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Abstract. The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat

into the North Atlantic influencing climate regionally as well as globally. Paleorecords and simu-

lations with comprehensive climate models suggest that the positive salt-advection feedback may

yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwa-

ter flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts5

of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the vol-

ume flux defining the AMOC will be reduced when approaching the threshold. Here we advance

conceptual models that have been used in a paradigmatic way to understand the AMOC, by intro-

ducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree

of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater10

flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly

wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change sig-

nificantly. The downward transport of tracers occurs either in the northern sinking regions or through

Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres,

from the low- to high-latitudes, this would reduce the eddy transport and by continuity increase the15

northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot

be sustained. If dominant in the real ocean this mechanism would have significant consequences for

monitoring the AMOC.

1 Introduction

The Atlantic meridional overturning circulation (AMOC) is being considered as one of the tipping20

elements of the climate system (Lenton et al., 2008). While the definition by Lenton et al. (2008) is
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based on the idea that tipping elements respond strongly to a small perturbation, the AMOC might

also be a tipping element in the dynamic sense of the word (Levermann et al., 2012). That is to

say that a small external perturbation induces a self-amplification feedback by which the circulation

enters a qualitatively different state. This self-amplification is due to the salt-advection feedback25

(Stommel, 1961; Rahmstorf, 1996) and has been found in a number of comprehensive ocean as

well as coupled climate models (Manabe and Stouffer, 1993; Rahmstorf et al., 2005; Stouffer et al.,

2006b; Hawkins et al., 2011). A cessation of the AMOC would have far-reaching implications for

global climate (Vellinga and Wood, 2002) which include (1) a strong reduction of northern hemi-

spheric air and ocean temperatures (Manabe and Stouffer, 1988; Mignot et al., 2007), (2) a reduction30

in European precipitation and (3) its wind pattern (Laurian et al., 2009), (4) a dynamic sea level

increase in the North Atlantic (Levermann et al., 2005; Yin et al., 2009), (5) a perturbation of the

Atlantic ecosystem (Schmittner, 2005; Kuhlbrodt et al., 2009), (6) a southward shift in the tropical

rain belt and associated impacts on vegetation (Stouffer et al., 2006a) and (7) a perturbation of the

Asian monsoon system (Goswami et al., 2006).35

Conceptual models to capture the basic aspect of a meridional overturning circulation can be

divided into models in which the overturning strength is determined by the meridional density dif-

ference in the Atlantic (Stommel, 1961; Rahmstorf, 1996) and those in which its strength is linked

to the vertical density structure (Gnanadesikan, 1999). Stommel’s model captures the salt-advection

feedback in a pure form by resolving only the advection of the active tracers in two fixed-size boxes40

representing the northern downwelling and southern upwelling regions. The overturning strength

is assumed to be proportional to the meridional density difference which was found to be valid in

a number of ocean and climate models (e.g. Griesel and Morales-Maqueda, 2006; Rahmstorf, 1996;

Schewe and Levermann, 2010). The Stommel-model is however missing a representation of the

energy-providing processes for the overturning, such as the Drake-Passage effect and low-latitudinal45

mixing (Kuhlbrodt et al., 2007) as well as the influence of the Southern Ocean eddy circulation.

These processes are captured in a conceptual way by the model of Gnanadesikan (1999) which

links the overturning to the vertical density profile as represented by the pycnocline depth but treats

meridional density differences as a constant. It was shown that this kind of model is not consis-

tent with the fact that the meridional density gradient indeed changes with changing overturning50

in a number of different climatic conditions (Levermann and Griesel, 2004; Griesel and Morales-

Maqueda, 2006). By construction it does not capture the salt-advection feedback and can thereby

not be used to study the possibility of a threshold behaviour of the overturning.

There have been a number of attempts to combine these two approaches and thereby to comprise

the horizontal tracer-advection with the vertical one (Marzeion and Drange, 2006; Johnson et al.,55

2007; Fürst and Levermann, 2011).

Here we advance the simplest of the suggested models (Fürst and Levermann, 2011) by introduc-

ing an additional parametrisation for the Southern Ocean eddy flux. As found in a comprehensive
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coarse resolution ocean model (Levermann and Fürst, 2010) the horizontal scale of the Southern

upwelling region can change and neglecting this change leads to a misrepresentation of the circula-60

tion within the Gnanadesikan (1999) framework. We attempt to complement the conceptual model

in order to correct for this shortcoming. To this end we add a variable, meridional density difference

in the southern Atlantic ocean in the scaling of the eddy-induced return flow. As will be shown, this

allows for a qualitatively different response of the AMOC under freshwater forcing compared to

earlier studies: a growth of the northern deep water formation with increasing freshwater flux from65

low- to high northern latitudes within the Atlantic before the threshold is reached and no AMOC

in the modelled sense can be sustained. The threshold behaviour found here is consistent with the

salt-advection feedback in the sense of a net-salinity transport from lower latitudes into the northern

Atlantic by the overturning as suggested by Rahmstorf (1996). This threshold behaviour has been

shown in box models and complex climate models (Huisman et al., 2010; Weaver et al., 2012) but70

also in observations (Bryden et al., 2011).

This paper is structured as followed: firstly we describe the parametrisation of the transport pro-

cesses, pycnocline dynamics and salinity dynamics, i.e. horizontal density distribution (Sect. 2).

