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Abstract

We analyse the global primary energy use and total CO, emissions time series since
1850 and show that their relative growth rates appear to exhibit periodicity with a fun-
damental timescale of ~ 60 years and with significant harmonic behaviour. Quantifying
the inertia inherent in these dynamics allows forecasting of future “business as usual”
energy needs and their associated CO, emissions. Our best estimates for 2020 are
800 EJ yr_1 for global energy use and 14G|tyr_1 for global CO, emissions, with both
being above almost all other published forecasts. This suggests the energy and total
CO, emissions landscape in 2020 may be significantly more challenging than currently
envisaged.

1 Introduction

Business-As-Usual (BAU) describes the normal execution of standard functional oper-
ations within both business and government. Therefore, in the absence of any change
to historic norms, global energy use and CO, emissions must follow a Business-As-
Usual (BAU) trajectory. Furthermore, since there is clear evidence for significant inertia
in the evolution of the global energy system and in the absence of further novel inter-
ventions, then BAU must also provide the most likely forecasts of future energy use
and emissions over timescales corresponding to the observed inertial dynamics.

In their first assessment report in 1990 the Intergovernmental Panel on Climate
Change (IPCC) made explicit use of a BAU scenario as a means of both forecasting the
likely impacts of inaction on climate change in addition to benchmarking various mitiga-
tion scenarios (IPCC, 1990). However, since then they have avoided referring explicitly
to BAU, preferring instead to offer multiple and widely varying future storylines and con-
centration pathways without expressing their relative likelihoods of occurrence (IPCC,
2000, 2007; van Vuuren et al., 2011). Recent evidence would suggest that the global
energy system has not deviated significantly from its historic growth pattern (Jarvis
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et al., 2012) which corresponds to the trajectories at the upper limit of the basket of the
IPCC scenarios (Le Quere, 2009). This is despite the significant political efforts that
have been expended to change this pattern over the last 25 years.

Because of the apparent stationarity of the dynamics of the global energy system
(Jarvis et al., 2012), a more accurate picture of BAU should be gained from a detailed
analysis of its historic evolution. For example, the exponential growth in energy use and
emissions suggests the operation of feedbacks between how humans use energy and
the growth in the amount of energy they use (Garrett, 2011) and that these feedbacks
are relatively stationary in the long run. Although such feedbacks cannot persist indef-
initely, investigating their behaviour over the history of industrial society could provide
valuable insights into some of the processes governing energy use, albeit in highly ag-
gregated terms. From this it should be possible to derive useful BAU forecasts of global
energy use and CO, emissions, particularly on timescales over which the internal dy-
namics of global energy use dominate.

For processes growing near exponentially, the strength of the feedbacks regulating
growth can be characterised by the relative growth rates (RGRs) of these processes. If
we consider the endogenous growth of global primary energy use, x,

dx(t)

?=3x(t) (1)

then a is the RGR or feedback parameter for this growth process. The estimation of
the RGRs from real data is straightforward if a is assumed to be constant. However,
because RGRs change over time in response to changes in human behaviour it is
essential to also quantify their evolution over time. Estimating a directly from Eq. (1)
involves utilising both the inverse and first difference of x which, if the data are even
modestly noisy, will lead to very poor estimates of a. Here we overcome this problem
by exploiting a novel dynamic autoregressive framework (Young and Pedegral, 1999)
to produce time varying estimates of the RGRs of global primary energy use and CO,
emissions from 1850—-2010. We use these estimates to explore the dynamic variations
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in the feedback strength of energy use on the growth in energy use and their sub-
sequent impact on global CO, emissions. From this analysis we construct a simple
BAU forecasting regime for global primary energy use and global CO, emissions and
then use this to attempt BAU forecasts for both global primary energy use and CO,
emissions.

