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Abstract

abstr We examined the changes to global net primary production (NPP), vegetation
biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global veg-
etation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercompari-
son Project study. Simulation results were obtained using five global climate models
(GCMs) forced with four representative concentration pathway (RCP) scenarios. To
clarify which component (i.e., emission scenarios, climate projections, or global veg-
etation models) contributes the most to uncertainties in projected global terrestrial C
cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied
to 70 projected simulation sets. At the end of the simulation period, changes from
the year 2000 in all three variables varied considerably from net negative to positive
values. ANOVA revealed that the main sources of uncertainty are different among vari-
ables and depend on the projection period. We determined that in the global VegC
and SOC projections, GVMs are the main influence on uncertainties (60% and 90%,
respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, di-
vergence of changes in vegetation carbon residence times is dominated by GVM un-
certainty, particularly in the latter half of the 21st century. In addition, we found that the
contribution of each uncertainty source is spatiotemporally heterogeneous and differ
among the GVM variables. The dominant uncertainty source for changes in NPP and
VegC varies along the climatic gradient. The contribution of GVM to the uncertainty
decreases as the climate division becomes cooler (from ca. 80% in the equatorial di-
vision to 40% in the snow division). Our results suggest that to assess climate change
impacts on global ecosystem C cycling among each RCP scenario, the long-term C
dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are
critical factors rather than photosynthetic processes. The different trends in contribution
of uncertainty source in each variable among climate divisions indicate that improve-
ment of GVMs based on climate division or biome type will be effective. On the other
hand, in dry regions, GCMs are the dominant uncertainty source in climate impact
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assessments of vegetation and soil C dynamics.
lineno

1 Introduction

intro
Terrestrial ecosystems play important roles in the C cycling of climate systems and

provide various ecosystem services (e.g., water supply and wild habitats for biodiver-5

sity); however, these ecosystem functions are threatened by climate change (Scholze
et al., 2006; Mooney et al., 2009; Ostberg et al., 2013). Previous model intercom-
parison studies (e.g., VEMAP (Kittel et al., 1995), DGVMs (Cramer et al., 1999; Sitch
et al., 2008), C4MIP (Friedlingstein et al., 2006), and CMIP5 Arora et al., 2013) have
demonstrated a lack of coherence in future projections of terrestrial C cycling for differ-10

ent global land models because of differences in their representations of system pro-
cesses. For climate change impact assessments, the cascade of uncertainty sources
must be considered (Wilby and Dessai, 2010; Falloon et al., 2014). Greenhouse gas
concentrations, temperature, and precipitation are critical factors in determining the
feedback of terrestrial ecosystems in response to atmospheric carbon dioxide (CO2)15

(Seneviratne et al., 2006). These factors could become more important for terres-
trial ecosystem C cycling under future higher CO2 concentrations and climate change
conditions (Gerten et al., 2005). The recent International Panel on Climate Change
assessments (AR5) took anthropogenic CO2 emission uncertainties into account in a
representative concentration pathway (RCP) scenario (Moss et al., 2010; Van Vuuren20

et al., 2011). Future projected changes in temperature and precipitation have large
spatial and temporal uncertainties even for the same radiative forcing levels because of
the different structures and parameters used in global climate models (GCMs) (Knutti
and Sedláček, 2013). These differences could affect the global C budget of terres-
trial ecosystems. Global vegetation models (GVMs) such as dynamic global vegeta-25

tion models (DGVMs) and components of earth system models also have inherently
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large uncertainties because of differences in model structures and parameters (e.g.,
Friedlingstein et al., 2006; Sitch et al., 2008). Thus, various sources of uncertainty may
cause divergence in projected C cycling.

For climate impact assessments and adaptations, different levels of uncertainty sources30

should be considered in order to manage climate change risks. Such information in
impact assessments may benefit from experience gained in the climate-modeling com-
munity and vice versa (Falloon et al., 2014). For example, recently, the likelihood of the
occurrence of large Amazon dieback in this century has become lower in simulation
studies (Cox et al., 2000; Sitch et al., 2008; Cook et al., 2012) because of reduction35

of uncertainties in the projected precipitation in Amazon regions among GCMs (Sitch
et al., 2008; Poulter et al., 2010; Cook et al., 2012). However, the improvement of veg-
etation processes in this region could result in the improvement of local vegetation–
climate feedbacks, which might contribute to changes in temperature and precipitation
in this region (Shiogama et al., 2011). At the global scale, in earth system models in40

