
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final 
publication) 

Review 2 
 
I am mostly satisfied by the response to the correlations issue. I’m still disappointed that even a 
synthetic example couldn’t be included to show the importance of correlations, but the caveats 
included in the paper are sufficient.  
 
In general I would suggest that the authors take advantage of high‐performance computing in some 
capacity. I appreciate that on a single desktop machine the scale of these computations is large, but 
this problem is “embarrassingly parallel” and using even a small cluster of nodes I suspect the 
authors would be able to overcome all the computational limitations frequently mentioned, 
including to do the correlation analysis, rebalancing matrices in all the MCs and etc. I don’t think the 
authors ever mention what software package they are using for this. I would assume they are using 
GAMS. Since GAMS is not open source it can be challenging to get it installed on large clusters, but 
I’ve always found the folks at GAMS to be happy to help. We even installed and ran GAMS 
simultaneously on one million cores of a supercomputer at Argonne once. Might even still be 
installed if the authors would like to try and get access to use it. Alternatively of course, the authors 
could use an open package like AMPL to get around this constraint. Either way, computational 
limitation for an easily parallizable problem like this should never be a limitation in this day and age. 
 

We can sympathize with this comment. Putting the computation aspects aside, the first step 
would be a small synthetic example. Once this is understood, the system size can be 
increased. 
 
We really appreciate the reviewers concern here. Our goal is not to argue that these issues 
are not important, but these issues are really for another paper/project. Our submission is 
already long and technical, and covers many aspects of the problem. We identify a weakness 
in our analysis, but we don’t believe this paper is the appropriate place to take that issue up. 
Our assessment is that the correlation issue deserves a standalone paper. 
 
On the computation aspects. We use MATLAB for our analysis. We have optimized this code 
over the years and to construct the MRIO from the raw GTAP data and it takes about 
1second (on a standard laptop). The Monte‐Carlo analysis is also a memory problem. We 
used different computer assets for our computing, but did not need to take the parallel path. 
We didn’t need to balance the MRIO as GTAP is already balanced. Moving from our system 
(manageable) to the full system with either balancing or with correlations, fast becomes 
more difficult (in our opinion). We have worked closely over the years with our colleagues 
who constructed the EORA database http://worldmrio.com/ (of similar size to the GTAP 
MRIO). They spend some years to get this system fully operational: they made everything run 
in parallel, had to write their own optimization code (GAMS was not powerful enough), and 
used different computing assets in Australia. Based on their experience, we do not see that 
taking the balancing avenue as something that would fit in a few subsection of a paper! We 
agree, this day and age and for problems of this type, computing solutions can be found. But 
as we outline in the paper there are additional problems to the computing ones: conceptual, 
data, etc. 

 
 
Regarding the relationship between sector sizes and uncertainty, I think the issue here is again one of 
ignoring correlations. When talking about real error from all the possible sources:  
errors related to “unreliable measurements, estimates and assumptions, bias in source data, 



temporal, geographical, and technological miscorrelation, and lack of knowledge about the system” –
Lenzen 2000 
the argument for why large sectors would have smaller errors is again relying on the assumption that 
these types of errors within the sector are cancelling. However, this assumption/caveat isn’t stated. 
Instead, the authors are using the relationship from the GTAP “uncertainty” which shows smaller 
errors for larger sectors. But this is ONLY the error introduced from matrix rebalancing. Its not at all 
surprising that this one source of error should show this behavior but to suggest that all economic 
error should show this behavior because of this fact seems going much too far. I think this is plainly 
an incorrect assumption and since it wouldn’t increase the computational requirement or difficulty 
to relax it, it seems like its worth evaluating the consequences. At the least this caveat needs to be 
added, in a way similar to Lenzen‐2000 (in the introduction).  
 

We largely agree with this comment, but are not convinced with some of the specifics. The 
relationship between sector size and uncertainty is something found in the data, and not 
something we postulate. Having said that, we have yet to see a narrative to why the 
relationship holds in practice. One concern for us is that the optimization objective function 
may lead to the relationship. In other words, we are not convinced that correlation is the 
problem, but agree there are potential problems with the relationship. (We have actually 
discussed writing a paper on these issues). 
 
Just to emphasize, we do not just use GTAP as justification for the relationship. We use 
several data sources and they all exhibit the same relationship. On reflection this is not clear 
in our text. 
 
We have reordered the appropriate paragraph in the section General uncertainty 
relationships to address this issue and put in place more waivers and justify why we took the 
approach: 
 
It has previously been shown that economic and emissions data show a general pattern 

where relative uncertainty is inversely related to the magnitude of the data point (Lenzen et 

al., 2010; Wiedmann, 2009; Wiedmann et al., 2008; Lenzen, 2000). The GTAP data used in our 

analysis follows a similar relationship, based on differences between the reported input data 

and the final data in the database after the harmonization and balancing of selected input‐

output (IO) data (Table 19.6 in McDougall (2006)). Figure 2 illustrates the inverse relationship 

between unbalanced and balanced data in the GTAP database together with a first‐order 

regression (R2>0.9). These differences result from the GTAP harmonization and balancing 

process and values are only published for a sample of “large sectors in large regions with 

large relative changes” (McDougall, 2006). As a consequence of this data selection bias, it is 

not possible to convert these differences directly to more general sectoral uncertainties. Other 

uncertainty assessments in MRIO analysis have also taken this inverse relationship as the 

starting point (Lenzen et al., 2013; Moran and Wood, 2014; Lenzen et al., 2012a). 

Furthermore, a similar relationship is found with emissions data, based on a previous study of 

the UK Greenhouse Gas Inventory, where uncertainties were found using an error 

propagation model (Jackson et al., 2009). The underlying mechanisms for this inverse 

relationship are, however, unclear. The uncertainties may reflect conflicting data sources, 

unreliable measurements, bias in the source data, allocations and aggregations, base year 

extrapolations, estimates and assumptions, etc. (Wiedmann, 2009; Weber, 2008; Lenzen, 

2000), and it is unclear that all these uncertainties will lead to a clear inverse relationship 



 

We agree with this comment, and we have put in place two examples. Under the section 

General uncertainty relationships, we mention: 

To help illustrate the effects of the methodology, we show two examples: 1) one of China’s 

largest economic sectors is the “Public administration, defense, education, and health” sector, 

worth nearly 340 billion USD in 2007. Large sectors are given small uncertainties, and this 

sector is a substantial part of China’s GDP (around 10%). The uncertainty is therefore 

assumed to be one of the lowest in the country, but scaled up relative to other countries since 

China is not an Annex‐B country. 2) One of USA’s smallest direct CO2‐emitting sectors is the 

production of “electronic equipment”. Emitting roughly 1 Mt CO2, this is in the lower‐end of 

the scale, contributing little to the national total of nearly 5000 Mt CO2. This sector is 

therefore given higher relative uncertainty. We expand on these examples with specific 

numbers in the next sections, after we define the uncertainty ranges for the economic and 

emissions data. 

 

Furthermore, we have expanded on the first example in the section Economic data (Multi‐

regional input–output model): 

Expanding on our previous example of the Chinese “public administration, defense, education, 

and health” sector, we can now calculate the uncertainty. Each data point in our MRIO model 

consists of inputs from several different GTAP datasets. When these datasets are combined, 

together with the uncertainties, the MRIO model and its uncertainty are obtained. In the MC 

analysis, all datasets are given uncertainties and perturbations (according to the inverse 

relationship) before constructing the MRIO model. The Chinese public administration, defense, 

education, and health sector, which is a single sector in the final GTAP‐MRIO model, is built 

up from several datasets (bilateral trade, intermediate demand, and final demand of 

households, governments, and capital investments). In our example, we choose to focus on 

one of the most significant contributors to this sector: domestic government consumption 

expenditure. This sub‐dataset has a sectoral range from <1 USD to 420 billion USD, which, 

when calculating the uncertainty, is constrained in the calculations by the lower and upper 

threshold v_min=1 USD and v_max=4% of national GDP = 130 billion USD. For the uncertainty, 

the general sectoral range is from r_min=5% to r_max=100%. GTAP estimates the value 

added in the sector in this sub‐dataset to be around 340 billion USD, which is 10% of national 

with data value. It may be that the method of generating the data through some sort of 

optimization process leads to the relationship. 

 
Once again, I would strongly suggest that the section “general uncertainty relationships” needs an 
example. The process as it stands looks incredible ad hoc. The authors choose a reasonable approach 
but then add various adjustments and procedures that make it very difficult to intuit exactly what the 
uncertainty is. The inclusion of a couple of short examples that said “the concrete industry in china is 
X billion dollars”, its non‐annexB so we see rmin = x rmax = y and then we get an uncertainty range 
like z but then we rescale it to reflect the percentage of Chinese GDP that comes from concrete so 
the final error estimate is Q, which is J% of the total sector size. 



GDP. This is well above v_max, giving this sector a relative uncertainty equal to r_min (5%). 

Since China is a non‐Annex B country, this is doubled, leading to a final uncertainty of 10% for 

this sector in this sub‐dataset. The uncertainties for the other data points in the other sub‐

datasets that make up the Chinese public administration, defense, education, and health 

sector will be estimated similarly, and together explain the overall uncertainty of this sector in 

the GTAP‐MRIO model. 

 

Additionally, the second example is expanded on in the Emission statistics section: 

Expanding on our previous example of emissions from USA’s “electronic equipment” sector, 

we can now calculate the uncertainty. USA’s sectors have a range of CO2 emissions from 0.3 

kt to 2500 Mt, which is then constrained in the calculations by the lower and upper threshold 

v_min=1kt CO2 and v_max=5% of national total CO2 = 247 Mt CO2. For CO2 uncertainty, the 

general sectoral range is from r_min=16% (or ±8%), taken from Table 1, to r_max=10 

×r_min=160%. The emissions in the electronic equipment sector are 1.2 Mt CO2, which is 0.02% 

of total emissions. This is in between v_min and v_max, giving the CO2 emissions from this 

sector a relative uncertainty of 43%. Since USA is an Annex B country, this is not doubled. 

 

We also reworded the caption in Figure 2: instead of using the word “uncertainty” on the 

differences from the table in McDougall (2006), we now refer to this as the “difference 

between unbalanced and balanced data”. 
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Abstract 8 

Several studies have connected emissions of greenhouse gases to economic and trade data to quantify 9 
the causal chain from consumption to emissions and climate change. These studies usually combine 10 
data and models originating from different sources, making it difficult to estimate uncertainties along 11 
the entire casual chain. We estimate uncertainties in economic data, multi-pollutant emission statistics 12 
and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to 13 
determine how uncertainty propagates to estimates of global temperature change from regional and 14 
sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties 15 
are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, 16 
and the level of aggregation of the results. Uncertainties in the final results are largely dominated by 17 
the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our 18 
assumptions, which exclude correlations in the economic data, the uncertainty in the economic data 19 
appear to have a relatively small impact on uncertainty at the national level in comparison to emission 20 
and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest 21 
that consumption-based national emissions are not significantly more uncertain than the corresponding 22 
production based emissions, since the largest uncertainties are due to metric and emissions which 23 
affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to 24 
changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of 25 
±10–±27% using the Global Temperature Potential with a 50 year time horizon, with metric 26 
uncertainties dominating. National level uncertainties are similar in both perspectives due to the 27 
dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions 28 
have a broad uncertainty range of ±9–±25%, with metric and emissions uncertainties contributing 29 
similarly. The Absolute Global Temperature Potential with a 50 year time horizon has much higher 30 
uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking 31 
of countries is uncertain.  32 
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Introduction 33 

Many studies have shown that national greenhouse gas (GHG) emission accounts can be viewed from 34 
either a production (territorial) or consumption perspective (Davis and Caldeira, 2010; Hertwich and 35 
Peters, 2009; Wiedmann, 2009; Peters and Hertwich, 2008). While the production view only looks at 36 
territorial emissions, the consumption view includes emissions from the production of imported 37 
products and excludes emissions from the production of exports. It has been shown that territorial 38 
emissions have decreased in most developed countries since 1990, but consumption-based emissions 39 
have increased (Peters et al., 2011c). This indicates that growth in consumption and international trade 40 
may undermine the effectiveness of climate policies that only limit emissions in a subset of countries, 41 
such as in the Kyoto Protocol (Wiebe et al., 2012; Kanemoto et al., 2013).  42 