2 Methods
2.1 Global primary energy use and CO, emissions data 1850-2010

The global primary energy use, x, shown in Fig. 1a for the period 1850-2010 are taken
from Jarvis et al. (2012). These data are originally from Grubler (2011) for the period
1850 to 1964 and British Petroleum (BP) for the period 1965-2010 (BP, 2011). To
harmonise these two series to produce the consistent 1850 to 2010 series in Fig. 1a
the mean difference between the two series for the period 1965 to 1995 (8.3 x 1018J)
was added to the BP dataset. All data were converted from tonnes of oil equivalent (toe)
to Joules assuming 10'8J =2.38 x 10" toe (Sims, 2007). Global CO, emissions data,
y, shown in Fig. 1c are taken from Houghten (2010), Boden et al. (2010) and Peters
et al. (2012) and include land use change in order to complement the inclusion of
wood fuel in the primary energy data. 1o uncertainties in the data were assumed to be
5% in energy use and fossil fuel emissions (Macknick, 2009) and 20 % in land-based
emissions (IPCC, 2013). 20 uncertainties or 95 percentile ranges in the parameter
estimates are given throughout.

2.2 Estimation of relative growth rates

The annually sampled discrete time approximation of Eq. (1) is given by the autore-
gressive relationship

x(t) = (1 +a(t)x(t-1) (@)
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where we now express the RGR as a function of time. To recursively estimate the
evolution of a(t) from the time series of x (or b(t) from y), we use the dynamic au-
toregressive (dar) algorithm of Young and Pedegral (1999; see Young, 2011, p. 81 for
details).

2.3 Frequency analysis

We estimate the frequency response of the RGRs shown in Fig. 1b. For this we have
taken the frequency response of the following autoregressive relationship

a(t)y=cqa(t -1)+coa(t-2)+... +cpa(t — M)+ &(t) (3)

where the autoregressive (AR) parameter vector [¢4, €5, ... ¢y] is estimated from
the RGRs in Fig. 1b and ¢ are the AR model residuals, taken to be an estimate of
the exogenous non-periodic components of a(f). Here ¢ is estimated using the non-
recursive, en bloc version of the dar algorithm. The frequency response of Eq. (3) is
then given by

o? 1

2T |1 4 c0-i®) + .+ cyel-io)f

H(®) (4)

where o2 is the estimated variance of ¢, @ are the frequencies of interest, H(®w) is
power at those frequencies and M is the AR model order (Young, 2011, Eq. 5.24).

Figure 2 shows the mean response for 45 AR models for M = 5 to 50. The reason for
choosing a large range of AR models to evaluate the frequency response was to avoid
prejudicing any particular AR structure. Therefore, the mean result presented in Fig. 2
should be independent of the AR structure used.

Finally, we have recovered an estimate of ¢ by inverting Eq. (3) on the estimates of
a(t)i.e.,

é(t)=a(t)—cqa(t-1)-cra(t-2)—...—cya(t - M). (5)
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Again, M =5 to 50 was used for this and the range of the results was used as an
approximate estimate of the uncertainty in these estimates shown in Fig. 1e.

3 Results and discussion

Our estimates of a(t) are shown in Fig. 1b. The 160 year constant parameter relative
growth rates (RGR) estimates for x and y are 2.4+0.2 and 1.8+0.4 % yr'1 respectively,
the latter being less certain because historical estimates of y are less certain than
those of x. However, despite our ability to estimate these constant RGRs for x and y
from the 160 year time series, it is clear from Fig. 1a and c that there are significant
variations over time in the RGRs of x and y about their long-term exponential trends.
Figure 1b shows the time varying estimates of the RGRs of x and y, a(t) and b(t).
These estimates improve over time, not only because data quality improves, but also
because the signal to noise ratios increases as x and y increase.

The changes in both a(t) and b(t) about their long-term mean values have slower
(decadal) and faster (annual) timescale variations. To explore what timescales are im-
portant in these variations we have estimated the frequency spectrum of a(¢) and b(t).
Figure 2 shows the mean response of an ensemble estimate of the frequency spectrum
of the perturbations in both a(t) and b(¢). From this we see that both a(t) and b(t) ap-
pear to exhibit ~ 60 year periodicity with minima occurring in approximately 1870, 1930
and 1990 and maxima in 1900 and 1960 (see Fig. 1b). Since these data series are
only 160 years long it is possible that the longer term variations observed in the RGRs
could have arisen by chance, particularly if they were subject to the effects of random
walk-type processes. However, Fig. 2 shows that a(f) and b(t) have frequency compo-
nents close to some of the harmonics of a wave of period ~ 60 years. Figure 2 shows
that these harmonics occur at ~60/2 =30, ~60/4 =15, ~60/5=12, ~60/7=~9
and ~ 60/9 =~ 7 years respectively. These harmonics are unlikely to occur if a and
b did not possess ~ 60 year periodicity and hence provide additional support for the
observed ~ 60year variation being real. There also appear to be higher frequency
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components beyond this range, but the filtering required to estimate a(f) means that
attributing significance to these is problematic and hence we refrain from doing so.