the CMIP5 study, the sensitivities in global land climate–carbon feedback varied con-
siderably (Arora et al., 2013). The reduction of C budget uncertainties in ecosystem
models could serve to reduce climate change uncertainties, particularly regarding the
climate sensitivity of earth system models. In addition, determining which uncertainty
source is dominant in the projection is an important aspect of recognizing the limita-45

tions of ecosystem C cycling projections and climate impact assessments via GVM and
GCM. However, to date, how each uncertainty source (CO2 concentration, GCM, and
GVM) is important in regions and periods affected by climate change still remain to be
clarified in climate impact research.

In ecosystem climate impact assessments, how the uncertainties of climate impacts50

matter is still a challenging issue, in part due to the lack of standardized impact evalu-
ation protocols. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is
the first attempt to apply ensembles of both impact and climate models to obtain robust
future assessments (Warszawski et al., 2014). In assessments of climate impacts on
ecosystem functions, regionality is extremely important for the severity and timing of55
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impacts owing to the different types of climate change in each region and the presence
of different ecosystem types in different areas (Warszawski et al., 2013; Friend et al.,
2014). For comprehensive climate impact assessments in ecosystems, it is necessary
to possess spatio-temporal information for which uncertainty sources can be chosen
or ignored, for which some processes contributed to uncertainty, and for which how60

the contribution of each uncertainty source changed with time is known. Separation
of the different sources of uncertainty in projections of ecosystem models in various
aspects can be used to comprehend the uncertainties and risks in climate impacts on
ecosystem conditions and C cycling.

In this study, we examined the C dynamics in six GVMs obtained from the ISI-MIP.65

In the ISI-MIP, these GVMs were simulated using five GCMs forced with four newly de-
veloped climate scenarios, i.e., RCP in the CIMP5 experiments (Taylor et al., 2012). In
this MIP, an orthogonal experimental design with RCP, GCM, and GVM was adopted.
In total, 70 independent simulation sets were used in this study, which enabled us to
evaluate the relative contributions to total uncertainty of the projection factors (emis-70

sion scenarios, climate projections, and GVMs) in terrestrial C cycling. Our objective
was to explore the comprehensive uncertainties in future global and regional terrestrial
C projections by decomposing the uncertainty sources in terms of time, space, and
processes.

2 Data and methods75

2.1 Model and simulation protocol

We examined the global annual changes in net primary production (NPP), vegeta-
tion biomass carbon stocks (VegC), and soil organic carbon (SOC) using six GVMs
obtained from the ISI-MIP (Warszawski et al., 2014). In addition, we calculated the
annual VegC residence time from annual mean VegC divided by annual NPP, which is80

an index of the turnover rates of plant parts including the mortality rates of individu-
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als, processes modeled using baseline rates, climate sensitivities (including fire), and
competitively induced mortality, and are affected indirectly through shifts in vegetation
composition (Friend et al., 2014).

The GVMs used were HYBRID4 (Friend and White, 2000), JeDi (Pavlick et al., 2013),85

JULES (Clark et al., 2011), LPJmL (Sitch et al., 2003), SDGVM (Woodward et al.,
1995), and VISIT (Ito and Inatomi, 2012), which conducts model simulation under mul-
tiple GCMs and RCPs in the ISI-MIP. HYBRID4, Jedi, LPJmL, and JULES are DGVMs,
and a fixed land cover map was used for the other models in this study. The general
properties of the participating ecosystem models are summarized in Table 1. More90

detailed information on each model can be found in Warszawski et al. (2013); Friend
et al. (2014).

These models were simulated partly in 5 GCMs×4 RCP scenarios. HadGEM2-
ES (HadGEM), IPSL-CM5A-LR (IPSL), MIROC-ESM-CHEM (MIROC), GFDL-ESM2M
(GFDL), and NorESM1-M (NorESM) are the GCMs from a CMIP5 experiment (Taylor95

et al., 2012) with bias correction for temperature and precipitation performed by Hempel
et al. (2013). In this study, to focus on climate change impacts on terrestrial ecosys-
tem C cycling, anthropogenic land-use changes were not considered in the simulation.
Every GVM was used for a separate spin-up for each GCM, with the aim of bringing
the carbon and water pools into equilibrium using detrended and bias-corrected daily100

climate inputs for three consecutive decades spanning 1951–1980. The number of sim-
ulations for each GVM x GCM x RCP combination is summarized in the supplementary
information (Table S2.) The global climate variables (atmospheric CO2 concentration,
global mean temperature anomaly ∆T (◦C), and global precipitation anomaly ∆P (%))
in each RCP scenario for all GCMs are summarized in the supplementary information105