The transport processes include the two fundamental driving mechanism (Kuhlbrodt et al., 2007)

which are low-latitudinal upwelling (Munk, 1966; Munk and Wunsch, 1998; Huang, 1999; Wunsch75

and Ferrari, 2004) and wind-driven upwelling in southern latitudes (Toggweiler and Samuels, 1995,

1998). In order to examine the behaviour of the model we derived governing equations for the two

driving mechanisms separately as well as for the full case. The threshold behaviour, as described by

Stommel (1961) is caused by the salinity advection. For simplicity we keep the temperatures fixed

through-out the paper (Sect. 3). Section 4 discusses the change in the AMOC with increasing fresh-80

water flux into the North Atlantic for the wind-driven case and the full case. Also section 5 discusses

the behavior of the AMOC under freshwater forcing, but for simulations using a complex climate

model. We conclude in Sect. 6.

2 Model description

We use a standard inter hemispheric model with four varying boxes (Fig. 1): (1) a northern box85

representing the northern North Atlantic with deep water formation, (2) an upper low-latitudinal

box and (3) a deeper low-latitudinal box below the pycnocline, (4) a southern box with southern

upwelling and eddy return flow (Gnanadesikan, 1999). The northern and southern boxes are fixed in

volume while the low-latitudinal boxes vary in size according to the dynamically computed pycno-

cline depth. The four meridional tracer transport processes between the boxes control the horizontal90

and vertical density structure on the one hand and they control the overturning on the other hand.

The density structure, in turn, determines the transport processes. Changes in the vertical density

structure are described by variations in the pycnocline depth. The horizontal density structure is ex-
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pressed by a southern and a northern meridional density difference. They depend on the dynamics of

the active tracers, temperature, T , and salinity, S. For simplicity we assume a linear density function95

∆ρ= ρ0(βS∆S−αT∆T ) (Stommel, 1961). In order to capture the main feedback for a threshold

behaviour while keeping the model legible, we include salinity advection and neglect changes in

temperature. The simplification further is justified because the temperature in the upper layers is

strongly coupled to atmospheric temperature which is to first order determined by the solar insula-

tion. We thus assume, the ocean temperature in the upper layers to be constant. The high-latitudinal100

boxes represent strong out-cropping regions which homogenizes the water column and extends the

argument to depth. In steady state, the fourth box, deeper low-latitudes ocean, is determined by

the three other boxes. That means the approximation is valid for the whole model in equilibrium

and temperature is used as an external parameter. The base of our work is the model by Fürst and

Levermann (2011). We use the same parametrisations for the northern deep water formation and105

the upwelling processes. For the eddy return flow we introduce a different scaling by implementing

southern meridional density difference which has strong influences on the behaviour of the model

(Sects. 3 and 4).

2.1 Tracer transport processes

Different scaling for the deep water formation (as summarized in Fürst and Levermann, 2011) have110

been suggested. Here we use a parametrisation suggested by Marotzke (1997) and apply a β-plane-

approximation to it. The resulting northern sinking scales linearly with the meridional density dif-

ference and quadratically with the pycnocline depth following geostrophic balance and vertical in-

tegration.

mN =
Cg

βNLNy

∆ρ

ρ0
D2 = CN∆ρD2. (1)115

Because all values are external parameters (Table 1) except the meridional density difference ∆ρ=

ρN−ρU and the pycnocline depthD, the parameters are comprised into one constantCN . In contrast

to previous approaches (e.g. Rahmstorf, 1996) the meridional density difference does not span the

whole Atlantic but instead is taken between low and high northern latitudes in accordance with the120

geostrophic balance between the meridional density difference and the North Atlantic Current.

The low-latitudinal upwelling follows a vertical advection-diffusion balance (Munk and Wunsch,

1998). That is to say, downward turbulent heat flux is balanced by upward advection. This balance

with a constant diffusion coefficient for the full upwelling region yields an inverse proportionality

between upward volume transport and pycnocline depth. Again all external parameters are expressed125

by one constant CU to obtain

mU =B LU
κ

D
=
CU
D
. (2)
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The southern upwelling term is considered to be independent of the pycnocline depth and results

from the so-called Drake-Passage effect (Toggweiler and Samuels, 1995):130

mW =B
τDr

|fDr|ρ0
= CW . (3)

The eddy return flow is parametrised following Gent and McWilliams (1990) which yields a tracer

transport proportional to the slope of the outcropping isopycnals. In the formulation of Gnanadesikan

(1999) this is represented by a linear dependence on the pycnocline depth divided by a horizontal135

scale for the outcropping region which is taken to be constant. The assumption of a constant hor-

izontal scale for the outcropping region is not consistent with freshwater hosing experiments in

a comprehensive though coarse resolution ocean model (Levermann and Fürst, 2010). Levermann

and Fürst (2010) show that the eddy return flow is proportional to pycnocline depth over a vari-

able horizontal scale of the outcropping. Here we attempt to capture variations in the meridional140

horizontal length scale of the outcropping region by the meridional density difference between the

low-latitude ocean and the Southern Ocean, ∆ρSO = ρS − ρU . We thus use the parametrisation

mE =B AGM
∆ρSO

ρ0

D

H
= CE ∆ρSOD. (4)

As before, all quantities except D and ∆ρSO are external parameters and compressed into one con-145

stant CE .

2.2 Pycnocline and salinity dynamics

The temporal evolution of the pycnocline is determined by the tracer transport equation following

Marzeion and Drange (2006).

BLU
dD

dt
=mU +mW −mE −mN (5)150

Salinity equations for each box are derived from the advection in and out of the box, conserving

salinity, as well as the surface fluxes, FN and FS which represent atmospheric freshwater transport

as well as the horizontal gyre transport. The advection scheme follows the arrows shown in Fig. 1.