We note that periodic components in the observed behaviour of economic systems
have assumed particular significance in the literature and have been named variously
(Korotayev and Tsirel, 2010). Long-wave cycles have previously been observed in the
historical records of other industrial economic indicators, most significantly by Kondrati-
eff (1925), and also more recently by Korotayev and Tsirel (2010). Kondratieff (1925)
attributed periodicity in prices, interest rates, coal and iron production and other indi-
cators of economic output, to the dynamics of capital investment. Schumpeter (1939)
and later Sterman (1985) attempt to explain these so-called K waves by focussing
on the role of the dynamics of technological innovation. Extending this framing, Model-
ski (1987) and Devezas and Corredine (2001) emphasised the role of adaptive learning
between and within generations in giving rise to long-wave dynamics. A related pos-
sible explanation for the apparent observed periodicity in global primary energy use
is that waves like these are produced by complex systems constructed from discrete
scale-dependent networks (Sornette, 2004). Collectively these networks may resonate
as a means of identifying how to best associate uncertain environmentally-derived re-
sources such as energy to heterogeneously distributed end users. Viewed in this way,
BAU describes the global scale evolution of industrial society in the form of an optimal
resource acquisition, distribution and end use network. Whatever the cause, system-
atic periodicity on these timescales indicates high levels of internal entrainment in the
global economy in addition to high levels of inertia.

The idea that shorter-term business cycles are merely harmonics of multi-
generational timescale phenonema is counter to standard economic theory but ap-
pears to deserve attention. There appears to be little consensus on the causal mech-
anisms of these higher frequency components (Summers, 1986). However, it is impor-
tant to point out that, in terms of global primary energy use, they appear to be harmon-
ics of a ~ 60 year cycle and, therefore, require a unified mechanistic interpretation set
within the context of a fundamental ~ 60 year periodic process. We note that currently
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business cycles of differing durations are invariably ascribed differing causal mecha-
nisms. Also, because energy use is so fundamental to the operation of global industrial
society, it is not surprising that equivalent periodicity is exhibited in the growth rates of
other economic indicators, e.g. gross domestic product (Korotayev and Tsirel, 2010)
as well as in primary energy use. The observation that some harmonics appear to be
missing might suggest that global industrial society is behaving in a mildly nonlinear
way.

The framework used to estimate the frequency spectrum in Fig. 2 also affords an
estimate of the exogenous, non-periodic components of a(t), ¢é(f). Figure 1e shows
these disturbances. Clearly an element of this is the statistical uncertainty associated
with the estimates of a(t) given errors in the observations. We also note that it is not
possible to resolve any of these disturbances for the earlier most uncertain data. How-
ever, from ~ 1930 onwards significant exogenous shocks appear and there are three
notable outliers in 1973, 1979 and 2010. The first two represent negative deviations
from harmonic trends and coincide with large-scale disruptions to global oil supplies,
while the third (of opposite sign) appears to be come after the financial crisis of 2008—
2009 in 2010. In terms of global energy use then, the oil crises of the 1970s appear to
be far more significant than, for example, the two world wars. That the outlier in 2010
has a positive sign suggests it is a consequence of the global fiscal stimulus initiated in
response to the financial crisis of 2008—2009. Therefore, in terms of global primary en-
ergy use, it was the fiscal stimulus following the crash, rather than the crash itself, that
was the aberration that deviated from long-run (harmonic) trends. It therefore seems
possible that, in terms of energy use, the 2008—2009 crisis was actually a systemic
event arising from the transient alignment of harmonics in the performance of industrial
society, rather than an exogenous shock precipitated by gross misjudgements in the
global banking sector (United States Senate, 2011). In all three cases the magnitude
of these exogenous disturbances appears to have been insufficient to have caused
any meaningful subsequent deviation from the BAU trajectory, highlighting the inherent
inertia in the use of energy by global industrial society.
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The periodicity in the RGR of x and y offers some predictive capability. This ap-
proach to forecasting global energy use is clearly different to that based on scenarios
(e.g. SRES or RCP as used by the IPCC). Because of the repeated significant effects
of the exogenous shocks on the RGRs of global primary energy use, robust forecasting
skill probably only exists for the ~ 60 year cycle and its underlying exponential growth
profile with its associated growth timescale of ~ (2.4% yr'1)'1 ~ 40years. Here we
elect to forecast to 2020 using the dynamics identified in Fig. 1. We choose this time-
frame because, firstly, a ~ 60 year long-wave cycle would peak around then. Secondly,
committed capital infrastructure is very unlikely to change substantially over the next
6 years without extremely radical early decommissioning of carbon-intensive energy
generators and equally radical deployment of low-carbon or carbon-neutral infrastruc-
ture. Finally, and most importantly, this is the proposed date for the implementation of
the Durban Platform (UNFCCC, 2013), when global energy use and climate policies
have been negotiated to align. As a result, it is important to understand the energy use
and emissions landscape at this point in global negotiations on climate change and
energy security.