(Fig. S1). All the simulation results and bias-corrected climate data are available at the
Earth System Grid Federation (ESGF) portal (http://esg.pik-potsdam.de/).
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2.2 Statistical analysis

We used three-way analysis of variance (ANOVA) for global ∆NPP, ∆VegC, ∆SOC,
and ∆VegC in each year as factors for RCP, GCM, and GVM and determined their110

interactions in order to decompose total variance in all ensembles into each factor (Yip
et al., 2011). For this analysis, we used only the simulations for the RCP2.6 and 8.5
scenarios due to the fact that incomplete samples were simulated.

To avoid internal variability of GCMs, we used decadal-averaged values for ∆NPP,
∆VegC, ∆SOC, and ∆VegC. Subsequently, we calculated the Type II sums of squares115

in ANOVA using R (R Core Team, 2012). In this study, the overall uncertainty, denoted
as variance (Soverall), can be expressed as follows:

Soverallit = SRCP it +SGCM it +SGVM it

+SRCP×GCM it +SRCP×GVM it +SGCM×GVM it

+SRCP×GCM×GVM it120

in which i indicates each variable (i.e., ∆NPP, ∆VegC, ∆SOC, and ∆VegC) and t
indicates decadal time steps from the 2000s to the 2090s. Soverallit is the total sum of
squares, and the other S terms indicate the sums of squares for each main effect and
each interaction effect.

For grid-based assessment, we conducted additional ANOVA for ∆NPP, ∆VegC,125

and ∆SOC in each grid for two projection periods (2055 and 2099). For simplicity,
we did not consider the interaction terms (i.e., S2

RCP×GCM , §2RCP×GVM , S2
GCM×GVM ,

S2
RCP×GCM×GVM ) in the grid-based assessment. We used only the main effects to

calculate the relative importance of each uncertainty source as follows:
Smainit =SRCP it +SGCM it +SGVM it130

The relative fractions of uncertainty are expressed as Sit for each main effect divided
by Smainit .

In addition, using the grid-based maps, we compiled the dominant uncertainty in
each grid source on the basis of the observation-based present-day Köppen-Geiger
climatic divisions (Kottek et al., 2006). The five major climate types are equatorial (A),135

arid (B), warm-temperature (C), snowy (D), and polar (E). In this analysis, we selected
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the dominant uncertainty source in each grid and expressed them as fractions of the
total grid numbers in each climatic division.

3 Results

3.1 Global NPP, VegC, SOC, and VegC residence time changes during 1970–140

2099

At the end of the simulation period, ∆NPP ranged from −7.0 to 54.3Pg-C Year−1,
∆VegC ranged from −27 to 543Pg-C, and ∆SOC ranged from −195 to 471Pg-C in
the entire simulation set. The variance of ∆NPP increased with time and was the
highest in RCP8.5. This was true for the other variables (∆VegC and ∆SOC). NPP145

increased in RCP8.5, except in the HYBRID4 model. NPP in HYBRID4 forced with two
GCMs (HadGEM and MIROC) showed negative values by 2099. Global VegC stocks
increased in almost all RCPs and GVMs compared with global VegC in 2000. However,
the global Veg stocks in LPJmL peaked at ca. 2050 and then declined toward 2100.
In the projection period (2000–2099), the SOC stock in the five models (except for150

HYBRID4) increased in all RCPs compared with that in 2000.
∆VegC residence time at the global scale showed increased divergence in scenarios

with higher radiative forcing. In spite of radiative forcing, ∆VegC declines residence
time increased in HYBRID4 and decreased in LPJmL. In RCP2.6, the median value
of ∆VegC residence time was positive. Conversely, in RCP8.5, the median ∆VegC155

residence time was almost 0 within a considerable range from −2.8 to 9.0 year. In
SDGVM, ∆VegC residence time remained fairly constant in all RCPs under all GCMs.