In computing the temporal changes in total salinity the changes in volume due to the pycnocline155

dynamics needs to be accounted for.

d

dt
(VUSU ) =mUSD +mWSS −SU (mN +mW ) +S0(FN +FS) (6a)

d

dt
(VNSN ) =mN (SU −SN )−S0FN (6b)

d

dt
(VSSS) =mW (SD −SS) +mE(SU −SS)−FSS0 (6c)

d

dt
(VDSD) =mNSN +mESS −SD(mU +mW ). (6d)160

With finite difference method applied to Eqs. (1)–(6), we made numerical simulations which

reached in equilibrium the values shown in Table 2 with the parameters given in Table 1.
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3 Governing equation

Here we derive an equation for the steady-state solution of Eqs. (1)–(6) by comprising them into one165

equation of the oceanic pycnocline, D. We derive governing equations for the full case as well as

for the analytically solvable cases of a purely mixing- and a purely wind-driven cases. The model

is limited to positive and real solutions for the pycnocline ( see figure 2) as well as for non-negative

tracer transport values. A parameter combination that does not allow for a solution of this kind

is thereby inconsistent with an overturning circulation as represented by this model. We denote170

a parameter region for which no such a physical solution exists as an “AMOC-off-state-region”. As

in the earlier version of the model (Fürst and Levermann, 2011) we find a threshold behaviour with

respect to an increase of the freshwater flux, FN , for all three cases. The focus of this study is not to

show the existence of such a threshold of all parameter values. But, it is to present a mechanism by

which the overturning can increase between steady states under different freshwater forcings before175

the threshold is reached and no AMOC can be sustained.

3.1 Full case

In the full case the governing equation is a polynomial of 10th order in the pycnocline depth (Ap-

pendix A1, Eq. A7). Thus solutions can only be found numerically. Of the 10 mathematical roots,

two are positive and real but of two adjacent solutions only one can be stable. Numerical solutions180

were obtained in two ways. First by finding the roots of the polynomial (Appendix A1, Eq. A7) and

second by time forward integration of the original set of Eqs. (1)–(6) with different initial conditions.

The time integration naturally selects the stable solutions. Though this is not a proof by any means,

we feel confident to say that the solution with D = 616 m is the stable of the two physical solutions

(Fig. 3a). The corresponding tracer transport values are provided in Fig. 3b. The northern sinking185

decreases with increasing freshwater forcing for the parameter set of Table 1. The equation for the

northern sinking as it results from the scaling (Eq. 1) and the salinity equations:

mN = −1

2
CND

2α∆T ±
√

1

4
C2
ND

4α2∆T 2−CND2βFNS0 (7)

was also valid in the earlier version of the model (Fürst and Levermann, 2011). Rahmstorf (1996)190

provides a similar solution for the northern deep water formation with k as proportionality factor

between the northern sinking and the north-south density difference:

mN = −1

2
kα(TS −TN )±

√
1

4
k2α2(TS −TN )2 + kβFSS0. (8)

In these earlier models only positive roots of the solution yield stable equilibria. That differs from195

our model where for certain amounts of freshwater forcing the negative sign of the root in Eq. (7)

(respectively Eq. 8) needs to be considered, as for example in the wind-driven case discussed below.

The threshold of the overturning is reached when the eddy return flow becomes negative (Fig. 3b,

grey shaded area) because the parametrization of the eddy return flow is only valid for positive
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values. That means the model presented here is not valid under negative eddy return flow. This is200

interpreted as a point of instability of the circulation pattern the model describes. Physically reaching

the threshold means that there is no outcropping of iso-pycnals in the Southern Ocean anymore. Thus

the eddy return flow does not follow the physics that is described by the baroclinic instability and

thereby it does not follow the parametrisation by Gent and McWilliams (1990). This also establishes

a qualitatively different circulation pattern.205

It should also be noted that also negative freshwater forcing was applied, which might not be appli-

cable with surface transport. However, the threshold freshwater forcing is in the positive range. This

is also true for the mixing- and wind- driven case.

Besides freshwater forcing from lower latitudes into the northern box only, experiments were per-

formed with freshwater forcing from the lower latitudes into the southern box and from lower lati-210

tudes into both southern and northern box. All experiments showed the same behaviour in the over-

turning. The reason cloud be that all experiments affect the meridional density differences in the

same way.

3.2 Mixing-driven case

The purely mixing-driven case is defined by CE = CW = 0. In this case the pycnocline dynamics215

in steady state (Eq. 5) reduces to mN =mU = CU/D. As the eddy return flow is eliminated from

the equation, this case has not changed compared to the model of Fürst and Levermann (2011): the

governing equation is a polynomial of fourth order in pycnocline depth and has one physical solu-

tion which decreases with increasing freshwater forcing (Fig. 4a). The overturning decreases until

a threshold level (Fig. 4b) which is reached when the pycnocline and therefore the tracer transport220

processes become complex. The critical northern freshwater flux can be calculated by zero-crossing

of the discriminant of the polynomial.

F crit
N,mixing =

3(2CN )1/3C
2/3
U α4/3

8βS0
|∆T |4/3 (9)

3.3 Wind-driven case225

The purely wind-driven circulation is defined by CU = 0. Thus the tracer-transport balance in steady

state (Eq. 5) reduces to mN =mW −mE into which the eddy return flow and the northern sinking

are included as functions of the pycnocline depth and external parameters of Table 1 (see Appendix A

for a detailed derivation). For the northern sinking the northern salinity difference is calculated via

the salinity balance of North Atlantic (Eq. 6b) and inserted into the scaling of the northern sinking230

(Eq. 1), similarly for the eddy return flow by using the Southern Ocean salinity balance (Eq. 6c).

