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Abstract

On interannual-to-multidecadal time scales variability in sea surface temperature ap-
pears to be organized in large-scale spatiotemporal patterns. In this paper, we investi-
gate these patterns by studying the community structure of interaction networks con-
structed from sea surface temperature observations. Much of the community structure
as well as the first neighbour maps can be interpreted using known dominant patterns
of variability, such as the El Nifio/Southern Oscillation and the Atlantic Multidecadal
Oscillation and teleconnections. The community detection method allows to overcome
some shortcomings of Empirical Orthogonal Function analysis or composite analysis
and hence provides additional information with respect to these classical analysis tools.
The community analysis provides also new insight into the relationship between pat-
terns of sea surface temperature and the global mean surface temperature (GMST).
On the decadal-to-multidecadal time scale, we show that only two communities (Indian
Ocean and North Atlantic) determine most of the GMST variability.

1 Introduction

An important issue in climate research is to understand the behavior of the global mean
surface temperature (GMST) over the last century (Sutton et al., 2007). Both internal
variability and changes in radiative forcing, in particular by anthropogenic emissions of
greenhouse gases (GHG), contribute to changes in GMST. The impact of GHG forcing
has been extensively studied, being highly relevant to climate sensitivity and hence for
projections on future changes of the GMST. The important role of internal variability of
ocean heat storage on GMST has been highlighted in the recent study by Balmaseda
et al. (2013).

On interannual-to-multidecadal time scales, climate variability appears to be orga-
nized into large-scale patterns with the El Nifno/Southern Oscillation (ENSO) and the
Atlantic Multidecadal Oscillation (AMQO) as prominent examples. These phenomena
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are characterized by well defined spatiotemporal patterns in sea surface temperature
(SST). The ENSO variability in the equatorial Pacific is the dominant pattern of variabil-
ity on interannual time-scales (McPhaden et al., 1998; Wang et al., 2004). The AMO is
the dominant pattern of SST variability in the North Atlantic on decadal-to-multidecadal
time scales Enfield (2001). ENSO influences the climate of many regions over the globe
(Alexander and Bladé, 2002; Deser et al., 2010) and the El Nifio 1997—1998 event was
estimated to have caused a GMST increase of about 0.6 °C Trenberth (1997). Sutton
and Hodson (2005) show that the AMO has an influence on European summer temper-
atures and relations of the AMO with US rainfall were suggested in Enfield (2001). Re-
cently, it was suggested that the variability of global land surface temperatures (GLST)
is strongly connected to the AMO Muller et al. (2013), with a correlation coefficient of
0.65+0.04.

In most studies so far on the connection between patterns of variability and GMST,
variants of empirical orthogonal function analysis (EOF, von Storch and Zwiers, 1999a)
have been used to identify spatial patterns of variability. The disadvantage of EOF’s,
when computed from the global SST field, is that only the dominant mode can be
clearly associated to a spatiotemporal pattern of variability. Higher order modes, which
are required to be orthogonal to the first mode, are usually difficult to relate to the
patterns of variability as known from regional EOF analyses Monahan et al. (2009).
It is therefore still quite unclear how and how much the different patterns and their
interaction contribute to GMST variability.

Here we address the problem on the connection between patterns of SST variability
and GMST using complex networks theory. Although this theory has already been
successfully applied to many different technological and scientific problems (e.g. in
computer sciences, neurosciences, social sciences) it is only recent that it is used in
climate research. So-called interaction networks, where links are based on a correlation
measure between variables at specific locations, have been reconstructed to analyze
the connectivity of the climate system (Tsonis and Roebber, 2004; Tsonis et al., 2010;
Donges et al., 2009a, b), teleconnections (Tsonis et al., 2008), the behavior of El Nifio
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(Gozolchiani et al., 2008, 2011; Tsonis and Swanson, 2008; Yamasaki et al., 2008),
synchronization between different spatiotemporal patterns (Tsonis et al., 2007; Wyatt
et al., 2011) and the connections between the variability in different climate variables
(Donges et al., 2011).

One of the many interesting properties of a network is its possible partition into com-
munities or groups of highly connected nodes which are only weakly connected to the
rest of the network. Community detection has recently been applied to climate interac-
tion networks of different atmospheric variables from observations and simulations by
Tsonis et al. (2010) where some of the known patterns of atmospheric variability, such
as North Atlantic Oscillation, could be identified.

We focus in this study on communities in interaction networks reconstructed from
global SST observations. The data, their preprocessing and the network reconstruction
and analysis tools are presented in Sect. 2. In Sect. 3, results on the SST communities
in the reconstructed networks are presented and interpreted, and connected to results
in the literature based on EOF and composite analysis. Then in Sect. 4, we address
the connection between the SST communities and the GMST and compare the results
from observations with those from Earth System Model (ESM) simulations. In the last
Sect. 5, the main results are summarized and discussed with a focus on the benefits
of the interaction network approach.

2 Data and methods
2.1 Data and network reconstruction

Monthly mean SST observations over the period 1870 to 2011 compiled in the
HadISST dataset (Rayner, 2003) were used. The seasonal cycle was removed from
the linearly detrended monthly data. Even though the leading order effect of the annual
cycle is removed by producing anomaly values, boreal winter anomalies are still larger
than in summer. In order to avoid spurious high values of correlations, Tsonis and
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Roebber (2004) and Tsonis et al. (2010) only used the December-January-February
months of each year. Since our results were not significantly affected by the selection of
the winter months, we decided to use complete years. The detrended monthly anoma-
lies were then filtered via a Lanczos filter (Duchon, 1979) with a cutoff frequency of
1/13month™" and order 144.