3.2 Contribution of each uncertainty source to Global ∆NPP, ∆VegC, and ∆SOC

Figure 2 shows the fraction of uncertainty for each variable. For NPP, the GCM un-
certainty dominated before the year 2020, and the RCP uncertainty increased and160
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dominated after 2040. The GVM uncertainties were approximately 20% for most of
the simulation period. For VegC, the RCP uncertainty also increased gradually after
2020 and became approximately 40% of the total variance by 2100. The GVM un-
certainty was most prominent for most of the projection period; however, it decreased
after 2040 by 40% of the total variance. For SOC, the GVM uncertainty dominated165

throughout the projection period, with an average value of 92% of the total variance.
For ∆VegC residence time, GVM contribution gradually increased after the 2010s and
reached 74% in the 2090s. Conversely, the contribution of GCM to ∆VegC residence
time decreased from 80% in the 2000s to 2% in the 2090s. Although RCP formed a
considerable part of VegC and NPP uncertainties in the latter half of the 21st century,170

an RCP contribution to the global ∆VegC residence time of 5% was observed in the
2090s.

3.3 Spatial heterogeneity of the contribution of each uncertainty source

The strength of each uncertainty source relative to total variance showed geographical
heterogeneity for each variable (Fig. 3). For ∆NPP, GCM had a considerable contribu-175

tion to total variance in many parts of the world in the 2050s. In the 2090s, variance
mainly explained by GCM was observed in limited regions, e.g., the Sahara and central
Australia. RCP-dominant uncertainty source regions were present in part of the tropics
(South East Asia) to cool temperate regions (North America) in the 2090s for ∆NPP.
For ∆VegC, GCM had a large contribution to each grid total variance in most regions180

at both times. For ∆SOC, GVM was the major uncertainty source for each grid total
variance in most regions in both periods. GCM was observed to be the largest uncer-
tainty source in some regions such as the southwestern USA and the Sahara region
for ∆SOC. For ∆VegC residence time, GCM dominated more and its contribution was
scattered across different parts of the globe at both periods (Fig. 3). In northern arctic185

regions, GVM was dominant over a wide area from high- to low-latitude regions.
In terms of climatic divisions, the dominant uncertainty source clearly showed dif-

ferent patterns in ∆NPP and ∆VegC from equatorial climate (A) to snowy climate (D)
10



(Fig. 4). The contribution of GVM to ∆NPP variance decreased as the climate became
cooler in NPP (Fig. 4a). In each major climatic division, the seasonally drier divisions190

(m, s, w) tended to show a higher contribution of GCM compared with the division with
fully humid seasons (f). Similarly, in arid climates (BW and BS), the contribution of
GCM to the uncertainties of all variables was relatively high (Fig. 4a–c). Unlike global
∆NPP and global ∆VegC, GVM was dominant in tropical climates (Af – Aw), whereas
RCP was not dominant in these regions, even in 2100. In Cf, Ds, Dw, and ET, RCP195

was the largest and second-largest source of uncertainty (from 30 to 50% area) in
each climatic division. For ∆SOC, GVM was dominant in a broad area of all climate
divisions, as shown in the results for global ∆SOC. Furthermore, there were negligible
areas where RCP dominated the uncertainty in ∆SOC for all climatic divisions. The
contributions of each uncertainty source showed similar patterns to the climatic gradi-200

ents between ∆VegC and ∆VegC residence time. The contributions of GVM in ∆VegC
residence time in tropical to arid regions (Af to BW) were larger than those in ∆VegC,
which ranged from 21% to 42%.

4 Discussion

For the historical period (1970–2000), the models simulated similar historical NPP,205

VegC, and SOC trends for different GCMs (Fig. 1). However, at the end of the pro-
jection period, there were marked differences for all variables (Fig. 1). In particular,
NPP and SOC varied from a net sink to a net source in the highest baseline emission
scenario (RCP8.5). In higher emission scenarios, the total uncertainties for all vari-
ables increased to a greater extent. The total uncertainties for each variable in this210

study were comparable with or greater than those for projected C cycling in a previous
study of intercomparison of models (Sitch et al., 2008; Todd-Brown et al., 2013) even
with a smaller number of GVMs.