The emerging governing equation is a third order polynomial of the pycnocline depth D which we
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solve analytically.

D3CECNα∆T

[
βS0(FN +FS)

CW
+α∆TSO

]
+D2

[
CNFNS0β+CNCWα∆T +

C2
E

C2
W

(S0β(FN +FS) +CWα∆TSO)2
]

235

+D2CE [βS0(FN +FS) +CWα∆TSO] +C2
W = 0

The solutions depend on the sign of the discriminant of the polynomial d= (q/2)2 + (p/3)3 with p

and q defined as:

q

2
=

1

2

(
CNFNS0β+CNCWα∆T +C2

EA
2

3CEα∆TA

)3

− CWFNS0β+C2
Wα∆T

3CECNα2∆T 2A
240

− CECWA

3C2
Nα

2∆T 2
+

C2
W

2CECNα∆TA

p

3
=

6CWCNα∆T − 1

9C2
Nα

2∆T 2
− FNS0β+CWα∆T

9C2
EC

2
Nα

2∆T 2A2

with A=

(
S0β

CW
(FN +FS) +α∆TSO

)
.

A polynomial of third order has either one root (Appendix A2, Eq. A9) if the discriminant is positive,245

or three roots (Appendix A2, Eq. A10) if the discriminant is negative which is the case for the pa-

rameters of Table 1 near the threshold (Fig. 5). Only one of the three mathematical roots is a physical

solution of equilibrium state of the model because one root is negative (Fig. 5, solution 1) and the

other solution has a negative northern sinking and the pycnocline values are out of range of the ocean

depth (Fig. 5, solution 0). No physical solution exists, when the eddy return flow becomes negative.250

At this threshold the discriminant of the governing equation has a negative pole which can be used

to calculate the critical freshwater flux. In the following we describe a more straight forward way to

give dependencies of the critical freshwater flux. Assuming steady state for the salinity balance of

the upper low-latitudinal box (Eq. 6a equal to zero, with mU = 0) and for the tracer transport bal-

ance (mE +mN =mW = CW ), the salinity difference between the Southern Ocean and the upper255

low-latitudes emerges:

∆SSO = SS −SU =− S0

CW
(FN +FS).

The salinity difference contains no variables. As the temperature dynamics are not considered in

this model, the horizontal density difference between these two boxes is constant for a fixed set of260

parameters.

∆ρSO = β∆SSO−α∆TSO =−β S0

CW
(FN +FS)−α∆TSO (10)

The critical eddy return flow is equal to zero. Using the definition of the flow (Eq. 4) and the fact that

the critical pycnocline depth is far in the positive range, Eq. (10) can be set to zero at the threshold265
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level. The critical freshwater flow becomes:

F crit
N,wind =−α∆TSOCW

S0β
−FS

The critical northern freshwater flow depends linearly on the southern temperature difference and

on the southern wind stress (via CW ) and a higher southern freshwater flux would lower the critical270

northern freshwater flow. Please note that this is a significant difference to previous approachers

(Fürst and Levermann, 2011; Rahmstorf, 1996), where the critical freshwater flow is in first or higher

order (Eq. 9) sensitive to the northern temperature difference which has no influence onto the critical

freshwater flux in this case.

4 Freshwater-induced AMOC strengthening275

The introduction of the southern density difference as a variable changing the eddy return flow re-

sults in a mechanism that has rarely been reported before: an increasing overturning under northern

freshwater forcing prior to a threshold in freshwater beyond no AMOC, as described here, can be

sustained. Cimatoribus et al. (2014) found a similar behaviour in a different box model, but under

freshwater forcing from the southern into the northern Atlantic. The mechanism in the model de-280

scribed here is simple: a freshwater flux from low-latitudes into the high northern latitudes reduces

the eddy return flow. If this reduction is not compensated by a reduction in mixing-driven upwelling

(as for example in a mainly wind-driven AMOC) then due to continuity northern sinking has to in-

crease since Southern Ocean upwelling is constant. Furthermore, it should be noted that this result

depends on the assumption that the northern sinking, mN , is a function of the square of the pycno-285

cline depth and the meridional density difference (see equation 1). Consequently, only solutions of

the pycnocline depth are allowed which increases in the right matter with increasing freshwater flux.

In general, the changes in the meridional density differences are the main driver for changes in the

northern sinking and the eddy return flow, i.e. the drivers for the freshwater induced strengthening of

the AMOC. Changes in the vertical density differences, implemented here as changes in the pycno-290

cline depth, stabilize the overturning circulation. The mechanism of an AMOC strengthening under

freshwater forcing is always dominant in the wind-driven case which we will proof at the end of this

section. In the full case the mechanism takes not effect for the parameters of Table 1 but it emerges

if the Southern Ocean temperature difference is changed in such a way as to make the mixing less

relevant (Fig. 6).295

4.1 Full case

In order to gain a better understanding of this behaviour, the tracer transport processes balance in

steady state (Eq. 5 equal to zero) is differentiated with respect to the northern freshwater flux. That
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gives an equation for the derivative of northern sinking:

dmN

dFN
=−dmE

dFN
+

dmU

dFN
(11)300

Using the parametrisations of the eddy return flow (Eq. 4) and low-latitudinal upwelling (Eq. 2),

Eq. (11) yields

dmN

dFN
=−

(
CU
D2

+CE∆ρSO

)
∂D

∂FN
−CED

∂∆ρSO

∂FN
.

