
Himalayan climate classification from gridded sources, Page 1 of 36 

Exploring objective climate classification for the Himalayan arc 1 

and adjacent regions using gridded data sources 2 

 3 

N. Forsythe1, S. Blenkinsop1 and H.J. Fowler1 4 

Affiliation: 5 

[1] Centre for Earth Systems Engineering Research (CESER), School of Civil Engineering and 6 

Geosciences, Newcastle University, Newcastle, United Kingdom 7 

 8 

Corresponding Author contact details: 9 

email: nathan.forsythe@ncl.ac.uk 10 

telephone (office): +44 191 208 6875 11 

telephone (mobile): +44 753 189 3995 12 

 13 

Abstract: 14 

A three-step climate classification was applied to a spatial domain covering the Himalayan arc and 15 

adjacent plains regions using input data from four global meteorological reanalyses. Input variables 16 

were selected based on an understanding of the climatic drivers of regional water resource 17 

variability and crop yields. Principal components analysis (PCA) of those variables and k-means 18 

clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate 19 

zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. 20 

This climate classification approach has potential both for enhancing assessment of climatic 21 

influences on water resources and food security as well as for characterising the skill and bias of 22 

gridded datasets, both meteorological reanalyses and climate models, for reproducing sub-regional 23 

climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), 24 

climate classifications also provide metrics, beyond simple changes in individual variables, with 25 

which to assess the magnitude of projected climate change. Such sophisticated metrics are of 26 

particular interest for regions, including mountainous areas, where natural and anthropogenic 27 

systems are expected to be sensitive to incremental climate shifts. 28 

 29 
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[1] Introduction 31 

The first objective, quantitative systems for global climate classification were developed in the early 32 

20
th

 century by integrating climate data to delineate zones of coherent vegetation type or eco-region 33 

(Belda et al., 2014). By distilling information from multiple climate variables which affect 34 

vegetation typology, climatic classifications can provide a framework for understanding natural 35 

resource systems (Elguindi et al., 2013). By focusing specifically on climate variables which govern 36 

river flows and crop growth, derived climate classifications can also yield insight into the 37 

dependency of agricultural production on water resources. However, the bulk of recent literature 38 

(e.g. Chen and Chen, 2013; Mahlstein et al., 2013; Zhang and Yan, 2014) is global in scope. In this 39 

study we focus for the first time on a specific classification for the Himalayan arc and adjacent 40 

regions, concentrating on climate types relevant to the spatial domain and time period of interest. 41 

The Himalayan arc and Tibetan Plateau give rise to river systems which sustain populations 42 

numbering in the hundreds of millions (Immerzeel et al., 2010). To derive climate classifications for 43 

this region we focus on climate variables which control the hydrological regimes of catchments 44 

with mountainous headwaters, and hence with substantial runoff contributions from snow and 45 

glacial melt, as well crop yields. Our precise study area encompasses the Indus, Ganges and 46 

Brahmaputra basins and is shown in Figure 1. The topographic contrast is stark between the high 47 

elevation areas of the Himalayan arc and Tibetan plateau, and adjacent lowlands of the Indo-48 

Gangetic plains and deserts of Central Asia. Another striking feature of Figure 1 is the extent of 49 

area under irrigation in South Asia. The crops produced by these irrigated surfaces are crucial to the 50 

food security of Pakistan, India, Bangladesh and beyond (de Fraiture and Wichelns, 2010). Archer 51 

et al. (2010) point out that the semi-arid plains of the Lower Indus had only marginal (rainfed) 52 

agricultural viability until the development of irrigation infrastructure. Irrigation demand in the 53 

Lower Indus is supplied by run-off from the Hindu Kush, Karakoram and Western Himalaya. Thus 54 

holistic understanding of regional food security depends upon characterisation of the spatial as well 55 

as climatological differences of these hydrologically-connected sub-regions. Furthermore, it is 56 

possible that these sub-regions will experience distinct trajectories of change in the coming decades. 57 

Differential rates, or even signs, of change could substantially alter the regional balance of irrigation 58 

water supply and demand. The climate classification approach offers a framework within which to 59 

evaluate such water balance scenarios. 60 

Global meteorological reanalyses provide coherent syntheses of atmospheric states including 61 

radiative and mass flux exchanges with the sea or land surface. In this paper we compare the 62 

climatologies described for the study area from four reanalyses – JRA-55 (Ebita et al., 2011), ERA-63 

Interim (Dee et al., 2011), NASA MERRA (Rienecker et al., 2011) and NCEP CFSR (Saha et al., 64 



Himalayan climate classification from gridded sources, Page 3 of 36 

2011) – which encompass the recent decades rich in data from both ground-based and satellite-65 

borne instruments. In assessing climate classifications derived from each reanalysis we are not only 66 

interested in how the climatically-defined zones relate to water resource supply – mountainous 67 

headwaters – and demand – irrigated plains – areas, but also in how the classifications derived from 68 

individual reanalyses relate to each other. These inter-comparisons establish a methodology for 69 

evaluating gridded datasets, including global and regional climate simulations (Elguindi et al., 70 

2014) as well as reanalyses. Comparisons can be made not only between different models but also 71 

between different time periods (“time-slices”), for either historical datasets (Belda et al., 2014; 72 

Chen and Chen, 2013) or simulations by climate models (Mahlstein et al., 2013). Temporal changes 73 

in derived climate zones can be assessed in terms of both projected spatial changes (areal extent, 74 

elevation range, etc.) and of projected climatic changes (mean, annual range, etc.) in the individual 75 

climate variables used to create the classification. 76 

 77 

[2] Data and Methods 78 

[2.1] Reanalysis datasets  79 

Reanalyses are generally conducted by institutions responsible for meteorological forecasting and 80 

are undertaken in part to assess the performance forecasting models and the data assimilation 81 

systems which support them (Uppala et al., 2005). The resulting coherent multi-decadal syntheses 82 

of climate conditions, however, are of substantial utility to a much broader spectrum of natural 83 

scientists. In this study we draw upon data from four reanalyses produced by agencies from diverse 84 

geographic regions. Characteristics of the reanalyses used in this study are provided in Table 1 and 85 

differ in both spatial and temporal resolutions. Given the forecast-driven nature of reanalyses it is 86 

common for time-steps to be organised in 6-hour synoptic forecasting time windows. The NASA 87 

MERRA dataset is distinct in that the default time-step is hourly. In all cases daily means were 88 

calculated as the mean of the available sub-daily time-steps. Daily maximum and minimum were 89 

taken as the highest and lowest values respectively amongst the sub-daily time-steps unless reported 90 

specifically as was the case for NCEP CFSR. Diurnal range was calculated as maximum minus 91 

minimum. In order to make extracted climatic values as comparable as possible, a common 92 

reference period, 1980 to 2009, available from each of the reanalyses, was selected for this study. 93 

However, comparability of the results was still limited by differing spatial resolutions of the 94 

reanalyses as both temperature and precipitation are greatly influenced by topography in 95 

mountainous regions (Immerzeel et al., 2012). The fidelity with which each reanalysis reproduces 96 

the topography of the study area is limited by its spatial resolution. For this reason, the JRA-55 – 97 