Compared with previous model intercomparison studies of terrestrial C cycling, the
ISI-MIP study has an important simulation protocol advantage, i.e., it is a partial facto-215
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rial experiment with three independent treatments for CO2 emission scenarios (RCP),
GCM, and GVM. Therefore, uncertainty can be decomposed into the sum of inter-
class variance (σ2

RCP , σ2
GCM , σ2

GVM , and their interactions) and within-class variance
(σ2

resid). The ANOVA results revealed that each source made a quite different contri-
bution to the total uncertainty, which varied with projection period (Fig. 2). Whereas220

GCMs were the dominant sources of uncertainty for NPP early in the projection period
(2000–2040), RCP dominated later in the projection period (2050–2100) (Fig. 2). This
trend of increasing RCP importance is similar to that of VegC (Fig. 2). This may be
attributed to the enlargement of CO2 concentration differences among RCPs for this
period. The interaction terms as a source of uncertainty were significant (p< 0.05 level,225

not described) and contributed considerably to total uncertainties (up to 20%) in NPP.
This result indicates that there were different sensitivities to the CO2 fertilization effect
on vegetation processes among the GVMs (Friend et al., 2014) also contributed to
projection uncertainties.

Uniqueness in the HYBRID4 model projection was observed in the ∆VegC residence230

time (Fig. 1). This is partially due to HYBRID4 having strong stomatal responses to
elevated vapor pressure deficits, and thus simulated negative ∆NPP between 2080
and 2100 even in higher CO2 conditions (Friend et al., 2014). In addition, GVM had
a contribution of less than 20% to global ∆NPP (Fig. 2); however, there were large
fractional uncertainties in the ∆VegC residence time (over 60% at the end of the 21st235

century). The ∆VegC residence time represents the turnover rates of plant parts and
the mortality rates of individuals, processes modeled using baseline rates, climate sen-
sitivities (including fire), and competitively induced mortality. So ∆VegC residence time
is affected indirectly through shifts in vegetation composition (Friend et al., 2014). The
interaction terms in VegC residence time changes dominated about 20% during the en-240

tire simulation period, indicating that GVM has a different response to individual GCMs
and RCPs. For example, the HYBRID4 model notably showed high sensitivity to GVMs
(Fig. 1). This term constitutes a non-negligible fraction compared with the main effects
of each uncertainty source. Friend et al. (2014) pointed out that the humidity term in
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the vapor pressure deficit is a critical factor to differentiate the projected NPP among245

GVMs in the ISI-MIP. This is because the adoption of a response function to the vapor
pressure deficit is critical for responses to warmer climate conditions (Kumagai et al.,
2004; Friend et al., 2014). Furthermore, in this study, only HYBRID4 incorporated a
fully coupled N cycle; therefore, besides CO2 fertilization effects, implementation of
the N cycle in more models is required for more plausible modeling of effects of CO2250

fertilization in terrestrial C projections (Thornton et al., 2009).
Humidity data for GCMs were not adjusted to the bias-corrected air temperature and

precipitation in the ISI-MIP study (Masaki et al., 2015). This might be another potential
source of uncertainty and bias for ecosystem projections as well as for evapotranspi-
ration in global hydrological water models (Masaki et al., 2015). Our results suggested255

that an essential factor to reduce uncertainties in climate assessment of ecosystems
is improved understanding of C dynamics after photosynthesis rather than reduction of
uncertainties in the exchange of C between the atmosphere and vegetation. In fact,
the representations of these processes are quite different among GVMs (Friend et al.,
2014).260

The uncertainties in SOC changes driven by GVM were significantly large and were
dominant over the entire simulation period (Fig. 2), possibly suggesting that SOC pro-
cesses are not well constrained by the observational data or consistent between mod-
els, suggesting that the uncertainties derived from the GVMs overwhelmed those de-
rived from the climate scenarios. In addition, previous study showed that VegC dy-265

namics did not correlate strongly with that for SOC (Nishina et al., 2014), i.e., SOC
processes contributed considerably to GVM-driven clustering in the SOC dendrogram.
Another ISI-MIP study demonstrated that the sensitivity of global SOC decomposition
to increasing global mean temperature varied significantly among GVMs (Nishina et al.,
2014). Moreover, differences in the initial SOC stock resulting from different spin-up270

procedures among GVMs critically contributed to the incoherence in SOC dynamics.
In a CMIP5 study, Nishina et al. (2014) demonstrated that microbial decomposition
processes are a dominant factor determining the amount of global SOC stock rather

