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Abstract 8 

Several studies have connected emissions of greenhouse gases to economic and trade data to quantify 9 
the causal chain from consumption to emissions and climate change. These studies usually combine 10 
data and models originating from different sources, making it difficult to estimate uncertainties along 11 
the entire casual chain. We estimate uncertainties in economic data, multi-pollutant emission statistics 12 
and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to 13 
determine how uncertainty propagates to estimates of global temperature change from regional and 14 
sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties 15 
are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, 16 
and the level of aggregation of the results. Uncertainties in the final results are largely dominated by 17 
the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our 18 
assumptions, which exclude correlations in the economic data, the uncertainty in the economic data 19 
appear to have a relatively small impact on uncertainty at the national level in comparison to emission 20 
and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest 21 
that consumption-based national emissions are not significantly more uncertain than the corresponding 22 
production based emissions, since the largest uncertainties are due to metric and emissions which 23 
affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to 24 
changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of 25 
±10–±27% using the Global Temperature Potential with a 50 year time horizon, with metric 26 
uncertainties dominating. National level uncertainties are similar in both perspectives due to the 27 
dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions 28 
have a broad uncertainty range of ±9–±25%, with metric and emissions uncertainties contributing 29 
similarly. The Absolute Global Temperature Potential with a 50 year time horizon has much higher 30 
uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking 31 
of countries is uncertain.  32 
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Introduction 33 

Many studies have shown that national greenhouse gas (GHG) emission accounts can be viewed from 34 
either a production (territorial) or consumption perspective (Davis and Caldeira, 2010; Hertwich and 35 
Peters, 2009; Wiedmann, 2009; Peters and Hertwich, 2008). While the production view only looks at 36 
territorial emissions, the consumption view includes emissions from the production of imported 37 
products and excludes emissions from the production of exports. It has been shown that territorial 38 
emissions have decreased in most developed countries since 1990, but consumption-based emissions 39 
have increased (Peters et al., 2011c). This indicates that growth in consumption and international trade 40 
may undermine the effectiveness of climate policies that only limit emissions in a subset of countries, 41 
such as in the Kyoto Protocol (Wiebe et al., 2012; Kanemoto et al., 2013).  42 

The concept of consumption-based emissions estimates can therefore be used to extend the cause-43 
effect chain from consumption, to production, to emissions, and ultimately to global warming (Figure 44 
1). This is an important complement to the established territorial (Kyoto Protocol) viewpoint, 45 
particularly to link more directly to consumption as a key driver of emissions. More recent studies 46 
have broadened this concept to look at further consequences of increased global demand for traded 47 
products, such as deforestation (Karstensen et al., 2013), biodiversity loss (Lenzen et al., 2012b), 48 
dependency on traded fossil fuels (Andrew et al., 2013), land-use change (Weinzettel et al., 2013), and 49 
water footprints (Hoekstra and Mekonnen, 2012).  50 

In the estimation of consumption-based emissions accounts, various datasets and models are combined 51 
in the calculations, thus uncertainties and errors may arise in a number of datasets and models: 52 
emission data, metric data, economic data, etc. There are also uncertainties in assumptions and study 53 
design that can be more difficult to explicitly quantify, including which metric and time horizon to use 54 
for comparing pollutants, and how economic data for one specific year can be relevant to other years.  55 

The uncertainty of many aspects of the cause-effect chain have been investigated previously (Höhne et 56 
al., 2008; Prather et al., 2012), but the link to consumption has not been made. There is a growing 57 
literature on the uncertainty in input-output (IO; economic) models used to estimate consumption-58 
based emissions (Wilting, 2012; Lenzen et al., 2010; Peters et al., 2012; Moran and Wood, 2014; 59 
Inomata and Owen, 2014). Uncertainty in economic models, such as computable general equilibrium 60 
models, has also received attention recently (Elliott et al., 2012). However, the literature on 61 
uncertainty in economic data and models is still relatively small, and large knowledge gaps remains 62 
(IPCC, 2014).  63 

A number of studies have investigated uncertainty in emissions (European Commission, 2011; UNEP, 64 
2012; Marland et al., 2009; Macknick, 2011), both regional and global, but surprisingly there still does 65 
not exist an emission dataset with specified uncertainties at the country level across all climate-66 
relevant species. In addition, there exist almost no estimates of uncertainty at the sector level. Many 67 
aspects of uncertainty have been investigated in the climate system (Skeie et al., 2013; Prather et al., 68 
2012; Myhre et al., 2013b), but there is little literature on the uncertainties in emissions metrics (Olivié 69 
and Peters, 2013; Shine et al., 2007; Reisinger et al., 2010). We are not aware of any studies that have 70 
estimated the uncertainty introduced by each model and dataset (e.g. metric and IO uncertainties), or 71 
how uncertainty propagates when estimating climate change from consumption as a socio-economic 72 
driver.  73 

We extend the uncertainty analyses done by Prather et al. (2009), Höhne et al. (2008) and den Elzen et 74 
al. (2005) by including consumption-based emissions for a single year and using a temperature-based 75 
emission metric, which is arguably a more policy-relevant method of weighting emissions. We use 76 
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Monte-Carlo analysis and draw on previous studies of uncertainties to perturb and highlight the 77 
different contributors: economic data, emission and metric parameters, and then compare our results 78 
with the previous studies.  79 
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Methods 80 

We consider the propagation of uncertainty from the point of consumption of goods and services 81 
(products), to the production of products where emissions to air occur, to the climate impacts caused 82 
by those emissions (Figure 1). This can be thought of as a causal chain where consumption is assumed 83 
to be the primary driver, in turn driving production, which in turn leads to emissions, and then 84 
emissions lead to temperature change. These components of the cause-effect chain are linked by 85 
calculation methodologies, each requiring parameterization, and we break the analysis into those three 86 
components: economic data, emission statistics, and emission metrics. We estimate the uncertainty for 87 
each of the components individually, and finally connect the components to determine how 88 
uncertainty propagates through the cause-effect chain.  89 

To determine the temperature response to a given level of consumption, we first map emission 90 
statistics for most important pollutants to producing regions and sectors (European Commission, 2011). 91 
Emissions are then converted to global temperature change using an emission metric (Aamaas et al., 92 
2013). This means that we allocate a future global temperature change due to current production and 93 
consumption emissions. The allocations from producers to consumers (in sectors and regions) require 94 
the global supply chain to be enumerated using economic production and trade data (Peters, 2008). 95 
Production often goes through several steps from extraction and refining to manufacturing and 96 
packaging, and finally to consuming markets.  These linkages are represented in the global supply 97 
chain through monetary transactions. We normalize emissions by monetary output in each sector in 98 
each region, and allocate emissions according to purchases made by consumers. The result connects 99 
production and consumption, which are potentially geographically separated, and estimates the 100 
consumption that is driving current production emissions and hence future global temperature 101 
response. 102 

All datasets and models introduce uncertainties in the analysis, thus we estimate uncertainties in the 103 
economic data, the emissions data and metric parameters in order to estimate uncertainties in the final 104 
results. We undertake the uncertainty analysis using Monte Carlo (MC) analysis, in which datasets and 105 
parameters are randomly perturbed according to predetermined distributions, and then sub-models are 106 
run sequentially to obtain distributions on the results (Granger Morgan et al., 1990). We isolate the 107 
individual contributions to uncertainty on the final results by perturbing individual components 108 
independently, before running everything together to estimate total uncertainty. The analysis considers 109 
parametric uncertainties on the components, as opposed to structural uncertainties, which would 110 
include the comparisons of different models and datasets (Peters et al., 2012). The next section lists 111 
the background data, and shows how uncertainties are estimated, before running the models and 112 
discussing the results. 113 

Datasets and models 114 

We use multi-regional input-output (MRIO) analysis to link economic activities from production to 115 
consumption, capturing global supply chains at the sectoral level (Davis and Caldeira, 2010; 116 
Wiedmann, 2009). We source our economic input–output data from the Global Trade Analysis Project 117 
(GTAP) database version 8, which comprises domestic and trade data for the entire world economy in 118 
2007 divided into 129 regions and 58 sectors (Narayanan et al., 2012). We use these data to construct 119 
an MRIO model with the same regional and sectoral resolution, connecting all regions at the sector 120 
level (Andrew and Peters, 2013; Peters et al., 2011b). While GTAP does not provide uncertainty 121 
estimates on the economic datasets, it is possible to generate realistic uncertainty estimates for the 122 
GTAP database from proxy data. Since an MRIO database is an aggregation of multiple datasets, it 123 
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inherits uncertainties from a number of sources, including: source data, base year extrapolations, 124 
balancing and harmonization procedures, allocations and aggregations (Wiedmann, 2009; Weber, 125 
2008). 126 

We use emissions data for the year 2007 from the Emissions Database for Global Atmospheric 127 
Research (EDGAR), for a number of pollutants (see Table 1), mapping these data to the regions and 128 
sectors of the GTAP database. Uncertainties in emission statistics for each pollutant derive from 129 
multiple sources, e.g. for CO2: how much fuel is actually consumed, its carbon content, and how much 130 
of it is combusted. Additionally, to be consistent with top-down estimates, statistics are subject to 131 
adjustments and harmonization, and aggregated and grouped to economic sectors. Although national 132 
uncertainty may in some cases be large, global emissions are dominated by a small number of 133 
countries, thus the global uncertainty is mostly a reflection of these countries’ data quality (Andres et 134 
al., 2012).  135 

The estimated global temperature impact of emissions are calculated using the global temperature 136 
change potential (GTP) metric (Aamaas et al., 2013; Shine et al., 2005), which is essentially a 137 
parameterization of more complex climate models. The metric uses pollutant characteristics 138 
(atmospheric lifetime, radiative forcing) as input, and unlike the more commonly used Global 139 
Warming Potential (GWP) which only relates to radiative forcing, the GTP also includes estimates of 140 
climate temperature response (sensitivity) to changed radiative forcing in the atmosphere, which adds 141 
additional layers of uncertainties (Reisinger et al., 2010). We base our pollutant parameters on the 142 
ATTICA assessment (Fuglestvedt et al., 2010) and IPCC (2007) p. 212-213, and climate sensitivity 143 
and CO2 uncertainties on the latest CMIP5 data (Olivié and Peters, 2013). The uncertainties on the 144 
other pollutants are drawn from several sources, but mostly following the IPCC Fifth Assessment 145 
Report (Myhre et al., 2013a). 146 

 147 

General uncertainty relationships 148 

It has previously been shown that economic and emissions data show a general pattern where relative 149 
uncertainty is inversely related to the magnitude of the data point (Lenzen et al., 2010; Wiedmann, 150 
2009; Wiedmann et al., 2008; Lenzen, 2000). The GTAP data used in our analysis follows a similar 151 
relationship, based on differences between the reported input data and the final data in the database 152 
after the harmonization and balancing of selected input-output (IO) data (Table 19.6 in McDougall 153 
(2006)). Figure 2 illustrates the inverse relationship between unbalanced and balanced data in the 154 
GTAP database together with a first-order regression (R2>0.9). These differences result from the 155 
GTAP harmonization and balancing process and values are only published for a sample of “large 156 
sectors in large regions with large relative changes” (McDougall, 2006). As a consequence of this 157 
data selection bias, it is not possible to convert these differences directly to more general sectoral 158 
uncertainties. Other uncertainty assessments in MRIO analysis have also taken this inverse 159 
relationship as the starting point (Lenzen et al., 2013; Moran and Wood, 2014; Lenzen et al., 2012a). 160 
Furthermore, a similar relationship is found with emissions data, based on a previous study of the UK 161 
Greenhouse Gas Inventory, where uncertainties were found using an error propagation model (Jackson 162 
et al., 2009). The underlying mechanisms for this inverse relationship are, however, unclear. The 163 
uncertainties may reflect conflicting data sources, unreliable measurements, bias in the source data, 164 
allocations and aggregations, base year extrapolations, estimates and assumptions, etc. (Wiedmann, 165 
2009; Weber, 2008; Lenzen, 2000), and it is unclear that all these uncertainties will lead to a clear 166 
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inverse relationship with data value. It may be that the method of generating the data through some 167 
sort of optimization process leads to the relationship. 168 