Because there are more grid points towards the poles on a regular longitude-latitude
grid, which could lead to biases in our network measures, the data were linearly inter-
polated on an unstructured grid conserving the arc length with latitude. In this study,
we used a resolution at the equator of 2° but the results presented bellow are qualita-
tively identical when using grid resolutions ranging from 1 to 5°. Because of the poor
sampling of the region south of 50° S, only the grid-points between 50°S and 80°N
were kept, resulting in a total of N = 6280 grid points (land surface points excluded) for
L =142 x 12 = 1704 months.

Each ocean grid point is considered as a node in the network and we indicate the
time seriesatnode /,i=1,...,Nby p;(t,)),k =1,...,L. Contrary to a network as derived
from a power grid or the world-wide web, the links of a climate network are not directly
tangible because the observables derive from continuous fields. In an interaction net-
work, a link between two nodes is based on a measure of the correlation between the
time series of these two nodes. In this study, we used the Pearson correlation coeffi-
cient at lag zero, say Rj;, between the time series of nodes / and j, defined by

L
g - 2 k=1 Pi(t)p(t) . )

ij
VO DI AT

as the measure defining the links in the network Tsonis and Roebber (2004). A pair
of nodes is then considered to be connected if their correlation R; is over a chosen
threshold 7. The elements a; of the N x N adjacency matrix A of the undirected and
unweighted network are thus given by:
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a,-j = @(R,“—T)—(Sij (2)

where © and & are the Heaviside function and Kronecker symbol, respectively. Even
though the links in the network are based on SST correlations at zero lag, a connec-
tion is not only representative of instantaneous relationship, since the time series are
13 months low-pass filtered.

We based our choice of the threshold 7 on parametric and non-parametric signif-
icance tests. Considering a decorrelation time of 13 months (corresponding to the
cut-off frequency of the filter), we found that all correlations over 0.17 are statistically
significant at the 95 % level according to a t test with L/13 = 131 ° of freedom.

In order to better account for the persistence in the time series, a moving block boot-
strap (MBB) test was also applied to the time series Mudelsee (2010). The bootstrap
works with artificially produced resamples of the time series. In an MBB, blocks of
length Lg are randomly picked out of the original time series to create a set of size
Ns of surrogate time series. Correlations are then calculated between surrogate time
series for each pair of nodes. The choice of the block-length is a trade-off between con-
serving the memory of the original time series and producing maximally independent
surrogate time series. For the dataset used in this study, we found that the estimated
95 % significance level was robust for block lengths ranging from 15 to 50 yr. Conse-
quently, we chose a block length of Lg of 20 yr and a sample set size Ng of 4000 for all
our MBB tests. Because a grid of 6280 nodes results in ~ 2 x 10’ pairs, the MBB tests
were realized on a coarser grid of 5° x 5° resulting in 1144 nodes. We found that in the
worst case the p-value of the 95 % significance level was 0.39.

Additionally, an approximate test was used, where correlations were calculated be-
tween pairs of surrogate time series associated with the same node for the 6280 nodes
of the 2° grid. The p values found in this case were close to the maximum p values
found for each grid point of the first test, suggesting that the approximated version of
the MBB test is a good alternative for large gridded datasets.
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The results of both parametric and non-parametric tests indicate that a threshold
7 = 0.4 guarantees that a link between a pair of nodes of the HadISST data represents
a statistically significant correlation at the 95 % level. In addition, thresholds ranging
from 0.4 to 0.6 were used to build the network and we found that our results were
not qualitatively sensitive to the threshold value over this range, although teleconnec-
tions appear weaker as the threshold increases. Subsequently, a threshold of 0.4 will
be used and the resulting interaction network build from the HadISST dataset will be
referred to as the H-SST network.

2.2 Analysis techniques

Extended reviews of commonly used network measures can be found in Costa and
Rodrigues (2007) and Barthélemy (2011). We here focus on degree centrality, first-
neighbour maps and communities. The degree centrality d; of a node i counts its num-
ber of connections with other nodes of the network. This measure is directly accessible
from the adjacency matrix through

N
d,' = Z a,-j (3)
j=1

and allows to reveal nodes sharing a common variability with other nodes of the net-
work. The edge density p of a network

1 N
p= muzﬂ a (4)

is the total number of links in the network normalized by the maximum number of

possible links and is an indicator of the sparseness of the network. First-neighbours

map provide insight into the connections of all nodes in the network to a selected

group of nodes. A node of a first-neighbour map reaches a maximum (minimum) value
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of 100% (0 %) if it is connected to all (none) of the nodes of the selected group of
nodes.

Much focus has recently been given to the partitioning of networks into communities
(Newman and Girvan, 2004). Communities are groups of nodes tightly connected to-
gether and weakly connected to the rest of the network. As such, they can be regarded
as subsystems which operate relatively independently of the other communities (Are-
nas et al., 2006). Considerable improvements have been made during the past decade
regarding the speed and efficiency of the community detection algorithms. In Tsonis
et al. (2010), the algorithm of Newman and Girvan (2004) based on the progressive
removal of dominant links (in terms of information flow) was applied to determine the
community structure of several fields (500 hPa height, sea level pressure and surface
temperature) derived from the NCEP/NCAR reanalysis (Kistler et al., 2001) and simu-
lations from the GFDL CM2.1 model (Delworth, 2006).