13



than C input from photosynthetic products. Determination of the initial SOC stock is
important for future soil carbon stock and land surface fluxes (Exbrayat et al., 2014).275

In our results, there was no regional and ecosystem type (climatic divisions) depen-
dency on GVM contributions to uncertainty in SOC changes. Therefore, to reduce
GVM uncertainties in SOC projection, improvement of spin-up procedures and micro-
bial decomposition will be effective for reduction of SOC uncertainties at both local and
global scale.280

Considering geographic distribution, we determined that the contributions of each
uncertainty source to each grid variance were spatially heterogenous (Fig. 4), although
the total contributions of each uncertainty source in the grid-based assessment (Fig. 3)
were roughly in agreement with Fig. 2 for each period (2050, 2099). These hetero-
geneities could be coordinated with climatic divisions (Fig. 4). For example, in ∆SOC,285

GVMs are also a main contributor in most regions in both periods (2050 and 2099).
However, the grid-based assessment revealed geographically distinct regions for each
uncertainty source. Although GCM was not a large contributor to global SOC dynam-
ics (Figs. 3 and 4), GCM had a significant effect on uncertainty in arid (BW) to semi-
arid (BS) regions (e.g., Sub-Saharan Africa, the southwestern USA, South America290

(Pampa), Central Asia, and Australia) for all variables. In a CMIP5 study, Sillmann
et al. (2013) reported that changes in precipitation patterns in their regions showed
the low degree of coincidence among GCMs. These results suggest that the projec-
tion of precipitation patterns among GCMs is critically important to evaluate the impact
of climate change on ecosystem conditions and C stocks in these regions (as shown295

in supplemental file). Although the carbon stocks and changes in these regions are
not large, it is important to predict local climate condition uncertainties in order to ob-
tain local climate predictions of ecosystem changes during climate change. In NPP
and VegC in the 2090s, GVM is the dominant source in semitropical to tropical climate
zones (especially in South East Asia, Latin America, and Central Africa), whereas GVM300

is not dominant for global ∆NPP during this period. This implies that modification of
tropical rainforest C cycling is critical for reducing uncertainties in global NPP. In broad
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terms, the contribution of GVM as an uncertainty source in ∆NPP becomes smaller in
cooler climatic regions (C–D); however, those of GVM to ∆VegC were larger in cooler
climatic regions (Fig. 4). This inconsistency can be explained by the large differences305

between GVMs in the vegetation turnover rate in northern ecosystems because of the
different representations of vegetation dynamic processes (e.g., forest fires, N cycling,
and senescence) (Friend et al., 2014). These results highlight that model improve-
ment on the basis of plant functional type (corresponding to climate divisions) could be
important for effective reduction of uncertainty in climate impact assessments.310

Our results do not mean that GCMs are not important for the uncertainties in VegC
and SOC projection from the viewpoint of global C stocks. For example, under RCP8.5,
the HYBRID4 model simulation showed that VegC diverged considerably among GCMs
by 2100 (from 162 to 547Pg-C). Moreover, in Ahlström et al. (2012), one DGVM forced
with 10 different GCMs showed a difference of approximately 500Pg-C among projec-315

tions of changes in global terrestrial C stock (VegC & SOC) by 2100. Furthermore,
the numbers of GCMs and impact models used in this study likely affected the results.
Hence, our results indicate a smaller contribution by GCM to total uncertainties than a
lack of inter GVM constraints owing to insufficient validation for the SOC and VegC pro-
cesses from global observations. In the case of RCP2.6, the model projections were320

comparable for ∆NPP; however, the results for ∆VegC and ∆SOC differed significantly.
This implies that internal ecosystem processes such as photosynthate partitioning and
mortality were poorly constrained in the GVMs. Moreover, process uncertainties con-
siderably affect SOC dynamics as a C source via litter inputs. More observation-based
model intercomparison (e.g., MsTMIP, (Huntzinger et al., 2012)) for each component325

is required for GVMs to reduce the overall uncertainty. For SOC dynamics, empiri-
cal estimations using observation-based heterotrophic respiration (Bond-Lamberty and
Thomson, 2010; Hashimoto, 2012) are available for validation of SOC decomposition
processes. In addition to each model modification, in future, multiple land-use scenar-
ios should be considered in projections to understand additional potential uncertainties330

(σ2
land.use) in the global terrestrial C budget. Furthermore, use of bias-corrected GCM