The datasets allows the parameterization of a function mapping relative uncertainties to the magnitude 169 
of the data points. Following previous studies (Lenzen et al., 2010; Wiedmann et al., 2008), we 170 
assume the data follows a power function 171 

௫ݎ  ൌ ܽ  ௕ (1)ݔ
 172 

where a and b are coefficients. As there is very little data available to parameterize Equation (1), we 173 
parameterize the relationship using two extreme data points (generally the uncertainty on the 174 
minimum and maximum values) 175 

 ܽ ൌ
௠௜௡ݎ
௠௔௫ݒ
௕  

 
(2) 

  ܾ ൌ
௠௔௫ݎ െ ௠௜௡ݎ
௠௜௡ݒ െݒ௠௔௫

 (3) 

 176 

It is generally argued that developed countries have lower uncertainty than developing countries due to 177 
the strength of institutions (Narayanan et al., 2012; Andres et al., 2012). The terms ݎ௠௜௡ and ݎ௠௔௫ 178 
define the smallest and largest relative errors, respectively, and are functions of developed and 179 
developing regions (using the Kyoto Protocol groupings of Annex B and non-Annex B countries). We 180 
assume that developing countries have double the uncertainties of developed countries, based on 181 
estimates for CO2 emissions (Andres et al., 2012; see further discussion in section 2.4). This range is 182 
also sector- and region-dependent for the economic and emissions data, which we define below. The 183 
terms ݒ௠௜௡ and ݒ௠௔௫ refer to fixed minimum and maximum data values for sectors in a specific region, 184 
which is given the uncertainty of ݎ௠௔௫ and ݎ௠௜௡, respectively. Figure 3 shows the functional 185 
relationship between sector sizes and uncertainties for economic and emissions data, respectively.   186 

The lower threshold ݒ௠௜௡ is fixed for all regions in the economic and emissions datasets, giving 187 
sectors of the same size the same uncertainty, as the smallest sectors do not contribute much to the 188 
national totals. The upper threshold ݒ௠௔௫ can also be fixed to a certain sector size. However, 189 
uncertainties are likely to be regionally variable, as while a sector of e.g. 1 billion USD might be very 190 
large for some countries, it might not be large in other regions. To account for this, we argue that the 191 
sectors’ importance should vary with their contribution to the nations’ totals, e.g. gross domestic 192 
product (GDP) or total emissions. We therefore scale ݒ௠௔௫ according to the regions’ GDP and total 193 
emissions, for the respective datasets, so that the sectors’ importance in different regions is reflected 194 
by their uncertainties. Sectoral values larger than ݒ௠௔௫ are given the same uncertainty as values equal 195 
to ݒ௠௔௫, to ensure that single large sectors do not affect the uncertainty on other large sectors (see 196 
details below).  197 

To help illustrate the effects of the methodology, we show two examples: 1) one of China’s largest 198 
economic sectors is the “Public administration, defense, education, and health” sector, worth nearly 199 
340 billion USD in 2007. Large sectors are given small uncertainties, and this sector is a substantial 200 
part of China’s GDP (around 10%). The uncertainty is therefore assumed to be one of the lowest in the 201 
country, but scaled up relative to other countries since China is not an Annex-B country. 2) One of 202 
USA’s smallest direct CO2-emitting sectors is the production of “electronic equipment”. Emitting 203 
roughly 1 Mt CO2, this is in the lower-end of the scale, contributing little to the national total of nearly 204 



8 
 

5000 Mt CO2. This sector is therefore given higher relative uncertainty. We expand on these examples 205 
with specific numbers in the next sections, after we define the uncertainty ranges for the economic and 206 
emissions data. 207 

The estimated uncertainties are used to create distributions of perturbations. We impose log-normal 208 
distributions so that distributions with small relative spreads closely resemble normal distributions, 209 
while distributions with large relative spreads are skew but avoid negative values (Figure 4). The 210 
distributions are characterized using reported data as medians, and the spreads are (in order of 211 
decreasing preference) taken directly from the literature, derived from published analyses, or estimated. 212 
We define uncertainties as the 5-95% confidence interval (90% CI; equivalent to 1.64 standard 213 
deviations of a normal distribution).  214 

By randomly perturbing each data point, we assume no correlations in the uncertainties of economic 215 
and emissions data, which might not be accurate for some sector combinations (Peters et al., 2012). 216 
Implementing correlations in such an analysis is a major difficulty due to the size of the system under 217 
investigation and the lack of uncertainty data, but may also have significant effects on the results. We 218 
discuss this further in section 4. We do, however, undertake a simple sensitivity analysis on the 219 
parameter choices, by comparing the final results on MRIO uncertainty with uncertainty from the 220 
GTAP table showing extreme observations.  221 

Aggregations of the results (from sectors to regions and from regions to global) usually decrease the 222 
relative uncertainty, so that the national uncertainty is lower than individual sectors, and global 223 
uncertainty is in some cases lower than national uncertainty. This is a result of the summation effect, 224 
and the relationship between sector sizes and uncertainties. The largest sectors are given lowest 225 
uncertainties, so that the national uncertainty is largely a reflection of the uncertainty of the largest 226 
sectors. As an example of the summation effect, the relative uncertainty ݎ of adding ܯ േ ܵ, ݊ times, is 227 

 
ݎ ൌ

ܵ ⁄ܯ

√݊
 (4) 

assuming no correlations. To illustrate this effect, we show the uncertainty results at multiple levels. 228 

Economic data (Multi-regional input–output model) 229 

The total sectoral output x of a region’s economy (a vector) is the sum of intermediate consumption Ax 230 
and final consumption, y (Miller and Blair, 1985): 231 

ݔ  ൌ ݔܣ ൅  (5) ݕ

where A is the inter-industry requirements matrix, which is equivalent to the technology used in each 232 
sector’s production. We solve for the total output 233 

ݔ  ൌ ሺܫ െ  (6) ݕሻିଵܣ

where ሺܫ െ  ሻିଵ is the Leontief inverse L. Emissions are estimated for a given y by first estimating the 234ܣ
output, and then linking to sectoral emission intensities, F. This gives the direct and indirect emissions 235 
(supply chain) emissions  236 

 ݂ ൌ ܨ ܮ  (7) ݕ

The economic data from GTAP is represented in a multi-regional input–output (MRIO) model, which 237 
is constructed from a number of smaller datasets. The GTAP dataset itself is based on a large number 238 
of smaller datasets (such as national IO tables and trade data from UN’s COMTRADE database), 239 
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which are harmonized to remove inconsistencies (Andrew and Peters, 2013; Peters et al., 2011b; 240 
Narayanan et al., 2012). The construction of an MRIO table from the GTAP data is explained in detail 241 
elsewhere (Peters et al., 2011b). In the MC analysis, we perturb the components of the GTAP database 242 
(e.g., domestic IO data and international trade data) and not the resulting MRIO. In other words, we 243 
estimate the uncertainty of the MRIO data based on the uncertainty in the data used to construct it 244 
(Peters et al., 2011b), which consists of all data points in the GTAP database used to construct the 245 
MRIO model. This ensures that the uncertainties of the final model reflect the underlying uncertainties 246 
of the various input data. We construct the perturbed L and y, before allocating the direct emissions F 247 
(which are also perturbed) to consuming regions and sectors. 248 

We calibrate the uncertainty relationship (Equation 1) for the GTAP data using several datasets. From 249 
the trend lines created from the GTAP table (Figure 2), we find the smallest uncertainty on the largest 250 
sectors to be at approximately 5%. We therefore let 90% of perturbed values fall within 5% of the 251 
median, and set ݎ௠௜௡ ൌ 5% for the largest sectors (where ݒ௠௔௫ apply).  252 

The upper threshold ݒ௠௔௫ is defined by the regions’ GDP so that a sector of a specific size will have a 253 
larger importance (and hence a lower uncertainty) in a small region than in a large region. We use the 254 
UK data provided by Lenzen et al. (2010) to explain the range of uncertainties in a single economy. In 255 
this dataset the largest sectors have the smallest error, and following the trend line we find that the 256 
largest value is about 4% of UK GDP. We use this to define the upper threshold ݒ௠௔௫ ൌ 4% ൈ ܦܩ ௥ܲ, 257 
which means that sectors at or above this value will be given the lowest national uncertainty (ݎ௠௜௡). 258 
Figure 3 shows the result of the implementations, where the lines indicate the range of developing and 259 
developed regions’ sector sizes and uncertainties. 260 

For the smallest sectors we set ݒ௠௜௡ equal to 1 USD and assume ݎ௠௔௫ ൌ 100% (following Wiedmann 261 
et al., 2008), due to the lack of more precise regional uncertainty data. The 1 USD relates to a small 262 
value often used in the GTAP database (Peters, 2006). These parameters may seem somewhat 263 
arbitrary, but these choices are not overly important. A value of 1USD in an IOT is exceedingly small 264 
(it represents the economic relationship between two sectors over one year). Indeed, analysis shows 265 
that removing small values has negligible effect on the estimates consumption based emissions (Peters 266 
and Andrew, 2012). Thus, 1 USD is effectively zero in our dataset. It could also be argued that the 267 
value of 1USD is highly uncertain and should have large uncertainty. Giving values smaller than this 268 
higher relative uncertainty causes highly skewed log-normal distributions for the perturbations (see 269 
Figure 4). The GTAP dataset has values as low as 7×10-35 causing ݎ to be 6×106%. Such highly 270 
skewed distributions for data points with small medians (<<1 USD) can lead to large imbalances in the 271 
table. 272 