305

The polynomial consists of two terms of opposing sign: the first term on the left depends on the

change of pycnocline depth (representing the vertical density structure) with increasing freshwater

flux. Since this derivative, ∂D
∂FN

, is generally positive the full term is negative. The second term is

positive since the horizontal density difference in the Southern Ocean declines when FN is increased.

The sign of the derivative of the northern sinking is determined by the ratio between the two terms.310

Thus strongly increasing pycnocline depth, i.e. strong positive changes in vertical density structure,

shift the overturning to a deceasing threshold behaviour. If the southern meridional density difference

decreases stronger (in absolute values), then the overturning rises under freshwater forcing. The

crucial point is that the absolute value of pycnocline depth is present in the term with the derivative of

southern meridional density difference. That means rising pycnocline depth also amplifies the term315

that depends on horizontal density structure and vice versa for the meridional density difference.

A stronger statement can be derived for the purely wind-driven case.

4.2 Wind-driven case

Upwelling in the lower latitudes amplifies the decreasing of northern sinking with increasing fresh-

water flow. Therefore, the wind-driven case provides a better example and a clearer image. Without320

low-latitudinal upwelling the derivative of northern sinking (Eq. 11) equals the negative derivative of

the eddy return flow (dmN/dFN =−dmE/dFN ). From the scaling of the eddy return flow (Eq. 4)

and the derivative of the southern horizontal density difference (Eq. 10) the derivative of the northern

sinking emerges.

dmN

dFN
=−CE∆ρSO

∂D

∂FN
−CED

∂∆ρSO

∂FN
325

= CE

(
S0β

CW
(FN +FS) +α∆TSO

)
∂D

∂FN
+CED

S0β

CW

Now, solely the term depending on the negative southern density difference could diminish the

derivative. For the values given in Table 1, ∂D
∂FN
' 100m

0.1Sv , and D ' 1000m, the derivative is far

in the positive range (∂mN

∂FN
' 5000). In order to calculate the critical derivative, we use again the330

fact that the southern density difference equals zero at the threshold.(
dmN

dFN

)
crit

= CEDcrit
S0β

CW
> 0
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The emerging critical derivative depends only on positive constants and the positive critical pycno-

cline depth, i.e. the overturning always increases close to the threshold. This result is not surprising335

in light of the heuristic explanation given above, but it is not trivial due to the still complex vertical

and horizontal density dynamics.

5 Climate model experiments

In order to investigate the possibility of the occurrence of a freshwater induced AMOC strengthening

in a more complex climate model experiments were performed with the University of Victoria Earth340

System Climate Model, version 2.9 (UVic ESCM). UVic ESCM 2.9 is a model of intermediate com-

plexity, with a simple 1-dimensional atmosphere but a 3-dimensional dynamic ocean (Weaver et al.,

2001; Eby et al., 2009). The model was forced with a constant freshwater flux and run to equilibrium

over 4300 years. The constant freshwater flux ranged from 0.025Sv to 0.2Sv. Freshwater was trans-

ferred from the southern Atlantic (10◦S to 30◦S) into the northern Atlantic (10◦N to 30◦N) in all345

simulations. The maximum overturning, averaged over 1000 years, for these equilibrium simulations

are shown in figure 7. The overturning increases for a freshwater forcing of 0.075Sv before it de-

clines at 0.1Sv. The overturning creases under a freshwater forcing of 0.16Sv or higher. The AMOC

strengthening is less pronounced compared to the box model behavior. However, due to the strong

differences between the box models and UVic ESCM slightly different behaviors can be expected.350

Furthermore, the southern ocean is not well represented in complex climate models, especially eddy

flows. These experiments show that an increase of the AMOC under freshwater forcing is a possi-

ble behavior of the overturning. However, further experiments would be needed to investigate the

robustness of this behavior.

6 Conclusion and discussion355

The conceptual model of the Atlantic overturning presented here builds on a previous model (Fürst

and Levermann, 2011) and advances the model by the introduction of a dynamic southern ocean

density difference for the eddy return flow as imposed by comparison with comprehensive ocean

model results (Levermann and Fürst, 2010). As a first result the model reproduces the qualitative

result that a threshold behaviour is a robust feature that is independent of the driving mechanism,360

i.e. it is present in a mixing-, a wind-driven as well as in a combined case. The regime of existence

of a solution for the overturning for a specific parameter combination is defined by the simultaneous

compliance of a number of conditions, e.g. positive volume fluxes and pycnocline depth. In the

presented model the threshold is generally reached when the eddy return flow becomes negative.

Similar to the predecessor of the model also here the threshold is associated with the salt-advection365

feedback. As suggested by Rahmstorf (1996), a threshold thus only exists when the salinity in the

low-latitude box is higher than in the northern box. This is the case here (see Table 2). Whether
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the real ocean is in a bistable regime and thereby exhibits a threshold behaviour is of yet unclear.