1.25 x 1.25 decimal degree resolution – dataset is expected to be handicapped compared to NCEP 98 
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CFSR – 0.50 x 0.50 decimal degree resolution –dataset. Nevertheless, other elements, including 99 

efficacy of data assimilation and realism of land-surface process algorithms, are also expected to 100 

play substantial roles in determining reanalysis skill. 101 

 102 

[2.2] Selection of climate variables governing water resources and food security 103 

The utility of a climate classification depends on the extent to which it reflects the climatic 104 

constraints which govern physical processes of interest. If, for example, geochemical processes 105 

such as pollutant mobilisation are an overwhelming concern, sensitivity studies can be conducted to 106 

identify the key climatic factors involved (e.g. Nolan et al., 2008). In this paper the processes of 107 

interest are river flows from mountainous headwaters and agricultural production, both of which 108 

depend upon inputs of mass (precipitation) and energy (ambient temperature and incoming 109 

radiation). From a simulation standpoint, common approaches for modelling both meltwater 110 

generation from seasonal snowpack and glaciers (Ragettli et al., 2013) as well as crop yields 111 

(Baigorria et al., 2007; Kar et al., 2014) require both air temperature and incoming radiation in 112 

addition to precipitation as input data. Furthermore, moisture exchanges from the land surface and 113 

atmosphere depend upon the latter’s vapour pressure deficit which is commonly expressed as 114 

relative humidity. Whilst these parameters can be observed directly, the diurnal temperature range 115 

(DTR) also acts as an effective proxy for ambient moisture conditions (Easterling et al., 1997). 116 

In establishing the methodology used here, we favoured reanalysis variables with the simplest 117 

relationship to commonly observed parameters at ground-based stations. Hence, Tavg (mean 118 

temperature) and DTR – which together describe the diurnal temperature cycle and can be 119 

calculated at stations recording solelyboth calculated from Tmax (maximum temperature) and Tmin 120 

(minimum temperature) – along with precipitation were selected as governing variables. An 121 

exception to this principle was made in selecting net incoming shortwave radiation (SWnet) at the 122 

ground surface as a governing variable due to the importance of seasonal snow-cover in the 123 

hydrological regimes of major Himalayan and Tibetan river systems. SWnet can be observed at 124 

standard manned meteorological stations and automatic weather station (AWS) units if they are 125 

equipped with radiometers, but is also indirectly available from remote sensing via albedo and 126 

cloud climatology. It was largely for the linkage between SWnet and snow cover via albedo that the 127 

former was selected as key variable. Specifically, land surfaces with full snow cover have a much 128 

higher albedo than “bare ground” and albedo evolves during snowpack accumulation and ablation 129 

when snow cover is partial. Albedo in turn modulates net shortwave absorption from incoming solar 130 

radiation at the surface. Thus net shortwave radiation can serve as a proxy for snow cover. The 131 

linkage between SWnet and cloud cover is also useful as the latter is an indicator of large-scale 132 
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weather system – mid-latitude westerly or tropical monsoon – influence. Cloud cover influences 133 

SWnet by modulating the amount of incoming shortwave radiation reaching the surface. In the 134 

absence of snow cover, suppression of SWnet in summer months over South Asia is likely due to 135 

monsoonal activity while suppression in other months suggests mid-latitude westerly disturbances. 136 

Table 2 lists the governing variables selected for this study, including the seasonal aggregates of 137 

interest, and summarises their physical significance. 138 

Prior to derivation of climate classifications, a comparison of the climatologies from the individual 139 

reanalyses provide a context within which differences can be interpreted. To establish a common 140 

framework, the “native” resolution data from each reanalysis was regridded (sub-divided) to a 141 

common 0.25 * 0.25 decimal degree spatial resolution. Ensemble means were calculated, by grid 142 

cell, from the simple averages of the four reanalyses. There was no weighting applied from any 143 

metric of skill or confidence, nor were any corrections made to account for differences between 144 

“native” orography and estimated surface elevation of the target common grid cell. This approach 145 

was taken in the absence of detailed information on likely biases by the reanalyses in the variables 146 

of interest. Once the ensemble mean had been calculated, normalised differences, i.e. individual 147 

reanalysis value minus ensemble mean, were calculated to facilitate comparisons of individual 148 

climatologies. 149 

In a study driven by interest in water resources and agricultural production, it is logical to initially 150 

focus on precipitation climatologies. Figure 2 shows the ensemble mean reanalysis precipitation 151 

climatology and the individual contributions (as normalised differences). In addition to annual 152 

totals, seasonal precipitation is differentiated between a cold season, October to March known 153 

regionally as the “rabi”, and the monsoon season, April to September referred to as the “kharif”. 154 

The regional dominance of monsoonal rainfall is striking when comparing the ensemble means of 155 

the seasonal contributions to annual total precipitation; although for the Karakoram/Hindu Kush and 156 

north-western Central Asian deserts the “rabi” precipitation outweighs monsoonal inputs. In 157 

comparing the climatologies of the individual reanalyses, the most prominent differences are 158 

located along the southern flank of the Himalayan arc and over the Ganges-Brahmaputra Delta 159 

along with uplands along the India-Burma border region. Broadly, JRA-55 is drier than the other 160 

reanalyses along the Nepal-Bhutan-China border but much wetter over the Terai, Assam, the lower 161 

Ganges basin and the Bay of Bengal. NCEP CFSR has similar characteristics, with the exception of 162 

being drier over the Bay of Bengal. ERA-Interim and NASA MERRA show the opposite pattern, 163 

with ERA-Interim being much wetter over the Nepal-Bhutan-China border region and NASA 164 

MERRA being much drier over the Terai, Assam and Ganges-Brahmaputra Delta. 165 



Himalayan climate classification from gridded sources, Page 6 of 36 

While adequate moisture inputs from precipitation are prerequisite for both river flows and 166 

agricultural production, the role of energy inputs in both the generation of meltwater runoff, from 167 

snow and glacial ice, and in driving crop development, through photosynthesis and transpiration, 168 

are also critical. Figure 3 shows the ensemble mean climatologies and individual (normalised 169 

difference) contributions for Winter (December to February) SWnet, Spring (March to May) daily 170 

Tavg and Summer (June to August) DTR. These temporal aggregates – Winter, Spring and Summer 171 

– were selected to identify hydrological regimes – pluvial, nival (snowpack) or glacial – and 172 

growing seasons dependent upon thermal conditions. As described in Table 2, all three seasonal 173 

values – Winter, Spring, Summer – for each of these variables – Tavg, SWnet and DTR – were used 174 

as input to the classification procedure. Figure 3 shows a single seasonal example of each variable 175 

to illustrate the information it contributes. Autumn (September to November) seasonal aggregates 176 

were not used as they are very similar to Spring (mirror image) in terms of magnitude and 177 

variability and thus not expected to substantially increase information content available to the PCA.  178 

Figure 3 shows that Winter SWnet illustrates the influence of seasonal snow-cover via albedo. As 179 

expected there is a generally latitudinal gradient, with decreasing SWnet moving northward, 180 

although the latitudinal gradient is smaller than reductions in net surface absorption in areas with 181 

seasonal snow cover. JRA-55 shows generally lower SWnet values than the ensemble mean, 182 

particularly over south-western Pakistan and the Tibetan plateau. The former difference is likely 183 

due to greater reanalysis estimates of cloud radiative effect (CRE) while over Tibet this might be 184 

either due to CRE or to higher predicted albedo from greater assumed seasonal snow cover. In 185 

contrast JRA-55 shows higher SWnet over the Pamir and sections of the high Karakoram and 186 