An IO model is balanced so that gross input equals gross output, a fundamental characteristic of input–273 
output models (Leontief, 1970). The same applies for a multiregional model (MRIO). When 274 
perturbing the coefficients in an IO table, it ultimately upsets the balance. In principal, the IO table can 275 
be rebalanced, but given the size of the systems (about 7500×7500 matrices), rebalancing is 276 
prohibitively computationally expensive, and may reduce uncertainties as the perturbed values are 277 
changed. We therefore choose not to rebalance, which effectively causes the “unbalanced” component 278 
to be shifted to the value added. A concern is that the value added may become unrealistic (e.g., 279 
negative) as a consequence. The MC algorithm specifically outputs value added components to allow 280 
cross check imbalances with the raw data, and we find the distributions of the value added at the sector 281 
level to be within expected uncertainty bounds given the size of the value added. This is partially 282 
because of the parameterization of uncertainty we have used, and partially because the perturbations 283 
tend to cancel (the sum of random numbers). Thus, we can justify not rebalancing our perturbed IOTs 284 
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and assume the imbalances are allocated to the value added (without having a large effect on the value 285 
added). Implementing this general methodology has also lead to relatively small regional uncertainties 286 
in other studies (Lenzen et al., 2010; Wiedmann et al., 2008). Structural uncertainties have also been 287 
found to be relatively small for major economies (Moran and Wood, 2014). As a simple sensitivity 288 
analysis of the input uncertainties, we also run the MC model with uncertainties according to the fit of 289 
the GTAP table uncertainties (trend line relative to final values, due to better fit; Figure 2). This vastly 290 
increases the uncertainties of all sectors, and we do not constrain the upper or lower uncertainties, 291 
meaning that very small sectors will be given unrealistically large uncertainties (1USD gives ݎ ൌ292 
10ଽ%). This exercise is only valid for the data it represents; large sectors in large countries, but is 293 
useful to facilitate the discussion about uncertainties in economic data. We discuss these results when 294 
exploring MRIO uncertainties, but do not include this when combining uncertainties. 295 

Expanding on our previous example of the Chinese “public administration, defense, education, and 296 
health” sector, we can now calculate the uncertainty. Each data point in our MRIO model consists of 297 
inputs from several different GTAP datasets. When these datasets are combined, together with the 298 
uncertainties, the MRIO model and its uncertainty are obtained. In the MC analysis, all datasets are 299 
given uncertainties and perturbations (according to the inverse relationship) before constructing the 300 
MRIO model. The Chinese public administration, defense, education, and health sector, which is a 301 
single sector in the final GTAP-MRIO model, is built up from several datasets (bilateral trade, 302 
intermediate demand, and final demand of households, governments, and capital investments). In our 303 
example, we choose to focus on one of the most significant contributors to this sector: domestic 304 
government consumption expenditure. This sub-dataset has a sectoral range from <1 USD to 420 305 
billion USD, which, when calculating the uncertainty, is constrained in the calculations by the lower 306 
and upper threshold ݒ௠௜௡ ൌ 1 USD and ݒ௠௔௫ ൌ 4% of national GDP = 130 billion USD. For the 307 
uncertainty, the general sectoral range is from ݎ௠௜௡ ൌ 5% to ݎ௠௔௫ ൌ 100%. GTAP estimates the value 308 
added in the sector in this sub-dataset to be around 340 billion USD, which is 10% of national GDP. 309 
This is well above ݒ௠௔௫, giving this sector a relative uncertainty equal to ݎ௠௜௡ (5%). Since China is a 310 
non-Annex B country, this is doubled, leading to a final uncertainty of 10% for this sector in this sub-311 
dataset. The uncertainties for the other data points in the other sub-datasets that make up the Chinese 312 
public administration, defense, education, and health sector will be estimated similarly, and together 313 
explain the overall uncertainty of this sector in the GTAP-MRIO model. 314 

 315 

Emission statistics 316 

The pollutants considered are listed in Table 1, which cover anthropogenic emissions for the year 2007 317 
which have an effect on climate. We do not include emissions from short cycle biomass burning, as 318 
this is considered to have a short lifetime in the atmosphere due to regrowth. The dataset originally 319 
includes CO2 emissions from forest fires and decay, which is a mix of natural and anthropogenic 320 
emission. Extracting the anthropogenic emissions and mapping them to agricultural sectors would 321 
require crude assumptions. We therefore do not include emissions related to forest loss, but 322 
acknowledge that it would increase global CO2 emissions by roughly 12% (van der Werf et al., 2009). 323 
The EDGAR dataset only provides crude information on uncertainty at the global level for some 324 
species (European Commission, 2011). Therefore, global and regional uncertainties in emissions are 325 
taken from a variety of sources (Table 1). Global fossil-fuel CO2 emissions statistics are independently 326 
produced by several organizations, but they generally agree with each other within about 5% for 327 
developed countries and 10% for developing countries (Andres et al., 2012). The CO2 emission 328 
estimates are all based on energy data, and globally the emissions are thought to have an uncertainty of 329 
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±10% using a 95% CI (UNEP, 2012). Global SO2 emissions have an estimated uncertainty of between 330 
±8% and ±14%, while regional uncertainties may be as large as ±30% (Smith et al., 2010). For CH4, 331 
N2O and F-gases, the uncertainty of global emissions have been estimated as ±21%, ±25% and ±17%, 332 
respectively (UNEP, 2012).  333 

Table 1 shows parameters and uncertainties for each pollutant used as median values in the 334 
perturbations. Very little data exist on uncertainty of emissions by sector, especially on a pollutant and 335 
regional level. Lenzen et al. (2010) used a table of selected sectors of UK CO2 emissions to find 336 
uncertainties, originating from Jackson et al. (2009). According to the regression of the data points, 337 
within the limits of the data points, there is a spread of uncertainties of roughly 10 times (Figure 2 in 338 
Lenzen et al. (2010)).  We therefore estimate sectoral uncertainty using the same general relationship 339 
as with the economic data (Equation 1), where the uncertainty of global emissions is used as a proxy 340 
for the lowest uncertainty estimate of the largest sectors (ݎ௠௜௡) and the smallest sectors’ uncertainty is 341 
scaled by 10 times (ݎ௠௔௫ ൌ  ௠௜௡).  342ݎ	10

We assign developing countries an ݎ௠௜௡ and ݎ௠௔௫ which are double those of developed countries. We 343 
define ݒ௠௜௡ ൌ ௠௔௫ݒ and ݐ1݇ ൌ 5% of regional emissions. This dependence on total regional 344 
emissions shifts the function so that a sector of a specific size will have a larger importance (and hence 345 
a lower uncertainty) in a smaller region than in a larger region (Figure 3). We do not distinguish 346 
between different sources of the same pollutant, due to lack of information at the sector level. This is, 347 
in some cases, a crude simplification (e.g. when comparing uncertainties in emissions of certain 348 
pollutants from agricultural sectors and power generation). Similarly, for the emissions data, we set 349 
 ௠௜௡ equal to 1 kt emission. Values below this (as with economic data) have little impact on the 350ݒ
footprint of regions and sectors, and are therefore given zero uncertainty.  351 

Expanding on our previous example of emissions from USA’s “electronic equipment” sector, we can 352 
now calculate the uncertainty. USA’s sectors have a range of CO2 emissions from 0.3 kt to 2500 Mt, 353 
which is then constrained in the calculations by the lower and upper threshold ݒ௠௜௡ ൌ  CO2 and 354 ݐ1݇
௠௔௫ݒ ൌ 5% of national total CO2 = 247 Mt CO2. For CO2 uncertainty, the general sectoral range is 355 
from ݎ௠௜௡ ൌ 16% (or ±8%), taken from Table 1, to ݎ௠௔௫ ൌ 10	 ൈ ௠௜௡ݎ ൌ 160%. The emissions in the 356 
electronic equipment sector are 1.2 Mt CO2, which is 0.02% of total emissions. This is in between 357 
 ௠௔௫, giving the CO2 emissions from this sector a relative uncertainty of 43%. Since USA is 358ݒ ௠௜௡ andݒ
an Annex B country, this is not doubled. 359 

With every sector data point having an uncertainty, we create perturbations which we can sum to get a 360 
bottom-up estimate of the national uncertainty. Table 2 shows several perturbations of sectors (xin) for 361 
region r. Each perturbation i leads to a new national total (Xi). However, independent uncertainty 362 
estimates of national totals (e.g. national emissions) that may be available for some regions may 363 
conflict with our bottom-up distributions on the national totals (XN). When summing the perturbed 364 
sectors xin for a region, it is unlikely that the distribution of XN will be the same as the known 365 
uncertainty in X. 366 

Additionally, the uncertainty in XN will depend on the number of elements contributing to the sum, 367 
according to standard propagation of uncertainty rules (RSS, root sum square; see earlier discussion on 368 
the summation effect). In practice, the uncertainty of X may be based on several lines of evidence, 369 
which may even exclude sector-based data. To ensure that we can reproduce the top-down uncertainty 370 
estimates of X, we use constrained optimization (using a quadratic programming (QP) methodology) 371 
to minimally adjust the perturbations of xin to a given distribution of the XN (Table 2). 372 
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Given that we can adjust one iteration so that it sums to a fixed X, we then give X a distribution based 373 
on known national uncertainties, and thus, each iteration of X is used to balance the same iteration of 374 
the disaggregated sector data (xin). This ensures that the sum of sectors (Xi) always gives a XN with a 375 
known uncertainty. The cost of this adjustment is that the spread of the large values in each region (e.g. 376 
a large sector) are adjusted to fit the constraints. To meet the criteria of e.g. a narrower distribution on 377 
the aggregated values, the large values have to be given a narrower distribution as well. This 378 
methodology allows us to give realistic uncertainties on each xin leading to an XN with a known 379 
uncertainty. We do not perform such balancing on the MRIO input data (previous section) as it is too 380 
computationally expensive, and there is little top-down data on uncertainties in economic data. 381 

 382 

Emission metrics 383 

To link emissions to temperature change, we use the global temperature change potential (GTP) as a 384 
metric to compare and aggregate pollutants (Shine et al., 2007). This gives an estimate of the global 385 
mean surface temperature change due to a pulse of emissions from a specific pollutant, and is a simple 386 
way of modeling the much more complex climate system, and its response. Uncertainties in metric 387 
values can arise from a range of factors: pollutant parameters (radiative forcing and lifetime) and the 388 
response of the climate system. Although it has been shown that the GTP may have larger relative 389 
uncertainties than the alternative metric global warming potential (GWP) (Aamaas et al., 2013; 390 
Reisinger et al., 2010) and it has been criticized for some of its characteristics (Pierrehumbert, 2014), 391 
the GTP directly links to global temperature change and is thus arguably more policy relevant (Shine 392 
et al., 2005). In addition, the physical interpretation of the GWP is less clear and the metric has been 393 
criticized by many authors (Peters et al., 2011a; Shine, 2009; Pierrehumbert, 2014). The GTP metric is 394 
calculated using impulse response functions, which explain the interaction of pollutant i in the 395 
atmosphere (IRFi) and the climate system (temperature) response to a pulse emission (IRFT) with 396 
specific radiative forcing (RF) and atmospheric lifetime.  397 

We briefly describe the metric equations here, and refer to existing literature for more details (Aamaas 398 
et al., 2013; Fuglestvedt et al., 2010; Olivié and Peters, 2013; Myhre et al., 2013b). The absolute GTP 399 
(AGTP) for each pollutant i is defined as 400 

 
ܶܩܣ ௜ܲሺܪሻ ൌ න ሻݐ௜ሺܨܴ ܪሺ்ܨܴܫ െ ሻݐ ݐ݀

ு

଴
 (8) 

where the Radiative Forcing (RF) for a pulse emission is  401 

ሻݐ௜ሺܨܴ  ൌ ܧܴ ൈ ௜ܨܴܫ ൌ ௜ܣ exp ൬െ
ݐ
߬௜
൰ 

(9) 

where ݐ is time [years], ܪ is the time horizon [years], ܣ௜ is the radiative efficiency for pollutant i 402 
[W/(m2kg)], and ߬௜ is the decay time for pollutant i [years]. The AGTP metric is dependent on the IRF 403 
of temperature, which incorporates the climate system response in global mean surface temperature to 404 
a given radiative forcing. The climate response is modelled using two decaying exponential functions 405 
representing: (1) the relative fast response of the atmosphere, the land surface and the ocean mixed 406 
layer, and (2) the relative slow response of the deep ocean (Peters et al., 2011a), 407 