15



forcing data will probably affect C dynamics as well as the projections in hydrological
models (Haddeland et al., 2011; Ehret et al., 2012); however, there is still a lack of
validation for the effect of various bias-correction methods on C cycling projections and
their relative uncertainty.335

5 Conclusions

In conclusion, by combining multiple GVMs, GCMs, and RCP scenarios, we deter-
mined the different contributions of each factor to total uncertainty, which is highly
dependent on the variables (NPP, VegC, SOC, and VegC residence time), projection
periods, and regions. The contribution of each source of uncertainty in these variables340

showed different patterns compared with the hydrological variables simulated by global
hydrological models from another ISI-MIP study (Wada et al., 2013). At the global
scale, by the middle of the 21st century, GCM is the dominant uncertainty source in
most regions for NPP, VegC, and VegC residence time. However, GVM largely remains
the major uncertainty in the impact models in most regions, particularly at the end of345

the 21st century.
Although RCP can differentiate NPP in temperate and cool climate regions, the un-

certainties of VegC and VegC residence time are dominated by GVM. These results
suggest that the fate of photosynthetic carbon over the long term is an important un-
certainty process for GVM models in climate impact assessments. Thus, our findings350

indicate that model improvement on the basis of plant functional type (corresponding to
the climate divisions) could be important for effective reduction of uncertainty in climate
impact assessments.

For global SOC projection, the uncertainty driven by GVM was greater than that
of the climate scenarios, i.e., RCPs and GCMs. This SOC uncertainty might be at-355

tributable mainly to the variety of SOC process among GVMs and a lack of constraints
for spin-up procedures. The uncertainties associated with SOC projections are sig-
nificantly high, and the global SOC stocks by 2099 shift from net CO2 sources to net
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sinks (from −195 to 471Pg-C). Because of the magnitude of the uncertainty range
in projected global SOC stock, the reduction of SOC uncertainties in GVM could be360

important for the terrestrial C budget.
Particularly in arid to dry climate regions, GCM was the dominant uncertainty source

for all compartment and fluxes of ecosystem model even at the end of the 21st century,
because NPP in these regions is strongly subjected to water-use limitation. The CO2

emission scenario (RCP) as an uncertainty source is important for the late projection365

period for both NPP and VegC. Moreover, the CO2 fertilization sensitivity of vegetation
processes is quantitatively important for future C projection uncertainties.
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GVM Resolution Vegetation Number of PFT Fire Nitrogen Soil temp function Permafrost
HYBRID4 720 x 360 DGVM 6 No Yes Exponential with optimum No

JeDi 192 x 145 DGVM 15 No no Exponential No
JULES 192 x 145 DGVM 5 No no Exponential Yes
LPJmL 720 x 360 DGVM 10 Yes no Lloyd & Taylor Yes
SDGVM 720 x 360 Fixed PFT 7 Yes Yes Optimum curve No

VISIT 720x360 Fixed PFT 16 Yes no Lloyd & Taylor No
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Fig. 1. Global annual NPP, VegC stock, SOC stock, and VegC residence time changes. The
boxplot summarizes the values at the end of the simulation period. Open circles represent
outliers if the largest (or smallest) value is greater (or less) than 1.5 times the box length from
the 75% percentile (or 25% percentile).
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Fig. 2. Fraction of variance derived from the emission scenarios (RCPs), GCMs, and GVMs for
annual NPP, VegC, SOC, and VegC residence time changes. The variances were estimated
by three-way ANOVA. The fractions in interactions include the sum of variations of interaction
terms (RCP×GCM, RCP×GVM, and GCM×GVM).
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Fig. 3. Geographic distribution of the relative importance of the uncertainty derived from the
emission scenarios (RCPs), GCMs, and GVMs for annual NPP, VegC, SOC, and VegC resi-
dence time changes from 2000 to 2050 and 2099 in each grid cell. The variances were esti-
mated by one-way ANOVA.
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Fig. 4. The fraction of dominant uncertainty source in each Köppen climatic divisions in ∆NPP
(a), ∆VegC (b), ∆SOC (c), ∆VegC residence time (d) in 2090s, and Köppen climate classifica-
tion map for the period 1951 to 2000 in CRU (e). In (a–c), the colors indicate each uncertainty
source as in Fig. 2 (i.e., orange indicates RCP, yellow indicates GCM, and blue indicates GVM).
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