Himalayan arc. This may be either due to assumed lesser seasonal snow-cover (decreased albedo) 187 

or estimated clearer sky conditions (decreased CRE). Broadly speaking ERA-Interim and NASA 188 

MERRA show the opposite contribution patterns to JRA-55, and hence detailed examination of 189 

radiation modulating physical mechanisms, e.g. clear versus overcast conditions, full snow cover 190 

versus bare ground, would likely reveal opposing tendencies. Between ERA-Interim and NASA 191 

MERRA, the former shows broader and more pronounced decreases in SWnet continuously along 192 

the Himalayan arc from Pamir through the east of Bhutan to the Sikkim. NCEP CFSR shows a 193 

mixed pattern of SWnet, agreeing with JRA-55 north of approximately 30°N latitude and more 194 

closely corresponding to ERA-Interim and NASA MERRA south of this line. 195 

The ensemble mean climatology of Spring daily Tavg displays the expected influence of elevation, 196 

with sub-freezing temperatures found roughly above 3000m asl. Like SWnet, Tavg through the 197 

freezing isotherm provides a spatial indication of areas with likely snow cover. More generally, Tavg 198 

quantifies the available energy to drive melting of snow and ice as well as plant development. 199 

Although NASA MERRA is notably warmer than the other three reanalyses over the Indo-Gangetic 200 
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plains, the largest discrepancies are along Himalayan arc as well as at the transition from the 201 

Taklimakan desert to the Tibetan Plateau. JRA-55 and NCEP CFSR are generally colder than the 202 

mean along the Himalayan arc but warmer along the northern Tibetan fringe. ERA-Interim is 203 

strongly warmer along the Himalayan arc but much cooler over the southern Taklimakan. NASA 204 

MERRA has more mixed contributions with relatively limited areas showing substantial departures 205 

from the ensemble mean. 206 

Summer DTR is not a direct indicator of energy input to the hydro-climatological system and 207 

biosphere. It does, however, provide a measure of the amplitude of energy variation throughout the 208 

diurnal cycle as well as providing a proxy for relative humidity (vapour pressure deficit) and cloud 209 

cover. Examination of the ensemble mean Summer DTR climatology clearly illustrates the 210 

influence of both cloud cover and humidity. Regionally Summer DTR is lowest over the Arabian 211 

Sea and Bay of Bengal and highest over the western Central Asian deserts. Suppression of Summer 212 

DTR is clearly evident by comparing the ensemble mean Summer DTR in Figure 3 to the ensemble 213 

mean monsoonal precipitation accumulations in Figure 2. The influence of diurnal discretisation 214 

(sub-daily time-step) on individual reanalysis DTR climatologies is evident in Figure 3. NASA 215 

MERRA, with an hourly time-step, has much larger DTR values over land than the ensemble mean, 216 

although lower DTR values than the mean over the Arabian Sea and Bay of Bengal. MERRA’s 217 

hourly time-step allows better representation of the full amplitude of the DTR, while the 6-hour 218 

time-steps of the other reanalyses “flatten” or dampen estimated diurnal variations. NCEP CFSR 219 

has the lowest DTR values, with particularly small DTR estimates over the Central Asian deserts 220 

and Tibetan Plateau. ERA-Interim has broadly, if moderately, lower DTR values than the mean 221 

except over the Central Asian deserts as well as the Arabian Sea and Bay of Bengal. JRA-55 is 222 

similar to ERA-Interim in DTR estimates albeit spatially more variable and closer to the ensemble 223 

mean. 224 

In summary, the substantial differences, illustrated in Figures 2 and 3, in input variable 225 

climatologies between the individual reanalyses can be attributed to differences in spatial resolution 226 

and sub-diurnal discretisation. Reanalyses will also differ in the data assimilation systems and data 227 

analysis and forecasting models they incorporate, an exploration of which is beyond the scope of 228 

this study. Spatial resolution will have the most pronounced influence in areas with steep 229 

topographic gradients and in interface zones between land and sea. Sub-diurnal time-step influence 230 

will be limited to absolute accuracy of DTR. While both spatial resolution and sub-diurnal time-step 231 

influence absolute accuracy and hence the direct comparability of a reanalysis to other datasets, its 232 

internal coherence, i.e. relative spatial and temporal variability, may still be substantial. This 233 

coherence can be tested through the climate classification process. Where good ground-based 234 

observations exist and can be translated meaningfully to the grid cell resolution in the reanalyses, 235 
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bias assessment could be performed. This would provide insight into which dataset more accurately 236 

represents regional conditions but would be very challenging and time consuming due to data 237 

paucity and inconsistencies. This in fact highlights one of the major benefits of the climate 238 

classification procedure: objective delineation of the regional domain should enable optimisation of 239 

the use of limited ground data by defining “areas of relevance” within which the magnitude and 240 

distribution of bias can be meaningfully summarised. 241 

 242 

[2.3] Method for climate classification 243 

The climate classification methodology used in this study directly transfers the method developed 244 

by Blenkinsop et al. (2008) for the European FOOTPRINT project albeit with the set of variables 245 

described in Section 2.2 rather than those identified for FOOTPRINT (Nolan et al., 2008). 246 

Blenkinsop et al. (2008) applied a three-step approach to climate zoning: i) identification of key 247 

climatic variables, ii) principal components analysis (PCA) and iii) k-means cluster analysis. The 248 

decision to use the PCA and k-means approach, which classifies the spatial domain based on 249 

relative differences, rather than to apply a classification based on absolute thresholds, e.g. Köppen-250 

Trewartha (Belda et al., 2014), was made due to the expectation that the spatial aggregation (large 251 

grid cells) within the reanalyses would introduce inevitable biases. These biases could be further 252 

exacerbated by the formulation of data assimilation and forecasting algorithms adopted by each 253 

reanalysis. Thus it seemed more reasonable to apply a relative differentiation rather than an 254 

absolute, fixed standard. 255 

As explained by Blenkinsop et al. (2008), PCA is a necessary step in the climate classification 256 

process in order to reduce the dimensionality of the input variables which are expected to be 257 

substantially correlated as a set. Prior to PCA all input variables were standardised (subtraction of 258 

spatial mean and division by spatial standard deviation). Standardisation was performed so that the 259 

unit-dependent absolute values of the individual variables would not distort their weighting within 260 

the PCA process. PCA was performed using the “mlab” module of matplotlib (Hunter, 2007) 261 

executed in a Python environment. Input and output operations of reanalysis data stored as GeoTiffs 262 

were handled using the RasterIO Python module (Holderness, 2011).  263 

The results of the PCA for each reanalysis are summarised in Table 3. A decision was made to 264 

retain principal components (PCs) which accounted for at least 5% of the total variance in the input 265 

dataset. Table 3 indicates that ERA-Interim and NCEP CFSR each had 4 PCs which met this 266 

criterion while JRA-55 and NASA MERRA had 5 PCs. Details on the first 3 PCs, which together 267 

account for between 81% and 85% of the total variance, for each reanalysis are provided in Table 3, 268 

while Figure 4 shows these PCs graphically. The first PC for all four reanalyses was primarily 269 
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composed of variables related to energy inputs (daily mean temperature, net shortwave radiation), 270 

although JRA-55, ERA-Interim and NASA MERRA all had substantial negative contributions from 271 