The concept of consumption-based emissions estimates can therefore be used to extend the cause-43 
effect chain from consumption, to production, to emissions, and ultimately to global warming (Figure 44 
1). This is an important complement to the established territorial (Kyoto Protocol) viewpoint, 45 
particularly to link more directly to consumption as a key driver of emissions. More recent studies 46 
have broadened this concept to look at further consequences of increased global demand for traded 47 
products, such as deforestation (Karstensen et al., 2013), biodiversity loss (Lenzen et al., 2012b), 48 
dependency on traded fossil fuels (Andrew et al., 2013), land-use change (Weinzettel et al., 2013), and 49 
water footprints (Hoekstra and Mekonnen, 2012).  50 

In the estimation of consumption-based emissions accounts, various datasets and models are combined 51 
in the calculations, thus uncertainties and errors may arise in a number of datasets and models: 52 
emission data, metric data, economic data, etc. There are also uncertainties in assumptions and study 53 
design that can be more difficult to explicitly quantify, including which metric and time horizon to use 54 
for comparing pollutants, and how economic data for one specific year can be relevant to other years.  55 

The uncertainty of many aspects of the cause-effect chain have been investigated previously (Höhne et 56 
al., 2008; Prather et al., 2012), but the link to consumption has not been made. There is a growing 57 
literature on the uncertainty in input-output (IO; economic) models used to estimate consumption-58 
based emissions (Wilting, 2012; Lenzen et al., 2010; Peters et al., 2012; Moran and Wood, 2014; 59 
Inomata and Owen, 2014). Uncertainty in economic models, such as computable general equilibrium 60 
models, has also received attention recently (Elliott et al., 2012). However, the literature on 61 
uncertainty in economic data and models is still relatively small, and large knowledge gaps remains 62 
(IPCC, 2014).  63 

A number of studies have investigated uncertainty in emissions (European Commission, 2011; UNEP, 64 
2012; Marland et al., 2009; Macknick, 2011), both regional and global, but surprisingly there still does 65 
not exist an emission dataset with specified uncertainties at the country level across all climate-66 
relevant species. In addition, there exist almost no estimates of uncertainty at the sector level. Many 67 
aspects of uncertainty have been investigated in the climate system (Skeie et al., 2013; Prather et al., 68 
2012; Myhre et al., 2013b), but there is little literature on the uncertainties in emissions metrics (Olivié 69 
and Peters, 2013; Shine et al., 2007; Reisinger et al., 2010). We are not aware of any studies that have 70 
estimated the uncertainty introduced by each model and dataset (e.g. metric and IO uncertainties), or 71 
how uncertainty propagates when estimating climate change from consumption as a socio-economic 72 
driver.  73 

We extend the uncertainty analyses done by Prather et al. (2009), Höhne et al. (2008) and den Elzen et 74 
al. (2005) by including consumption-based emissions for a single year and using a temperature-based 75 
emission metric, which is arguably a more policy-relevant method of weighting emissions. We use 76 
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Monte-Carlo analysis and draw on previous studies of uncertainties to perturb and highlight the 77 
different contributors: economic data, emission and metric parameters, and then compare our results 78 
with the previous studies.  79 
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Methods 80 

We consider the propagation of uncertainty from the point of consumption of goods and services 81 
(products), to the production of products where emissions to air occur, to the climate impacts caused 82 
by those emissions (Figure 1). This can be thought of as a causal chain where consumption is assumed 83 
to be the primary driver, in turn driving production, which in turn leads to emissions, and then 84 
emissions lead to temperature change. These components of the cause-effect chain are linked by 85 
calculation methodologies, each requiring parameterization, and we break the analysis into those three 86 
components: economic data, emission statistics, and emission metrics. We estimate the uncertainty for 87 
each of the components individually, and finally connect the components to determine how 88 
uncertainty propagates through the cause-effect chain.  89 

To determine the temperature response to a given level of consumption, we first map emission 90 
statistics for most important pollutants to producing regions and sectors (European Commission, 2011). 91 
Emissions are then converted to global temperature change using an emission metric (Aamaas et al., 92 
2013). This means that we allocate a future global temperature change due to current production and 93 
consumption emissions. The allocations from producers to consumers (in sectors and regions) require 94 
the global supply chain to be enumerated using economic production and trade data (Peters, 2008). 95 
Production often goes through several steps from extraction and refining to manufacturing and 96 
packaging, and finally to consuming markets.  These linkages are represented in the global supply 97 
chain through monetary transactions. We normalize emissions by monetary output in each sector in 98 
each region, and allocate emissions according to purchases made by consumers. The result connects 99 
production and consumption, which are potentially geographically separated, and estimates the 100 
consumption that is driving current production emissions and hence future global temperature 101 
response. 102 

All datasets and models introduce uncertainties in the analysis, thus we estimate uncertainties in the 103 
economic data, the emissions data and metric parameters in order to estimate uncertainties in the final 104 
results. We undertake the uncertainty analysis using Monte Carlo (MC) analysis, in which datasets and 105 
parameters are randomly perturbed according to predetermined distributions, and then sub-models are 106 
run sequentially to obtain distributions on the results (Granger Morgan et al., 1990). We isolate the 107 
individual contributions to uncertainty on the final results by perturbing individual components 108 
independently, before running everything together to estimate total uncertainty. The analysis considers 109 
parametric uncertainties on the components, as opposed to structural uncertainties, which would 110 
include the comparisons of different models and datasets (Peters et al., 2012). The next section lists 111 
the background data, and shows how uncertainties are estimated, before running the models and 112 
discussing the results. 113 

Datasets and models 114 

We use multi-regional input-output (MRIO) analysis to link economic activities from production to 115 
consumption, capturing global supply chains at the sectoral level (Davis and Caldeira, 2010; 116 
Wiedmann, 2009). We source our economic input–output data from the Global Trade Analysis Project 117 
(GTAP) database version 8, which comprises domestic and trade data for the entire world economy in 118 
2007 divided into 129 regions and 58 sectors (Narayanan et al., 2012). We use these data to construct 119 
an MRIO model with the same regional and sectoral resolution, connecting all regions at the sector 120 
level (Andrew and Peters, 2013; Peters et al., 2011b). While GTAP does not provide uncertainty 121 
estimates on the economic datasets, it is possible to generate realistic uncertainty estimates for the 122 
GTAP database from proxy data. Since an MRIO database is an aggregation of multiple datasets, it 123 
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inherits uncertainties from a number of sources, including: source data, base year extrapolations, 124 
balancing and harmonization procedures, allocations and aggregations (Wiedmann, 2009; Weber, 125 
2008). 126 

We use emissions data for the year 2007 from the Emissions Database for Global Atmospheric 127 
Research (EDGAR), for a number of pollutants (see Table 1), mapping these data to the regions and 128 
sectors of the GTAP database. Uncertainties in emission statistics for each pollutant derive from 129 
multiple sources, e.g. for CO2: how much fuel is actually consumed, its carbon content, and how much 130 
of it is combusted. Additionally, to be consistent with top-down estimates, statistics are subject to 131 
adjustments and harmonization, and aggregated and grouped to economic sectors. Although national 132 
uncertainty may in some cases be large, global emissions are dominated by a small number of 133 
countries, thus the global uncertainty is mostly a reflection of these countries’ data quality (Andres et 134 
al., 2012).  135 

The estimated global temperature impact of emissions are calculated using the global temperature 136 
change potential (GTP) metric (Aamaas et al., 2013; Shine et al., 2005), which is essentially a 137 
parameterization of more complex climate models. The metric uses pollutant characteristics 138 
(atmospheric lifetime, radiative forcing) as input, and unlike the more commonly used Global 139 
Warming Potential (GWP) which only relates to radiative forcing, the GTP also includes estimates of 140 
climate temperature response (sensitivity) to changed radiative forcing in the atmosphere, which adds 141 
additional layers of uncertainties (Reisinger et al., 2010). We base our pollutant parameters on the 142 
ATTICA assessment (Fuglestvedt et al., 2010) and IPCC (2007) p. 212-213, and climate sensitivity 143 
and CO2 uncertainties on the latest CMIP5 data (Olivié and Peters, 2013). The uncertainties on the 144 
other pollutants are drawn from several sources, but mostly following the IPCC Fifth Assessment 145 
Report (Myhre et al., 2013a). 146 

 147 

General uncertainty relationships 148 

It has previously been shown that economic and emissions data show a general pattern where relative 149 
uncertainty is inversely related to the magnitude of the data point (Lenzen et al., 2010; Wiedmann, 150 
2009; Wiedmann et al., 2008; Lenzen, 2000).. The GTAP data used in our analysis follows the same 151 
trendsa similar relationship, based on selected input-output (IO) data where uncertainty is derived 152 
from differences between the reported input data and the final data in the database after the 153 
harmonization is done and balancing constraints are met of selected input-output (IO) data (Table 19.6 154 
in McDougall (2006)). Figure 2 illustrates the inverse relationship between unbalanced and balanced 155 
data in the GTAP database together with a first-order regression (R2>0.9). These differences in data 156 
resultingresult from the GTAP harmonization and balancing process and values are available only 157 
published for a sample of “large sectors in large regions with large relative changes”, which implies 158 
that this relationship indicate the high-end of uncertainties estimates” (McDougall, 2006). As a 159 
consequence of this data selection bias, it is not possible to convert these differences directly to more 160 
general sectoral uncertainties. Other uncertainty assessments in MRIO analysis have also taken this 161 
inverse relationship as the starting point (Lenzen et al., 2013; Moran and Wood, 2014; Lenzen et al., 162 
2012a). Figure 2 shows the relationship for this subset of economic data and uncertainties, with first-163 
order power regression fits to the observations (R2>0.9). The uncertainties are created from the 164 
difference between input and output values, relative to the input and output values, respectively. 165 
However, deriving uncertainties from these differences is not straightforward, as there are many 166 
different methods based on different assumptions which will add additional uncertainties (e.g. 167 
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comparisons of the difference of input and output values to the input, output or mean values gives 168 
different results). Because of this, we only use the general relationship between sector size and 169 
uncertainty, and not the parameters from Table 19.6, when estimating sectoral uncertainties. 170 
Furthermore, we assume a similar relationship with the. Furthermore, a similar relationship is found 171 
with emissions data, based on a previous study of the UK Greenhouse Gas Inventory, where 172 
uncertainties were found using an error propagation model (Jackson et al., 2009). The underlying 173 
mechanisms for this inverse relationship are, however, unclear. The uncertainties may reflect 174 
conflicting data sources, unreliable measurements, bias in the source data, allocations and 175 
aggregations, base year extrapolations, estimates and assumptions, etc. (Wiedmann, 2009; Weber, 176 
2008; Lenzen, 2000). This assumption is also shared by other recent studies ., and it is unclear that all 177 
these uncertainties will lead to a clear inverse relationship with data value. It may be that the method 178 
of generating the data through some sort of optimization process leads to the relationship. 179 

The datasets allows the parameterization of a function mapping relative uncertainties to the magnitude 180 
of the data points. Following previous studies (Lenzen et al., 2010; Wiedmann et al., 2008), we 181 
assume the data follows a power function 182 

௫ݎ  ൌ ܽ   (1)ݔ
 183 

where a and b are coefficients. As there is very little data available to parameterize Equation (1), we 184 
parameterize the relationship using two extreme data points (generally the uncertainty on the 185 
minimum and maximum values) 186 

 ܽ ൌ
ݎ
௫ݒ
  

 
(2) 

  ܾ ൌ
௫ݎ െ ݎ
ݒ െݒ௫

 (3) 

 187 

It is generally argued that developed countries have lower uncertainty than developing countries due to 188 
the strength of institutions (Narayanan et al., 2012; Andres et al., 2012). The terms ݎ and ݎ௫ 189 
define the smallest and largest relative errors, respectively, and are functions of developed and 190 
developing regions (using the Kyoto Protocol groupings of Annex B and non-Annex B countries). We 191 
assume that developing countries have double the uncertainties of developed countries, based on 192 
estimates for CO2 emissions (Andres et al., 2012; see further discussion in section 2.4). This range is 193 
also sector- and region-dependent for the economic and emissions data, which we define below. The 194 
terms ݒ and ݒ௫ refer to fixed minimum and maximum data values for sectors in a specific region, 195 
which is given the uncertainty of ݎ௫ and ݎ, respectively. Figure 3 shows the functional 196 
relationship between sector sizes and uncertainties for economic and emissions data, respectively.   197 