To forecast energy use to 2020 we start by fitting the following summative model
to the observations in Fig. 1. a(t) is assumed to vary slowly and we estimate this
variation simply using a cubic spline with nodes set at 1850, 2010 and 20 year incre-
ments between these two end points. The cubic spline node estimated for a(t) in 2010
defines both the level and rate of change for a(t) in 2010. We assume da/dt =0 in
2020 (i.e. at the next peak of the ~ 60year cycle) and interpolate a linear transition
from da/dt = 0.25 (£0.13) % yr'1 in 2010 to zero in 2020. This RGR is then applied
to forecast x from 2011 to 2020. Note that no periodic model is used here other than
to assume da/dt is zero in 2020. For CO, emissions, we assume a fixed exponential
scaling b = ma (m = 0.74+0.09 estimated for these data) because both x and y are ob-
served to grow exponentially in the long run and there appears to be strong coherence
between a(t) and b(t) in Fig. 1b hence the systemic decarbonisation trend presented
in Fig. 1d. b is then applied to forecast y from 2011 to 2020. Both m and the spline
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nodes for a(t) are estimated using nonlinear least squares fit simultaneously to the data
for both x and y shown in Fig. 1a and c. The assumptions used here are equivalent
to a BAU scenario i.e. no meaningful intervention of additional exogenous policy mea-
sures at the global scale. Figure 1e would suggest that any such interventions aimed
at significantly reducing global energy use and hence CO, emissions, would need to
be similar in magnitude to the oil crisis of the 1970s, but persisting for decades. Hence
we propose this is a realistic forecasting scenario until at least 2020.

The model fits and forecasts are shown in Fig. 1. Also shown are the 2020 forecasts
for x and y for two high emission scenarios from the IPCC (2, 3), the International
Energy Agency (2011), BP (2012), Shell (2012) and ExxonMobil (2012). Our 2020
forecasts for a and b have mean values of 4.8 (+1.1) and 3.6 (£0.8) % yr‘1 respec-
tively. These are approximately twice the current energy industry growth forecasts and
one and a half times greater than the IPCC’s worst case A1f scenario. In contrast, the
2020 carbon intensity forecasts are all similar (see Fig. 1d). Therefore, we predict that
energy use will grow faster than expected over the remainder of the decade and that
the emissions landscape in 2020 will be more challenging than is currently anticipated,
principally because of enhanced growth in global energy use. We estimate global en-
ergy use in 2020 will be 806 (537-1159) EJ yr_1 and total CO, emissions will be 14.3
(10.4-19.5) thr‘1. These uncertainties are large because they include the observa-
tional uncertainties in x and y in addition to uncertainties generated by the forecasting.
If the historic periodicity in a and b persists beyond 2020 there is a significant likelihood
of sub-exponential growth in energy use and emissions occurring for the ~ 30 years be-
yond 2020 and we anticipate some forecasting skill from this framework for BAU over
this timeframe.
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4 Conclusions