Summer DTR. The first PC accounted for between 36% and 46% of the total variance depending on 272 

the reanalysis chosen. As can be seen in Figure 4, the differences between the reanalyses in spatial 273 

distribution of PC1 within the domain can be largely accounted for by the respective differences in 274 

spatial resolution. Even without allowing for the spatial resolution, differences in the consistency in 275 

PC1 between reanalyses is striking. 276 

For the second and third PCs, contributions were very similar between three of the reanalyses 277 

(Table 3). For ERA-Interim, NASA MERRA and NCEP CFSR, PC2 was dominated by 278 

precipitation inputs from all seasons while negative contributions from Summer energy inputs were 279 

also present. In these reanalyses PC3 was dominated by DTR, particularly Winter and Spring. For 280 

JRA-55, PC2 was dominated by Winter and Spring DTR with a negative contribution from cold 281 

season (“rabi”) precipitation. JRA-55 PC3 was dominated by annual total and monsoonal (“kharif”) 282 

precipitation as well as Winter DTR. Despite the differences in composition, i.e. loadings from 283 

input variables, spatial variability within the domain for PC2 from JRA-55 is visually very similar 284 

to PC2 from the other three reanalyses. In PC2, for JRA-55 the Arabian Sea shares the same sign as 285 

the Himalayan arc and Ganges-Brahmaputra Delta while in the other three reanalyses the Arabian 286 

Sea has the same sign as the Lower Indus Basin and Central Asian deserts. There are more 287 

substantial differences between reanalyses in PC3. In JRA-55 the signs of Central Asian deserts and 288 

Tibetan plateau are reversed compared to the patterns found in PC3 in the other three reanalyses. 289 

For all reanalyses PC2 accounted for between 19% and 32% of total variance while PC3 accounted 290 

for between 16% and 19%. Overall the spatial patterns in Figure 4 are physically plausible, 291 

especially PC1 (mean annual temperature/energy input) and PC2 (annual total precipitation) in the 292 

three similar reanalyses (excluding JRA-55). Spatial patterns in PC3 (cold season/ “rabi” DTR) are 293 

also physically plausible, although visually are less intuitive as diurnal temperature cycles are 294 

substantial even in high elevation areas (Karakoram, Himalaya, Tibetan Plateau) in these seasons. 295 

They are of lesser amplitude, however, than those experienced currently in the Indo-Gangetic plains 296 

and Central Asian deserts. 297 

K-means cluster analysis was also performed using matplotlib (Hunter, 2007) and RasterIO 298 

(Holderness, 2011) within a Python environment. As suggested by Blenkinsop et al. (2008), 299 

standardised grid cell latitude and longitude were added to the retained principal components as 300 

input to the clustering process. Because k-means cluster analysis presupposes the number of distinct 301 

(climate) classes rather than determining the number groupings (zones) based on a numerical 302 

measure of “likeness” a range of cluster numbers was tested for each reanalysis. The results are 303 

presented in the following section, but the our interpretation was that the study domain could be 304 
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aptly described by eight sub-regional climate zones with increases in cluster numbers leading to 305 

sub-divisions of these zones. The issue of spatial discretisation of steep topographic gradients, and 306 

hence temperature and precipitation gradients, in the transition zone between the (southern flank of 307 

the) Himalayan arc and Indo-Gangetic plains does, however, raise a legitimate caveat to this 308 

generalisation. 309 

 310 

[3] Results 311 

[3.1] Description of emergent regional climate zones and subdivisions 312 

Figure 5 shows the results of k-means clustering for each reanalysis for eight, twelve and sixteen 313 

clusters. Similar sub-divisions of the eight sub-regional climate zones tend to emerge in all the 314 

reanalyses as cluster numbers increase although sub-divisions first emerge dependent upon spatial 315 

discretisation and climatological differences – illustrated in Figures 2 and 3 – of each reanalysis. 316 

The general characteristics of the eight emergent sub-regional climate zones are described Table 4 317 

along with the fraction of the spatial domain each covers in each reanalysis (for the 8-cluster case). 318 

With the exception of the Himalayan arc zone which was not identified by both JRA-55 and NASA-319 

MERRA when the number of clusters was limited to eight, there is substantial agreement not only 320 

on the broad geographic locations of the eight zones but on their spatial extent within the domain as 321 

well. There is arguably some blurring in the definition of the “Lower Indus Basin” (semi-arid 322 

plains), which regionally could be seen as a transitional zone between the “Central Asian deserts” 323 

and the “Gangetic Plains” (sub-humid plains), although the latter could itself be seen as a 324 

transitional zone between the Lower Indus and the “Ganges-Brahmaputra Delta” (humid plains). 325 

 326 

[3.2] Comparison of climatologies of emergent sub-regional climate zones 327 

The spatial mean and ranges (minimum and maximum) have been calculated for the period monthly 328 

means of the four input variables from each reanalysis. The annual cycles of precipitation and DTR 329 

are shown in Figure 6. The annual cycles of daily mean temperature and net shortwave radiation are 330 

shown in Figure 7. Placement of sub-regional zones within these figures are deliberate in their 331 

relationship to geographical location and large-scale circulation influences. The most northerly 332 

zones are in the upper figure panels and the southerly at the bottom. Zones with greater westerly 333 

weather system influence are in the left hand column, while greater monsoonal influence zones are 334 

to the right. Results shown in both figures are referred to in the discussion throughout this Section. 335 

 336 

[3.2.1] Precipitation climatologies of emergent sub-regional climate zones 337 
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Precipitation is a core element in differentiating the eight emergent sub-regional climate zones 338 

within the study domain. The Ganges-Brahmaputra Delta (humid plains) has by far the highest 339 

precipitation of the sub-regional zones followed by the Gangetic plains (sub-humid plains) and the 340 

Himalayan arc. Precipitation in each of these zones is dominated by monsoonal rainfall although the 341 

Himalayan arc receives moderate precipitation from westerly weather systems in late winter 342 

(February) and Spring. The Karakoram/Hindu Kush zone is the next wettest with dominant inputs 343 

from “rabi” westerly weather systems and limited Summer rainfall. The Tibetan Plateau has a 344 

similar seasonal distribution of precipitation to the Himalayan arc but with lower monthly totals. 345 

The Lower Indus Basin and Central Asian deserts are the driest zones. Spread in spatial means 346 

between reanalyses is substantial for all climate zones and appears roughly proportional to 347 

precipitation amount, i.e. the largest spread is found in the wettest months and in the wettest zone 348 

(Ganges-Brahmaputra Delta).  349 

 350 

[3.2.2] DTR climatologies of emergent sub-regional climate zones 351 

As explained in Section 2.2, ensemble spread in DTR climatologies can be substantially attributed 352 

to issues of sub-diurnal discretisation. For all climate zones except the Arabian Sea and Bay of 353 