The lower threshold ݒ is fixed for all regions in the economic and emissions datasets, giving 198 
sectors of the same size the same uncertainty, as the smallest sectors do not contribute much to the 199 
national totals. The upper threshold ݒ௫ can also be fixed to a certain sector size. However, 200 
uncertainties are likely to be regionally variable, as while a sector of e.g. 1 billion USD might be very 201 
large for some countries, it might not be large in other regions. To account for this, we argue that the 202 
sectors’ importance should vary with their contribution to the nations’ totals, e.g. gross domestic 203 
product (GDP) or total emissions. We therefore scale ݒ௫ according to the regions’ GDP and total 204 
emissions, for the respective datasets, so that the sectors’ importance in different regions is reflected 205 
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by their uncertainties. Sectoral values larger than ݒ௫ are given the same uncertainty as values equal 206 
to ݒ௫, to ensure that single large sectors do not affect the uncertainty on other large sectors (see 207 
details below).  208 

To help illustrate the effects of the methodology, we show two examples: 1) one of China’s largest 209 
economic sectors is the “Public administration, defense, education, and health” sector, worth nearly 210 
340 billion USD in 2007. Large sectors are given small uncertainties, and this sector is a substantial 211 
part of China’s GDP (around 10%). The uncertainty is therefore assumed to be one of the lowest in the 212 
country, but scaled up relative to other countries since China is not an Annex-B country. 2) One of 213 
USA’s smallest direct CO2-emitting sectors is the production of “electronic equipment”. Emitting 214 
roughly 1 Mt CO2, this is in the lower-end of the scale, contributing little to the national total of nearly 215 
5000 Mt CO2. This sector is therefore given higher relative uncertainty. We expand on these examples 216 
with specific numbers in the next sections, after we define the uncertainty ranges for the economic and 217 
emissions data. 218 

The estimated uncertainties are used to create distributions of perturbations. We impose log-normal 219 
distributions so that distributions with small relative spreads closely resemble normal distributions, 220 
while distributions with large relative spreads are skew but avoid negative values (Figure 4). The 221 
distributions are characterized using reported data as medians, and the spreads are (in order of 222 
decreasing preference) taken directly from the literature, derived from published analyses, or estimated. 223 
We define uncertainties as the 5-95% confidence interval (90% CI; equivalent to 1.64 standard 224 
deviations of a normal distribution).  225 

By randomly perturbing each data point, we assume no correlations in the uncertainties of economic 226 
and emissions data, which might not be accurate for some sector combinations (Peters et al., 2012). 227 
Implementing correlations in such an analysis is a major difficulty due to the size of the system under 228 
investigation and the lack of uncertainty data, but may also have significant effects on the results. We 229 
discuss this further in section 4. We do, however, undertake a simple sensitivity analysis on the 230 
parameter choices, by comparing the final results on MRIO uncertainty with uncertainty from the 231 
GTAP table showing extreme observations.  232 

Aggregations of the results (from sectors to regions and from regions to global) usually decrease the 233 
relative uncertainty, so that the national uncertainty is lower than individual sectors, and global 234 
uncertainty is in some cases lower than national uncertainty. This is a result of the summation effect, 235 
and the relationship between sector sizes and uncertainties. The largest sectors are given lowest 236 
uncertainties, so that the national uncertainty is largely a reflection of the uncertainty of the largest 237 
sectors. As an example of the summation effect, the relative uncertainty ݎ of adding ܯ േ ܵ, ݊ times, is 238 

 
ݎ ൌ

ܵ ⁄ܯ

√݊
 (4) 

assuming no correlations. To illustrate this effect, we show the uncertainty results at multiple levels. 239 

Economic data (Multi-regional input–output model) 240 

The total sectoral output x of a region’s economy (a vector) is the sum of intermediate consumption Ax 241 
and final consumption, y (Miller and Blair, 1985): 242 

ݔ  ൌ ݔܣ   (5) ݕ

where A is the inter-industry requirements matrix, which is equivalent to the technology used in each 243 
sector’s production. We solve for the total output 244 
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ݔ  ൌ ሺܫ െ  (6) ݕሻିଵܣ

where ሺܫ െ  ሻିଵ is the Leontief inverse L. Emissions are estimated for a given y by first estimating the 245ܣ
output, and then linking to sectoral emission intensities, F. This gives the direct and indirect emissions 246 
(supply chain) emissions  247 

 ݂ ൌ ܨ ܮ  (7) ݕ

The economic data from GTAP is represented in a multi-regional input–output (MRIO) model, which 248 
is constructed from a number of smaller datasets. The GTAP dataset itself is based on a large number 249 
of smaller datasets (such as national IO tables and trade data from UN’s COMTRADE database), 250 
which are harmonized to remove inconsistencies (Andrew and Peters, 2013; Peters et al., 2011b; 251 
Narayanan et al., 2012). The construction of an MRIO table from the GTAP data is explained in detail 252 
elsewhere (Peters et al., 2011b). In the MC analysis, we perturb the components of the GTAP database 253 
(e.g., domestic IO data and international trade data) and not the resulting MRIO. In other words, we 254 
estimate the uncertainty of the MRIO data based on the uncertainty in the data used to construct it 255 
(Peters et al., 2011b), which consists of all data points in the GTAP database used to construct the 256 
MRIO model. This ensures that the uncertainties of the final model reflect the underlying uncertainties 257 
of the various input data. We construct the perturbed L and y, before allocating the direct emissions F 258 
(which are also perturbed) to consuming regions and sectors. 259 

We calibrate the uncertainty relationship (Equation 1) for the GTAP data using several datasets. From 260 
the trend lines created from the GTAP table (Figure 2), we find the smallest uncertainty on the largest 261 
sectors to be at approximately 5%. We therefore let 90% of perturbed values fall within 5% of the 262 
median, and set ݎ ൌ 5% for the largest sectors (where ݒ௫ apply).  263 

The upper threshold ݒ௫ is defined by the regions’ GDP so that a sector of a specific size will have a 264 
larger importance (and hence a lower uncertainty) in a small region than in a large region. We use the 265 
UK data provided by Lenzen et al. (2010) to explain the range of uncertainties in a single economy. In 266 
this dataset the largest sectors have the smallest error, and following the trend line we find that the 267 
largest value is about 4% of UK GDP. We use this to define the upper threshold ݒ௫ ൌ 4% ൈ ܦܩ ܲ, 268 
which means that sectors at or above this value will be given the lowest national uncertainty (ݎ). 269 
Figure 3 shows the result of the implementations, where the lines indicate the range of developing and 270 
developed regions’ sector sizes and uncertainties. 271 

For the smallest sectors we set ݒ equal to 1 USD and assume ݎ௫ ൌ 100% (following Wiedmann 272 
et al., 2008), due to the lack of more precise regional uncertainty data. The 1 USD relates to a small 273 
value often used in the GTAP database (Peters, 2006). These parameters may seem somewhat 274 
arbitrary, but these choices are not overly important. A value of 1USD in an IOT is exceedingly small 275 
(it represents the economic relationship between two sectors over one year). Indeed, analysis shows 276 
that removing small values has negligible effect on the estimates consumption based emissions (Peters 277 
and Andrew, 2012). Thus, 1 USD is effectively zero in our dataset. It could also be argued that the 278 
value of 1USD is highly uncertain and should have large uncertainty. Giving values smaller than this 279 
higher relative uncertainty causes highly skewed log-normal distributions for the perturbations (see 280 
Figure 4). The GTAP dataset has values as low as 7×10-35 causing ݎ to be 6×106%. Such highly 281 
skewed distributions for data points with small medians (<<1 USD) can lead to large imbalances in the 282 
table. 283 

An IO model is balanced so that gross input equals gross output, a fundamental characteristic of input–284 
output models (Leontief, 1970). The same applies for a multiregional model (MRIO). When 285 
perturbing the coefficients in an IO table, it ultimately upsets the balance. In principal, the IO table can 286 
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be rebalanced, but given the size of the systems (about 7500×7500 matrices), rebalancing is 287 
prohibitively computationally expensive, and may reduce uncertainties as the perturbed values are 288 
changed. We therefore choose not to rebalance, which effectively causes the “unbalanced” component 289 
to be shifted to the value added. A concern is that the value added may become unrealistic (e.g., 290 
negative) as a consequence. The MC algorithm specifically outputs value added components to allow 291 
cross check imbalances with the raw data, and we find the distributions of the value added at the sector 292 
level to be within expected uncertainty bounds given the size of the value added. This is partially 293 
because of the parameterization of uncertainty we have used, and partially because the perturbations 294 
tend to cancel (the sum of random numbers). Thus, we can justify not rebalancing our perturbed IOTs 295 
and assume the imbalances are allocated to the value added (without having a large effect on the value 296 
added). Implementing this general methodology has also lead to relatively small regional uncertainties 297 
in other studies (Lenzen et al., 2010; Wiedmann et al., 2008). Structural uncertainties have also been 298 
found to be relatively small for major economies (Moran and Wood, 2014). As a simple sensitivity 299 
analysis of the input uncertainties, we also run the MC model with uncertainties according to the fit of 300 
the GTAP table uncertainties (trend line relative to final values, due to better fit; Figure 2). This vastly 301 
increases the uncertainties of all sectors, and we do not constrain the upper or lower uncertainties, 302 
meaning that very small sectors will be given unrealistically large uncertainties (1USD gives ݎ ൌ303 
10ଽ%). This exercise is only valid for the data it represents; large sectors in large countries, but is 304 
useful to facilitate the discussion about uncertainties in economic data. We discuss these results when 305 
exploring MRIO uncertainties, but do not include this when combining uncertainties. 306 

Expanding on our previous example of the Chinese “public administration, defense, education, and 307 
health” sector, we can now calculate the uncertainty. Each data point in our MRIO model consists of 308 
inputs from several different GTAP datasets. When these datasets are combined, together with the 309 
uncertainties, the MRIO model and its uncertainty are obtained. In the MC analysis, all datasets are 310 
given uncertainties and perturbations (according to the inverse relationship) before constructing the 311 
MRIO model. The Chinese public administration, defense, education, and health sector, which is a 312 
single sector in the final GTAP-MRIO model, is built up from several datasets (bilateral trade, 313 
intermediate demand, and final demand of households, governments, and capital investments). In our 314 
example, we choose to focus on one of the most significant contributors to this sector: domestic 315 
government consumption expenditure. This sub-dataset has a sectoral range from <1 USD to 420 316 
billion USD, which, when calculating the uncertainty, is constrained in the calculations by the lower 317 
and upper threshold ݒ ൌ 1 USD and ݒ௫ ൌ 4% of national GDP = 130 billion USD. For the 318 
uncertainty, the general sectoral range is from ݎ ൌ 5% to ݎ௫ ൌ 100%. GTAP estimates the value 319 
added in the sector in this sub-dataset to be around 340 billion USD, which is 10% of national GDP. 320 
This is well above ݒ௫, giving this sector a relative uncertainty equal to ݎ (5%). Since China is a 321 
non-Annex B country, this is doubled, leading to a final uncertainty of 10% for this sector in this sub-322 
dataset. The uncertainties for the other data points in the other sub-datasets that make up the Chinese 323 
public administration, defense, education, and health sector will be estimated similarly, and together 324 
explain the overall uncertainty of this sector in the GTAP-MRIO model. 325 

 326 

Emission statistics 327 

The pollutants considered are listed in Table 1, which cover anthropogenic emissions for the year 2007 328 
which have an effect on climate. We do not include emissions from short cycle biomass burning, as 329 
this is considered to have a short lifetime in the atmosphere due to regrowth. The dataset originally 330 
includes CO2 emissions from forest fires and decay, which is a mix of natural and anthropogenic 331 
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emission. Extracting the anthropogenic emissions and mapping them to agricultural sectors would 332 
require crude assumptions. We therefore do not include emissions related to forest loss, but 333 
acknowledge that it would increase global CO2 emissions by roughly 12% (van der Werf et al., 2009). 334 
The EDGAR dataset only provides crude information on uncertainty at the global level for some 335 
species (European Commission, 2011). Therefore, global and regional uncertainties in emissions are 336 
taken from a variety of sources (Table 1). Global fossil-fuel CO2 emissions statistics are independently 337 
produced by several organizations, but they generally agree with each other within about 5% for 338 
developed countries and 10% for developing countries (Andres et al., 2012). The CO2 emission 339 
estimates are all based on energy data, and globally the emissions are thought to have an uncertainty of 340 
±10% using a 95% CI (UNEP, 2012). Global SO2 emissions have an estimated uncertainty of between 341 
±8% and ±14%, while regional uncertainties may be as large as ±30% (Smith et al., 2010). For CH4, 342 
N2O and F-gases, the uncertainty of global emissions have been estimated as ±21%, ±25% and ±17%, 343 
respectively (UNEP, 2012).  344 