According to a diagnostic by Rahmstorf (1996), an overturning is bistable if the overturning carries

a net salinity transport at 35 N. This diagnostic was confirmed to be valid in a comprehensive climate370

model (Dijkstra, 2007) and is discussed in depth by Hofmann and Rahmstorf (2009). Following this

diagnostic most climate models do not show a threshold behaviour in earlier studies (Drijfhout et al.,

2010). However, in a more recent model in-comparison study the majority of climate models do show

a threshold behaviour (Weaver et al., 2012). Also observational data indicates that the real ocean is

in a bistable regime (Bryden et al., 2011), i.e. the current circulation pattern could change after375

reaching a threshold. It should be noted that the model presented here does not capture an "off-state"

of the circulation, i.e. describing a circulation pattern after the threshold in freshwater forcing has

been crossed. There are models showing an inverse circulation, which is sometimes associated with

the Antarctic Bottom Water filling up the Atlantic (Rahmstorf et al., 2005) and other models show

a seemingly stagnant ocean (Stouffer et al., 2006b). Neither of these patterns would be properly380

captured by the physics that is incorporated in the conceptual model presented here. Therefore, a

bistable situation can not be described but rather a threshold behaviour. This threshold behaviour

shows that beyond a certain freshwater flux the circulation in the Atlantic cannot be captured by the

conceptual model and is thereby not a classic overturning circulation as presently observed.

The main result is the observation that the overturning can increase prior to its collapse in response385

to a freshwater flux from low-latitudes to high northern latitudes. Previous models including the base

models (Johnson et al., 2007; Marzeion and Drange, 2006; Fürst and Levermann, 2011) show the

opposite behaviour, similar to the bifurcation in the initial model of Stommel (1961). The emergence

of the effect depends on the inclusion of Southern Ocean winds as a driving-mechanism for the

overturning and the inclusion of a dynamic southern ocean horizontal density difference. It thus390

does not include in the mixing-driven case. Thus our model has opposite behavior prior to reaching

the threshold depending on whether the circulation is wind- or mixing-driven.

This has strong implications for potential monitoring systems that aim to detect the vicinity to the

threshold. Methods that depend on the decline of the overturning prior to the threshold for example in

order to detect an increase in variability might not be suitable in a situation (Lenton, 2011; Scheffer395

et al., 2009) in which the presented mechanism is relevant. However, applicability of these findings

for monitoring purposes are limited as the presented results refer to a system in equilibrium, and not

a time dependent state as we see under current global warming.

Whether the mechanism described here is dominant in the real ocean is beyond the scope of this

paper. This study presents the physical processes which need to be investigated with comprehen-400

sive quantitative models and verified against observation in order to assess its relevance. Though

a large number of so-called water hosing experiments have been carried out (e.g. Manabe and Stouf-

fer, 1995; Rahmstorf et al., 2005; Stouffer et al., 2007), few studies have focussed on freshwater

transport from low- to high-latitudes. We were able to show a strengthening of the AMOC under
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freshwater forcing prior to a decline of the overturning by prescribing different amounts of constant405

freshwater transport from low latitudes in the southern Atlantic into the northern Atlantic. How-

ever, this behavior is not strongly pronounced. Thus further experiments are needed in order to find

whether the mechanism is indeed relevant for the real ocean.

Appendix A: Analytical calculations

A1 Full case410

The salinities are exchanged by salinity differences between the boxes except the salinity of the

northern box. The new salinity variables are defined as ∆S = SN−SU , ∆SD = SN−SD, ∆SSO =

SS−SU , and SN . The salinity balance of the northern box gives for the northern salinity difference:

∆S = −S0FN
mN

. (A1)
415

The scaling of the northern sinking (Eq. 1) with the linearly scaling of the meridional density differ-

ence ∆ρ= β∆S−α∆T and Eq. (A1) yields into a quadratic polynomial of mN .

0 =m2
N +mNCND

2α∆T +CND
2βFNS0 (A2)

It has the solution:420

mN =−1

2
CND

2α∆T ±
√

1

4
C2
ND

4α2∆T 2−CND2βFNS0. (A3)

The salinity balance of the upper box can be used to calculate ∆SD:

∆SD =
mW

mU
∆SSO + ∆S+

S0

mU
(FN +FS). (A4)

425

The salinity balance of the southern box combined with Eq. (A4) results into an equation for the

southern salinity difference.

∆SSO = −S0
mW (FN +FS) +mUFS
m2
W +mWmU +mEmU

(A5)

The scaling of the eddy return flow (Eq. 4), the linear density function for southern meridional den-430

sity difference (∆ρSO = β∆SSO−α∆TSO), and Eq. (A5) can be collapsed into a quadratic equation

for mE .

0 =mE +CEDβS0
mW (FN +FS) +mUFS
m2
W +mWmU +mEmU

+CEDα∆TSO (A6)

It has the solution:435

mE =− 1

2

(
m2
W

mU
+mW +CEDα∆TSO

)

+

√√√√√√√
1

4

(
m2
W

mU
+mW +CEDα∆TSO

)2

−CEDβS0

(
mW

mU
(FN +FS) +FS

)
−CEDα∆TSO

(
m2
W

mU
+mW

)
.
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The governing equation of the pycnocline depth emerges by using Eq. (A6) and replacing the eddy

return flow bymE =mU +mW −mN ,m2
N by Eq. (A2), and the upwelling transport processes,mU440

and mW , by their scaling (Eqs. 2 and 3).

