines are CDFs for trend coeffecients Â1 and Â2 established from the null model
ensemble for ocean data. Vertical dashed line marks the upper 95 % confidence limit. Vertical
solid line marks Â1,2,obs. (a) and (b) AR(1) null model. (c) and (d) fGn null model. (e) and (f) fBm
null model.

358

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/327/2014/esdd-5-327-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 327–362, 2014

Statistical
significance of trends
in global temperature

L. Østvand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/

C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

A1 +10-3 ÎCsyear/

C
D
F

-0.1 0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

A2 +ÎC/

C
D
F

(a) (b)

(c) (d)

Fig. 5. Curved lines are CDFs for trend coeffecients Â1 and Â2 established from the null model
ensemble for land data. Vertical dashed line marks the upper 95 % confidence limit. Vertical
solid lines mark Â1,2,obs. (a) and (b) AR(1) null model. (c) and (d) fGn null model.
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Fig. 6. (a) The 95 % confidence contour of the distribution P (Â1, Â2) for land data obtained by
the new null model (Eq. 4) with ε(θ;t) an fGn process. (b) The CDF derived from P (Â2) for this
null model, with upper 95 % confidence limit marked as dotted vertical line.
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Fig. 7. (a) and (b) show the estimated decorrelation time τc as a function of sampling time ∆t
for the ocean temperature (black circles) and for ensembles of synthetic realizations of three
different stochastic processes: an OU process (cyan) in (a), and fGns (red) and fBms (green)
in (b). The synthetic processes are generated with parameters estimated from the observed
record by the MLE method, and the colored areas are the 95 % confidence regions for these
estimates. The gray area in (a) is the confidence region for τc for a white noise process. (c)
and (d) show the decorrelation time of the linearly detrended ocean temperature and for the
synthetic realizations of the processes generated from the new null model; Eq. (4).
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Fig. 8. (a) and (b) show the estimated decorrelation time τc as a function of sampling time
∆t for the land temperature (black circles) and for ensembles of synthetic realizations of three
different stochastic processes: an OU process (cyan) in (a), and fGns (red) in (b). The syn-
thetic processes are generated with parameters estimated from the observed record by the
MLE method, and the colored areas are the 95 % confidence regions for these estimates. The
gray area in (a) is the confidence region for τc from a white noise process. (c) and (d) show the
decorrelation time of the linearly detrended land temperature and for the synthetic realizations
of the processes generated from the new null model; Eq. (4). (e) and (f) show the decorrela-
tion time of the land temperature after removing the full trend; Eq. (3), and for the synthetic
realizations of the processes generated from the detrended record by the MLE method.
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