Bengal, the reanalysis with an hourly time-step (NASA MERRA) has the largest DTR values. 354 

Despite similar sub-diurnal discretisation, NCEP CFSR has consistently lower DTR values across 355 

all climate zones than ERA-Interim and JRA-55 which tend to agree closely with one another. 356 

Despite this considerable ensemble spread in absolute values, the “shape” of annual DTR cycles 357 

within climate zones is consistent between reanalyses, i.e. standardised values are very similar. 358 

Zones with substantial monsoonal influence – Ganges-Brahmaputra Delta, Gangetic plains and 359 

Himalayan arc – have annual DTR minima in Summer. In contrast, drier and more westerly-360 

dominated sub-regional zones – Central Asian deserts, Tibetan plateau, Karakoram/ Hindu Kush 361 

and Lower Indus Basin – have annual DTR minima in Winter, although the Lower Indus has 362 

sufficient monsoonal influence for a minor minimum (limited DTR suppression) in Summer. The 363 

Arabian Sea and Bay of Bengal have the smallest DTR values both in absolute terms (annual mean) 364 

and amplitude of annual cycle. 365 

 366 

[3.2.3] Daily mean temperature climatologies of emergent sub-regional climate 367 

zones 368 

Based on the PCA results presented in section 2.3, differences in energy inputs account for the 369 

largest fraction of variance within the input data. Differences in annual cycles of daily Tavg provide 370 

clear differences between the emergent sub-regional climate zones. The Arabian Sea and Bay of 371 
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Bengal have year-round moderately warm temperatures with minimal spread in both ensemble 372 

mean and in spatial spread within individual reanalyses. The Ganges-Brahmaputra delta has similar 373 

monthly spatial mean values to the Arabian Sea but with incrementally larger ensemble spread and 374 

much greater spatial spread. The spatial spread is attributed to the topographic diversity within the 375 

zone, stretching from coastal areas to the front ranges of the Himalaya. The Lower Indus Basin and 376 

Gangetic plains have quite similar annual cycles of daily mean temperature. Both have mild cold 377 

seasons (“rabi”) and hot summers with large spatial spreads in all months. The ensemble spread is 378 

incrementally larger in all months for the Lower Indus than for the Gangetic plains. The remaining 379 

four zones– Central Asian deserts, Tibetan Plateau, Karakoram/ Hindu Kush and Himalayan arc – 380 

are alike in several months of the annual cycle, with mean temperatures below freezing. Ensemble 381 

and spatial spreads are greater in the Central Asian deserts and Karakoram/ Hindu Kush than in the 382 

Tibetan Plateau, which is consistently the coolest zone. For the Himalayan arc, ERA-Interim and 383 

NCEP CFSR agree closely for both the spatial means and the considerable spatial spreads of this 384 

zone. 385 

 386 

[3.2.4] Net shortwave radiation climatologies of emergent sub-regional climate 387 

zones 388 

Net shortwave radiation at the surface is, understandably, the least differentiated of the input 389 

variables. Of interest is the varying degrees of SWnet suppression in different seasons. In cold 390 

months shortwave suppression is due to increased albedo from seasonal snow cover and to a lesser 391 

extent to CRE from thick cloud cover. This is evident in the Tibetan Plateau and Karakoram/ Hindu 392 

Kush where the annual minima is well below 100 watts/m
2
. Sub-100 watts/m

2
 annual minima in the 393 

Central Asian deserts are more surprising and may in part be due to airborne dust particles. Higher 394 

Winter SWnet for the Himalayan arc, comparable to the Lower Indus, than the Karakoram/ Hindu 395 

Kush may be attributable to the lower latitude and lesser seasonal snow cover of the more easterly 396 

mountain range. Summer SWnet suppression will be caused by large CRE linked to monsoonal 397 

activity. This is particularly visible in the Ganges-Brahmaputra Delta and Gangetic plains and still 398 

noticeable in the Himalayan arc and Arabian Sea. The effect is present though barely perceptible in 399 

the Lower Indus Basin. 400 

 401 

[3.2.5] Commonalities and distinctions in the  climatologies of emergent sub-402 

regional climate zones 403 

The layout of Figures 6 and 7 is intended to facilitate comparison of adjacent climate zones. 404 

Climate zones are represented within Figures 6 and 7 moving from north to south by moving from 405 
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top to bottom panels. Given the latitudinal influence on temperature, zones with similar temperature 406 

regimes, e.g. Lower Indus Basin and Gangetic plains, are laterally adjacent. In contrast, the 407 

dependence of precipitation on atmospheric circulation can be examined by comparing these 408 

adjacent panels. Thus the Lower Indus Basin, with limited monsoonal rainfall is found by the 409 

clustering process to be distinct from the Gangetic plains. Similarly the Tibetan plateau is 410 

distinguished from the Central Asian deserts not only by cooler temperatures but also by greater 411 

monsoonal precipitation. The Karakoram/ Hindu Kush and Himalayan arc have similar temperature 412 

regimes but the seasonality and magnitude of annual precipitation, driven by the differing 413 

circulation influences, clearly separates them. Even without knowledge of land or sea presence, the 414 

Ganges-Brahmaputra Delta zone is distinct from the Arabian Sea zone by both precipitation and 415 

DTR. 416 

 417 

[4] Discussion 418 

[4.1] Insights from climate classifications for water resources and food security in 419 

South Asia 420 

The PCA and k-means clustering approach applied to climate classification for the Himalayan arc 421 

and adjacent regions, focusing on water resources and food security, has found a consensus among 422 

four global meteorological reanalyses to identify eight emergent sub-regional climate zones. These 423 

zones are physically plausible and correspond to broadly recognized units of vegetation typology 424 

and land surface characteristics in South and Central Asia. Of these eight zones, one is open water 425 

(Arabian Sea and Bay of Bengal) while two – Central Asian deserts and Tibetan Plateau – are 426 

sparsely populated. The three plains zones – Lower Indus Basin, Gangetic plains and Ganges-427 

Brahmaputra Delta – are densely populated and projected to experience rapid demographic growth 428 

in the coming decades (Archer et al., 2010; Immerzeel and Bierkens, 2012). In addition to direct 429 

precipitation assessed in the climate classification these plains regions receive river flows from 430 

upstream areas: the Karakoram/ Hindu Kush is upstream of the Lower Indus Basin while the 431 

Himalayan arc is upstream of the Gangetic plains and Ganges-Brahmaputra Delta. The precipitation 432 

climatologies of individual climate zones presented in Figure 6 confirm that the Lower Indus Basin 433 

receives substantially less direct precipitation than the other two plains climate zones. In a first-434 

order analysis, irrigated areas in the Lower Indus, shown in Figure 1, are thus much more dependent 435 

upon upstream flows than their Gangetic counterparts. 436 

This general assessment does not however take into account the question of intra-annual (inter-437 

seasonal) water transfers, as the annual cycle of Ganges basin tributary river flows will closely 438 

follow the annual precipitation cycle. Thus, in the absence of impounding reservoirs or substantial 439 
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groundwater recharge, only limited water volumes would be available to supplement irrigation in 440 

the dry “rabi” season. This study also does not take into account inter-annual variability, as the 441 

climate classifications here draw solely upon period means (1980 to 2009). A further limitation of 442 

this assessment is that at the “parcel scale” of rainfed agriculture the convective precipitation in 443 

monsoonal weather systems has very large spatial variability (Khan et al., 2014). Thus while 444 

farmers in the irrigated Lower Indus Basin rely upon upstream flows for the bulk of crop moisture 445 

requirements, farmers in the Gangetic plains may find supplementary irrigation critical to 446 

compensate spatially and temporally acute precipitation deficits and ensure crop yields. 447 