We tested the Multilevel algorithm of Blondel et al. (2008) and the Leading Eigenvec-
tor algorithm of Newman (2006) which, as the algorithm used by Tsonis et al. (2010),
is based on the optimization of the modularity (cf. Sect. 3.1) but has a faster implemen-
tation. However, results presented in Sect. 3 below are generated using the Infomap
algorithm by Rosvall and Bergstrom (2007) which is based on the compression of the
paths of random walkers traveling along the network. This algorithm was the most ef-
ficient in the LFR benchmark Lancichinetti and Fortunato (2009) among the different
algorithms tested.

3 Spatial structure of SST variability

3.1 Communities in the H-SST network: detection

The map of degree centrality of the H-SST networks (Fig. 1) indicates that nodes in the
tropics tend to have a higher degree centrality than those in the extra-tropics, in agree-
ment with atmospheric surface temperature analyses in Tsonis and Roebber (2004).
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The tropical Atlantic shows a rather low degree centrality compared to the Indian and
Pacific Oceans except over its northwestern part. The eastern tropical Indian Ocean
also shows a low degree centrality. Surrounding the tropics, patches of high degree
centrality are found in the midlatitude North Pacific, South Pacific and along the west-
ern coast of the American continent.

In order to assess whether the variability in high degree regions arises from distinct
spatial patterns, the community structure of the H-SST network is determined (Fig. 2a).
The communities are ordered by the total PageRank of their nodes (Brin and Page,
1998), which corresponds to the steady state flow of random walkers through the nodes
of the community. The larger the PageRank of a community the higher the probability
of random walkers to travel through the community.

A common measure of the quality of a partition of a network into communities is the
modularity of this partition (Newman and Girvan, 2004). For a particular division into
m communities an m x m symmetric matrix e is defined, for which an element &j is
the fraction of all connections in the network that link nodes in community / to nodes
in community j. As such, > ;e; gives the fraction of edges in the network that connect
nodes in the same community and f; = zje,-j represents the fraction of all edges in
the network that connect to nodes in community i. In a (random) network, for which
edges connect nodes independent of the communities they belong to, we would have
e; = fif; so that Z,f,? corresponds to the fraction of all edges that connect to the same
community in such a randomly wired network. In a modular network, the (e;) must
be high comparatively to the (fiz), Thus, the modularity M is defined as (Newman and
Girvan, 2004)

M= f (e,.,. _ f,?) . (5)
i=1

The modularity of the Infomap partition of the H-SST network into 11 communities

(Fig. 2a) is M = 0.23, which is smaller than the modularities of 0.29 and 0.28 of the

partitions into 5 and 7 communities of the Multilevel and Leading Eigenvector algo-
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rithms, for the same network. We will now justify our choice of the Infomap algorithm in
spite of the lower modularity of its partition of the H-SST network.

The main issue we encountered when applying community detection algorithms to
SST networks arises from the spatial heterogeneity of the modularity of these networks.
Regions where one spatial pattern of variability dominates (e.g. ENSO) are obviously
highly modular. However, regions where the variability is dominated by the effect of
atmospheric noise can also be weakly modular, so that the existence of communities in
such regions is questionable. It is often more optimal in terms of modularity to associate
the nodes of such weakly modular regions to one broad but weakly inter-connected
community. Such a community cannot be considered as a coherent physical pattern of
variability so that, in the context of our study, it would be preferable not to associate
nodes of weakly modular regions to any community or to distribute them into several
small communities, and this is what the Infomap algorithm does.

For these reasons, we decided to filter out nodes connected to a fraction of their
community smaller than twice the density of the network (i.e. connected to less than
©o(N;—1) nodes of the community, where N; is the number of nodes in the community /)
and to remove communities including less than 2 % of the total number of nodes in the
network. In the case of the Infomap partition of the H-SST network, 20 % of the nodes
are removed from their community and 1 community is filtered (Fig. 2b) out of the initial
11 communities (Fig. 2a). When applying the same filtering process to the partitions
found by the Multilevel and Leading Eigenvector algorithms more nodes are removed
and fewer communities remain. For the Multilevel algorithm, 32 % of the nodes are
removed and the same initial number of 5 communities remain, while for the Leading
Eigenvector algorithm, 28 % of the nodes are removed and the same initial number of
7 communities remain.

From these results, we conclude that the ability of the Infomap algorithm to distribute
nodes of weakly modular regions into several small but dense communities penalizes
its modularity score. On the contrary, the modularity-based algorithms tend to distribute
the nodes of these weakly modular regions in a few large but sparse communities
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which are not representative of any physical pattern variability. In the study of a climate
network, it is preferable to filter out such weakly modular regions because partitioning
them into communities could be misleading. Because (i) the detected Infomap partition
is less affected by this filtration process than the modularity-based partitions and (ii) the
fact that the random walkers in the Infomap algorithm are closely related to the flow in
a dynamical network, the Infomap algorithm appears to be the best choice for the study
of patterns of climate variability.

As representations of spatial patterns of variability, the communities of the network
can be compared to EOFs. To assess the potential similarities and improvements
brought by the detection of communities compared to EOFs, an EOF analysis was
also conducted on the same data as used to build the H-SST network. EOF and ro-
tated EOFs (R-EOFs) analysis of SST fields have been used by, e.g. Weare (1976) and
Kawamura (1994), respectively. The first 6 EOFs of the SST field are shown in Fig. 4
and the R-EOFs using these 6 EOFs in Fig. 5. The R-EOFs are linear combinations
of the 6 initial EOFs maximizing a given simplicity function or criterion, here the nor-
malized varimax criterion of Kaiser (1958). Note that the eigenvector decomposition in
the EOF analysis is based on the same correlations used to build the H-SST network.
When the correlation matrix is used (and not the covariance matrix), every node is
given the same weight without regard to their variance. We can see (Fig. 4) that only
the first EOF can be associated to a community. The higher order EOF modes cannot
be associated to any communities and they do not appear to represent any physical
pattern of variability. On the contrary, the first 6 rotated EOFs can be associated with
the dominant communities (Fig. 5). However, even higher order rotated-EOFs are very
noisy and cannot be associated with any communities or known physical pattern of
variability.