D10CECUCWC
2
Nα

2∆T 2 [S0β(FN +FS) +CWα∆TSO]

+D9CNα∆T
[
CECW

(
C2
W +CECUα∆TSO

)
(FNS0β+FSS0β+CWα∆TSO)

+CUCN
(
C2
WFNS0β+C3

Wα∆T + 2CECUCWα
2∆T∆TSO +CECUS0αβ(FS∆T +FN∆TSO)

)]
+D8

[
C2
EC

2
W (FNS0β+FSS0β+CWα∆TSO)2445

+C2
NC

2
U

(
F 2
NS

2
0β

2 + 3CWFNS0αβ∆T +α2∆T 2
(
3C2

W +CECUα∆TSO
))

+CN
(
C4
WFNS0β+C5

Wα∆T +CECUC
2
WS0αβ∆T (3FN + 4FS) + 6CECUC

3
Wα

2∆T∆TSO

+C2
EC

2
US0α

2β∆TSO(FS∆T +FN∆TSO)

+2CECUCW
(
−F 2

NS
2
0β

2−FNFSS2
0β

2 +CECUα
3∆T∆T 2

SO

))]
+D7

[
C2
NC

3
Uα∆T (2FNS0β+ 3CWα∆T )450

+ 2CECW (FNS0β+FSS0β+CWα∆TSO)
(
C3
W +CECUFSS0β+ 2CECUCWα∆TSO

)
+CNCU

(
4C3

WFNS0β+ 6C4
Wα∆T + 12CECUC

2
Wα

2∆T∆TSO

+CECU
(
−2FNFSS

2
0β

2 +CECUα
3∆T∆T 2

SO

)
+CECUCWS0αβ(5FS∆T + 2FN (∆T + ∆TSO))

)]
+D6

[
C6
W + 2CUC

3
W (CES0β(3FN + 4FS) + 7CNCUα∆T ) + 10CECUC

4
Wα∆TSO

+2CEC
2
UCWα∆TSO(CES0β(FN + 3FS) + 5CNCUα∆T ) +C2

UC
2
W

(
7CNFNS0β+ 6C2

Eα
2∆T 2

SO

)
455

+C2
U

(
C2
EF

2
SS

2
0β

2 +C2
NC

2
Uα

2∆T 2 + 2CECNCUS0αβ(FS∆T +FN∆TSO)
)]

+D5CU
[
6C5

W + 2CUC
2
W (3CES0β(FN + 2FS) + 8CNCUα∆T ) + 20CECUC

3
Wα∆TSO

+CEC
2
Uα∆TSO(2CEFSS0β+ 3CNCUα∆T ) + 2C2

UCW
(
3CNFNS0β+ 2C2

Eα
2∆T 2

SO

)]
+D4C2

U

[
15C4

W +CUCW (2CES0β(FN + 4FS) + 9CNCUα∆T ) + 20CECUC
2
Wα∆TSO

+C2
U

(
2CNFNS0β+C2

Eα
2∆T 2

SO

)]
460

+D32C3
U

[
10C3

W +CUCEFSS0β+CNC
2
Uα∆T + 5CECUCWα∆TSO

]
+D2C4

U

[
15C2

W + 2CECUα∆TSO
]

+D6C5
UCW +C6

U = 0 (A7)

A2 Wind-driven case

For a wind-driven overturning the upwelling in the lower latitudes is zero by setting CU = 0. Thus465

the tracer transport balance in steady state (5 equal to zero) reduces tomW =mN+mE . Differences

in salinity are defined as in the full problem and the salinity balance in the northern box is the same

as in the full problem. Therefore Eqs. (A1)–(A3) are valid. Using the salinity balance of the southern

box, in this case the southern salinity difference reduces to:
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∆SSO =−S0(FN +FS)

mW
.470

For the eddy return flow it follows:

mE =−CEDβ
S0(FN +FS)

CW
−α∆TSOCED. (A8)

Replacing the northern sinking by Eq. (A3) and the eddy return flow by Eq. (A8) in the tracer

transport balance the governing equation of the pycnocline depth emerges.475

D3CECNα∆T

[
βS0(FN +FS)

CW
+α∆TSO

]
+D2

[
CNFNS0β+CNCWα∆T +

C2
E

C2
W

(S0β(FN +FS) +CWα∆TSO)2
]

+D2CE [βS0(FN +FS) +CWα∆TSO] +C2
W = 0

The solutions of the polynomial depend on the sign of the discriminant d= (q/2)2 + (p/3)3 with p

and q defined as:

q

2
=

1

2
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CNFNS0β+CNCWα∆T +C2

EA
2
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)3
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− CECWA
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6CWCNα∆T − 1

9C2
Nα

2∆T 2
− FNS0β+CWα∆T

9C2
EC

2
Nα

2∆T 2A2

withA=

(
S0β

CW
(FN +FS) +α∆TSO

)
.

480

If the disciminant is positive the governing equation has one real solution.

D =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
+

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3 (A9)

For a negative discriminant there are three real solutions.485

D1 = 2

√
−p

3
cos

(
1

3
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−p3

))
− CNFNS0β+CNCWα∆T

3CECNα∆T
(
S0β
CW

(FN +FS) +α∆TSO

)
+

C2
E

(
S0β
CW

(FN +FS) +α∆TSO

)2
3CECNα∆T

(
S0β
CW

(FN +FS) +α∆TSO

)
−
CNFNS0β+CNCWα∆T +C2

E

(
S0β
CW

(FN +FS) +α∆TSO

)2
3CECNα∆T

(
S0β
CW

(FN +FS) +α∆TSO

)
D2 = 2

√
−p

3
cos

(
1

3
arccos

(
− 3q

2p
√
−p3

)
+

2

3
π

)
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Table 1. Physical parameters for used for the model.