Looking forward, climate classifications of the type applied in this study help to frame the 448 

assessment of the impact of changing climate conditions on future water resources, crop production 449 

and food security. By understanding the roles of sub-regional climate zones as water resource 450 

supply (headwaters) and demand (irrigated plains) areas, the net result of changes in water 451 

availability (precipitation change) and potential evapotranspiration (air temperature, shortwave 452 

radiation and relative humidity change) can be more skilfully evaluated. Changes, calculated 453 

between time-slices of dynamically-downscaled climate model simulations, in both the spatial 454 

extent and climatological statistics of water resource supply and demand zones in and of themselves 455 

provide information on the trajectory of water availability, i.e. unit yield or deficit multiplied by 456 

surface area. Additionally, delineation of sub-regional climate zones provides an objective basis for 457 

definition of study boundaries of more sophisticated nested downscaling investigations. Accurate 458 

delineation is important when computational requirements are high, for example when high- 459 

resolution sensitivity experiments are required to constrain the uncertainties in future supply and 460 

demand scenarios.  461 

 462 

[4.2] Utility of climate classification for assessment of gridded datasets 463 

The ensemble reanalysis input climatologies and normalised difference contributions shown in 464 

Figures 2 and 3 illustrate the initial steps in comparative assessment of gridded data sets for bias 465 

characterisation and validation. Further logical steps would draw upon the climate zones derived 466 

through the PCA and k-means clustering approach to sub-divide the spatial domain in order to focus 467 

and organise the use of limited in-situ data (ground-based, point observations) to characterise sub-468 

regional dataset performance. The use of in-situ data to provide “ground truthing” and related large 469 

scale datasets to local conditions will remain crucial for the foreseeable future because gridded 470 

datasets of a global nature, be they reanalyses, spatially interpolated from local observations or 471 

derived from satellite imagery will inevitably have intrinsic biases. These biases are a function of 472 

spatial and temporal resolution of the source observations as well as the physical nature of those 473 
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observations. In-situ data, be they from national monitoring networks or international databases 474 

such as the Global Historical Climatology Network (Lawrimore et al., 2011), could be grouped by 475 

the derived climate zones and in this way structure the analysis of statistics of “grid-cell versus 476 

station” biases. In this way individual gridded datasets could be assessed to determine in which sub-477 

regional climate zones they perform well or poorly. This approach also permits comparative 478 

evaluation of different gridded datasets to determine which most accurately reproduces the 479 

climatology of a given climate zone. 480 

This proposed methodology for bias assessment is dependent, however, upon the availability of 481 

station data which are representative of climatic conditions in absolute terms at the grid-scale level. 482 

This constraint could be prohibitive for mountainous areas, such as the Karakoram/ Hindu Kush, 483 

where meteorological stations are often located in valley bottoms, substantially below the mean 484 

elevations of overlying data source grid cells. One such example is the Upper Indus Basin (Gilgit-485 

Baltistan administrative district of Pakistan) where Archer (2003, 2004) and Archer and Fowler 486 

(2004, 2008) found climate observations at manned meteorological stations of the Pakistan 487 

Meteorological Department located in valley settlements to correlate strongly with variability in 488 

hydrological conditions, although runoff volume fluctuations did not equate directly to precipitation 489 

anomalies. Thus in mountainous or other highly spatially variable domains “transfer functions” 490 

(scaling relationships) representing climate parameter variation with topography may still be 491 

necessary to compare in-situ point observations to grid cell spatial means in absolute terms. 492 

These challenges for relating point-based observations to gridded data in fact point toward the 493 

utility of inter-comparison of spatial datasets. The climate classification approach provides a 494 

supplementary dimension in which to compare gridded datasets. To illustrate this, the sub-regional 495 

climate zones delineated from the four reanalyses could be considered as reference or benchmark 496 

values for evaluation of climate model control period outputs. On-going work is exploring the 497 

application of the climate classification approach to time-slices within the Met Office Hadley 498 

Centre seventeen-member perturbed physics ensemble of 130-year transient future climate 499 

simulations (Collins et al., 2011) dynamically downscaled to 0.22 decimal degrees for the South 500 

Asia domain (Bhaskaran et al., 2012). Climate classifications, using eight clusters, for the initial 30-501 

years (1970 to 1999) of the simulation, considered as the “control climate”, are shown for each of 502 

the ensemble members in Figure 8. Visual comparison of Figure 8 to Figure 5 confirms that the 503 

broad patterns of the sub-regional climate zones found by the reanalyses are replicated in the 504 

control climate time-slice of the climate model ensemble. There are noteworthy differences, 505 

particularly over the Ganges-Brahmaputra Delta, but the overall sub-regional differences are 506 

unmistakeable. Table 5 provides the distribution of the spatial domain among the sub-regional 507 

climate zones for each climate model ensemble member. The ensemble mean and standard 508 
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deviation are also given in Table 5. These values are compared, in Table 6, to the equivalent values 509 

from the reanalyses (from Table 4). The largest differences in fractional areas stem from an eastern 510 

Himalayan climate zone in the model ensemble amalgamating area allocated to the Ganges-511 

Brahmaputra in the reanalyses as well as sections assigned to the Tibetan Plateau in the reanalyses 512 

being assigned to the Karakoram Hindu Kush in the model ensemble. Future work will investigate 513 

differences in climatology between reanalysis zones (as presented in Section 3.2 and Figures 6 and 514 

7) and the model ensemble zones. This analysis will then be extended to compare climate 515 

classifications between time-slices of the model ensemble. 516 

In summary, the climate classification approach presented here has substantial potential both for use 517 

in assessment of water resources and food security issues as well as for the characterisation of skill 518 

and bias of gridded datasets for reproducing sub-regional climatologies. This relative, or internal-519 

difference, classification approach was preferred over a methodology based on fixed, absolute 520 

thresholds due to the nature of the gridded datasets whose spatial discretisation on likely intrinsic 521 

biases would distort the results of an absolutist method. The natural resource assessment application 522 

of this approach is timely as increasing pressures on water resources and cropland appear inevitable 523 

in South Asia for the medium term due to demographic trends and evolving consumption patterns. 524 