3.2 Communities in the H-SST network: interpretation

In this section, a physical interpretation of the communities of the H-SST network
(Fig. 2b) is given. Community #1 is by far the dominant community in terms of
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PageRank (69 %) and size. Most of the nodes are in the tropical Pacific but remote
patches — in the Pacific extra-tropics, tropical Indian ocean and northwestern tropical
Atlantic — are also part of the community. This result suggests that teleconnections exist
between the tropical Pacific and remote regions over the globe. These teleconnections
can be deduced from the first-neighbour map which is plotted in Fig. 3a for community
#1. For each node in the network, this map shows to which percentage of the nodes
in the community it is connected to. For example, a node in the equatorial Atlantic is
connected to about 25 % of the nodes in the community.

From Fig. 3a, it can be seen that community #1 is well defined (nodes inside the
community are connected to most of the other nodes of this community and are only
sparsely connected to nodes outside the community) and that the different remote
patches of the community are connected to each other. We have verified that the
equatorial Pacific nodes are anti-correlated with those of the two small patches lo-
cated around 30° in the North and South Pacific and to those near New-Zealand while
they are positively correlated with the other nodes of the community. The spatial pat-
tern of the community #1 also coincides with the EOF and R-EOF (Figs. 4a and 5a,
respectively), explaining most of the variance. It also corresponds with the (December—
February) El Nifio-La Nifa composites of HadISST SST determined in Alexander and
Bladé (2002) (their Fig. 6a). These results suggest that the community #1 is represen-
tative of the dominant pattern of variability on interannual time-scales, i.e. ENSO.

The teleconnections shown in Fig. 3a have been described extensively in the lit-
erature. Perhaps the most well known remote impacts of ENSO are the changed at-
mospheric circulation over the northern Pacific and North America region and the as-
sociated SST anomalies in the North Pacific (Wallace and Gutzler, 1980; Deser and
Blackmon, 1995; Lau, 1997). A similar relationship between the tropical and the South
Pacific (Liu et al., 2002; Ciasto and Thompson, 2008) as well as the warming of the
tropical Indian ocean (Lanzante, 1996; Klein et al., 1999) and tropical Atlantic (Cur-
tis and Hastenrath, 1995; Lanzante, 1996; Enfield and Mayer, 1997; Klein et al., 1999)
basins have also been reported. Previous studies suggest that the main mechanism in-
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volved in these teleconnections on interannual time scales is the “atmospheric bridge”
Lau and Nath (1996). This bridge occurs through changes in the Hadley and Walker
cells and through the interaction of Rossby waves with the quasi-stationary flow and
storm tracks (Trenberth et al., 1998; Alexander and Bladé, 2002).

Community #2, in terms of PageRank, is in the northern Atlantic. None of the EOFs in
Fig. 4 resemble this community but the third R-EOF (Fig. 4c) exhibits clear similarities
with it. This spatial pattern bears the signature of the AMO Guan and Nigam (2009).

The next community, #3, covers the maritime continent and the Philippine and East
China seas, a region below referred to as the Indian Ocean—-West Pacific (IWP). The
second R-EOF (Fig. 4b) has a similar pattern as this community although it also shows
strong variance in the Indian ocean. The IWP is located at the confluence of the Pacific
and Indian Oceans and connects the two oceans by the Indonesian Through Flow
(ITF). Ramage (1968) has shown that the IWP is one of the greatest source of energy
for the extratropical circulation. Deep convection takes place in this region and the
overlying atmosphere is highly sensitive to changes in SST (see Qu et al., 2005, for
a review). Interannual variability in this region can be largely understood in terms of
Kelvin and Rossby waves generated by remote zonal winds along the Indian and Pacific
equatorial regions as well as by changes in the volume transport of the Indonesian
Throughflow.

Although the other communities (#4—#10) also exhibit similarities with known spatial
patterns of variability, we will not discuss this as their PageRank is much lower than the
first three communities. For example, communities #8 and #9 are in the region of the
pathways of the northern Western Boundary Currents (Qiu, 2000; Frankignoul, 2001)
and community #4 appears to connect the southern wind-driven gyres (Speich et al.,
2002). The first 6 communities can be associated with the first 6 R-EOFs, however,
when more EOFs are rotated, no additional pattern of variability can be identified (not
shown here). Hence, the community analysis allows to detect more detailed features
of SST variability in the climate system.
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4 Decadal SST variability and its connection with the GMST
4.1 Observations

We have seen that the community structure of the H-SST network is dominated by the
first one and related to ENSO variability on interannual time scales. In order to focus on
decadal variability we build a new network following the same methodology as before
but using low-pass filtered time series of SST with a cutoff period of 8 yr to filter out the
2 to 7yr band usually attributed to ENSO. The threshold 7 was set to 0.6 in order to
only keep absolute correlations above the maximum p value of the 95 % significance
levels calculated over the globe using the MBB method (see Sect. 2). The resulting
network, below referred to as the H-SST-LP8y network, has an edge density of 0.087
which is about 30 % smaller than the edge density of the H-SST network.