The observed persistence of the growth of global primary energy use over the last
160 years and the resultant observed growth in CO, emissions suggests that the con-
struction of BAU forecasts for 2020 should be based on a quantitative understanding
of historical trajectories. In particular, long term exponential growth of ~2.4% yr‘1
has a characteristic timescale of ~ 40 years which is close to the observed mean life-
time of all technologies (Grubler et al., 1999) including large energy projects (Davis
and Caldeira, 2010) suggesting built in persistence in this growth trajectory. Allied to
this, an ~ 60 year periodicity in variations in the relative growth rate of primary energy
use merely acts to underline the persistence of the underlying trends in this core eco-
nomic determinant. As a result, we argue that, not only is there a strong observational
constraint on the specification of BAU, but this state is likely to persist well after any
meaningful exogenous intervention has attempted to redirect it. We argue, therefore,
that BAU forecasts for 2020 (and indeed for any date in the foreseeable future) should
be accepted as being the most likely, default, forecast unless and until quantitative
evidence exists for deviation from the historic trajectory. The acceptance of energy
and emissions scenarios or pathways based on hypothetical future actions by society
should only be viewed as probable (or even possible) once such actions have been
initiated. In fact, we have previously suggested that meaningful interventions in energy
use and hence carbon emissions will not occur until such time as society experiences
the detrimental effects of climate change (Jarvis et al., 2012).
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EP/1014721/1. C. N. Hewitt was supported by Lancaster University.

1153

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

ESDD
5,1143-1158, 2014

—
o

h
“Business-As-Usual”
growth of global
primary energy use

A. Jarvis and C. N. Hewitt

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

References

Boden, T. A, Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO,
emissions, in: TRENDS: a Compendium of Data on Global Change, Carbon Dioxide Infor-
mation Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tenn., USA, doi:10.3334/CDIAC/00001_V2010, 2010.

British Petroleum: British Petroleum Statistical Review of World Energy 2011, avail-
able at: http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports
and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/
statistical_review_of_world_energy_full_report_2011.xls (last access: 11 May 2012a),
2011.

British Petroleum: BP Energy Outlook 2030, BP London, available at: http:/www.
bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_
BP-Energy-Outlook-2030-summary-tables.xls, last access: 11 May 2012b.

Davis, S. J., Caldeira, K., and Matthews, D. H.: Future CO, emissions and climate change from
existing energy infrastructure, Science, 329, 1330-1333, 2010).

Devezas, T. C. and Corredine, J. T.: The biological determinants of long-wave behaviour in
socioeconomic growth and development, Technol. Forecast. Soc., 68, 1-57, 2001.

ExxonMobil: The Outlook for Energy: a view to 2040, available at: exxonmobil.com/
energyoutlook, last acccess: 11 May 2012 2012.

Garrett, T.: Are there basic physical constraints on future anthropogenic emissions of carbon
dioxide?, Climatic Change, 104, 437—455, 2011.

Gribler, A World Primary Energy Use, http://iilasa.ac.at/gruebler/Data/
TechnologyAndGlobalChange/w-energy.csv, last access: 12 October 2011.

Grubler, A., Nakienovic, N., and Victor, G. B.: Dynamics of energy technologies and global
change, Energ. Policy, 27, 247-280, 1999.

Houghton, R. A.: Carbon flux to the atmosphere from land-use changes: 1850-2005, in:
TRENDS: a Compendium of Data on Global Change, Carbon Dioxide Information Analy-
sisCenter, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn.,
USA, doi:10.3334/CDIAC/00001_V2010, 2010.

Intergovernmental Panel on Climate Change Report: Climate Change, The IPCC Response
Strategies 1990, World Metrological Office, 2013.