Parameter Value Unit Description

Geometry

H 4× 103 m Average depth of the Atlantic Ocean basin

B 1× 107 m Average width of the Atlantic Ocean

LN 3.34× 106 m Meridional extend of the northern box

LU 8.90× 106 m Meridional extend of the tropical box

LS 3.34× 106 m Meridional extend of the southern box

Stratification

ρ0 1027 kg m−3 Average density of the Atlantic Ocean

S0 35 psu Average salinity of the Atlantic ocean

LN
y 1.5× 106 m Meridional extent of the northern outcropping

AGM 1× 106 m2 s−1 Thickness diffusivity

κ 4× 10−5 m2 s−1 Background vertical diffusivity

αT 2.1× 10−4 1 ◦C−1 Thermal coefficient for isobars

α kg (m3 ◦C)−1 Product of ρ0 and αT

βS 8× 10−4 1 psu−1 Haline coefficient for isobars

β kg (m3 psu)−1 Product of ρ0 and βS

C 0.1 – Constant accounting for geometry and stratification

External rorcing

βN 2× 10−11 1 ms−1 Coefficient for β-plane approximation in the North Atlantic

fDr −7.5× 10−5 1 s−1 Coriolis parameter in the Drake Passage

τDr 0.1 N m−2 Average zonal wind stress in the Drake Passage

FN 0.1 Sv Northern meridional atmospheric freshwater transport

FS 0.1 Sv Southern meridional atmospheric freshwater transport

TN 5.0 ◦C Temperature of the northern box

TU 12.5 ◦C Temperature of the tropical surface box

TS 7.0 ◦C Temperature of the southern box
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Table 2. Numerical solution of the model by applying finite difference method on Eqs. (1)–(6). Equilibrium

state is obtained after 2000 yr with a time step of 14 days and the starting conditions: Salinities set to 35 psu

and the pycnocline depth set to 500 m.

Name Value

Salinities SN 35.04 psu

SU 35.24 psu

SD 35.02 psu

SS 34.79 psu

Tracer transports mU 17.5 Sv

mU 5.8 Sv

mW 13.0 Sv

mE 1.2 Sv

Meridional density ∆ρ 1.45 kg m−3

differences ∆ρSO 0.82 kg m−3

Pycnocline depth D 615 m

Figure 1. Schematic of the conceptual model as suggested in Fürst and Levermann (2011) and used here. The

depth of the pycnocline D is determined by the balance between the northern deep water formation mN , the

upwelling in the low-latitudes mU in response to downward mixing, the Ekman upwelling mW and the eddy-

induced return flow mE . Salinity is advected along with these transport processes and determines together with

a fixed temperature distribution the horizontal density differences. The differences are between low-latitudinal

box and northern box, ∆ρ, and low-latitudinal and southern box, ∆ρSO, respectively. The density differences,

in turn, determines the northern sinking, mN ∝D2∆ρ, and the eddy-induced return flow, mE ∝D∆ρSO.
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Figure 2. Trend of the governing equation for the full case (red line), the wind-driven case (mU = 0, blue

line) and the mixing-driven case (mW =mE = 0, green line). The intersections with zero (black dashed line)

are solutions of the polynomial but those in the grey shadowed area correspond to a negative pycnocline depth.

Therefore they are not physical. In all three cases there are two positive solutions, a lower stable, physical oneD

and a higher unstable or non-physical one D̂. In the wind-driven case the non-physical solution is out of range

of the pycnocline but is shown in Fig. 5. For the full case the solutions are D = 616 m and D̂ = 1342 m, for

the wind-driven case they areD = 523 m and D̂ = 6190 m and for the mixing-driven case they areD = 446 m

and D̂ = 1985 m.
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Figure 3. In steady state only one real stable solution of governing equation of the full exists which increases

under freshwater forcing (a). The tracer transport processes show different behaviours (b). The eddy return

flow mE decreases (b, green line) until it becomes negative and the break down of circulation is reached (grey

shaded area). Also the density difference between the southern box and the low-latitudinal box, ∆ρSO, crosses

zero at the threshold level (c, green line).
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Figure 4. In steady state the governing equation for the mixing-driven case has one real, stable solution until

a threshold level is reached (a). Thereafter, no real solution exists. The tracer transports are upwelling in the mid

latitudes and northern sinking which balance each other (mN =mU ) and decrease under increasing freshwater

forcing (b).
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Figure 5. In steady state only one physical solution of governing equation for the wind-driven case exists. There

are three real solutions before the circulation breaks down (a, white area) because the discriminant is negative

(e). The physical branch is solution 2 (red line). The threshold (grey shaded area) is reached when the eddy

return flow becomes negative (c, red line) and the discriminant of the governing equation has a negative pole

(e). The zero crossing of the discriminant, which was in the parent model (Fürst and Levermann, 2011) the

indicator for a cessation of the circulation, does not appear within the range applicability of our model. Within

that range the northern sinking always increases (b, red line) and its derivative is positive (d, red line).
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Figure 6. The derivative of the northern sinking with respect to freshwater forcing in full case. The derivative

is positive before the circulation collapses (white area). This behaviour is caused by a change in the Southern

Ocean temperature from TS = 7◦C to TS = 5◦C.
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Figure 7. Maximum overturning for freshwater experiments with UVic ESCM 2.9. Freshwater was taken out

at 10◦S to 30◦S and dumped into the Atlantic at 10◦N to 30◦N prescribing different constant amounts of

freshwater. For each simulation the maximum overturning is averaged over the last 1000 years of the simulation

(blue curve). Each blue cross corresponds to one equilibrium simulation. If the model would not show an

AMOC strengthening, the modeled maximum overturning would be expected to follow the red curve.
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