The degree centrality and the community structure of the H-SST-LP8y network are
plotted in Fig. 6a and b, respectively. Overall, the spatial patterns appear similar to
those of the H-SST network but important differences exist in the tropics. First of all,
the degrees of the nodes in the H-SST-LP8y network located in the tropical Pacific
and Indian ocean have decreased significantly, compared to those in the H-SST net-
work; in the extra-tropics the opposite effect occurs (Fig. 6a). Community #1 (Fig. 6b)
of the H-SST-LP8y network (which exhibits a similar pattern as the ENSO community
in the H-SST network) has a much lower PageRank (31 % versus 69 % in the H-SST
network). This result is expected when interannual variability and, a fortiori, variability
related to ENSO, is filtered out. A second important difference is that the nodes lying
in the Indian Ocean are no longer part of the same community as the nodes of the
tropical Pacific. They are, instead, part of the same community as the nodes in the
IWP region (community #2 in the H-SST-LP8y network). Furthermore, this IWP com-
munity has a PageRank of 26 % which is comparable to the PageRank of the tropical
Pacific community #1 (31 %). The community of the North Atlantic (community #3 in
the H-SST-LP8y network) and the community of the southern wind-driven gyres (com-
munity #4 in the H-SST-LP8y network) also exhibit higher PageRanks (15 and 11 %,
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respectively) than the corresponding communities in the H-SST network. These re-
sults indicate that important components of decadal variability are present in the Indian
Ocean—-West Pacific region and the North Atlantic.

In order to investigate the relationship between the spatial patterns of variability rep-
resented by the communities and the global mean state of the climate system, correla-
tions were calculated between mean SST time series associated with each community
(in both H-SST and H-SST-LP8y networks) and three indices of global mean surface
temperature (GMST). The time series representing the SST of a specific community
was calculated by spatially averaging the time series of the nodes of the community.
The Global Surface Temperature Anomalies of the NOAA (Smith and Reynolds, 2005)
averaged over land and ocean (GMST), land only (GLST) and ocean only (GOST) were
used as indices of the mean state of the climate system. The indices were processed
using the same methodology as for the H-SST and H-SST-LP8y datasets (1 and 8 yr,
respectively, low-pass filtered detrended anomalies) and cover the period 1880-2011.
The correlations between the time series of the communities and the indices for the H-
SST and H-SST-LP8y networks are presented in Table 1 and Table 2, respectively. For
each correlation, a 95 % confidence interval is given in brackets and correlations sig-
nificant at the 95 % level in bold face. The confidence intervals and significance levels
were estimated using the MBB method as described in Sect. 2.

From both tables Tables 1 and 2, it is found that each of the communities is more
correlated with the GOST than with the GLST. Only the communities #1-#3 and #5
in the H-SST network (Table 1) are significantly correlated with the GLST. On decadal
time-scales (Table 2), the first three communities also show significant correlations with
the GLST but the ENSO community (#1) does not display the largest correlation to the
GLST and to the GOST anymore (as in the H-SST network). Now the Indian Ocean—
West Pacific community (#2) and the North Atlantic community (#3) are best correlated
to the GOST with the Indian Ocean—West Pacific (IWP) community displaying largest
correlations to the GLST. The correlations of 0.77 and 0.84 between the IWP time-
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series of SST and GLST and GMST, respectively, is striking and the region of the
Indian Ocean—West Pacific appears to play a major role in decadal climate variability.
In Fig. 7, the SST time series of both the Indian Ocean—West Pacific community,
and the North Atlantic community are regressed against the GMST and GLST indices.
The fits of the time series of the two communities to the GMST and GLST result in
coefficients of multiple-determination (von Storch and Zwiers, 1999b) of 0.87 and 0.66,
respectively. This shows that the patterns of both communities can, together, explain
most of the decadal variability of the GMST and the largest part of the decadal variabil-
ity of the GLST. Also, the phase synchronization of the time series of both communities
has contributed, to a large extent, to the increase in GMST since the 1970s (Fig. 7).

4.2 ESM simulations

As communities are able to distinguish patterns of climate variability in the HadISST
data, the network methods also potentially offer a more detailed tool to assess the
quality of state-of-the-art Earth System Models (ESMs) in simulating these patterns.
To investigate this, SST fields from a three-member ensemble of historical simulations
(1870-2005), obtained with the MPI-ESM-LR model (Jungclaus et al., 2013; Stevens
and Giorgetta, 2013) for the CMIP5 project (Taylor et al., 2012), were used to recon-
struct two networks following the same methodology as for the H-SST and H-SST-LP8y
networks. These model networks will be referred to below as the ESM-SST and ESM-
SST-LP8y networks, respectively.

The degree distribution and community structure of the ESM-SST network are plot-
ted in Fig. 8a and b, respectively. Similar to the results for the H-SST network, the
ENSO community (#1) and the IWP community (#3) are visible (Fig. 8b), the ENSO
community dominating with a PageRank of 81 %. However, only the southern half of
the North Atlantic community is present (community #5 in Fig. 8b), likely indicative
of an under-representation of the AMO-related variability in the model. Also, fewer
connections between the ENSO community and the extratropical Pacific are visible
(Fig. 8a and b) than in the H-SST network. A weaker atmospheric bridge may be
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responsible for the absence of such teleconnections. Finally, we can see in Table 3
that the ENSO, IWP and North Atlantic communities are, as in the observations, most
strongly correlated to the GLST.