 
்ܨܴܫ ൌ෍ ௝ܿ

௝݀
exp ቆെ

ݐ

௝݀
ቇ

௃
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 (10) 
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where ܬ is the number of decay terms (usually two), ௝ܿ is a component of the climate sensitivity 408 

[K/(Wm2)], where the total climate sensitivity ߣ ൌ ∑ ௝ܿ, and ௝݀ is the decay time [years] of component 409 

௝ܿ. These two functions are explained by lifetimes and climate sensitivity for the individual 410 

components (Table 3). The ߣ explains the change in equilibrium global-mean temperature due to 411 
forcing by a pollutant in the atmosphere. We parameterize the IRF according to the results from 412 
CMIP5 covering 15 different climate models (Olivié and Peters, 2013). This dataset is parameterized 413 
by relatively short climate runs (140–150 years), and thus it is more representative of the short-term 414 
climate response (less than 100 years) compared to the equilibrium response (see Olivié and Peters 415 
(2013) for details). Nevertheless, the dataset leads to a median ߣ ൌ 0.75 K/Wm2 (equivalent to 2.8°C 416 
global-mean temperature increase), which is consistent with the climate response (sensitivity) of a 417 
doubling of CO2 concentration in the atmosphere within the range of 1.5 to 4.5°C (IPCC, 2013).  418 

As CO2 has a more complex interaction in the atmosphere and can not be sufficiently modelled with a 419 
single exponential decay, we define the RF for CO2 as a sum of exponentials (Aamaas et al., 2013): 420 

 
ሻݐ஼ைమሺܨܴ ൌ ஼ைమܣ ൝ܽ଴ ൅෍ܽ௜ ൭1 െ ݌ݔ݁ ൬െ

ݐ
߬௜
൰൱

ூ

௜ୀଵ

ൡ (11) 

where ܽ௜ is the weight of each exponential, which by definition have to sum to one (∑ܽ௜ ൌ 1), and ܫ is 421 
the number of exponentials. We follow Joos et al. (2013) and use four exponentials and weights, and 422 
randomize the multiple lifetimes and coefficients so that the coefficients always sum to 1, following 423 
Olivié and Peters (2013). The use of four different time scales was found to be sufficient to model 424 
CO2’s behavior in the atmosphere compared to advanced climate models (Olivié and Peters, 2013). 425 
Correlations between the parameters were implemented for CO2 and IRFT, also based on Olivié and 426 
Peters (2013), but the effect of the correlations on temperature results was found to be small (less than 427 
1% of AGTP50 value for CO2).  428 

Estimates from the literature are used as the median (Fuglestvedt et al., 2010) and estimates of 429 
uncertainty as spread of the distributions (Table 4 and 5). For the non-reactive pollutants, we 430 
randomized the single RF and lifetime values, as these are represented by only a single decay function. 431 
The RF used in the calculations includes the indirect effects of chemical reactions from the ozone 432 
precursors (CO, NOx and NMVOC), which were perturbed similarly as the other pollutants. This 433 
accounts for three indirect forcing effects: formation of O3 (causing positive RF by CO, NOx and 434 
NMVOC), changing CH4 levels (causing positive RF by CO and NMVOC, and negative RF by NOx), 435 
and CH4 induced O3-effect (causing positive RF by CO and NMVOC, and negative RF by NOx) 436 
(Aamaas et al., 2013). The indirect effect of SO2 is included by scaling the metric value, where the 437 
indirect effect of SO2 is estimated to be about 175% of the direct effect (Aamaas et al., 2013). This is a 438 
crude estimate, and while the indirect effect may be more uncertain than the direct effect, we use the 439 
same uncertainty for the direct and indirect effects due to lack of pollutant specific data (Boucher et al., 440 
2013). 441 

Our analysis of uncertainty contributions from emissions and metric parameters uses Absolute GTP 442 
(AGTP) values with units of temperature change (in Kelvin or °C). When later allocating temperature 443 
data in the economic model, we also use GTP values in units of CO2-equivalent emissions for 444 
comparison. The GTP values are calculated by normalizing the AGTP values with reference to the 445 
AGTP values for CO2. When we connect the components for a full MC analysis, we choose a single 446 
time horizon for computational reasons. As discussed elsewhere (Fuglestvedt et al., 2010), choosing a 447 
time horizon includes value judgment, and is not based solely on a scientific judgment. We choose to 448 
focus on the impact at 50 years (AGTP50 and GTP50), as this is both consistent with current literature 449 
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(Myhre et al., 2013b), and within reasonable time for when to expect global warming to exceed 2 450 
degrees (Joshi et al., 2011; Peters et al., 2013). 451 

 452 

Results 453 

Estimated uncertainties are used to create distributions on all data points. To analyze how various 454 
stages of the cause-effect chain contribute to overall uncertainty, we introduce uncertainty separately 455 
in each part of the chain before combining them all together (Figure 1). We first show uncertainties 456 
resulting from (1) the economic data only, (2) the emissions data only, and (3) the metric calculations 457 
only. The final section (4) connects these three parts together to follow uncertainty through the entire 458 
cause-effect chain. The results show uncertainty propagation from consumption to global temperature 459 
change. The analysis is based on 10,000 MC runs. 460 

 461 

MRIO uncertainty 462 

In this section, we assume there are no uncertainties on the territorial emissions data or emission 463 
metrics, thus the MRIO model uses unperturbed median estimates of GTP50 values for all pollutants 464 
when allocating emissions to consumers, and uncertainties are purely dependent on parametric 465 
uncertainty in the input data into the MRIO. In our analysis each of the 129 countries has 57 producing 466 
sectors (not including households as they are considered final demand in the model, and therefore not 467 
included in the processing), and thus the MRIO table has 7353 rows and columns. We emphasize here, 468 
but discuss later, that we consider parametric uncertainties and not structural uncertainties.  469 

Table 6 shows uncertainties in emissions embodied in imports and exports, as well as consumption, 470 
due to perturbations only on the economic dataset. The exports indicate goods that are produced 471 
domestically but consumed abroad, while the imports indicate goods produced abroad but consumed 472 
domestically. The uncertainties in exported emissions are solely due to uncertainties in domestic 473 
economic data, thus reflecting the pattern of developed countries having higher uncertainties. 474 
Uncertainties in imported emission are generally higher than exported emissions, as the imports come 475 
from a number of different regions of which many may have high uncertainties (e.g. emerging and 476 
developing economies).  477 

For the largest consumption paths, the consumption perspective is not substantially more uncertain 478 
than the corresponding territorial view due to economic uncertainties. Following the largest 479 
international fluxes embodied in trade from Davis and Caldeira (2010) aggregated over all sectors, we 480 
find 2% uncertainty in emissions embodied in products exported from China to USA, 2% uncertainty 481 
from China to Western Europe, 3% from China to Japan and 1% from USA to Western Europe from 482 
economic uncertainties only. These fluxes are mainly dominated by the largest sectors, to which our 483 
method has assigned the smallest uncertainties. The export from China to USA mainly originates in 484 
the manufacturing sectors, which combined is one of the largest Chinese sectors, therefore with 485 
relatively low uncertainties. Annex B countries are assigned lower uncertainties than non-Annex B 486 
countries, which explains the relatively low uncertainty from USA to Western Europe. 487 

For smaller paths, there are much higher economic uncertainties. More than 20% of the international 488 
trade routes have a higher uncertainty than 10% (total number of trade routes is 128 regions ×128 489 
regions), while the median of all is 6% uncertainty. The uncertainties in consumption emissions for the 490 
top emitters are very low for two reasons: (1) the effect of summations and aggregations reduce the 491 
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uncertainties on the national level (Equation 4; much higher values are seen on a sectoral level), and (2) 492 
the distributions we give the perturbed data in the larger sectors are relatively small.  493 

Since we start from the raw GTAP data to construct the MRIO table, and normalize and invert the 494 
MRIO table, a vast number of summations and multiplications are done with the initial perturbed data 495 
(inversion in a single MC ensemble requires more than 1012 operations, which was estimated using the 496 
Lightspeed Matlab toolbox; (Minka, 2014)). Following RSS uncertainty propagation, the relative 497 
uncertainty will decrease when adding equally sized numbers with equally sized uncertainty (not an 498 
unrealistic assumption for IOA). Thus, the relative uncertainty on the sum of a row in the MRIO (the 499 
output) will depend on the number, ݊, of large data points (Equation 4). This problem can be avoided 500 
by using a quadratic programming approach to rebalance the sum to a given uncertainty (as we do for 501 
the emissions data), but we do not do this as a) it is too computationally expensive, and b) it would 502 
require balancing the entire MRIO table to get consistent sums. This problem is difficult to negotiate 503 
given the size of the database we are using, and consequently this exerts a downward pressure on 504 
MRIO uncertainties. Because of this, and because uncertainty ranges of input values are small for the 505 
largest and most important sectors, the final results have small uncertainties. A valid question is then 506 
how reliable the uncertainties are. 507 

The “unfitted” and “fitted” data from Table 19.6 in the GTAP documentation (Fig. 2) act as a simple 508 
sensitivity analysis to our applied uncertainties, although since this table only samples the very largest 509 
deviations it is not representative of the uncertainties in the entire database. When we use these we 510 
find that the uncertainties are much larger for the largest emitters (between 160% and 400% 511 
uncertainty for consumption-based emissions), and for small and medium sized countries the 512 
uncertainties becomes unrealistically large. Thus, the results are clearly sensitive to the input 513 
uncertainties. This is expected as the input uncertainties are outliers in the GTAP database, thus the 514 
uncertainties are known to be large. As a consequence the vastly perturbed values lead to ill-defined 515 
MRIO tables (outside of machine precision), which will compromise accuracy in the final results (see 516 
Method discussion on skew distributions and small data points). However, as discussed earlier, using 517 
the difference between input and output values as a proxy of uncertainty is not straightforward. E.g. 518 
the first data point in Table 19.6 indicate an input values of 2 billion USD and an output value of 132 519 
billion USD, where the difference (relative to the initial value) can be interpreted as a change of 520 
6500%. This uncertainty is vast, and many data points have much larger differences. Because of these 521 
difficulties, and since the results are only valid for specific sectors, we don’t show regional results 522 
from this analysis, but only use it for illustrative purposes.  523 

Overall, we find small uncertainties on the MRIO results, however, the uncertainties on the end results 524 
are a function of the uncertainties on the input values, as shown by the sensitivity analysis. 525 
Furthermore, the input uncertainties are estimated from small amounts of data and many assumptions, 526 
making the uncertainty estimates on the end results less robust. Although our results are supported by 527 
other studies that have performed parametric uncertainty analysis (Lenzen et al., 2010; Bullard and 528 
Sebald, 1988b; Peters, 2007), structural uncertainties in MRIO analysis is found to be larger (Peters et 529 
al., 2012). Thus we suggest that MRIO uncertainty may be best evaluated using a combination of 530 
structural uncertainties (model comparisons) and parametric Monte-Carlo uncertainties.  531 