Table 1 shows parameters and uncertainties for each pollutant used as median values in the 345 
perturbations. Very little data exist on uncertainty of emissions by sector, especially on a pollutant and 346 
regional level. Lenzen et al. (2010) used a table of selected sectors of UK CO2 emissions to find 347 
uncertainties, originating from Jackson et al. (2009). According to the regression of the data points, 348 
within the limits of the data points, there is a spread of uncertainties of roughly 10 times (Figure 2 in 349 
Lenzen et al. (2010)).  We therefore estimate sectoral uncertainty using the same general relationship 350 
as with the economic data (Equation 1), where the uncertainty of global emissions is used as a proxy 351 
for the lowest uncertainty estimate of the largest sectors (ݎ) and the smallest sectors’ uncertainty is 352 
scaled by 10 times (ݎ௫ ൌ  ).  353ݎ	10

We assign developing countries an ݎ and ݎ௫ which are double those of developed countries. We 354 
define ݒ ൌ ௫ݒ and ݐ1݇ ൌ 5% of regional emissions. This dependence on total regional 355 
emissions shifts the function so that a sector of a specific size will have a larger importance (and hence 356 
a lower uncertainty) in a smaller region than in a larger region (Figure 3). We do not distinguish 357 
between different sources of the same pollutant, due to lack of information at the sector level. This is, 358 
in some cases, a crude simplification (e.g. when comparing uncertainties in emissions of certain 359 
pollutants from agricultural sectors and power generation). Similarly, for the emissions data, we set 360 
  equal to 1 kt emission. Values below this (as with economic data) have little impact on the 361ݒ
footprint of regions and sectors, and are therefore given zero uncertainty.  362 

Expanding on our previous example of emissions from USA’s “electronic equipment” sector, we can 363 
now calculate the uncertainty. USA’s sectors have a range of CO2 emissions from 0.3 kt to 2500 Mt, 364 
which is then constrained in the calculations by the lower and upper threshold ݒ ൌ  CO2 and 365 ݐ1݇
௫ݒ ൌ 5% of national total CO2 = 247 Mt CO2. For CO2 uncertainty, the general sectoral range is 366 
from ݎ ൌ 16% (or ±8%), taken from Table 1, to ݎ௫ ൌ 10	 ൈ ݎ ൌ 160%. The emissions in the 367 
electronic equipment sector are 1.2 Mt CO2, which is 0.02% of total emissions. This is in between 368 
 ௫, giving the CO2 emissions from this sector a relative uncertainty of 43%. Since USA is 369ݒ  andݒ
an Annex B country, this is not doubled. 370 

With every sector data point having an uncertainty, we create perturbations which we can sum to get a 371 
bottom-up estimate of the national uncertainty. Table 2 shows several perturbations of sectors (xin) for 372 
region r. Each perturbation i leads to a new national total (Xi). However, independent uncertainty 373 
estimates of national totals (e.g. national emissions) that may be available for some regions may 374 
conflict with our bottom-up distributions on the national totals (XN). When summing the perturbed 375 
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sectors xin for a region, it is unlikely that the distribution of XN will be the same as the known 376 
uncertainty in X. 377 

Additionally, the uncertainty in XN will depend on the number of elements contributing to the sum, 378 
according to standard propagation of uncertainty rules (RSS, root sum square; see earlier discussion on 379 
the summation effect). In practice, the uncertainty of X may be based on several lines of evidence, 380 
which may even exclude sector-based data. To ensure that we can reproduce the top-down uncertainty 381 
estimates of X, we use constrained optimization (using a quadratic programming (QP) methodology) 382 
to minimally adjust the perturbations of xin to a given distribution of the XN (Table 2). 383 

Given that we can adjust one iteration so that it sums to a fixed X, we then give X a distribution based 384 
on known national uncertainties, and thus, each iteration of X is used to balance the same iteration of 385 
the disaggregated sector data (xin). This ensures that the sum of sectors (Xi) always gives a XN with a 386 
known uncertainty. The cost of this adjustment is that the spread of the large values in each region (e.g. 387 
a large sector) are adjusted to fit the constraints. To meet the criteria of e.g. a narrower distribution on 388 
the aggregated values, the large values have to be given a narrower distribution as well. This 389 
methodology allows us to give realistic uncertainties on each xin leading to an XN with a known 390 
uncertainty. We do not perform such balancing on the MRIO input data (previous section) as it is too 391 
computationally expensive, and there is little top-down data on uncertainties in economic data. 392 

 393 

Emission metrics 394 

To link emissions to temperature change, we use the global temperature change potential (GTP) as a 395 
metric to compare and aggregate pollutants (Shine et al., 2007). This gives an estimate of the global 396 
mean surface temperature change due to a pulse of emissions from a specific pollutant, and is a simple 397 
way of modeling the much more complex climate system, and its response. Uncertainties in metric 398 
values can arise from a range of factors: pollutant parameters (radiative forcing and lifetime) and the 399 
response of the climate system. Although it has been shown that the GTP may have larger relative 400 
uncertainties than the alternative metric global warming potential (GWP) (Aamaas et al., 2013; 401 
Reisinger et al., 2010) and it has been criticized for some of its characteristics (Pierrehumbert, 2014), 402 
the GTP directly links to global temperature change and is thus arguably more policy relevant (Shine 403 
et al., 2005). In addition, the physical interpretation of the GWP is less clear and the metric has been 404 
criticized by many authors (Peters et al., 2011a; Shine, 2009; Pierrehumbert, 2014). The GTP metric is 405 
calculated using impulse response functions, which explain the interaction of pollutant i in the 406 
atmosphere (IRFi) and the climate system (temperature) response to a pulse emission (IRFT) with 407 
specific radiative forcing (RF) and atmospheric lifetime.  408 

We briefly describe the metric equations here, and refer to existing literature for more details (Aamaas 409 
et al., 2013; Fuglestvedt et al., 2010; Olivié and Peters, 2013; Myhre et al., 2013b). The absolute GTP 410 
(AGTP) for each pollutant i is defined as 411 

 
ܶܩܣ ܲሺܪሻ ൌ න ሻݐሺܨܴ ܪሺ்ܨܴܫ െ ሻݐ ݐ݀

ு


 (8) 

where the Radiative Forcing (RF) for a pulse emission is  412 

ሻݐሺܨܴ  ൌ ܧܴ ൈ ܨܴܫ ൌ ܣ exp ൬െ
ݐ
߬
൰ 

(9) 
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where ݐ is time [years], ܪ is the time horizon [years], ܣ is the radiative efficiency for pollutant i 413 
[W/(m2kg)], and ߬ is the decay time for pollutant i [years]. The AGTP metric is dependent on the IRF 414 
of temperature, which incorporates the climate system response in global mean surface temperature to 415 
a given radiative forcing. The climate response is modelled using two decaying exponential functions 416 
representing: (1) the relative fast response of the atmosphere, the land surface and the ocean mixed 417 
layer, and (2) the relative slow response of the deep ocean (Peters et al., 2011a), 418 

 
்ܨܴܫ ൌ ܿ

݀
exp ቆെ

ݐ

݀
ቇ



ୀଵ

 (10) 

where ܬ is the number of decay terms (usually two), ܿ is a component of the climate sensitivity 419 

[K/(Wm2)], where the total climate sensitivity ߣ ൌ ∑ ܿ, and ݀ is the decay time [years] of component 420 

ܿ. These two functions are explained by lifetimes and climate sensitivity for the individual 421 

components (Table 3). The ߣ explains the change in equilibrium global-mean temperature due to 422 
forcing by a pollutant in the atmosphere. We parameterize the IRF according to the results from 423 
CMIP5 covering 15 different climate models (Olivié and Peters, 2013). This dataset is parameterized 424 
by relatively short climate runs (140–150 years), and thus it is more representative of the short-term 425 
climate response (less than 100 years) compared to the equilibrium response (see Olivié and Peters 426 
(2013) for details). Nevertheless, the dataset leads to a median ߣ ൌ 0.75 K/Wm2 (equivalent to 2.8°C 427 
global-mean temperature increase), which is consistent with the climate response (sensitivity) of a 428 
doubling of CO2 concentration in the atmosphere within the range of 1.5 to 4.5°C (IPCC, 2013).  429 

As CO2 has a more complex interaction in the atmosphere and can not be sufficiently modelled with a 430 
single exponential decay, we define the RF for CO2 as a sum of exponentials (Aamaas et al., 2013): 431 

 
ሻݐைమሺܨܴ ൌ ைమܣ ൝ܽ ܽ ൭1 െ ݔ݁ ൬െ

ݐ
߬
൰൱

ூ

ୀଵ

ൡ (11) 

where ܽ is the weight of each exponential, which by definition have to sum to one (∑ܽ ൌ 1), and ܫ is 432 
the number of exponentials. We follow Joos et al. (2013) and use four exponentials and weights, and 433 
randomize the multiple lifetimes and coefficients so that the coefficients always sum to 1, following 434 
Olivié and Peters (2013). The use of four different time scales was found to be sufficient to model 435 
CO2’s behavior in the atmosphere compared to advanced climate models (Olivié and Peters, 2013). 436 
Correlations between the parameters were implemented for CO2 and IRFT, also based on Olivié and 437 
Peters (2013), but the effect of the correlations on temperature results was found to be small (less than 438 
1% of AGTP50 value for CO2).  439 

Estimates from the literature are used as the median (Fuglestvedt et al., 2010) and estimates of 440 
uncertainty as spread of the distributions (Table 4 and 5). For the non-reactive pollutants, we 441 
randomized the single RF and lifetime values, as these are represented by only a single decay function. 442 
The RF used in the calculations includes the indirect effects of chemical reactions from the ozone 443 
precursors (CO, NOx and NMVOC), which were perturbed similarly as the other pollutants. This 444 
accounts for three indirect forcing effects: formation of O3 (causing positive RF by CO, NOx and 445 
NMVOC), changing CH4 levels (causing positive RF by CO and NMVOC, and negative RF by NOx), 446 
and CH4 induced O3-effect (causing positive RF by CO and NMVOC, and negative RF by NOx) 447 
(Aamaas et al., 2013). The indirect effect of SO2 is included by scaling the metric value, where the 448 
indirect effect of SO2 is estimated to be about 175% of the direct effect (Aamaas et al., 2013). This is a 449 
crude estimate, and while the indirect effect may be more uncertain than the direct effect, we use the 450 
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same uncertainty for the direct and indirect effects due to lack of pollutant specific data (Boucher et al., 451 
2013). 452 

Our analysis of uncertainty contributions from emissions and metric parameters uses Absolute GTP 453 
(AGTP) values with units of temperature change (in Kelvin or °C). When later allocating temperature 454 
data in the economic model, we also use GTP values in units of CO2-equivalent emissions for 455 
comparison. The GTP values are calculated by normalizing the AGTP values with reference to the 456 
AGTP values for CO2. When we connect the components for a full MC analysis, we choose a single 457 
time horizon for computational reasons. As discussed elsewhere (Fuglestvedt et al., 2010), choosing a 458 
time horizon includes value judgment, and is not based solely on a scientific judgment. We choose to 459 
focus on the impact at 50 years (AGTP50 and GTP50), as this is both consistent with current literature 460 
(Myhre et al., 2013b), and within reasonable time for when to expect global warming to exceed 2 461 
degrees (Joshi et al., 2011; Peters et al., 2013). 462 

 463 

Results 464 

Estimated uncertainties are used to create distributions on all data points. To analyze how various 465 
stages of the cause-effect chain contribute to overall uncertainty, we introduce uncertainty separately 466 
in each part of the chain before combining them all together (Figure 1). We first show uncertainties 467 
resulting from (1) the economic data only, (2) the emissions data only, and (3) the metric calculations 468 
only. The final section (4) connects these three parts together to follow uncertainty through the entire 469 
cause-effect chain. The results show uncertainty propagation from consumption to global temperature 470 
change. The analysis is based on 10,000 MC runs. 471 

 472 

MRIO uncertainty 473 

In this section, we assume there are no uncertainties on the territorial emissions data or emission 474 
metrics, thus the MRIO model uses unperturbed median estimates of GTP50 values for all pollutants 475 
when allocating emissions to consumers, and uncertainties are purely dependent on parametric 476 
uncertainty in the input data into the MRIO. In our analysis each of the 129 countries has 57 producing 477 
sectors (not including households as they are considered final demand in the model, and therefore not 478 
included in the processing), and thus the MRIO table has 7353 rows and columns. We emphasize here, 479 
but discuss later, that we consider parametric uncertainties and not structural uncertainties.  480 