For the ESM-SST-LP8y network, the degree distribution and community structure
(shown in Fig. 9a and b, respectively) are quite similar to those of the ESM-SST net-
work. However, most of the nodes in the extra-tropics are orphan, indicative of a weak
spatial coherence of the extratropical SST variability. Interestingly, the PageRank of the
ENSO community (community #1) is still very high (81 %) so that decadal variability is
also dominated by the ENSO community. This too strong decadal tropical variability
has already been reported by Jungclaus and Keenlyside (2006) for a previous config-
uration of this model (ECHAM5/MPI-OM). Zanchettin et al. (2012) also showed that
the tropical Indian SSTs are over-sensitive to tropical Pacific fluctuations in this model.
Decadal variability in the GLST within this ESM can be largely explained by the ENSO
and IWP communities, but misses the connection to the AMO as found in the observa-
tions (Table 4 and Fig. 10).

To conclude, the main aspects of the SST variability found in the observations are
also visible in the MPI-ESM-LR model but the variability related to ENSO (AMO) is over-
represented (under-represented). These model biases could be efficiently identified
thanks to the network approach.

5 Summary and discussion

In order to study the global climate variability, we have analyzed SST observations
and ESM simulations using a climate network approach focusing on the detection of
communities. The network techniques provide an innovative and efficient complemen-
tary approach to more traditional methods like EOF analysis, composite analysis and
correlation maps.

An EOF analysis is usually efficient in detecting the dominant mode of variability but
the secondary modes, being constrained to be orthogonal to the first one, are less
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likely to represent regional patterns of variability Monahan et al. (2009). Thus, when
applying an EOF analysis on the HadISST SST data over the globe, only the first
EOF can be attributed to a physical pattern of climate variability, namely ENSO, while
the higher EOF modes could not be connected to any known patterns of variability.
This shortcoming can be overcome by rotating the EOFs like was done by Kawamura
(1994). However, one of the drawbacks of this method is that the results are sensitive
to the choice of the rotation criterion, to the choice of the number of loadings and to the
normalization of the EOFs (von Storch and Zwiers, 1999a).

On the contrary, when calculating the degree centrality of the nodes of a network,
the connections between nodes are evaluated without respect to any specific mode
or direction in the space of the nodes, allowing for the coexistence of different modes
of variability. This explains why patterns of variability not, or weakly, related to ENSO
are also apparent in the degree distribution of the H-SST network (Fig. 1). However,
contrary to an EOF analysis, the degree centrality does not allow to distinguish different
patterns of variability from one another. Thus, a community analysis must subsequently
be applied to distribute the nodes into distinct groups of covarying nodes.

Finding communities in a network is a much more efficient way to reveal non-
overlapping spatial patterns of variability of the global climate system than an EOF
analysis. We have indeed shown in Sect. 3 that most of the communities in the H-SST
network (Fig. 2) can be associated to known physical patterns of variability, which could
not have been done using a regular EOF analysis on the global oceans. More patterns
could be found using 6 rotated EOFs but the choice of the number of loadings could
only be done by evaluating the correspondence of the rotated EOFs with the commu-
nities. However, the main drawback of the Infomap community detection algorithm is
that it is not able to detect overlapping spatial patterns of variability. For example, we
can see from Fig. 3 that the nodes in the Caribbean Sea associated with the second
community (#2) could also be associated with the first community which was also sug-
gested by Guan and Nigam (2009). Overlapping community detection algorithms exist
(e.g. Shen et al., 2009; Lancichinetti et al., 2009), however, because of their complex
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implementation and slower execution application of these techniques are outside the
scope of this study.

By augmenting the community analysis with first neighbours maps (Fig. 3), telecon-
nections and links between communities can be revealed. The study of these maps
offers several advantages over correlation maps or composites. The main interest of
the network approach is that neither a statistical event nor an index has to be de-
fined a priori. For example, the results obtained using the first neighbours of the ENSO
community in the H-SST network (Fig. 3a) are similar to those of Alexander and Bladé
(2002) using composites, but we did not need to define what El Nifio and La Nifia events
represent statistically. Correlation maps obtained by Klein et al. (1999) and Alexander
and Bladé (2002) are also similar to Fig. 3a, but once again, we did not need to de-
fine over which domain to spatially average to obtain the relevant time series. In short,
thanks to the community detection algorithm, neither prior information nor a choice of
a pattern of variability to be studied is necessary, making pioneering studies easier and
maybe also less biased.

The community structure of the H-SST network (Fig. 2) proved to be in good agree-
ment with known spatial patterns of climate variability, further supporting the use of this
method to identify climate patterns of variability from large gridded datasets. On inter-
annual time-scales, the main community could be associated with the dominant pattern
of variability, ENSO and its remote influences were visible as part of the community or
in the first neighbour maps. These teleconnections could in part be interpreted using
the “atmospheric bridge” concept. Other patterns of variability, such as the AMO, were
also visible as independent components of the system.

One of the key differences between the H-SST and the H-SST-LP8y networks is
that the Indian Ocean—West Pacific (IWP) region appears an independent and strongly
intra-connected community in the H-SST-LP8y network whereas it's western part is
connected to the tropical Pacific in the H-SST network. This suggests that decadal
variability in the IWP region is not driven by tropical Pacific variability through the atmo-
spheric bridge as on interannual time-scales. Furthermore, a large component of the
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observed global land surface temperature (GLST) variability can be explained by the
time series associated with the IWP community.