 532 

Emissions 533 

At the global level, uncertainties in emissions are known from previous studies (Table 1), which are 534 
used to estimate uncertainties of emissions occurring from production at the sectoral and regional level. 535 
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Figure 5 shows the uncertainty of all data points (7482 sectors, 129 regions and global aggregations) 536 
for all pollutants. Each data point’s uncertainty is dependent on the sector size, the region’s GDP and 537 
whether the region is a developed or developing country. Different activities are associated with 538 
different emissions, thus not all sectors in all regions include emissions from all pollutants. 539 
Additionally, the PFCs and HFCs groups are aggregates of several pollutants, thus the spreads are 540 
based on different amounts of data.  541 

The red boxplots in Figure 5 shows the sectoral distributions of the relative uncertainties, not including 542 
data points with zero uncertainties. Aggregations of sectors to individual countries (blue boxplots) 543 
lower the uncertainty ranges, depending on the sectors’ impact on national totals (NF3 is a special case, 544 
where only one sector in each region has emissions, thus sectoral and regional uncertainties are the 545 
same). The median values for the boxplots indicate the skewness of the distributions. The distributions 546 
often have two distinct peaks (not visible in the boxplots), which are developed and developing 547 
countries, where the latter group has higher uncertainty. The global aggregations are results of national 548 
totals, which are dominated by large regions (e.g. China and USA). The bottom-up global 549 
uncertainties are not constrained by top-down estimates, as we are not using aggregated global 550 
emissions in the end results. They are, however, all (except NF3 due to few data points) lower than the 551 
input estimates from Table 1 due to the aggregation effect. Small regions with low emission and high 552 
uncertainties thus have little effect on the global uncertainties. 553 

The well-mixed GHGs (WMGHG; CO2, CH4, N2O, HFCs, PFCs, SF6, NF3) generally have lower 554 
emissions uncertainties (9% uncertainty for the aggregated sum) than the short lived pollutants (BC, 555 
OC, SO2, NH3; 14% uncertainty) and precursors (CO, NMVOC, NOX; 19% uncertainty). The 556 
WMGHGs accounted for 39.4 ± 1.5 Gt CO2-eq. emissions (using GTP50), while the short-lived 557 
pollutants accounted for -4.6 ± 0.6 Gt CO2-eq. and the precursors accounted for 0.4 ± 0.1 Gt CO2-eq. 558 
(where the two last groups have a mix of warming and cooling effects). Uncertainties in pollutant 559 
aggregates for emissions (tonnes) and GTP50 (CO2-eq.) values only include emission uncertainties, 560 
but are different due to different weighting of pollutants and due to mixing of cooling and warming 561 
effects. Uncertainties of territorial emissions from developing countries (54% of global emissions 562 
using GTP50) have a median value of 32%, while developed regions have a median uncertainty of 563 
16%. These numbers are dominated by the uncertainty of CO2, and usually only small variations are 564 
seen due to other pollutants.  565 

Globally, most emissions occur in the electricity generation sector (28% of global emissions using 566 
GTP50) and manufacturing sectors (25%) (see SI for sector aggregations). Uncertainties in emissions 567 
(tonnes) from electricity range from 19% for CO2, 27% for SO2 and 60% for NOX, which are the most 568 
important pollutants (which has the largest contributions to the sectoral GTP50 value). For energy-569 
intensive manufacturing, CO2 (7% uncertainty), SO2 (8%), and CH4 (52%) are the most important 570 
pollutants. In the non energy-intensive manufacturing sectors, CO2 (8% uncertainty), SO2 (16%), and 571 
HFCs (21%) dominate.  572 

For agriculture, CH4 (21% uncertainty) and N2O (26%) are equally important to the GTP50 value, 573 
while CO (37%) comes third. CH4 has less uncertainty coming from agriculture than energy-intensive 574 
manufacturing, since for CH4 the agriculture sector is much larger, which is consistent with top-down 575 
estimates (Kirschke et al., 2013). The household sector emits mainly CO2 (8% uncertainty), BC (156%) 576 
and OC (140%), due to household fuels and private transportation. The transport sectors consists 577 
mainly of CO2 (5%), SO2 (9%) and NOX (17%). Mining, services, and food sectors are small in a 578 
production view, and consist mainly of CO2 (4%), CH4 (16%) and SO2 (9%). These estimates are 579 
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aggregates of sectors and regions (and gases for HFCs and PFCs), thus disaggregated data have larger 580 
uncertainties. 581 

 582 

Emission metrics 583 

Metric (temperature) values have an uncertainty range for the different pollutants and different time 584 
horizons, due to the perturbed metric parameters (RF, lifetime, and climate sensitivity). This includes 585 
uncertainties from mapping emissions to atmospheric concentrations through the global carbon cycle, 586 
which is represented by the relatively uncertain climate sensitivity. Figure 6 shows all pollutants on 587 
the same scale using AGTP for 2007 global emissions, with both relative and absolute uncertainties. 588 
The net temperature response (black dotted line) goes from negative to positive over the first few years, 589 
before the short-lived species decay and the net effect becomes dominated by CO2 in the long run. The 590 
relative and absolute uncertainty of the net effect is largest in the first few years, and becomes roughly 591 
stable from 50 to 100 years. The strong temperature effects of SLCFs and thus the high absolute 592 
uncertainties of the mix of pollutants increase the net uncertainty in the first few years, but CO2 593 
dominates the uncertainty after 20 years. 594 

The top contributors to absolute uncertainties in the first year are SO2, BC and NH3. BC and SO2 have 595 
similar relative uncertainties, but since the emissions of SO2 are much larger, it has five times the 596 
absolute uncertainty. OC, BC and SO2 have the largest uncertainties after approximately 10 years 597 
(except for NH3 due to its significantly larger RF uncertainty), as the uncertainties are dominated by 598 
RF and climate sensitivity uncertainties. NOX has a very high relative uncertainty after 7 years because 599 
its temperature effect goes from positive to negative around this time.  600 

Figure 7 shows a breakdown of the parameters contributing to relative uncertainty of the AGTP values 601 
by pollutant (see SI Figure for absolute uncertainties). MC runs with separate metric components 602 
individually perturbed were done to isolate the individual contributions to uncertainties. For 603 
comparison, uncertainties on global emissions are also included in the graph, although not included 604 
when perturbing all components. Uncertainties on emissions and RF do not depend on time horizon, 605 
thus they are straight lines. However, as the precursors have combined effects (see methods) the 606 
uncertainty on RF on CO, NMVOC and NOX actually change with time due to the different effects 607 
having different lifetimes.  608 

For the first three years the total uncertainty for most pollutants (except the SLCFs: BC, OC, SO2 and 609 
NH3) is completely dominated by the first decay parameter of the climate sensitivity, which has a 610 
median value of 2.6 ± 1.2 years (Olivié and Peters, 2013). For the WMGHGs, the parameter continues 611 
to dominate to approximately 6-8 years where the uncertainty of the climate sensitivity component 612 
takes over and continues to dominate to at least 100 years. Between them they explain the largest 613 
contributions of uncertainties to the metric values for all time horizons. While the decay parameter 614 
explains the large uncertainties in the first years, the climate sensitivity parameter explains the 615 
increasing relative uncertainties towards 50 and 100 years. The climate sensitivity parameters are 616 
highly sensitive to time horizon since they have different effects at different times. For SO2 and NH3, 617 
the first years are also effected by high uncertainties from RF. Other short lived pollutants (BC and 618 
OC) have large contributions from both emissions and RF values.  619 

At 50 years, CO2 and CH4 have additional significant contributions to uncertainties from lifetimes. 620 
Since they both have lifetimes within the ranges of the graph, they show variability with time horizon. 621 
The shorter and longer lived pollutants show little variations in lifetime uncertainties over time 622 
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horizons, as lifetimes are either too short or too long to have any effect within 100 years at this scale. 623 
The uncertainty on lifetime for several gases are assumed (Table 5), however, the small impact from 624 
lifetime uncertainties on the metric values indicate that small changes of the median lifetimes will for 625 
most pollutants have very little effect. At 50 years the short-lived pollutants have uncertainties in the 626 
range between ±95% and ±165%, while the WMGHGs have uncertainties in the range between ±35% 627 

and ±70%. The precursors have uncertainties around ±65%. 628 

After 100 years, only the WMGHGs still have a significant temperature effect, which means that the 629 
SLCFs do not contribute with absolute uncertainties. In relative terms, shorter lived pollutants have a 630 
rise in uncertainties from 50 to 100 years, while the opposite is true for the longer lived pollutants. The 631 
last group is then completely dominated by climate sensitivity uncertainties. Most pollutants have 632 
relatively low uncertainty contributions from emissions as the global estimates are low, except for BC 633 
and OC. On a regional and sectoral level, the uncertainties from emissions are usually much more 634 
dominant, which shifts the total uncertainties at all time horizons.  635 

The literature consists of both studies which allocate emissions using the absolute metric (AGTP) and 636 
the normalized metric (GTP). The GTP metric values are scaled with the AGTP values for CO2. When 637 
running the MC analysis we create AGTP values for every iteration, which implies that CO2 always 638 
will be normalized by itself (by definition, GTPCO2=1). Therefore, the uncertainties of total emissions 639 
using GTP values are quite different to AGTP uncertainties since the dominant species (CO2) has no 640 
metric uncertainty, and the uncertainties on other species are potentially amplified due to the 641 
uncertainty of AGTPCO2 values.  642 

A second effect of using the GTP values is that the normalization of AGTP values include the climate 643 
sensitivity in both the numerator and denominator, which means that GTP values are less sensitive to 644 
climate sensitivity uncertainties than AGTP values (i.e. uncertainties are correlated). Table 7 illustrates 645 
the difference between uncertainties in AGTP, GTP and GWP values. GTP uncertainties are typically 646 
±10-15 percentage points below those of AGTP, and since the AGTPCO2 uncertainties are not strongly 647 
dependent on time horizons, they do not affect the uncertainties over different time horizons for other 648 
pollutants’ GTP values much. GWP calculations use the same parameters as with GTP, and although 649 
we do not use GWP in our results, we include the uncertainties in the table for comparison. Overall, 650 
we find less uncertainty using GWP than the other metrics (Reisinger et al., 2010), except for NOx. 651 
The GWP calculations are not dependent on the highly uncertain climate sensitivity, since it does not 652 
relate to global temperature change. Thus it is expected to have lower uncertainties. NOx has 653 
overlapping indirect effects, with highly uncertain RF values, which suggests that the GWP20 values 654 
can be both negative and positive, with a median close to zero. Thus it has a very high uncertainty. 655 

A few other studies have investigated the uncertainties of AGTP and GTP values, but it is difficult to 656 
compare those which have as there are many different sources of uncertainties from many different 657 
models and datasets. Our GTP uncertainty results are generally higher than Olivié and Peters (2013) 658 
estimates, since we also include uncertainties on lifetimes and RF values of non-CO2 species. Their 659 
GTP50 uncertainties for BC (-62–+67%), CH4 (-38–+48%), N2O (-16–+25%) and SF6 (-17–+25%) are 660 
higher than their GWP uncertainties, mainly due to the dependence on the uncertain climate response 661 
(Olivié and Peters, 2013). An other study (Fuglestvedt et al., 2010) found similar uncertainties for 662 
GTP50 values for BC (around 200%) and smaller values for CH4 (50%) compared to our results, and 663 
essentially zero for N2O, when only looking at sensitivity to the climate response. N2O is a special 664 
case as it has a similar average lifetime to CO2, thus it has similar climate sensitivity uncertainty as 665 
CO2, which can be seen in Figure 7 for AGTP values. The normalization of GTP therefore cancels the 666 
climate sensitivity effect. Based on an evaluation of several studies (including Reisinger et al. (2010)), 667 
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Myhre et al. (2013b) assessed the uncertainty of CH4 for GTP100 to be ±75%, which is close to our 668 
estimate. Furthermore, Joos et al. (2013) found uncertainties for CO2 AGTP values at 50 (±45%) and 669 
100 years (±90%), based on the spread of multiple climate models. Overall, we find the uncertainties 670 
to be consistent with other studies, but highly variable depending on datasets and choices.  671 