The growing availability of gridded datasets increases the likelihood of their use to address resource 525 

management and climatic sensitivity issues. In order to use these datasets skilfully it is necessary to 526 

first rigorously characterise their performance and biases. Thus the climate classification approach 527 

presented here is doubly timely as it provides a framework to organise use of in-situ observations to 528 

differentiate gridded dataset performance at the sub-regional level and to carry out inter-comparison 529 

of gridded dataset performance for these sub-regions. 530 

 531 

[5] Conclusions 532 

A three-step approach was used to derive climate classifications for the Himalayan arc and adjacent 533 

plains from climate inputs from four global meteorological reanalyses covering the recent historical 534 

record (1980 to 2009). Input variables were selected for this process with a focus on climatic drivers 535 

of water resources and agricultural production. Knowledge of the climatic factors governing 536 

behaviour of hydrological regimes with substantial contributions from seasonal snowpack and 537 

glaciers as well as controlling crop growth led to selection of precipitation amount, daily mean 538 

temperature, net shortwave radiation at the surface and DTR as input variables. Three seasonal 539 

aggregations were chosen for each input variable. Annual, “rabi” (October to March) and or 540 

“kharif” (April to September) totals were used for precipitation to differentiate the influences of 541 

westerly mid-latitude and monsoonal sub-tropical weather systems. For the remaining variables 542 
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temporal aggregates for Winter (December to February), Spring (March to May) and Summer (June 543 

to August) were selected to identify hydrological regimes – pluvial, nival (snowpack) or glacial – 544 

and growing seasons dependent upon thermal conditions. 545 

Principal Components Analysis (PCA) was applied to the spatially standardised temporal 546 

aggregates of the input variables. Comparison of PCA results from the four reanalyses show that in 547 

all cases the first principal component was dominated by energy inputs while the second and third 548 

were dominated by precipitation and DTR. Principal components accounting for a minimum of 5% 549 

of total input variance, supplemented with standardised latitude and longitude, were used as inputs 550 

to a k-means cluster analysis. Progressive increases in cluster numbers were tested for each 551 

reanalysis in order to assess the evolution of emergent climate zones. Results of the k-means 552 

analysis were interpreted to show that the study domain could be adequately described by eight sub-553 

regional climate classifications while further increases in cluster numbers resulted in sub-divisions 554 

of these macro-zones. Spatial statistics for each sub-regional climate zone from the ensemble of 555 

reanalyses revealed consistent, distinct climatologies in the annual cycles of the input variables. 556 

The capacity of the climate classifications to provide insight into water resources and food security 557 

issues at a regional scale were discussed. This capacity is linked to the objective delineation of 558 

water resource supply and demand zones. Analysis of changes in both the spatial and climatic 559 

characteristics of the zones over time provides a framework for evaluation of water availability for 560 

crop production. The climate classifications also support evaluation of gridded datasets themselves. 561 

The climate zones provide an objective method for grouping available ground-based observations to 562 

quantify and summarise gridded dataset bias. They also serve as a metric with which to compare 563 

climatologies of gridded datasets. This was illustrated by comparing the climate classifications of 564 

the ensemble of reanalyses to the “control period” of a dynamically downscaled perturbed physics 565 

climate model ensemble. Strong commonalities between the benchmark (reanalysis) and predictive 566 

(RCM) datasets were evident while limited divergences were clearly identified. Future work will 567 

extend the methodology here to evaluate the regional water resources and food security implications 568 

of changes projected by available RCM experiments covering South Asia and the Himalayan arc. 569 
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Table 1. Reanalysis datasets utilised for comparative climate classification. 701 

Reanalysis Producer Time period covered Spatial 

resolution 

(degrees) 

Diurnal discretisation 

JRA-55 JRA 1958 to (near) present 1.25x1.25 

6-hour synoptic 

forecast/analysis periods 

ERA-Interim ECMWF 1979 to (near) present 0.75x0.75 

6-hour synoptic 

forecast/analysis periods 

CFSR NCEP 

1979 to 2009 (later 

extended) 0.50x0.50 

6-hour synoptic 

forecast/analysis periods 

MERRA NASA 1979 to (near) present 0.67x0.50 hourly 

 702 

  703 
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Table 2. Variables used for Himalayan region climate classification. 704 

Variable Season Physical importance 

Precipitation Annual 

Total 

Humid vs arid climates 

ONDJFM 

(“rabi”) 

Westerly (extra-tropical) weather system climate influence 

AMJJAS 

(“kharif”) 

Monsoonal weather system climate influence 

Tavg 

daily mean 

near surface 

air 

temperature 

DJF Indicator of precipitation state (solid versus liquid) and 

available energy to drive hydrological processes (meltwater 

generation) and crop growth (transpiration); as such indicator of 

hydrological regime (pluvial, nival or glacial) 

MAM 

JJA 

DTR 

diurnal 

temperature 

range 

DJF (inverse) Indicator of moisture conditions, i.e. relative humidity 

and cloud cover, as both suppress DTR; as such proxy for cloud 

cover further informs regarding circulation influences 

MAM 

JJA 

SWnet at 

surface 

net downward 

shortwave 

radiation at the 

surface 

DJF Indicator of land surface state (snow covered or bare) and 

available energy to drive hydrological processes (meltwater 

generation) and crop growth (transpiration) ; as such indicator 

of hydrological regime (pluvial, nival or glacial) 

MAM 

JJA 

 705 

  706 
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Table 3. Comparison of results of Principal Components Analysis. 707 

Gridded data source PC1 PC2 PC3 

JRA-55  

 

5 PCs > 

0.05 

Explained 

Variance 

0.459 0.194 0.162 

Loading JJA DTR -0.359 

DJF Tavg 0.380 

DJF SWnet 0.384 

ONDJFM Precip -0.440 

DJF DTR 0.408 

MAM DTR 0.509 

AnnTot Precip -0.419 

AMJJAS PrecipTot -0.416 

DJF DTR -0.461 

ERA-

Interim 

 

4 PCs > 

0.05 

Explained 

Variance 

0.364 0.317 0.167 

Loading JJA DTR -0.353 

DJF Tavg 0.443 

MAM Tavg 0.404 

DJF SWnet 0.402 

AnnTot Precip 0.460 

AMJJAS Precip 0.440 

ONDJFM Precip 0.407 

MAM SWnet -0.353 

JJA SWnet -0.371 

DJF DTR 0.622 

MAM DTR 0.621 

NASA 

MERRA 

 

5 PCs > 

0.05 

Explained 

Variance 

0.416 0.214 0.185 

Loading JJA DTR -0.378 

DJF Tavg 0.404 

MAM Tavg 0.375 

DJF SWnet 0.388 

AnnTot Precip 0.491 

AMMJAS Precip 0.439 

ONDJFM Precip 0.479 

JJA Tavg -0.395 

DJF DTR -0.631 

MAM DTR -0.635 

NCEP 

CFSR 

 

5 PCs > 

0.05 

Explained 

Variance 

0.377 0.275 0.181 

Loading DJF Tavg 0.451 

MAM Tavg 0.429 

JJA Tavg 0.363 

DJF SWnet 0.424 

MAM SWnet 0.382 

AnnTot Precip 0.459 

AMJJAS Precip 0.440 

ONDJFM Precip 0.367 

JJA SWnet -0.429 

DJF DTR -0.478 

MAM DTR -0.645 

JJA DTR -0.462 

nb:  Rows labelled “Explained Variance” indicate fraction of total input variance accounted for by 708 

the Principal Component (PC). Rows labelled “loading” indicate input variables whose (coefficient) 709 

contribution to the PC is > 0.35. Loading coefficients are shown with their signs to differentiate 710 

between variables with opposing contributions.  711 
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Table 4. Description of primary Himalayan region climate zones (8 clusters). 712 