To infer whether the IWP SST drives or responds to decadal variability of the over-
lying atmosphere is a difficult problem, since little is known about the sources of such
low-frequency variability in the climate system. Several arguments support the idea
that SST decadal variability can drive land surface temperature (LST) changes. First,
the maximum cross-correlation of the time series associated to the IWP community in
the H-SST-LP8y network and the GLST index is found for the IWP time series leading
the GLST of 17 months, although significant correlations are also found for lags ranging
from —132 months (IWP leading) to 27 months (GLST leading). Secondly, Dommenget
(2009) suggests, using observations and GCM simulations, that the “ocean’s variability
is leading to variability with enhanced magnitude over the continents, causing much of
the longer time scale (decadal) global-scale continental climate variability”. In particu-
lar, several studies show that decadal SST fluctuations in the IWP region may influence
the East Asian Monsoon (Hu, 1997; Zhou et al., 2009) through changes in the west
Pacific subtropical high. Zhang et al. (2004) suggest that the warming of the IWP re-
gion can lead to enhanced precipitation over the Tibetan plateau and that the resulting
increased snow cover over the plateau in spring can further induce changes in circu-
lation and precipitation over east Asia during the subsequent summer. Consequently,
the Asian continent appears to be very sensitive to SST fluctuations in the IWP region.

If SST decadal variability in the IWP region can indeed account for most of the GLST
variability, the next question would be whether SST decadal variability in this region
is due to internal variability of the ocean or to the integration of atmospheric stochas-
tic forcing (Hasselmann, 1976). Decadal variations of the Indian ocean shallow over-
turning (Lee, 2004), thermocline (McDonagh and Bryden, 2005) and subtropical gyre
(Bindoff and McDougall, 2000) waters and pathways of the Indonesian Throughflow
(Valsala et al., 2010) have been reported, which could be related to Indian Ocean in-
ternal variability. To prove or discredit these hypothesis is made difficult by the lack of
long-term vertical profile measurements in the Indian ocean. However, a comparison of
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GCM and Mixed-Layer model simulations as in Dommenget and Latif (2008) could help
to assess whether the atmospheric stochastic forcing alone can explain SST decadal
variability in the IWP region. Anyway, it is crucial to investigate the reasons of the ap-
parent link of the IWP and AMO regions to the GLST on decadal time-scales as well
as the sources of this low-frequency variability since the important global warming ob-
served since the late 1970s could in part be explained by the synchronization of the
phases of decadal fluctuations in these two regions.

Finally, we showed that network techniques can also be efficiently used to iden-
tify model biases. Using one specific ESM (the MPI-ESM-LR model), we found that
decadal variability in the tropical Pacific is too strong (compared to observations) as
well as its influence on the tropical Indian Ocean basin. On the other hand, other pat-
terns such as the AMO are much weaker than in observations. Most of the nodes of
the network are orphans, indicative of a low coherence in the simulated SSTs. How-
ever, we also found a strong relationship between the IWP region and the GLST, which
is in agreement with that found the observations. How the IWP region and the GLST
interact in the model needs further investigation but is outside the scope of this paper.

Acknowledgements. The authors would like to acknowledge the support of the LINC project
(no. 289447) funded by EC’s Marie-Curie ITN program (FP7-PEOPLE-2011-ITN).
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Table 1. Correlations between the mean time series of the communities of the H-SST network
and the indices of mean, land and ocean surface temperatures (all time series 1y low-pass
filtered). 95 % confidence intervals are given in brackets and correlations significant at 95 % in

bold face.
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GLST

GOST

= OO NOOUDWN—=| HF

0.66 [0.62, 0.73]
0.59 [0.43, 0.68]
0.50 [0.30, 0.54]
0.41 [0.13, 0.50]
0.42 [0.33, 0.54]
0.25 [0.07, 0.40]
0.26 [0.11, 0.44]
0.22 [0.02, 0.35]
0.14 [-0.18, 0.37]
0.27 [0.05, 0.37]

0.44 [0.36, 0.51]
0.43 [0.19, 0.55]
0.44 [0.23, 0.50]
0.22 [-0.06, 0.35]
0.30 [0.18, 0.42]
0.11 [-0.06, 0.24]
0.11[-0.02, 0.21]
0.17 [-0.07, 0.35]
0.07 [-0.29, 0.35]
0.07 [-0.12, 0.18]

0.71 [0.67, 0.79]
0.59 [0.47, 0.68]
0.45 [0.24, 0.52]
0.45 [0.21, 0.54]
0.43 [0.34, 0.53]
0.30 [0.11, 0.46]
0.32 [0.16, 0.52]
0.21 [0.02, 0.32]
0.16 [-0.08, 0.32]
0.35 [0.12, 0.45]
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Table 2. Correlations between the mean time series of the communities of the H-SST-LP8y
network and the indices of mean, land and ocean surface temperatures (all time series 8y low-
pass filtered). 95 % confidence intervals are given in brackets and correlations significant at
95 % in bold face.
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A. Tantet and
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#  GMST GLST GOST

1 0.52[0.36,0.73]  0.47 [0.28, 0.68] 0.50 [0.33, 0.66]
2  0.84[0.72,091]  0.77 [0.55, 0.89] 0.78 [0.59, 0.87]
3  0.65[0.38,0.83]  0.49 [0.06, 0.77] 0.67 [0.43, 0.82]
4 0.55[0.18,0.74]  0.28[-0.22, 0.56] 0.62 [0.33, 0.78]
5 0.35[-0.15,0.59] 0.29 [-0.24, 0.57] 0.34 [-0.11, 0.56]
6 0.45[0.18,0.62]  0.34[0.02, 0.59] 0.44 [0.18, 0.61]
7 0.51[0.30,0.77]  0.19[-0.06, 0.47] 0.63 [0.39, 0.85]
8 0.55[0.16,0.69]  0.24[-0.23, 0.44] 0.64 [0.25, 0.75]
9 0.12[-0.37,0.49]  0.04[-0.53, 0.56] 0.14 [-0.27, 0.44]
10 -0.14[-0.53,0.29] -0.51[-0.70, —-0.12] 0.07 [-0.43, 0.44]
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Table 3. Correlations between the mean time series of the communities of the ESM-SST net-
work and the indices of mean, land and ocean surface temperatures (all time series 1y low-pass
filtered). 95 % confidence intervals are given in brackets and correlations significant at 95 % are
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#  GMST GLST GOST