Uncertainty on all components 672 

Total uncertainties in production- and consumption-based emission estimates reflect a combination of 673 
uncertainties from the economic data (IO data for regions and sectors), emissions data (tonnes of the 674 
pollutants occurring in regions and sectors), and metric parameters (RF and lifetime for the pollutants, 675 
and the resulting climate response). Additionally, the emissions of a region in a consumption 676 
perspective is a combination of domestic emissions as well as emissions occurring in other regions 677 
(due to emissions embodied in trade), which changes the mix of pollutants and inherits uncertainties 678 
from the regions and sectors they occur in. To facilitate our discussion we aggregate the 58 economic 679 
sectors (post analysis) to 9 sectors. The results are strongly dependent on different perspectives: (1) 680 
production and consumption, (2) relative or absolute metric values, (3) time horizon of metric, (4) 681 
global, regional or sectoral level, and (5) mix of pollutants included. To illustrate the largest 682 
differences, we focus on comparing points 1, 2 and 4, as 3 has been discussed extensively elsewhere 683 
(Myhre et al., 2013b). 684 

In the allocations of metric values in the MRIO model, we choose to use 50 year time horizon, as 685 
discussed earlier: it is consistent with other recent studies, and consistent with the 2 degree policy 686 
target. Because of the differences between absolute and relative metric uncertainties, we compare both 687 
when including perturbations on all components in the last section. 688 

Figure 8 shows uncertainties from the components with aggregated sectors and the top emitting 689 
regions, using GTP50 production emissions. The three different bars represent individual MC 690 
ensembles with only the respective components perturbed. At the sector level, the uncertainties in 691 
emissions data is generally the smallest (from 6% to 24% for sectors), except for households where 692 
large and highly uncertain emissions of BC and OC occur. Uncertainty in metrics has a range from 14% 693 
to 63%, being especially large in sectors with non-CO2 emissions (e.g. Agriculture and Mining). 694 
Pollutants with higher relative uncertainty on emissions compared to uncertainty on metric values at 695 
GTP50 (including BC, OC, and NF3 at disaggregated levels), will tend to give higher uncertainty on 696 
emissions, while the other pollutants will give higher uncertainty on metrics. 697 

The sector aggregation means that high and low uncertainties from different sector sizes are mixed, 698 
and thus single sectors like construction have a higher uncertainty than the aggregated sector Services. 699 
Disaggregation from the global sector perspective to national level and further to sector level reveals 700 
that emissions uncertainties are a function of aggregations (sectoral uncertainties are adjusted to 701 
specific national uncertainties), while the metric uncertainties are not directly dependent on sector 702 
aggregation and will therefore not scale the same way. Consequently, disaggregated levels generally 703 
find much higher emission uncertainties than metric uncertainties. For the top 10 emitters, 704 
disaggregated sectoral emission uncertainties have a median value between 13 and 94 percentage 705 
points above the national aggregate, while the metric uncertainties have a median value between 4 and 706 
16 percentage points above the national aggregated level. 707 

Furthermore, emission uncertainties are scaled according to sector sizes, whereas metric uncertainties 708 
are not. This means that emission uncertainties are a combination of mix of pollutants and mix of 709 
sector sizes, while metric uncertainties only reflect the mix of pollutants (where uncertainty is 710 
dominated by temperature response). This makes the global sectoral and national level quite different, 711 
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since the national level represent various sector sizes with uncertainties according to the functional 712 
relationship, while the global sectors might only represent large or small sectors. Because of this, 713 
emission uncertainties usually dominate at the national level as the regions are less aggregated (each 714 
region consists of 58 sectors) than the global sectors (each consisting of 129 regions). The difference 715 
in regional uncertainties is attributed to different mix of territorial pollutants being emitted, the sector 716 
sizes, size of economy and if the regions are developed or developing nations.  717 

Uncertainties from the different components do not linearly contribute to total uncertainty in the end 718 
results, thus we calculate the total uncertainty in two different ways: an MC run with everything 719 
perturbed, and a RSS approach combining the individual components. While the MC run is considered 720 
the more robust method since it takes into account all data points, including the effect of error 721 
cancelling, the RSS method is an approximation of error propagation which assumes no correlation 722 
and normal distributions. The two methods agree in most cases, which imply that there are only small 723 
correlations between the components and that the global-level data is close to normally distributed. 724 
This further implies that a full computationally intensive MC run with all components perturbed might 725 
not be necessary in ideal cases, as the RSS method can approximately derive the results. 726 

Figure 9 shows uncertainties from the consumption perspective, thus including MRIO uncertainties. In 727 
general, the emissions embodied in imports and exports inherit uncertainties from the economic data 728 
of the region where the emissions occur. Consumption emissions include territorial emissions and 729 
emissions from imports, while they exclude emissions from exports. Since our MRIO uncertainties 730 
only include parametric uncertainties they tend to be small due to the cancellation effect discussed 731 
earlier, which is consistent with other similar studies (Lenzen et al., 2010; Wilting, 2012; Bullard and 732 
Sebald, 1988a; Peters, 2007). Structural uncertainties, including differences in data sources, MRIO 733 
models and definitions of consumption-based emissions, may be a larger source of uncertainty 734 
(Andrew and Peters, 2013). The differences in the datasets and methods used to calculate 735 
consumption-based CO2 emissions have shown to be relatively small, with roughly 10% for USA for 736 
2007 (Peters et al., 2012). Although various studies use different input data and models, Peters et al. 737 
(2012) found the results of major emitters to be robust across studies, even though 10% differences are 738 
not uncommon.  739 

The top emitting regions are large economies, and therefore have mostly large economic sectors and 740 
therefore low aggregated uncertainties. The consumption perspective also mix pollutants in regions 741 
and sectors since the supply-chain is taken into account, leading to dilution of the sectoral and regional 742 
variability since multi-sectoral dependence for a single consuming sector is common (e.g. the 743 
production of a car needs input from other sectors, especially electricity). Households are considered 744 
final demand in the MRIO model, and therefore their emissions are not allocated through the 745 
economic model and thus do not inherit economic uncertainties. 746 

Contrary to the production perspective, the national consumption-based emissions are more dominated 747 
by metric uncertainties, due to different mix of pollutants. Disaggregation of the consumption 748 
emissions reveals that metric uncertainties usually dominate the sectors for the top emitters, and that 749 
uncertainties in economic data also usually increase more than the emission uncertainties at the sector 750 
level. For these nations, disaggregated sectoral emission uncertainties have a median value between 2 751 
and 11 percentage points above the national aggregate, while the metric uncertainties have a median 752 
value between 3 and 9 percentage points above the national aggregated level, and economic 753 
uncertainty have an increase between 4 and 10 percentage points. 754 
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Figure 10 show GTP values and uncertainties for the same sectors and regions, for both territorial and 755 
consumption perspectives. Comparing the allocation differences due to different perspectives help 756 
explain the change in uncertainties when going from production to consumption. Agriculture and 757 
mining see the largest sectoral decrease in uncertainties due mainly to different mix of pollutants 758 
(increased CO2), while transport and non-energy intensive manufacturing see an increase due to 759 
increased allocations of non-CO2 emissions like SO2. Similar differences can be seen for regions: India 760 
and Brazil are uncertain due to SO2 and CH4 emissions, while the US consists mostly of CO2.  761 

Most regions have quite similar uncertainty in both perspectives, indicating that the economic 762 
uncertainties do not play a major role for the large regions. The difference of uncertainties in the 763 
allocation perspectives can mainly be attributed to: (1) different mix of pollutants and (2) different 764 
allocations of emissions to sectors. The first effect gives net emission importers higher uncertainty in 765 
some sectors, due to highly uncertain pollutants (e.g. the share of non-CO2 emissions in the UK is 30% 766 
higher using consumption-based emissions, assuming absolute values), while other sectors decrease 767 
uncertainties due to the increased allocation of CO2. The second effect is introduced when aggregating 768 
sectors to national level. The production emissions in a region are often dominated by a few large 769 
sectors, while the consumption-based emissions are distributed more evenly among the same sectors. 770 
This difference in distribution cause different relative errors on the aggregated result, even tough the 771 
sectoral uncertainties and the sum of emissions might be the same. Thus, on the national level, this 772 
effect creates smaller uncertainties. The combined results may give consumption-based emissions less 773 
uncertainty than production emissions on the national level (usually within 1-2% for the top emitters).  774 

In the SI we demonstrate how to calculate consumption uncertainty analytically for a simple one-775 
sector, two-region world economy. This reveals that the consumption uncertainty can be lower, under 776 
conditions that are not unusual. How this analytical solution generalizes to larger systems requires 777 
further research. A similar finding was also found by Peters et al. (2012). 778 

The AGTP emissions include uncertainties on CO2, thus sectoral and regional uncertainties are larger 779 
and differences are reduced since it is the most common pollutant (Figure 11). In this view, e.g. 780 
Chinese and US emissions overlap greatly within the given uncertainties, suggesting that the ordering 781 
is uncertain. The corresponding GTP values have less overlap. This may have large policy 782 
implications in terms of responsibility. Other choices may also change the relative importance and 783 
uncertainty of regions and sectors. Choosing 20 years as time horizon would give lower relative 784 
uncertainties for all pollutants because of lower uncertainties for lifetime and climate sensitivity, 785 
except for SO2, BC, OC and NH3 due to their short-lived nature, thus regions and sectors with large 786 
emissions or consumption of SLCFs will be given larger uncertainties. Choosing 100 years will in 787 
most cases give higher relative uncertainties and give SLCFs less importance (see Figure 7). Overall, 788 
we find the uncertainties to be highly sensitive to methods and choices. 789 

 790 

Discussion 791 

This study investigates parametric uncertainties in the temperature response to territorial- and 792 
consumption-based emissions with uncertainty contributions from economic data, emissions data and 793 
metric parameters. Structural uncertainties (dataset and model differences) and other contributing 794 
factors such as emission metric, attribution methods and indicators of climate change may be equally 795 
important when assessing uncertainties, but we did not investigate those here (den Elzen et al., 2005; 796 
Höhne et al., 2008; Peters et al., 2012; Moran and Wood, 2014). Earlier studies have shown relatively 797 
low uncertainties when estimating countries’ contributions to climate change. Prather et al. (2009) 798 
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estimated an uncertainty range of -27% to +32% for the global warming caused by Annex I countries 799 
for the period 1990–2002 (0.11 ±0.03°C using 16–84 % confidence interval). Similar to them, we find 800 
that climate modeling generally has the largest contribution to total uncertainty on an aggregated level. 801 