1154

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

ESDD
5,1143-1158, 2014

—
o

h
“Business-As-Usual”
growth of global
primary energy use

A. Jarvis and C. N. Hewitt

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.3334/CDIAC/00001_V2010
http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/statistical_review_of_world_energy_full_report_2011.xls
http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/statistical_review_of_world_energy_full_report_2011.xls
http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/statistical_review_of_world_energy_full_report_2011.xls
http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/statistical_review_of_world_energy_full_report_2011.xls
http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/spreadsheets/statistical_review_of_world_energy_full_report_2011.xls
http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_BP-Energy-Outlook-2030-summary-tables.xls
http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_BP-Energy-Outlook-2030-summary-tables.xls
http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_BP-Energy-Outlook-2030-summary-tables.xls
http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_BP-Energy-Outlook-2030-summary-tables.xls
http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/O/2012_BP-Energy-Outlook-2030-summary-tables.xls
exxonmobil.com/energyoutlook
exxonmobil.com/energyoutlook
exxonmobil.com/energyoutlook
http://iiasa.ac.at/gruebler/Data/TechnologyAndGlobalChange/w-energy.csv
http://iiasa.ac.at/gruebler/Data/TechnologyAndGlobalChange/w-energy.csv
http://iiasa.ac.at/gruebler/Data/TechnologyAndGlobalChange/w-energy.csv
http://dx.doi.org/10.3334/CDIAC/00001_V2010

10

15

20

25

30

Intergovernmental Panel on Climate Change: Emissions Scenarios, edited by: Nakicenovic, N.
and Swart, R., Cambridge University Press, UK, 570 pp., 2000.

Intergovernmental Panel on Climate Change: Expert Meeting Report: Towards new scenarios
for analysis of emissions, climate change, impacts, and response strategies, 19-21 Septem-
ber 2007, Noordwijkerhout, the Netherlands available at: http://www.aimes.ucar.edu/docs/
IPCC.meetingreport.final.pdf, last access: 11 October 2013.

Intergovernmental Panel on Climate Change: 5th Assessment Report, chap. 6, available at:
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_
Chapter06.pdf, last access: 30 October 2013.

International Energy Agency: World Energy Outlook 2011, IEA Publications, Paris, 2011.

Kondratiev, N. D.: The Major Economic Cycles (Moscow, 1925), translated and published as
The Long Wave Cycle, Richardson & Snyder, New York, 1984.

Korotayev, A. V. and Tsirel, S. V.: A Spectral Analysis of World GDP Dynamics: Kondratieff
Waves, Kuznets Swings, Juglar and Kitchin Cycles in Global Economic Development, and
the 2008-2009 Economic Crisis, Struct. Dynam., 4, 1, 2010.

Jarvis, A., Leedal, D. T., and Hewitt, C. N.: Climate-society feedbacks and the avoidance of
dangerous climate change, Nat. Clim. Change, 2, 668-671, 2012.

Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P,, Conway, T. J.,
Doney, S. C., Feely, R. A., Foster, P, Friedlingstein, P., Gurney, K., Houghton, R. A., House,
J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P, Peters, G.
P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S.,
Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and
sinks of carbon dioxide, Nat. Geosci., 2, 831-836, 2009.

Macknick, J.: Energy and carbon dioxide emission data, IIASA Interim Report IR-09-032, 2009.

Peters, G. P, Marland, G., Le Quéré, C., Boden, T., Canadell, J. G., and Raupach, M. R.: Rapid
growth in CO, emissions after the 2008—2009 global financial crisis, Nat. Clim. Change, 2,
2-4,2012.

Schumpeter, J. A.: Business Cycles: a Theoretical, Historical and Stastistical Analysis of the
Capitalist Process, Martino Publishing, McGraw Hill, New York, 1939.

Shell: Shell Energy Scenarios to 2050, available at: shell.com/scenarios, last access:
11 May 2012.

1155

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

ESDD
5,1143-1158, 2014

—
o

h
“Business-As-Usual”
growth of global
primary energy use

A. Jarvis and C. N. Hewitt

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Close

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.aimes.ucar.edu/docs/IPCC.meetingreport.final.pdf
http://www.aimes.ucar.edu/docs/IPCC.meetingreport.final.pdf
http://www.aimes.ucar.edu/docs/IPCC.meetingreport.final.pdf
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter06.pdf
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter06.pdf
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter06.pdf
shell.com/scenarios

10

15

20

25

Sims, R. E. H., Schock, R. N., Adegbululgbe, A., Fenhann, J., Konstantinaviciute, I.,
Moomaw, W., Nimir, H. B., Schlamadinger, B., Torres-Martinez, J., Turner, C., Uchiyama, Y.,
Vuori, S. J. V., Wamukonya, N., and Zhang, X.: Energy supply, in: Climate Change 2007,
Mitigation, Contribution of Working Group 11l to the Fourth Assessment Report of the Inter-
governmental Panel on Climate Change, edited by: Metz, B., Davidson, O. R., Bosch, P. R.,
Dave, R., and Meyer, L. A., Cambridge, 2007.