1 0.63[0.56, 0.67] 0.65 [0.56, 0.69] 0.67 [0.61, 0.71]
2 0.68[0.58,0.71] 0.41 [0.25, 0.45] 0.47 [0.32, 0.51]
3 0.42[0.26, 0.45] 0.38 [0.21, 0.41] 0.38 [0.22, 0.42]
4  0.35[0.18, 0.41] 0.34 [0.19, 0.40] 0.33 [0.16, 0.40]
5  0.44[0.31,0.50] 0.44 [0.31, 0.49] 0.49 [0.36, 0.56]
6 -0.05[-0.19,0.01] -0.11[-0.22, —-0.03] -0.04[-0.18, 0.04]
7  0.31[0.18, 0.36] 0.33 [0.21, 0.38] 0.30 [0.16, 0.36]
8  0.33[0.17, 0.38] 0.30 [0.17, 0.35] 0.35 [0.21, 0.39]
9 0.16[-0.05,0.23] 0.14[-0.03,0.21]  0.13 [-0.08, 0.20]
10  0.16 [0.00, 0.20] 0.18 [0.04, 0.23] 0.14 [-0.02, 0.20]
11 0.14[-0.15,0.21] 0.10[-0.14,0.19]  0.11[-0.16, 0.18]
12 0.40 [0.24, 0.47] 0.39 [0.25, 0.43] 0.43 [0.28, 0.49]
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Table 4. Correlations between the mean time series of the communities of the ESM-SST-LP8y
network and the indices of mean, land and ocean surface temperatures (all time series 8y low-
pass filtered). 95 % confidence intervals are given in brackets and correlations significant at

95 % in bold face.
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#

GMST

GLST

GOST

aOrowOND =

0.68 [0.51, 0.74]
0.60 [0.36, 0.67]
0.75 [0.55, 0.77]
0.77 [0.55, 0.80]
0.46 [0.13, 0.52]

0.75 [0.60, 0.80]
0.66 [0.44, 0.73]
0.75 [0.55, 0.78]
0.63 [0.29, 0.67]
0.48 [0.21, 0.53]

0.68 [0.50, 0.73]
0.62 [0.38, 0.70]
0.69 [0.46, 0.72]
0.62 [0.30, 0.67]
0.48 [0.18, 0.54]
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Fig. 1. Degree centrality, as defined by Eq. (3), of the nodes of the H-SST network. A threshold
7 = 0.4 was used to construct the network giving an edge density p = 0.14.
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Fig. 2. (a) Infomap communities in the H-SST network. Each color represents one commu-
nity and each node is assigned the color of the community it belongs to. The communities
are ordered by decreasing total PageRank of their nodes which is written to the right of the
scale. (b) Infomap communities after filtration of nodes which are connected to a fraction of
their community smaller than twice the density of the network or belong to communities with
nodes smaller than 2 % of the network. Nodes in white are orphans, they do not belong to any
community.
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Fig. 3. First neighbours map of communities (a) #1, (b) #2, and (c) #3 in the H-SST network.
For each node, the color scale indicates the percentage of the nodes in the community to which

that node is connected.
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a) EOF #1 explains 21% of variance

b) EOF #2 explains 12% of variance
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Fig. 4. First six EOFs determined for the same dataset as used to build the H-SST network.
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a) R-EOF #1 explains 13% of variance

b) R-EOF #2 explains 12% of variance

p) STV
30°NK: 30°N E. : ﬁ ¢
0° QO o : Y _ 2 — L /.'g"
30°5 300 S g e \; !:’7 ‘I\
c) R-EOF #3 explains 8% of variance d) R-EOF #4 explains 6% of variance
RN A S T i IR A T 2 AP
NS 7\ WRE. < ‘,éa 7\ Y é
30°NRS Sy b 30°NR ey T :
0° \;—\(\{éh /"ii 0° ‘%’\ Q-’g'
30052 {R : ! 30°Ss 3 - |
ak. iy ‘ i ool
e) R-EOF #5 explains 5% of variance f) R-EOF #6 explains 7% of variance
¥ ]
600N 3 'd}‘ . 6) e 4 :x'}}:lf" }ﬁ] 600N \‘~ 'd\]b , ﬁ
300N5~s - j N v é 3 300N5§ - X
1~ e
0ohZ A e ] T *\(\% #
3005'0 (,& Y \ . 3005‘0 \
-1.0 -0.5 0.0

Fig. 5. First six varimax-rotated EOFs estimated from the same dataset as used to build the

H-SST network.
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Fig. 7. Regression fits of the mean time series dominant communities of the H-SST-LP8y net-
work to the (a) GMST and (b) GLST.
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Fig. 9. (a) Degree centrality of the ESM-SST-LP8y network. The network was built using the
same methodology as for the H-SST-LP8y network but using SST from the MPI-ESM-LR his-
torical simulations. A threshold of 7 = 0.6 was used as for the H-SST network leading to an
edge density p = 0.077. (b) Filtered communities in the ESM-SST-LP8y network.
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