Table 6 shows uncertainties in emissions embodied in imports and exports, as well as consumption, 481 
due to perturbations only on the economic dataset. The exports indicate goods that are produced 482 
domestically but consumed abroad, while the imports indicate goods produced abroad but consumed 483 
domestically. The uncertainties in exported emissions are solely due to uncertainties in domestic 484 
economic data, thus reflecting the pattern of developed countries having higher uncertainties. 485 
Uncertainties in imported emission are generally higher than exported emissions, as the imports come 486 
from a number of different regions of which many may have high uncertainties (e.g. emerging and 487 
developing economies).  488 

For the largest consumption paths, the consumption perspective is not substantially more uncertain 489 
than the corresponding territorial view due to economic uncertainties. Following the largest 490 
international fluxes embodied in trade from Davis and Caldeira (2010) aggregated over all sectors, we 491 
find 2% uncertainty in emissions embodied in products exported from China to USA, 2% uncertainty 492 
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from China to Western Europe, 3% from China to Japan and 1% from USA to Western Europe from 493 
economic uncertainties only. These fluxes are mainly dominated by the largest sectors, to which our 494 
method has assigned the smallest uncertainties. The export from China to USA mainly originates in 495 
the manufacturing sectors, which combined is one of the largest Chinese sectors, therefore with 496 
relatively low uncertainties. Annex B countries are assigned lower uncertainties than non-Annex B 497 
countries, which explains the relatively low uncertainty from USA to Western Europe. 498 

For smaller paths, there are much higher economic uncertainties. More than 20% of the international 499 
trade routes have a higher uncertainty than 10% (total number of trade routes is 128 regions ×128 500 
regions), while the median of all is 6% uncertainty. The uncertainties in consumption emissions for the 501 
top emitters are very low for two reasons: (1) the effect of summations and aggregations reduce the 502 
uncertainties on the national level (Equation 4; much higher values are seen on a sectoral level), and (2) 503 
the distributions we give the perturbed data in the larger sectors are relatively small.  504 

Since we start from the raw GTAP data to construct the MRIO table, and normalize and invert the 505 
MRIO table, a vast number of summations and multiplications are done with the initial perturbed data 506 
(inversion in a single MC ensemble requires more than 1012 operations, which was estimated using the 507 
Lightspeed Matlab toolbox; (Minka, 2014)). Following RSS uncertainty propagation, the relative 508 
uncertainty will decrease when adding equally sized numbers with equally sized uncertainty (not an 509 
unrealistic assumption for IOA). Thus, the relative uncertainty on the sum of a row in the MRIO (the 510 
output) will depend on the number, ݊, of large data points (Equation 4). This problem can be avoided 511 
by using a quadratic programming approach to rebalance the sum to a given uncertainty (as we do for 512 
the emissions data), but we do not do this as a) it is too computationally expensive, and b) it would 513 
require balancing the entire MRIO table to get consistent sums. This problem is difficult to negotiate 514 
given the size of the database we are using, and consequently this exerts a downward pressure on 515 
MRIO uncertainties. Because of this, and because uncertainty ranges of input values are small for the 516 
largest and most important sectors, the final results have small uncertainties. A valid question is then 517 
how reliable the uncertainties are. 518 

The “unfitted” and “fitted” data from Table 19.6 in the GTAP documentation (Fig. 2) act as a simple 519 
sensitivity analysis to our applied uncertainties, although since this table only samples the very largest 520 
deviations it is not representative of the uncertainties in the entire database. When we use these we 521 
find that the uncertainties are much larger for the largest emitters (between 160% and 400% 522 
uncertainty for consumption-based emissions), and for small and medium sized countries the 523 
uncertainties becomes unrealistically large. Thus, the results are clearly sensitive to the input 524 
uncertainties. This is expected as the input uncertainties are outliers in the GTAP database, thus the 525 
uncertainties are known to be large. As a consequence the vastly perturbed values lead to ill-defined 526 
MRIO tables (outside of machine precision), which will compromise accuracy in the final results (see 527 
Method discussion on skew distributions and small data points). However, as discussed earlier, using 528 
the difference between input and output values as a proxy of uncertainty is not straightforward. E.g. 529 
the first data point in Table 19.6 indicate an input values of 2 billion USD and an output value of 132 530 
billion USD, where the difference (relative to the initial value) can be interpreted as a change of 531 
6500%. This uncertainty is vast, and many data points have much larger differences. Because of these 532 
difficulties, and since the results are only valid for specific sectors, we don’t show regional results 533 
from this analysis, but only use it for illustrative purposes.  534 

Overall, we find small uncertainties on the MRIO results, however, the uncertainties on the end results 535 
are a function of the uncertainties on the input values, as shown by the sensitivity analysis. 536 
Furthermore, the input uncertainties are estimated from small amounts of data and many assumptions, 537 
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making the uncertainty estimates on the end results less robust. Although our results are supported by 538 
other studies that have performed parametric uncertainty analysis (Lenzen et al., 2010; Bullard and 539 
Sebald, 1988b; Peters, 2007), structural uncertainties in MRIO analysis is found to be larger (Peters et 540 
al., 2012). Thus we suggest that MRIO uncertainty may be best evaluated using a combination of 541 
structural uncertainties (model comparisons) and parametric Monte-Carlo uncertainties.  542 

 543 

Emissions 544 

At the global level, uncertainties in emissions are known from previous studies (Table 1), which are 545 
used to estimate uncertainties of emissions occurring from production at the sectoral and regional level. 546 
Figure 5 shows the uncertainty of all data points (7482 sectors, 129 regions and global aggregations) 547 
for all pollutants. Each data point’s uncertainty is dependent on the sector size, the region’s GDP and 548 
whether the region is a developed or developing country. Different activities are associated with 549 
different emissions, thus not all sectors in all regions include emissions from all pollutants. 550 
Additionally, the PFCs and HFCs groups are aggregates of several pollutants, thus the spreads are 551 
based on different amounts of data.  552 

The red boxplots in Figure 5 shows the sectoral distributions of the relative uncertainties, not including 553 
data points with zero uncertainties. Aggregations of sectors to individual countries (blue boxplots) 554 
lower the uncertainty ranges, depending on the sectors’ impact on national totals (NF3 is a special case, 555 
where only one sector in each region has emissions, thus sectoral and regional uncertainties are the 556 
same). The median values for the boxplots indicate the skewness of the distributions. The distributions 557 
often have two distinct peaks (not visible in the boxplots), which are developed and developing 558 
countries, where the latter group has higher uncertainty. The global aggregations are results of national 559 
totals, which are dominated by large regions (e.g. China and USA). The bottom-up global 560 
uncertainties are not constrained by top-down estimates, as we are not using aggregated global 561 
emissions in the end results. They are, however, all (except NF3 due to few data points) lower than the 562 
input estimates from Table 1 due to the aggregation effect. Small regions with low emission and high 563 
uncertainties thus have little effect on the global uncertainties. 564 

The well-mixed GHGs (WMGHG; CO2, CH4, N2O, HFCs, PFCs, SF6, NF3) generally have lower 565 
emissions uncertainties (9% uncertainty for the aggregated sum) than the short lived pollutants (BC, 566 
OC, SO2, NH3; 14% uncertainty) and precursors (CO, NMVOC, NOX; 19% uncertainty). The 567 
WMGHGs accounted for 39.4 ± 1.5 Gt CO2-eq. emissions (using GTP50), while the short-lived 568 
pollutants accounted for -4.6 ± 0.6 Gt CO2-eq. and the precursors accounted for 0.4 ± 0.1 Gt CO2-eq. 569 
(where the two last groups have a mix of warming and cooling effects). Uncertainties in pollutant 570 
aggregates for emissions (tonnes) and GTP50 (CO2-eq.) values only include emission uncertainties, 571 
but are different due to different weighting of pollutants and due to mixing of cooling and warming 572 
effects. Uncertainties of territorial emissions from developing countries (54% of global emissions 573 
using GTP50) have a median value of 32%, while developed regions have a median uncertainty of 574 
16%. These numbers are dominated by the uncertainty of CO2, and usually only small variations are 575 
seen due to other pollutants.  576 

Globally, most emissions occur in the electricity generation sector (28% of global emissions using 577 
GTP50) and manufacturing sectors (25%) (see SI for sector aggregations). Uncertainties in emissions 578 
(tonnes) from electricity range from 19% for CO2, 27% for SO2 and 60% for NOX, which are the most 579 
important pollutants (which has the largest contributions to the sectoral GTP50 value). For energy-580 
intensive manufacturing, CO2 (7% uncertainty), SO2 (8%), and CH4 (52%) are the most important 581 
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pollutants. In the non energy-intensive manufacturing sectors, CO2 (8% uncertainty), SO2 (16%), and 582 
HFCs (21%) dominate.  583 

For agriculture, CH4 (21% uncertainty) and N2O (26%) are equally important to the GTP50 value, 584 
while CO (37%) comes third. CH4 has less uncertainty coming from agriculture than energy-intensive 585 
manufacturing, since for CH4 the agriculture sector is much larger, which is consistent with top-down 586 
estimates (Kirschke et al., 2013). The household sector emits mainly CO2 (8% uncertainty), BC (156%) 587 
and OC (140%), due to household fuels and private transportation. The transport sectors consists 588 
mainly of CO2 (5%), SO2 (9%) and NOX (17%). Mining, services, and food sectors are small in a 589 
production view, and consist mainly of CO2 (4%), CH4 (16%) and SO2 (9%). These estimates are 590 
aggregates of sectors and regions (and gases for HFCs and PFCs), thus disaggregated data have larger 591 
uncertainties. 592 

 593 

Emission metrics 594 

Metric (temperature) values have an uncertainty range for the different pollutants and different time 595 
horizons, due to the perturbed metric parameters (RF, lifetime, and climate sensitivity). This includes 596 
uncertainties from mapping emissions to atmospheric concentrations through the global carbon cycle, 597 
which is represented by the relatively uncertain climate sensitivity. Figure 6 shows all pollutants on 598 
the same scale using AGTP for 2007 global emissions, with both relative and absolute uncertainties. 599 
The net temperature response (black dotted line) goes from negative to positive over the first few years, 600 
before the short-lived species decay and the net effect becomes dominated by CO2 in the long run. The 601 
relative and absolute uncertainty of the net effect is largest in the first few years, and becomes roughly 602 
stable from 50 to 100 years. The strong temperature effects of SLCFs and thus the high absolute 603 
uncertainties of the mix of pollutants increase the net uncertainty in the first few years, but CO2 604 
dominates the uncertainty after 20 years. 605 

The top contributors to absolute uncertainties in the first year are SO2, BC and NH3. BC and SO2 have 606 
similar relative uncertainties, but since the emissions of SO2 are much larger, it has five times the 607 
absolute uncertainty. OC, BC and SO2 have the largest uncertainties after approximately 10 years 608 
(except for NH3 due to its significantly larger RF uncertainty), as the uncertainties are dominated by 609 
RF and climate sensitivity uncertainties. NOX has a very high relative uncertainty after 7 years because 610 
its temperature effect goes from positive to negative around this time.  611 

Figure 7 shows a breakdown of the parameters contributing to relative uncertainty of the AGTP values 612 
by pollutant (see SI Figure for absolute uncertainties). MC runs with separate metric components 613 
individually perturbed were done to isolate the individual contributions to uncertainties. For 614 
comparison, uncertainties on global emissions are also included in the graph, although not included 615 
when perturbing all components. Uncertainties on emissions and RF do not depend on time horizon, 616 
thus they are straight lines. However, as the precursors have combined effects (see methods) the 617 
uncertainty on RF on CO, NMVOC and NOX actually change with time due to the different effects 618 
having different lifetimes.  619 

For the first three years the total uncertainty for most pollutants (except the SLCFs: BC, OC, SO2 and 620 
NH3) is completely dominated by the first decay parameter of the climate sensitivity, which has a 621 
median value of 2.6 ± 1.2 years (Olivié and Peters, 2013). For the WMGHGs, the parameter continues 622 
to dominate to approximately 6-8 years where the uncertainty of the climate sensitivity component 623 
takes over and continues to dominate to at least 100 years. Between them they explain the largest 624 
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contributions of uncertainties to the metric values for all time horizons. While the decay parameter 625 
explains the large uncertainties in the first years, the climate sensitivity parameter explains the 626 
increasing relative uncertainties towards 50 and 100 years. The climate sensitivity parameters are 627 
highly sensitive to time horizon since they have different effects at different times. For SO2 and NH3, 628 
the first years are also effected by high uncertainties from RF. Other short lived pollutants (BC and 629 
OC) have large contributions from both emissions and RF values.  630 