Our analysis has shown that uncertainties change depending on the (1) allocation perspective, (2) 802 
pollutants included, (3) metric and (4) aggregation. These changes in uncertainties may have 803 
implications for future mitigation policies. 804 

First, we found little difference in the uncertainties in production- and consumption-based emissions. 805 
It is often assumed that consumption-based emissions are more uncertain (Peters, 2008). Consistent 806 
with others, we find that parametric uncertainties are smaller, while structural uncertainties are 807 
generally larger (Peters et al., 2012; Moran and Wood, 2014). Lenzen et al. (2010) found lower 808 
uncertainties for the UK carbon footprint (relative standard deviation of 5% in 2001) than our results 809 
(±9%), but this is probably because we include other pollutants and metric uncertainties. In a recent 810 
study, Moran and Wood (2014) found that parametric uncertainties in consumption-based emissions 811 
were generally lower than the uncertainty in territorial-based emissions and the structural uncertainties 812 
(model spread). They found that most major economies’ carbon footprint results are within 10%, 813 
consistent with our results. However, it is difficult to gauge how robust the parametric consumption-814 
based emission uncertainties are. On the one hand, our chosen input uncertainties may be 815 
underestimated but there exists scant data to verify this. Increasing the uncertainties requires the need 816 
to rebalance the MRIO tables used in the analysis, which may introduce correlations and additional 817 
uncertainties resulting from the balancing process. Due to the computationally expensive nature of this 818 
type of analysis, further work would be required to assess the implications of rebalancing for each 819 
perturbation. On the other hand, the small uncertainties may reflect a realistic cancelling of numerous 820 
random errors (Lenzen et al., 2010). Settling these issues is a topic of future research. 821 

Second, including SLCFs creates larger differences between regions’ and sectors’ uncertainties, where 822 
e.g. emissions from Brazil and India are much more uncertain than those of the other top 10 emitters 823 
due to large emissions in agriculture. Sectors such as agriculture, electricity and manufacturing have 824 
large non-CO2 emissions, causing larger cooling and warming effects and additional uncertainties on 825 
the net change. It is often argued that a shorter time horizon (e.g. 20 years) places more emphasis on 826 
the short-lived pollutants relative to CO2, while with a longer time horizon (e.g. 100 years) the 827 
warming from CO2 dominates. There is also a similar trade off with uncertainty: in the short term, the 828 
uncertainties are much larger due to the SLCFs, and thus the temperature effect of policies to reduce 829 
SLCFs has a more uncertain outcome; in the long-term, the more certain temperature effects of CO2 830 
dominate and the uncertainty due to the SLCFs becomes less relevant. Thus, uncertainty may tend to 831 
favor a more certain outcome on CO2 mitigation compared to SLCFs. This hypothesis would require 832 
deeper analysis using economic and other models that incorporate uncertainty into decision making. 833 

Third, the GTP values have much smaller uncertainties than the AGTP metric, due to 1) the 834 
dominance of CO2 which has GTPCO2=1 and no uncertainty by definition and 2) the scaling by 835 
AGTPCO2 in the denominator which effectively reduces the impact of climate-sensitivity uncertainty in 836 
the GTP. This suggests that a normalized metric, GTP, may be better than an absolute metric, AGTP, 837 
in terms of reducing uncertainties. In perspective, the underlying uncertainties are ultimately the same, 838 
but they have just been shifted to different variables and scaled out. Thus, a GTP focus may give the 839 
impression of greater uncertainty in CO2, while the uncertainty is really translated to the GTP of other 840 
species. Other metrics, like the GWP, have lower uncertainties then the GTP as they do not include the 841 
response of the climate system (Olivié and Peters, 2013). Despite the metric uncertainties, it is unclear 842 
what role they should play in policy. From a scientific point of view the uncertainties are important, 843 
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but in policy, once a metric and its parameters are chosen, their uncertainties are likely to be 844 
disregarded in subsequent policy applications. This is an area that needs further consideration.  845 

Fourth, aggregation changes the importance of the uncertainty contribution between the different 846 
components (economic data, emissions data and metric), as only the emissions data uncertainty have 847 
been estimated at both sector and regional level, while they all are affected by reduction in 848 
uncertainties by aggregation. On the global sectoral level, uncertainties are dominated by metrics. For 849 
the regions, emissions uncertainties often dominate over metric uncertainties. At the sector level, much 850 
larger variations are seen, with even economic uncertainties dominating in very small sectors. Thus, 851 
the role of uncertainties may differ depending on the level of aggregation.  852 

These results presented are broadly in line with the existing literature on this topic (Wilting, 2012; 853 
Fuglestvedt et al., 2010; Joos et al., 2013; Lenzen et al., 2010; Myhre et al., 2013b; Olivié and Peters, 854 
2013). However, our results are limited by the quality of the uncertainty information available as input 855 
into our analysis. Despite the widespread usage of the input data in a wide variety of studies, there still 856 
exists virtually no uncertainty information on economic data, and limited data on the uncertainties in 857 
emission statistics and metric parameters. 858 

A major difficulty of uncertainty analysis is the issue of correlations.  There is a large need for 859 
addressing correlations in datasets and uncertainties, as these may have significant impacts on the 860 
results. We see several places where correlations could be important: (1) correlations in the metric 861 
parameters, (2) balancing constraints (e.g., if the production of electricity is low, then the consumption 862 
of electricity has to be low), (3) between datasets (e.g., a perturbation in fossil fuel use in the economic 863 
dataset should be reflected by a similar perturbation in the emissions dataset), and (4) in each MC 864 
ensemble the perturbation given to a particular region/sector combination may be correlated with other 865 
region/sectors (e.g. if Norway’s emissions from cement production in one ensemble are low, then 866 
Sweden’s emissions from the same sector may also be low due to correlations in emissions factors).  867 

In our analysis we have explored correlations for metric parameters (temperature and CO2 IRF), 868 
which we found to have a small effect on the results, which is addressing point 1. The effect of 869 
correlations in the MRIO data, and linkages to emission data through energy consumption, has not 870 
previously been quantified, and this remains an important area of research. Although these correlations 871 
may change the uncertainty outcome, implementation of correlations in emissions and economic data 872 
faces considerable computational and conceptual hurdles. First, due to the large datasets used in this 873 
analysis, the correlation matrix would be prohibitively large (approximately 1015 elements), posing 874 
serious computational issues. Second, there are little or no data indicating correlations in uncertainties 875 
in sectoral economic data or emissions data, and populating a correlation matrix of the necessary size 876 
would therefore be largely guesswork. Given these constraints, we suggest that the best way forward is 877 
to generate small test cases to assess the importance of correlations in small datasets, but we leave this 878 
for future work. 879 

 880 

Conclusion 881 

We analyzed emissions from 129 countries and 58 sectors with 31 SLCFs and GHGs when estimating 882 
countries’ territorial and consumption-based emissions for 2007. We use top-down uncertainty 883 
estimates to derive sector level uncertainties, and use these to perturb the economic data, emissions 884 
data and metric parameters in a Monte-Carlo model. We find the results are sensitive to some 885 
parameters (such as the uncertainty of the climate response and the datasets) and assumptions (such as 886 
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developing countries are assigned twice the uncertainty for emissions and economic data), but 887 
especially to choices regarding allocation perspective, pollutants included, metric used and 888 
aggregation level of the results.  889 

We find only minor uncertainty differences between allocation perspectives (production versus 890 
consumption) for the top regions, and uncertainties in the economic data are very small for the large 891 
countries. Since economic data generally does not have uncertainty information, it was necessary to 892 
estimate the uncertainties of the economic data and there is little data to verify our estimates. At the 893 
sectoral level, larger differences between production and consumption are found. The inclusion of 894 
SLCFs increases both the emissions and metric uncertainties, and gives larger variations between 895 
regions and sectors. A different choice of time horizon would change the prioritization of the gases 896 
and corresponding uncertainties.  At the global level, the metric uncertainty (which is dominated by 897 
climate sensitivity) dominates over emission and economic uncertainty. At the regional level, the 898 
uncertainties from emissions are more important.  899 

Our work points to key areas of future research required to reduce uncertainties. The climate 900 
sensitivity generally dominates uncertainties, and this is where the largest improvements can 901 
potentially be made. Most climate sensitivity literature focuses on the long-term sensitivity, whereas 902 
for metrics (and undoubtedly most mitigation analysis), the temporal path to the equilibrium response 903 
is most relevant (Impulse Response Function). Thus, we suggest much deeper analysis is needed on 904 
the time-evolution of the temperature response. Emission statistics are routinely collected, but 905 
generally have poorly defined uncertainties. Our work indicates that large improvements in the 906 
reporting and analysis of emission uncertainties are needed. Additional metric uncertainties can be 907 
improved through a better characterization of metric parameters (radiative efficiencies and lifetimes). 908 
Reducing uncertainties in metrics and emission statistics will reduce both uncertainties in production- 909 
and consumption-based emissions. The uncertainty in the economic data was necessarily based on 910 
crude assumptions. While we found that the economic uncertainties were small, this result requires 911 
confirmation by more comprehensive analyses, critically including uncertainty correlations, which 912 
were excluded from our analysis. Reducing uncertainties in the economic data will have the effect of 913 
reducing uncertainties in consumption-based emissions only.  914 
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Table 1: Global emissions and uncertainties. The uncertainties indicate the 5%-95% (90%) percentile range. PFCs 1142 
include: C2F6, C3F8, C4F10, C5F12, C6F14, C7F16, CF4, c-C4F8. HFCs include: HFC-125, HFC-134a, HFC-143a, 1143 
HFC-152a, HFC-227ea, HFC-23, HFC-236fa, HFC-245fa, HFC-32, HFC-365mfc, HFC-43-10-mee, following UNEP 1144 
(2012). 1145 

Pollutant Global emissions (kt) Uncertainty Emissions references Uncertainty references 
PFCs 1.47E+01 ±17% European Commission (2011) UNEP (2012) 
CH4 3.25E+05 ±21% European Commission (2011) UNEP (2012) 
CO 9.47E+05 ±25% European Commission (2011) European Commission (2011) 
CO2 3.14E+07 ±8% European Commission (2011) UNEP (2012) 
HFCs 2.68E+02 ±17% European Commission (2011) UNEP (2012) 
N2O 1.02E+04 ±25% European Commission (2011) UNEP (2012) 
NF3 1.58E−01 ±26% European Commission (2011) Weiss et al. (2008) 
NH3 4.92E+04 ±25% European Commission (2011) Clarisse et al. (2009) 
NMVOC 1.60E+05 ±50% European Commission (2011) European Commission (2011) 
NOX 1.27E+05 ±25% European Commission (2011) European Commission (2011) 
SF6 6.17E+00 ±10% European Commission (2011) Levin et al. (2010) 
SO2 1.22E+05 ±11% European Commission (2011) Smith et al. (2010) 
BC 5.22E+03 ±84% Shindell et al. (2012) Bond et al. (2004) 
OC 1.34E+04 ±84% Shindell et al. (2012) Bond et al. (2004) 
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Table 2: Example of perturbations of sectors for a single region r, and the resulting distribution on the national total.  1148 
This bottom-up uncertainty estimate may not be consistent with top-down uncertainty estimates. 1149 

 
Region r 

 
Sector 1 Sector 2 Sector 3 Sector n 

National total 
(sum of sectors) 