Sornette, D.: Why Stock Markets Crash, Critical Events in Complex Financial System, Princeton
University Press, Philidelphia, 2004.

Sterman, J. D.: The economic long wave: theory and evidence, Alfred P. Sloan School of Man-
agement Working Paper WP-1656-85, Massachusetts Institute of Technology, available at:
http://dspace.mit.edu/bitstream/handle/1721.1/47592/economiclongwave00ster.pdf (last ac-
cess: 20 October 2013), 1985.

Summers, L. H.: Some sceptical observations on real business cycle theory, Federal Reserve
Bank of Minneapolis Quarterly Review, 10, 23-27, 1986.

UNFCCC: Draft decision-/CP.17, Durban, South Africa, available at: http://unfccc.int/resource/
docs/2011/cop17/eng/I10.pdf, last access: 22 June 2013.

United States Senate: Wall Street and the Financial Crisis, Anatomy of a Financial Collapse,
Report of the Permanent Subcommittee of Investigations, USS Publications, Washington,
2011.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C.,
Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J.,
and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change,
109, 5-31, 2011.

Young, P. C.: Recursive Estimation and Time Series Analysis, Springer, Berlin, 2011.

Young, P. C. and Pedegral, D. J.: Recursive and en bloc approaches to signal extraction, J.
Appl. Stat., 26, 103—-128, 1999.

1156

Jaded uoissnosiq

Jaded uoissnosiq

| J1adeq uoissnosiq |

Jaded uoissnosiq

ESDD
5,1143-1158, 2014

—
o

h
“Business-As-Usual”
growth of global
primary energy use

A. Jarvis and C. N. Hewitt

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dspace.mit.edu/bitstream/handle/1721.1/47592/economiclongwave00ster.pdf
http://unfccc.int/resource/docs/2011/cop17/eng/l10.pdf
http://unfccc.int/resource/docs/2011/cop17/eng/l10.pdf
http://unfccc.int/resource/docs/2011/cop17/eng/l10.pdf

S,
(2}
< 2 ESDD
8 2 n
o S 5, 1143-1158, 2014
N o
~ )
5% Q The
“Business-As-Usual”
T growth of global
>3 (% primary energy use
=] c
- & A.Jarvis and C. N. Hewitt
= o
o -]
S8 3
> o ,
” :
L -
=-0.02 o 1o g8  _s
-0.04{ € fe73> E8s855 ) Conclusions References
1850 1900 1950 2000 &
o
5
Figu(re 1. ga) X is gIobaICporimary energ;(/ us;a. ((b)) a, b are the RGRs on glo%aloprimary ener(gy e n n
use (black) and global CO, emissions (red). (c) y is global anthropogenic CO, emissions (3, 3
4, 5). (d) y/x is the carbon intensity of global primary energy. The forecasts for 2011-2020 _ —
are based on the assumption that a = 0 in 2020 and that b = 0.74a. The bands represent 5th  — Back c|ose
to 95th uncertainty ranges when estimating and forecasting the RGRs. The frequency distri- o
butions for the 2020 forecasts of x, a, b, y and x/y in (a)—(d) are shown in addition to the @
equivalent forecasts from a range of alternative sources as identified. The ensembles usedto &
construct the distribution for 2020 for X, a, b, y and x/y are generated from an N = 10° Monte 2.
Carlo simulation drawing from the estimated covariances derived from the model fitting. () An = — .
estimate of the exogenous, non-periodic components of a(t). Again the band represents 95 % %?
uncertainty. See Methods for data details. @
(oMol

1157


http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1143/2014/esdd-5-1143-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10000}
[aa)
S 100!
: 10| f)JUNT
O
= Wl

01 25 2% S o
© ©  © © © © ‘
10 100
period (yr)

Figure 2. The period (frequency'1) power relationship for the RGR estimates for global primary
energy, shown in Fig. 1b (-). The grey lines are the spectra of all individual autoregressive
models (5th to 50th order) fitted to these relative growth rate series of which the black line is
the mean spectra. The vertical lines mark the 62 year cycle and its harmonics. Also shown is
the spectra for the RGR estimates for the CO, emissions shown in Fig. 1b (-).
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