At 50 years, CO2 and CH4 have additional significant contributions to uncertainties from lifetimes. 631 
Since they both have lifetimes within the ranges of the graph, they show variability with time horizon. 632 
The shorter and longer lived pollutants show little variations in lifetime uncertainties over time 633 
horizons, as lifetimes are either too short or too long to have any effect within 100 years at this scale. 634 
The uncertainty on lifetime for several gases are assumed (Table 5), however, the small impact from 635 
lifetime uncertainties on the metric values indicate that small changes of the median lifetimes will for 636 
most pollutants have very little effect. At 50 years the short-lived pollutants have uncertainties in the 637 
range between ±95% and ±165%, while the WMGHGs have uncertainties in the range between ±35% 638 

and ±70%. The precursors have uncertainties around ±65%. 639 

After 100 years, only the WMGHGs still have a significant temperature effect, which means that the 640 
SLCFs do not contribute with absolute uncertainties. In relative terms, shorter lived pollutants have a 641 
rise in uncertainties from 50 to 100 years, while the opposite is true for the longer lived pollutants. The 642 
last group is then completely dominated by climate sensitivity uncertainties. Most pollutants have 643 
relatively low uncertainty contributions from emissions as the global estimates are low, except for BC 644 
and OC. On a regional and sectoral level, the uncertainties from emissions are usually much more 645 
dominant, which shifts the total uncertainties at all time horizons.  646 

The literature consists of both studies which allocate emissions using the absolute metric (AGTP) and 647 
the normalized metric (GTP). The GTP metric values are scaled with the AGTP values for CO2. When 648 
running the MC analysis we create AGTP values for every iteration, which implies that CO2 always 649 
will be normalized by itself (by definition, GTPCO2=1). Therefore, the uncertainties of total emissions 650 
using GTP values are quite different to AGTP uncertainties since the dominant species (CO2) has no 651 
metric uncertainty, and the uncertainties on other species are potentially amplified due to the 652 
uncertainty of AGTPCO2 values.  653 

A second effect of using the GTP values is that the normalization of AGTP values include the climate 654 
sensitivity in both the numerator and denominator, which means that GTP values are less sensitive to 655 
climate sensitivity uncertainties than AGTP values (i.e. uncertainties are correlated). Table 7 illustrates 656 
the difference between uncertainties in AGTP, GTP and GWP values. GTP uncertainties are typically 657 
±10-15 percentage points below those of AGTP, and since the AGTPCO2 uncertainties are not strongly 658 
dependent on time horizons, they do not affect the uncertainties over different time horizons for other 659 
pollutants’ GTP values much. GWP calculations use the same parameters as with GTP, and although 660 
we do not use GWP in our results, we include the uncertainties in the table for comparison. Overall, 661 
we find less uncertainty using GWP than the other metrics (Reisinger et al., 2010), except for NOx. 662 
The GWP calculations are not dependent on the highly uncertain climate sensitivity, since it does not 663 
relate to global temperature change. Thus it is expected to have lower uncertainties. NOx has 664 
overlapping indirect effects, with highly uncertain RF values, which suggests that the GWP20 values 665 
can be both negative and positive, with a median close to zero. Thus it has a very high uncertainty. 666 

A few other studies have investigated the uncertainties of AGTP and GTP values, but it is difficult to 667 
compare those which have as there are many different sources of uncertainties from many different 668 
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models and datasets. Our GTP uncertainty results are generally higher than Olivié and Peters (2013) 669 
estimates, since we also include uncertainties on lifetimes and RF values of non-CO2 species. Their 670 
GTP50 uncertainties for BC (-62–+67%), CH4 (-38–+48%), N2O (-16–+25%) and SF6 (-17–+25%) are 671 
higher than their GWP uncertainties, mainly due to the dependence on the uncertain climate response 672 
(Olivié and Peters, 2013). An other study (Fuglestvedt et al., 2010) found similar uncertainties for 673 
GTP50 values for BC (around 200%) and smaller values for CH4 (50%) compared to our results, and 674 
essentially zero for N2O, when only looking at sensitivity to the climate response. N2O is a special 675 
case as it has a similar average lifetime to CO2, thus it has similar climate sensitivity uncertainty as 676 
CO2, which can be seen in Figure 7 for AGTP values. The normalization of GTP therefore cancels the 677 
climate sensitivity effect. Based on an evaluation of several studies (including Reisinger et al. (2010)), 678 
Myhre et al. (2013b) assessed the uncertainty of CH4 for GTP100 to be ±75%, which is close to our 679 
estimate. Furthermore, Joos et al. (2013) found uncertainties for CO2 AGTP values at 50 (±45%) and 680 
100 years (±90%), based on the spread of multiple climate models. Overall, we find the uncertainties 681 
to be consistent with other studies, but highly variable depending on datasets and choices.  682 

Uncertainty on all components 683 

Total uncertainties in production- and consumption-based emission estimates reflect a combination of 684 
uncertainties from the economic data (IO data for regions and sectors), emissions data (tonnes of the 685 
pollutants occurring in regions and sectors), and metric parameters (RF and lifetime for the pollutants, 686 
and the resulting climate response). Additionally, the emissions of a region in a consumption 687 
perspective is a combination of domestic emissions as well as emissions occurring in other regions 688 
(due to emissions embodied in trade), which changes the mix of pollutants and inherits uncertainties 689 
from the regions and sectors they occur in. To facilitate our discussion we aggregate the 58 economic 690 
sectors (post analysis) to 9 sectors. The results are strongly dependent on different perspectives: (1) 691 
production and consumption, (2) relative or absolute metric values, (3) time horizon of metric, (4) 692 
global, regional or sectoral level, and (5) mix of pollutants included. To illustrate the largest 693 
differences, we focus on comparing points 1, 2 and 4, as 3 has been discussed extensively elsewhere 694 
(Myhre et al., 2013b). 695 

In the allocations of metric values in the MRIO model, we choose to use 50 year time horizon, as 696 
discussed earlier: it is consistent with other recent studies, and consistent with the 2 degree policy 697 
target. Because of the differences between absolute and relative metric uncertainties, we compare both 698 
when including perturbations on all components in the last section. 699 

Figure 8 shows uncertainties from the components with aggregated sectors and the top emitting 700 
regions, using GTP50 production emissions. The three different bars represent individual MC 701 
ensembles with only the respective components perturbed. At the sector level, the uncertainties in 702 
emissions data is generally the smallest (from 6% to 24% for sectors), except for households where 703 
large and highly uncertain emissions of BC and OC occur. Uncertainty in metrics has a range from 14% 704 
to 63%, being especially large in sectors with non-CO2 emissions (e.g. Agriculture and Mining). 705 
Pollutants with higher relative uncertainty on emissions compared to uncertainty on metric values at 706 
GTP50 (including BC, OC, and NF3 at disaggregated levels), will tend to give higher uncertainty on 707 
emissions, while the other pollutants will give higher uncertainty on metrics. 708 

The sector aggregation means that high and low uncertainties from different sector sizes are mixed, 709 
and thus single sectors like construction have a higher uncertainty than the aggregated sector Services. 710 
Disaggregation from the global sector perspective to national level and further to sector level reveals 711 
that emissions uncertainties are a function of aggregations (sectoral uncertainties are adjusted to 712 
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specific national uncertainties), while the metric uncertainties are not directly dependent on sector 713 
aggregation and will therefore not scale the same way. Consequently, disaggregated levels generally 714 
find much higher emission uncertainties than metric uncertainties. For the top 10 emitters, 715 
disaggregated sectoral emission uncertainties have a median value between 13 and 94 percentage 716 
points above the national aggregate, while the metric uncertainties have a median value between 4 and 717 
16 percentage points above the national aggregated level. 718 

Furthermore, emission uncertainties are scaled according to sector sizes, whereas metric uncertainties 719 
are not. This means that emission uncertainties are a combination of mix of pollutants and mix of 720 
sector sizes, while metric uncertainties only reflect the mix of pollutants (where uncertainty is 721 
dominated by temperature response). This makes the global sectoral and national level quite different, 722 
since the national level represent various sector sizes with uncertainties according to the functional 723 
relationship, while the global sectors might only represent large or small sectors. Because of this, 724 
emission uncertainties usually dominate at the national level as the regions are less aggregated (each 725 
region consists of 58 sectors) than the global sectors (each consisting of 129 regions). The difference 726 
in regional uncertainties is attributed to different mix of territorial pollutants being emitted, the sector 727 
sizes, size of economy and if the regions are developed or developing nations.  728 

Uncertainties from the different components do not linearly contribute to total uncertainty in the end 729 
results, thus we calculate the total uncertainty in two different ways: an MC run with everything 730 
perturbed, and a RSS approach combining the individual components. While the MC run is considered 731 
the more robust method since it takes into account all data points, including the effect of error 732 
cancelling, the RSS method is an approximation of error propagation which assumes no correlation 733 
and normal distributions. The two methods agree in most cases, which imply that there are only small 734 
correlations between the components and that the global-level data is close to normally distributed. 735 
This further implies that a full computationally intensive MC run with all components perturbed might 736 
not be necessary in ideal cases, as the RSS method can approximately derive the results. 737 

Figure 9 shows uncertainties from the consumption perspective, thus including MRIO uncertainties. In 738 
general, the emissions embodied in imports and exports inherit uncertainties from the economic data 739 
of the region where the emissions occur. Consumption emissions include territorial emissions and 740 
emissions from imports, while they exclude emissions from exports. Since our MRIO uncertainties 741 
only include parametric uncertainties they tend to be small due to the cancellation effect discussed 742 
earlier, which is consistent with other similar studies (Lenzen et al., 2010; Wilting, 2012; Bullard and 743 
Sebald, 1988a; Peters, 2007). Structural uncertainties, including differences in data sources, MRIO 744 
models and definitions of consumption-based emissions, may be a larger source of uncertainty 745 
(Andrew and Peters, 2013). The differences in the datasets and methods used to calculate 746 
consumption-based CO2 emissions have shown to be relatively small, with roughly 10% for USA for 747 
2007 (Peters et al., 2012). Although various studies use different input data and models, Peters et al. 748 
(2012) found the results of major emitters to be robust across studies, even though 10% differences are 749 
not uncommon.  750 

The top emitting regions are large economies, and therefore have mostly large economic sectors and 751 
therefore low aggregated uncertainties. The consumption perspective also mix pollutants in regions 752 
and sectors since the supply-chain is taken into account, leading to dilution of the sectoral and regional 753 
variability since multi-sectoral dependence for a single consuming sector is common (e.g. the 754 
production of a car needs input from other sectors, especially electricity). Households are considered 755 
final demand in the MRIO model, and therefore their emissions are not allocated through the 756 
economic model and thus do not inherit economic uncertainties. 757 
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Contrary to the production perspective, the national consumption-based emissions are more dominated 758 
by metric uncertainties, due to different mix of pollutants. Disaggregation of the consumption 759 
emissions reveals that metric uncertainties usually dominate the sectors for the top emitters, and that 760 
uncertainties in economic data also usually increase more than the emission uncertainties at the sector 761 
level. For these nations, disaggregated sectoral emission uncertainties have a median value between 2 762 
and 11 percentage points above the national aggregate, while the metric uncertainties have a median 763 
value between 3 and 9 percentage points above the national aggregated level, and economic 764 
uncertainty have an increase between 4 and 10 percentage points. 765 

Figure 10 show GTP values and uncertainties for the same sectors and regions, for both territorial and 766 
consumption perspectives. Comparing the allocation differences due to different perspectives help 767 
explain the change in uncertainties when going from production to consumption. Agriculture and 768 
mining see the largest sectoral decrease in uncertainties due mainly to different mix of pollutants 769 
(increased CO2), while transport and non-energy intensive manufacturing see an increase due to 770 
increased allocations of non-CO2 emissions like SO2. Similar differences can be seen for regions: India 771 
and Brazil are uncertain due to SO2 and CH4 emissions, while the US consists mostly of CO2.  772 

Most regions have quite similar uncertainty in both perspectives, indicating that the economic 773 
uncertainties do not play a major role for the large regions. The difference of uncertainties in the 774 
allocation perspectives can mainly be attributed to: (1) different mix of pollutants and (2) different 775 
allocations of emissions to sectors. The first effect gives net emission importers higher uncertainty in 776 
some sectors, due to highly uncertain pollutants (e.g. the share of non-CO2 emissions in the UK is 30% 777 
higher using consumption-based emissions, assuming absolute values), while other sectors decrease 778 
uncertainties due to the increased allocation of CO2. The second effect is introduced when aggregating 779 
sectors to national level. The production emissions in a region are often dominated by a few large 780 
sectors, while the consumption-based emissions are distributed more evenly among the same sectors. 781 
This difference in distribution cause different relative errors on the aggregated result, even tough the 782 
sectoral uncertainties and the sum of emissions might be the same. Thus, on the national level, this 783 
effect creates smaller uncertainties. The combined results may give consumption-based emissions less 784 
uncertainty than production emissions on the national level (usually within 1-2% for the top emitters).  785 