Distribution on  
national totals 

Perturbation 1 x11 x12 x13 x1n X1 

    →  XN 
Perturbation 2 x21 x22 x23 x2n X2 
Perturbation 3 x31 x32 x33 x3n X3 
Perturbation i xi1 xi2 xi3 xin Xi 

 1150 

 1151 
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Table 3: Metric parameters with uncertainties. Note that the uncertainties are derived from CMIP5 data and Joos et 1154 
al. (2013), but we use the corresponding distributions listed in Table 5 and 6 in the study by Olivié and Peters (2013) 1155 
to account for correlations. 1156 

Parameters Values Unit Uncertainties 
Climate sensitivity f1 0.43 

K/Wm2 ±29% 
Climate sensitivity f2 0.32 ±59% 
Climate sensitivity decay τ1 2.57 

year 
±46% 

Climate sensitivity decay τ2 82.24 ±192% 
CO2 weight a0 0.23  ±20% 
CO2 weight a1 0.28  ±33% 
CO2 weight a2 0.35  ±28% 
CO2 weight a3 0.14  ±30% 
CO2 decay τ0 INF 

year 

– 
CO2 decay τ1 239.6 ±58% 
CO2 decay τ2 18.42 ±68% 
CO2 decay τ3 1.64 ±63% 
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Table 4: RF values and uncertainties. Note that CO, NMVOC and NOx are precursors, which have an effect on O3 1158 
and CH4 concentrations. Because of this, no single RF value can be given. The uncertainties indicate the 5%-95% 1159 
(90%) percentile range. Parameters from IPCC (2007) are taken from Table 2.14, p. 212-213. 1160 

Pollutant RF (Wm-2 kg-1) Uncertainty RF references Uncertainty references 
PFCs 6.40E-12 – 1.06E-11 ±10% IPCC (2007) Myhre et al. (2013a) 
CH4 1.82E-13 ±17% Fuglestvedt et al. (2010)  Myhre et al. (2013a) 
CO - ±24% Derwent et al. (2001) Myhre et al. (2013a) 
CO2 1.81E-15 ±10% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
HFCs 6.74E-12 – 1.53E-11 ±10% Fuglestvedt et al. (2010), IPCC (2007) Myhre et al. (2013a) 
N2O 3.88E-13 ±17% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
NF3 1.66E-11 ±10% IPCC (2007) Assumed 
NH3 -1.03E-10 ±123% Shindell et al. (2009) Myhre et al. (2013a) 
NMVOC - ±41% Collins et al. (2002) Myhre et al. (2013a) 
NOX - ±120% Wild et al. (2001) Myhre et al. (2013a) 
SF6 2.00E-11 ±10% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
Sulphate -3.20E-10 ±50% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
BC 1.96E-09 ±66% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
OC -2.90E-10 ±68% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
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Table 5: Lifetimes and uncertainties. The uncertainty on lifetime for several gases are assumed, but a sensitivity 1163 
analysis revealed that a change of this uncertainty will not have a large impact on the results (see Metric results 1164 
section below). Note that CO, NMVOC and NOx are precursors, which have an effect on O3 and CH4 concentrations. 1165 
Because of this, no single RF value can be given. Values and uncertainties for CO2 are given in Table 3. The 1166 
uncertainties indicate the 5%-95% (90%) percentile range. Parameters from IPCC (2007) are taken from Table 2.14, 1167 
p. 212-213. 1168 

Pollutant Lifetime (years)  Uncertainty Lifetime references Uncertainty references 
PFCs 2600-50000 ±20% Fuglestvedt et al. (2010) Assumed 
CH4 12 ±19% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
CO - ±20% Fuglestvedt et al. (2010) Assumed 
CO2 - - Fuglestvedt et al. (2010) - 
HFCs 1.4-270 [±12%-±29%] Fuglestvedt et al. (2010), IPCC (2007) Myhre et al. (2013a), SPARC (2013) 
N2O 114 ±13% Fuglestvedt et al. (2010) Myhre et al. (2013a) 
NF3 740 ±13% Fuglestvedt et al. (2010) SPARC (2013) 
NH3 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
NMVOC - ±20% Fuglestvedt et al. (2010) Assumed 
NOX - ±20% Fuglestvedt et al. (2010) Assumed 
SF6 3200 ±20% Fuglestvedt et al. (2010) Assumed 
Sulphate 0.01 ±20% Fuglestvedt et al. (2010) Assumed 
BC 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
OC 0.02 ±20% Fuglestvedt et al. (2010) Assumed 
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Table 6: Uncertainties in allocated emissions due to uncertainties in the economic dataset, by top 10 emitters. The 1171 
territorial emissions are not perturbed, thus they have no uncertainty.  1172 

    Region Territorial Exports Uncertainty Imports Uncertainty Consumption Uncertainty 

T
op

 1
0 

em
it

te
rs

 g
lo

ba
ll

y 1 China 7269 1966 1.7 % 400 2.1 % 5703 0.7 % 
2 United States of America 6380 744 1.1 % 1411 1.2 % 7047 0.3 % 
3 Russian Federation 2027 600 1.0 % 216 1.3 % 1642 0.5 % 
4 India 1812 232 2.0 % 186 2.6 % 1766 0.5 % 
5 Japan 1381 257 1.3 % 471 1.4 % 1595 0.5 % 
6 Germany 957 324 0.9 % 498 1.0 % 1130 0.6 % 
7 Brazil 750 127 2.1 % 116 3.1 % 739 0.7 % 
8 Canada 626 194 1.0 % 209 1.5 % 641 0.7 % 
9 United Kingdom 616 134 1.0 % 410 1.1 % 892 0.6 % 

10 Korea 547 158 1.9 % 214 2.4 % 602 1.2 % 
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Table 7: Metric values uncertainties for 20, 50 and 100 years time horizon. All metric parameters (excluding 1175 
emissions) were perturbed. The uncertainties indicate the 5%-95% (90%) percentile range, where the plus-minus 1176 
notation is half of the 90% CI. Numbers are rounded to nearest 5%, as multiple MC runs would give slightly different 1177 
results (usually within 1-2%). 1178 

Pollutants AGTP20 AGTP50 AGTP100 GTP20 GTP50 GTP100 GWP20 GWP50 GWP100 
PFCs ±30% ±35% ±35% ±20% ±20% ±20% ±15% ±15% ±15% 
CH4 ±45% ±70% ±75% ±35% ±55% ±70% ±25% ±30% ±30% 
CO ±45% ±65% ±75% ±35% ±45% ±65% ±20% ±20% ±25% 
CO2 ±35% ±40% ±40% ±0% ±0% ±0% ±0% ±0% ±0% 
HFCs ±30% ±40% ±40% ±20% ±20% ±20% ±15% ±15% ±20% 
N2O ±35% ±40% ±40% ±25% ±25% ±30% ±20% ±25% ±25% 
NF3 ±35% ±35% ±35% ±20% ±25% ±25% ±15% ±20% ±20% 
NH3 ±180% ±165% ±170% ±165% ±150% ±165% ±125% ±130% ±130% 
NMVOC ±50% ±65% ±75% ±35% ±45% ±65% ±20% ±20% ±25% 
NOX ±35% ±65% ±95% ±35% ±50% ±80% ±295% ±150% ±125% 
SF6 ±35% ±35% ±35% ±20% ±20% ±25% ±15% ±20% ±20% 
SO2 ±110% ±95% ±100% ±100% ±80% ±100% ±55% ±55% ±55% 
BC ±125% ±110% ±110% ±110% ±95% ±110% ±70% ±70% ±70% 
OC ±125% ±110% ±115% ±110% ±95% ±110% ±70% ±75% ±75% 
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 1183 

 1184 

Figure 1: Flow chart of activities (bold boxes) and the datasets that determine transitions between them (dashed boxes) 1185 
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 1188 

Figure 2: Error distribution of selected GTAP input-output data (taken from Table 19.6 in McDougall (2006) and 1189 
shown as colored circles), and trend lines showing the fit of the general functional relationship explained by Eq. (1). 1190 
Red and blue circles differ due to different methods of estimating the difference between unbalanced and balanced 1191 

data. See the discussion in the text. 1192 
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 1196 

Figure 3: Functional relationship between sector sizes on horizontal axis (in kt CO2 and million US dollars, 1197 
respectively) and relative uncertainty on vertical axis. The red lines outline the range of developing regions, while the 1198 
blue lines show the range of developed countries. Each region has been estimated using a single unique curve, and all 1199 
sectors, depending on their size, will fall on this curve. The form of this relationship is established independently for 1200 

each pollutant. 1201 
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 1205 

Figure 4: Distributions depending on median values and uncertainty. Both distributions have a median = 1, while the 1206 
near-normal distribution (green) has a relative uncertainty of 100%, the skew distribution has a relative uncertainty 1207 

of 500%. The green and red shaded areas indicate the 5-95% (90%) confidence intervals.  1208 
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 1210 

Figure 5: Relative uncertainties (90% CI) of all pollutants for all sectors (red boxplots), for national aggregates (blue 1211 
boxplots) and global aggregates (green dots). The edges of the boxes indicate the 25th and 75th percentile, and the 1212 
whiskers include extreme data points, but not outliers. The blue target symbol indicates the median value of the 1213 

distributions. Pollutants are sorted according to global emissions in tonnes.  1214 
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 1217 

Figure 6: a) The AGTP for a range of pollutants, with b) relative and c) absolute uncertainties due to metric 1218 
parameters. Pollutants are sorted in the legend according to absolute temperature impact at 50 years. The box inside 1219 
subplot a) shows the same figure on a different scale, and the shaded area around the net effect indicate the 90% CI 1220 
uncertainty. Subplot b) has a log scale, showing relative uncertainties. Subplot c) (also using log scale) shows the 1221 
absolute uncertainty for a 90% CI, of which half is the upper shaded area in a) and the other half is the lower shaded 1222 
area. 1223 
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 1226 

Figure 7: AGTP values (black lines) for all pollutants (sorted by absolute temperature impact at 50 years time horizon) 1227 
and relative uncertainties (dashed lines) for metric parameters, on the right vertical axis. AGTP median values use 1228 
parameters from the literature, while AGTP all show uncertainty with all parameters perturbed (excluding emissions). 1229 
Uncertainties indicate the 90% CI range of the median values. Global emission uncertainties are derived from sector 1230 
aggregations, and are the same as showed in Figure 5. 1231 
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 1233 

Figure 8: Territorial perspective of emissions and metric uncertainty using GTP50. Top graph shows global emissions 1234 
in sectors they occur in, while bottom graph shows regional emissions. Each of the components is represented by an 1235 

individual MC. The black circle indicates the aggregated RSS uncertainty. The uncertainty represents the 5-95% CI. 1236 
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 1239 

Figure 9: Consumption perspective of emissions, metric and MRIO uncertainty using GTP50. Top graph shows global 1240 
emissions going to sectors, while bottom graph shows regional consumption.  1241 
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  1244 

Figure 10: GTP values and uncertainties for territorial (first bars) and consumption (second bars) perspectives. 1245 
Percentages on top of the bars indicate total uncertainty (rounded to closest 5%). 1246 
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  1248 

Figure 11: AGTP values and uncertainties for territorial (first bars) and consumption (second bars) perspectives. The 1249 
uncertainty reflects a combination of all pollutants including CO2. Percentages on top of the bars indicate total 1250 

uncertainty (rounded to closest 5%). 1251 
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