Regional 

climate zone 

name/area 

Climate 

type 

Characteristics Fraction of domain covered 

JRA-55 ERA-

Interim 

NASA 

MERRA 

NCEP 

CFSR 

Arabian Sea 

& Bay of 

Bengal 

Sub-

tropical 

ocean 

Year-round warm 

temperatures; Minimal 

DTR; limited monsoonal 

precipitation 

0.069 0.077 0.066 0.080 

Central 

Asian deserts 

Mid-

latitude 

desert 

Cold winter; hot summer; 

Minimal annual 

precipitation 

0.199* 0.150 0.168 0.101 

Tibetan 

Plateau 

High 

elevation 

desert 

Cold winter; mild 

summer; limited 

monsoonal precipitation 

0.229 0.207 0.266* 0.227 

Himalayan 

arc 

Sub-

tropical 

high 

mountains 

Cold winter; mild 

summer; Substantial 

monsoonal precipitation 

weather  

** 0.061 ** 0.039 

Karakoram/ 

Hindu Kush 

Mid-

latitude 

high 

mountains 

Cold winter; mild 

summer; Substantial 

precipitation from 

westerly weather systems 

(Winter and Spring) 

0.058 0.064 0.050 0.064 

Lower Indus 

Basin 

Semi-arid 

plains 

Mild winter (cold season); 

hot summer; limited 

monsoonal precipitation 

0.133 0.152 0.179 0.194 

Gangetic 

Plains 

Sub-

humid 

plains 

Mild winter (cold season); 

hot summer; substantial 

monsoonal precipitation 

0.217 0.192 0.163 0.222 

Ganges-

Brahmaputra 

Delta 

Humid 

plains 

Mild winter (cold season); 

warm summer; intense 

monsoonal precipitation 

0.090 0.093 0.104 0.069 

*: Combination of two climate zones in this reanalysis; **: Not identified by this reanalysis  713 
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Table 5. Variability of primary Himalayan region climate zones (8 clusters) area in the Hadley 714 

Centre downscaled perturbed physics ensemble , Regionally Quantify Uncertainty in Model 715 

Predictions (RQUMP), RQUMP for South Asia. 716 

Ensemble 

member 
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d

ia
n
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ce

a
n

 

C
en

tr
a
l 

A
si

a
n

 

D
es

er
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G
a
n

g
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a
n

g
es

 

B
ra

h
m

a
p

u
tr

a
 

D
el

ta
 

T
ib

et
a
n

 

P
la

te
a
u

 

rqump00 0.062 0.152 0.236 0.169 0.113 0.092 0 0.171 

rqump01 0.075 0.15 0.227 0.184 0.104 0.083 0 0.173 

rqump02 0.074 0.15 0.251 0.160 0.102 0.080 0 0.180 

rqump03 0.074 0.153 0.231 0.173 0.114 0.091 0 0.160 

rqump04 0.071 0.145 0.193 0.168 0.135 0.026 0.083 0.175 

rqump05 0.064 0.149 0.179 0.157 0.127 0.039 0.093 0.187 

rqump06 0.061 0.154 0.216 0.167 0.131 0.076 0 0.192 

rqump07 0.068 0.15 0.196 0.154 0.126 0.027 0.086 0.190 

rqump08 0.062 0.156 0.209 0.153 0.131 0.098 0 0.188 

rqump09 0.062 0.168 0.208 0.178 0.120 0.092 0 0.169 

rqump10 0.075 0.270 0.267 0 0.130 0.121 0 0.134 

rqump11 0.061 0.152 0.202 0.171 0.136 0.092 0 0.183 

rqump12 0.062 0.238 0.175 0.115 0 0.128 0 0.280 

rqump13 0.091 0.261 0.300 0 0.171 0.035 0.138 0 

rqump14 0.063 0.264 0.263 0 0.100 0.099 0 0.209 

rqump15 0.062 0.148 0.202 0.160 0.132 0.025 0.085 0.183 

rqump16 0.069 0.240 0.190 0.115 0 0.101 0 0.282 

mean 0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179 

standard 

deviation 
0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059 
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Table 6. Comparison of RQUMP perturbed physics ensemble climate model sub-regional climate 719 

zone distributions to those from the reanalysis ensemble. 720 

Statistic 
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Ensemble 

means 

Climate 

model 
0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179 

Reanalyses 0.073 0.154 0.198 0.164 0.059 0.050 0.089 0.232 

Difference -0.005 0.028 0.022 -0.034 0.051 0.026 -0.061 -0.053 

Ensemble 

standard 

deviations 

Climate 

model 
0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059 

Reanalyses 0.006 0.041 0.027 0.027 0.006 0.015 0.014 0.024 

Difference 0.002 0.007 0.007 0.038 0.038 0.018 0.033 0.035 
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 723 

 724 

Figure 1. Geographic context of the – Himalayan arc and adjacent plains – study area including 725 

elevation and areas with > 33% under irrigation (hashed). Data sources include the United Nations 726 

Food and Agriculture Organisation (FAO) and the United States Geological Survey Global 30 Arc-727 

Second Digital Elevation Model (GTOPO30). 728 
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 730 

 731 

Figure 2. Ensemble precipitation climatology and normalised comparison of individual 732 

contributions from reanalyses used in this study. ONDJFM is the abbreviation for the period from 733 

October to March, referred to regionally as “Rabi.” AMMJJAS is the abbreviation for the period 734 

from April to September, referred to regionally as “Kharif.” 735 
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 737 

 738 

Figure 3. Ensemble energy input (temperature and radiation) climatology and normalised 739 

comparison of individual contributions from reanalyses used in this study. SWnet  is net downward 740 

shortwave radiation at the surface. Tavg is daily mean near surface air temperature. DTR is diurnal 741 

temperature range. DJF is the (Winter) period December through February. MAM is the (Spring) 742 

period March through May. JJA is the (Summer) period June through August. 743 
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 745 

 746 

Figure 4. Comparison of the first three principal components (PCs) from each of the reanalyses used 747 

in this study. PCs are calculated from the Principal Component Analysis (PCA) input standardised 748 

variables using the PCA output weighting factors. PCs are thus dimensionless and values are 749 

expressed in standard deviations. 750 
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 752 

 753 

Figure 5. Comparison of climate classifications resulting from the use of 8, 12 and 16 clusters (k) 754 

on principal components from the individual reanalyses.  Large units in the legend refer to zones for 755 

the k=8 case. 756 
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 758 

 759 

Figure 6. Ensemble spatial statistics for annual cycles of precipitation (left) and DTR (right) by 760 

climate zone (8 clusters). DTR is diurnal temperature range. 761 
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 763 

 764 

Figure 7. Ensemble spatial statistics for annual cycles of Tavg and SWnet by climate zone (8 clusters). 765 

SWnet  is net downward shortwave radiation at the surface. Tavg is daily mean near surface air 766 

temperature.  767 
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 768 

 769 

Figure 8. Comparison of climate classifications resulting from the use of 8 clusters on principal 770 

components of the control period (1970 to 1999) from the individual members of the Hadley Centre 771 

RQUMP perturbed physics ensemble downscaled over South Asia. 772 