In the SI we demonstrate how to calculate consumption uncertainty analytically for a simple one-786 
sector, two-region world economy. This reveals that the consumption uncertainty can be lower, under 787 
conditions that are not unusual. How this analytical solution generalizes to larger systems requires 788 
further research. A similar finding was also found by Peters et al. (2012). 789 

The AGTP emissions include uncertainties on CO2, thus sectoral and regional uncertainties are larger 790 
and differences are reduced since it is the most common pollutant (Figure 11). In this view, e.g. 791 
Chinese and US emissions overlap greatly within the given uncertainties, suggesting that the ordering 792 
is uncertain. The corresponding GTP values have less overlap. This may have large policy 793 
implications in terms of responsibility. Other choices may also change the relative importance and 794 
uncertainty of regions and sectors. Choosing 20 years as time horizon would give lower relative 795 
uncertainties for all pollutants because of lower uncertainties for lifetime and climate sensitivity, 796 
except for SO2, BC, OC and NH3 due to their short-lived nature, thus regions and sectors with large 797 
emissions or consumption of SLCFs will be given larger uncertainties. Choosing 100 years will in 798 
most cases give higher relative uncertainties and give SLCFs less importance (see Figure 7). Overall, 799 
we find the uncertainties to be highly sensitive to methods and choices. 800 

 801 
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Discussion 802 

This study investigates parametric uncertainties in the temperature response to territorial- and 803 
consumption-based emissions with uncertainty contributions from economic data, emissions data and 804 
metric parameters. Structural uncertainties (dataset and model differences) and other contributing 805 
factors such as emission metric, attribution methods and indicators of climate change may be equally 806 
important when assessing uncertainties, but we did not investigate those here (den Elzen et al., 2005; 807 
Höhne et al., 2008; Peters et al., 2012; Moran and Wood, 2014). Earlier studies have shown relatively 808 
low uncertainties when estimating countries’ contributions to climate change. Prather et al. (2009) 809 
estimated an uncertainty range of -27% to +32% for the global warming caused by Annex I countries 810 
for the period 1990–2002 (0.11 ±0.03°C using 16–84 % confidence interval). Similar to them, we find 811 
that climate modeling generally has the largest contribution to total uncertainty on an aggregated level. 812 

Our analysis has shown that uncertainties change depending on the (1) allocation perspective, (2) 813 
pollutants included, (3) metric and (4) aggregation. These changes in uncertainties may have 814 
implications for future mitigation policies. 815 

First, we found little difference in the uncertainties in production- and consumption-based emissions. 816 
It is often assumed that consumption-based emissions are more uncertain (Peters, 2008). Consistent 817 
with others, we find that parametric uncertainties are smaller, while structural uncertainties are 818 
generally larger (Peters et al., 2012; Moran and Wood, 2014). Lenzen et al. (2010) found lower 819 
uncertainties for the UK carbon footprint (relative standard deviation of 5% in 2001) than our results 820 
(±9%), but this is probably because we include other pollutants and metric uncertainties. In a recent 821 
study, Moran and Wood (2014) found that parametric uncertainties in consumption-based emissions 822 
were generally lower than the uncertainty in territorial-based emissions and the structural uncertainties 823 
(model spread). They found that most major economies’ carbon footprint results are within 10%, 824 
consistent with our results. However, it is difficult to gauge how robust the parametric consumption-825 
based emission uncertainties are. On the one hand, our chosen input uncertainties may be 826 
underestimated but there exists scant data to verify this. Increasing the uncertainties requires the need 827 
to rebalance the MRIO tables used in the analysis, which may introduce correlations and additional 828 
uncertainties resulting from the balancing process. Due to the computationally expensive nature of this 829 
type of analysis, further work would be required to assess the implications of rebalancing for each 830 
perturbation. On the other hand, the small uncertainties may reflect a realistic cancelling of numerous 831 
random errors (Lenzen et al., 2010). Settling these issues is a topic of future research. 832 

Second, including SLCFs creates larger differences between regions’ and sectors’ uncertainties, where 833 
e.g. emissions from Brazil and India are much more uncertain than those of the other top 10 emitters 834 
due to large emissions in agriculture. Sectors such as agriculture, electricity and manufacturing have 835 
large non-CO2 emissions, causing larger cooling and warming effects and additional uncertainties on 836 
the net change. It is often argued that a shorter time horizon (e.g. 20 years) places more emphasis on 837 
the short-lived pollutants relative to CO2, while with a longer time horizon (e.g. 100 years) the 838 
warming from CO2 dominates. There is also a similar trade off with uncertainty: in the short term, the 839 
uncertainties are much larger due to the SLCFs, and thus the temperature effect of policies to reduce 840 
SLCFs has a more uncertain outcome; in the long-term, the more certain temperature effects of CO2 841 
dominate and the uncertainty due to the SLCFs becomes less relevant. Thus, uncertainty may tend to 842 
favor a more certain outcome on CO2 mitigation compared to SLCFs. This hypothesis would require 843 
deeper analysis using economic and other models that incorporate uncertainty into decision making. 844 
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Third, the GTP values have much smaller uncertainties than the AGTP metric, due to 1) the 845 
dominance of CO2 which has GTPCO2=1 and no uncertainty by definition and 2) the scaling by 846 
AGTPCO2 in the denominator which effectively reduces the impact of climate-sensitivity uncertainty in 847 
the GTP. This suggests that a normalized metric, GTP, may be better than an absolute metric, AGTP, 848 
in terms of reducing uncertainties. In perspective, the underlying uncertainties are ultimately the same, 849 
but they have just been shifted to different variables and scaled out. Thus, a GTP focus may give the 850 
impression of greater uncertainty in CO2, while the uncertainty is really translated to the GTP of other 851 
species. Other metrics, like the GWP, have lower uncertainties then the GTP as they do not include the 852 
response of the climate system (Olivié and Peters, 2013). Despite the metric uncertainties, it is unclear 853 
what role they should play in policy. From a scientific point of view the uncertainties are important, 854 
but in policy, once a metric and its parameters are chosen, their uncertainties are likely to be 855 
disregarded in subsequent policy applications. This is an area that needs further consideration.  856 

Fourth, aggregation changes the importance of the uncertainty contribution between the different 857 
components (economic data, emissions data and metric), as only the emissions data uncertainty have 858 
been estimated at both sector and regional level, while they all are affected by reduction in 859 
uncertainties by aggregation. On the global sectoral level, uncertainties are dominated by metrics. For 860 
the regions, emissions uncertainties often dominate over metric uncertainties. At the sector level, much 861 
larger variations are seen, with even economic uncertainties dominating in very small sectors. Thus, 862 
the role of uncertainties may differ depending on the level of aggregation.  863 

These results presented are broadly in line with the existing literature on this topic (Wilting, 2012; 864 
Fuglestvedt et al., 2010; Joos et al., 2013; Lenzen et al., 2010; Myhre et al., 2013b; Olivié and Peters, 865 
2013). However, our results are limited by the quality of the uncertainty information available as input 866 
into our analysis. Despite the widespread usage of the input data in a wide variety of studies, there still 867 
exists virtually no uncertainty information on economic data, and limited data on the uncertainties in 868 
emission statistics and metric parameters. 869 

A major difficulty of uncertainty analysis is the issue of correlations.  There is a large need for 870 
addressing correlations in datasets and uncertainties, as these may have significant impacts on the 871 
results. We see several places where correlations could be important: (1) correlations in the metric 872 
parameters, (2) balancing constraints (e.g., if the production of electricity is low, then the consumption 873 
of electricity has to be low), (3) between datasets (e.g., a perturbation in fossil fuel use in the economic 874 
dataset should be reflected by a similar perturbation in the emissions dataset), and (4) in each MC 875 
ensemble the perturbation given to a particular region/sector combination may be correlated with other 876 
region/sectors (e.g. if Norway’s emissions from cement production in one ensemble are low, then 877 
Sweden’s emissions from the same sector may also be low due to correlations in emissions factors).  878 

In our analysis we have explored correlations for metric parameters (temperature and CO2 IRF), 879 
which we found to have a small effect on the results, which is addressing point 1. The effect of 880 
correlations in the MRIO data, and linkages to emission data through energy consumption, has not 881 
previously been quantified, and this remains an important area of research. Although these correlations 882 
may change the uncertainty outcome, implementation of correlations in emissions and economic data 883 
faces considerable computational and conceptual hurdles. First, due to the large datasets used in this 884 
analysis, the correlation matrix would be prohibitively large (approximately 1015 elements), posing 885 
serious computational issues. Second, there are little or no data indicating correlations in uncertainties 886 
in sectoral economic data or emissions data, and populating a correlation matrix of the necessary size 887 
would therefore be largely guesswork. Given these constraints, we suggest that the best way forward is 888 
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to generate small test cases to assess the importance of correlations in small datasets, but we leave this 889 
for future work. 890 

 891 

Conclusion 892 

We analyzed emissions from 129 countries and 58 sectors with 31 SLCFs and GHGs when estimating 893 
countries’ territorial and consumption-based emissions for 2007. We use top-down uncertainty 894 
estimates to derive sector level uncertainties, and use these to perturb the economic data, emissions 895 
data and metric parameters in a Monte-Carlo model. We find the results are sensitive to some 896 
parameters (such as the uncertainty of the climate response and the datasets) and assumptions (such as 897 
developing countries are assigned twice the uncertainty for emissions and economic data), but 898 
especially to choices regarding allocation perspective, pollutants included, metric used and 899 
aggregation level of the results.  900 

We find only minor uncertainty differences between allocation perspectives (production versus 901 
consumption) for the top regions, and uncertainties in the economic data are very small for the large 902 
countries. Since economic data generally does not have uncertainty information, it was necessary to 903 
estimate the uncertainties of the economic data and there is little data to verify our estimates. At the 904 
sectoral level, larger differences between production and consumption are found. The inclusion of 905 
SLCFs increases both the emissions and metric uncertainties, and gives larger variations between 906 
regions and sectors. A different choice of time horizon would change the prioritization of the gases 907 
and corresponding uncertainties.  At the global level, the metric uncertainty (which is dominated by 908 
climate sensitivity) dominates over emission and economic uncertainty. At the regional level, the 909 
uncertainties from emissions are more important.  910 

Our work points to key areas of future research required to reduce uncertainties. The climate 911 
sensitivity generally dominates uncertainties, and this is where the largest improvements can 912 
potentially be made. Most climate sensitivity literature focuses on the long-term sensitivity, whereas 913 
for metrics (and undoubtedly most mitigation analysis), the temporal path to the equilibrium response 914 
is most relevant (Impulse Response Function). Thus, we suggest much deeper analysis is needed on 915 
the time-evolution of the temperature response. Emission statistics are routinely collected, but 916 
generally have poorly defined uncertainties. Our work indicates that large improvements in the 917 
reporting and analysis of emission uncertainties are needed. Additional metric uncertainties can be 918 
improved through a better characterization of metric parameters (radiative efficiencies and lifetimes). 919 
Reducing uncertainties in metrics and emission statistics will reduce both uncertainties in production- 920 
and consumption-based emissions. The uncertainty in the economic data was necessarily based on 921 
crude assumptions. While we found that the economic uncertainties were small, this result requires 922 
confirmation by more comprehensive analyses, critically including uncertainty correlations, which 923 
were excluded from our analysis. Reducing uncertainties in the economic data will have the effect of 924 
reducing uncertainties in consumption-based emissions only.  925 
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Table 1: Global emissions and uncertainties. The uncertainties indicate the 5%-95% (90%) percentile range. PFCs 1153 
include: C2F6, C3F8, C4F10, C5F12, C6F14, C7F16, CF4, c-C4F8. HFCs include: HFC-125, HFC-134a, HFC-143a, 1154 
HFC-152a, HFC-227ea, HFC-23, HFC-236fa, HFC-245fa, HFC-32, HFC-365mfc, HFC-43-10-mee, following UNEP 1155 
(2012). 1156 

Pollutant Global emissions (kt) Uncertainty Emissions references Uncertainty references 
PFCs 1.47E+01 ±17% European Commission (2011) UNEP (2012) 
CH4 3.25E+05 ±21% European Commission (2011) UNEP (2012) 
CO 9.47E+05 ±25% European Commission (2011) European Commission (2011) 
CO2 3.14E+07 ±8% European Commission (2011) UNEP (2012) 
HFCs 2.68E+02 ±17% European Commission (2011) UNEP (2012) 
N2O 1.02E+04 ±25% European Commission (2011) UNEP (2012) 
NF3 1.58E−01 ±26% European Commission (2011) Weiss et al. (2008) 
NH3 4.92E+04 ±25% European Commission (2011) Clarisse et al. (2009) 
NMVOC 1.60E+05 ±50% European Commission (2011) European Commission (2011) 
NOX 1.27E+05 ±25% European Commission (2011) European Commission (2011) 
SF6 6.17E+00 ±10% European Commission (2011) Levin et al. (2010) 
SO2 1.22E+05 ±11% European Commission (2011) Smith et al. (2010) 
BC 5.22E+03 ±84% Shindell et al. (2012) Bond et al. (2004) 
OC 1.34E+04 ±84% Shindell et al. (2012) Bond et al. (2004) 
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Table 2: Example of perturbations of sectors for a single region r, and the resulting distribution on the national total.  1159 
This bottom-up uncertainty estimate may not be consistent with top-down uncertainty estimates. 1160 

 
Region r 

 
Sector 1 Sector 2 Sector 3 Sector n 

National total 
(sum of sectors) 

Distribution on  
national totals 

Perturbation 1 x11 x12 x13 x1n X1 

    →  XN 
Perturbation 2 x21 x22 x23 x2n X2 
Perturbation 3 x31 x32 x33 x3n X3 
Perturbation i xi1 xi2 xi3 xin Xi 

 1161 

 1162 

 1163 
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Table 3: Metric parameters with uncertainties. Note that the uncertainties are derived from CMIP5 data and Joos et 1165 
al. (2013), but we use the corresponding distributions listed in Table 5 and 6 in the study by Olivié and Peters (2013) 1166 
to account for correlations. 1167 

Parameters Values Unit Uncertainties 
Climate sensitivity f1 0.43 

K/Wm2 ±29% 
Climate sensitivity f2 0.32 ±59% 
Climate sensitivity decay τ1 2.57 

year 
±46% 

Climate sensitivity decay τ2 82.24 ±192% 
CO2 weight a0 0.23  ±20% 
CO2 weight a1 0.28  ±33% 
CO2 weight a2 0.35  ±28% 
CO2 weight a3 0.14  ±30% 
CO2 decay τ0 INF 

year 

– 
CO2 decay τ1 239.6 ±58% 
CO2 decay τ2 18.42 ±68% 
CO2 decay τ3 1.64 ±63% 
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Table 4: RF values and uncertainties. Note that CO, NMVOC and NOx are precursors, which have an effect on O3 1169 
and CH4 concentrations. Because of this, no single RF value can be given. The uncertainties indicate the 5%-95% 1170 
(90%) percentile range. Parameters from IPCC (2007) are taken from Table 2.14, p. 212-213. 1171 

Pollutant RF (Wm-2 kg-1) Uncertainty RF references Uncertainty references 
PFCs 6.40E-12 – 1.06E-11 ±10% IPCC (2007) Myhre et al. (2013a) 
CH4 1.82E-13 ±17% Fuglestvedt et al. (2010)  Myhre et al. (2013a) 
CO - ±24% Derwent et al. (2001) Myhre et al. (2013a) 
CO2 1.81E-15 ±10% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
HFCs 6.74E-12 – 1.53E-11 ±10% Fuglestvedt et al. (2010), IPCC (2007) Myhre et al. (2013a) 
N2O 3.88E-13 ±17% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
NF3 1.66E-11 ±10% IPCC (2007) Assumed 
NH3 -1.03E-10 ±123% Shindell et al. (2009) Myhre et al. (2013a) 
NMVOC - ±41% Collins et al. (2002) Myhre et al. (2013a) 
NOX - ±120% Wild et al. (2001) Myhre et al. (2013a) 
SF6 2.00E-11 ±10% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
Sulphate -3.20E-10 ±50% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
BC 1.96E-09 ±66% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
OC -2.90E-10 ±68% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
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Table 5: Lifetimes and uncertainties. The uncertainty on lifetime for several gases are assumed, but a sensitivity 1174 
analysis revealed that a change of this uncertainty will not have a large impact on the results (see Metric results 1175 
section below). Note that CO, NMVOC and NOx are precursors, which have an effect on O3 and CH4 concentrations. 1176 
Because of this, no single RF value can be given. Values and uncertainties for CO2 are given in Table 3. The 1177 
uncertainties indicate the 5%-95% (90%) percentile range. Parameters from IPCC (2007) are taken from Table 2.14, 1178 
p. 212-213. 1179 

Pollutant Lifetime (years)  Uncertainty Lifetime references Uncertainty references 
PFCs 2600-50000 ±20% Fuglestvedt et al. (2010) Assumed 
CH4 12 ±19% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
CO - ±20% Fuglestvedt et al. (2010) Assumed 
CO2 - - Fuglestvedt et al. (2010) - 
HFCs 1.4-270 [±12%-±29%] Fuglestvedt et al. (2010), IPCC (2007) Myhre et al. (2013a), SPARC (2013) 
N2O 114 ±13% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
NF3 740 ±13% Fuglestvedt et al. (2010) SPARC (2013) 
NH3 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
NMVOC - ±20% Fuglestvedt et al. (2010) Assumed 
NOX - ±20% Fuglestvedt et al. (2010) Assumed 
SF6 3200 ±20% Fuglestvedt et al. (2010) Assumed 
Sulphate 0.01 ±20% Fuglestvedt et al. (2010) Assumed 
BC 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
OC 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
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Table 6: Uncertainties in allocated emissions due to uncertainties in the economic dataset, by top 10 emitters. The 1182 
territorial emissions are not perturbed, thus they have no uncertainty.  1183 

    Region Territorial Exports Uncertainty Imports Uncertainty Consumption Uncertainty 

T
op

 1
0 

em
it

te
rs

 g
lo

ba
ll

y 1 China 7269 1966 1.7 % 400 2.1 % 5703 0.7 % 
2 United States of America 6380 744 1.1 % 1411 1.2 % 7047 0.3 % 
3 Russian Federation 2027 600 1.0 % 216 1.3 % 1642 0.5 % 
4 India 1812 232 2.0 % 186 2.6 % 1766 0.5 % 
5 Japan 1381 257 1.3 % 471 1.4 % 1595 0.5 % 
6 Germany 957 324 0.9 % 498 1.0 % 1130 0.6 % 
7 Brazil 750 127 2.1 % 116 3.1 % 739 0.7 % 
8 Canada 626 194 1.0 % 209 1.5 % 641 0.7 % 
9 United Kingdom 616 134 1.0 % 410 1.1 % 892 0.6 % 

10 Korea 547 158 1.9 % 214 2.4 % 602 1.2 % 
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Table 7: Metric values uncertainties for 20, 50 and 100 years time horizon. All metric parameters (excluding 1186 
emissions) were perturbed. The uncertainties indicate the 5%-95% (90%) percentile range, where the plus-minus 1187 
notation is half of the 90% CI. Numbers are rounded to nearest 5%, as multiple MC runs would give slightly different 1188 
results (usually within 1-2%). 1189 

Pollutants AGTP20 AGTP50 AGTP100 GTP20 GTP50 GTP100 GWP20 GWP50 GWP100 
PFCs ±30% ±35% ±35% ±20% ±20% ±20% ±15% ±15% ±15% 
CH4 ±45% ±70% ±75% ±35% ±55% ±70% ±25% ±30% ±30% 
CO ±45% ±65% ±75% ±35% ±45% ±65% ±20% ±20% ±25% 
CO2 ±35% ±40% ±40% ±0% ±0% ±0% ±0% ±0% ±0% 
HFCs ±30% ±40% ±40% ±20% ±20% ±20% ±15% ±15% ±20% 
N2O ±35% ±40% ±40% ±25% ±25% ±30% ±20% ±25% ±25% 
NF3 ±35% ±35% ±35% ±20% ±25% ±25% ±15% ±20% ±20% 
NH3 ±180% ±165% ±170% ±165% ±150% ±165% ±125% ±130% ±130% 
NMVOC ±50% ±65% ±75% ±35% ±45% ±65% ±20% ±20% ±25% 
NOX ±35% ±65% ±95% ±35% ±50% ±80% ±295% ±150% ±125% 
SF6 ±35% ±35% ±35% ±20% ±20% ±25% ±15% ±20% ±20% 
SO2 ±110% ±95% ±100% ±100% ±80% ±100% ±55% ±55% ±55% 
BC ±125% ±110% ±110% ±110% ±95% ±110% ±70% ±70% ±70% 
OC ±125% ±110% ±115% ±110% ±95% ±110% ±70% ±75% ±75% 

 1190 

 1191 

 1192 

  1193 



 

37 
 

 1194 

 1195 

Figure 1: Flow chart of activities (bold boxes) and the datasets that determine transitions between them (dashed boxes) 1196 
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 1199 

Figure 2: Error distribution of selected GTAP input-output data (taken from Table 19.6 in McDougall (2006) and 1200 
shown as colored circles), and trend lines showing the fit of the general functional relationship explained by Eq. (1). 1201 

Red and blue circles differ due to different methods of estimating the uncertainty.difference between unbalanced and 1202 
balanced data. See the discussion in the text. 1203 
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 1207 

Figure 3: Functional relationship between sector sizes on horizontal axis (in kt CO2 and million US dollars, 1208 
respectively) and relative uncertainty on vertical axis. The red lines outline the range of developing regions, while the 1209 
blue lines show the range of developed countries. Each region has been estimated using a single unique curve, and all 1210 
sectors, depending on their size, will fall on this curve. The form of this relationship is established independently for 1211 

each pollutant. 1212 
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 1216 

Figure 4: Distributions depending on median values and uncertainty. Both distributions have a median = 1, while the 1217 
near-normal distribution (green) has a relative uncertainty of 100%, the skew distribution has a relative uncertainty 1218 

of 500%. The green and red shaded areas indicate the 5-95% (90%) confidence intervals.  1219 
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 1221 

Figure 5: Relative uncertainties (90% CI) of all pollutants for all sectors (red boxplots), for national aggregates (blue 1222 
boxplots) and global aggregates (green dots). The edges of the boxes indicate the 25th and 75th percentile, and the 1223 
whiskers include extreme data points, but not outliers. The blue target symbol indicates the median value of the 1224 

distributions. Pollutants are sorted according to global emissions in tonnes.  1225 
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 1228 

Figure 6: a) The AGTP for a range of pollutants, with b) relative and c) absolute uncertainties due to metric 1229 
parameters. Pollutants are sorted in the legend according to absolute temperature impact at 50 years. The box inside 1230 
subplot a) shows the same figure on a different scale, and the shaded area around the net effect indicate the 90% CI 1231 
uncertainty. Subplot b) has a log scale, showing relative uncertainties. Subplot c) (also using log scale) shows the 1232 
absolute uncertainty for a 90% CI, of which half is the upper shaded area in a) and the other half is the lower shaded 1233 
area. 1234 
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 1237 

Figure 7: AGTP values (black lines) for all pollutants (sorted by absolute temperature impact at 50 years time horizon) 1238 
and relative uncertainties (dashed lines) for metric parameters, on the right vertical axis. AGTP median values use 1239 
parameters from the literature, while AGTP all show uncertainty with all parameters perturbed (excluding emissions). 1240 
Uncertainties indicate the 90% CI range of the median values. Global emission uncertainties are derived from sector 1241 
aggregations, and are the same as showed in Figure 5. 1242 
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 1244 

Figure 8: Territorial perspective of emissions and metric uncertainty using GTP50. Top graph shows global emissions 1245 
in sectors they occur in, while bottom graph shows regional emissions. Each of the components is represented by an 1246 

individual MC. The black circle indicates the aggregated RSS uncertainty. The uncertainty represents the 5-95% CI. 1247 
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 1250 

Figure 9: Consumption perspective of emissions, metric and MRIO uncertainty using GTP50. Top graph shows global 1251 
emissions going to sectors, while bottom graph shows regional consumption.  1252 
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  1255 

Figure 10: GTP values and uncertainties for territorial (first bars) and consumption (second bars) perspectives. 1256 
Percentages on top of the bars indicate total uncertainty (rounded to closest 5%). 1257 
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  1259 

Figure 11: AGTP values and uncertainties for territorial (first bars) and consumption (second bars) perspectives. The 1260 
uncertainty reflects a combination of all pollutants including CO2. Percentages on top of the bars indicate total 1261 

uncertainty (rounded to closest 5%). 1262 
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