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 10 

Abstract 11 

Soil organic matter (SOM) is the largest store of organic carbon (C) in the biosphere, 12 

but the turnover of SOM is still incompletely understood and not well described in 13 

global C cycle models. Here we use the Community Land Model (CLM) and compare 14 

the output for soil organic C stocks (SOC) to estimates from a global data set. We also 15 

modify the assumptions about SOC turnover in two ways: 1) We assume distinct 16 

temperature sensitivities of SOC pools with different turnover time and 2) We assume 17 

a priming effect, such that the decomposition rate of native SOC increases in response 18 

to a supply of fresh organic matter. The standard model predicted the global 19 

distribution of SOC reasonably well in most areas, but it failed to predict the very 20 

high stocks of SOC at high latitudes. It also predicted too much SOC in areas with 21 

high plant productivity, such as tropical rain forests and some mid-latitude areas. 22 

Assuming that the temperature sensitivity of SOC decomposition is dependent on the 23 

turnover rate of component pools reduced total SOC at equilibrium by a relatively 24 

small amount (<1% globally). Including a priming effect reduced total global SOC 25 

more (6.6% globally) and led to decreased SOC in areas with high plant input 26 

(tropical and temperate forests), which were also the areas where the unmodified 27 

model overpredicted SOC (by about 40%). The model was then run with climate 28 

change prediction until 2100 for the standard and modified versions. Future 29 

simulations showed that differences between the standard and modified versions were 30 



maintained in a future with climate change (4-6 Pg and 23-47 Pg difference in soil 1 

carbon between standard simulation and the modified with temperature sensitivity and 2 

priming respectively). Although the relative changes are small, they are likely to be 3 

larger in a fully coupled simulation, and thus warrant future work. 4 

 5 

1. Introduction 6 

Soil organic matter (SOM) is the largest store of organic carbon (C) in the biosphere 7 

(Batjes, 1996). Even relatively small percentage changes in this store can lead to large 8 

changes in atmospheric CO2 concentrations. However, there is still large uncertainty 9 

associated with the response of SOM dynamics to perturbations such as changes in 10 

temperature, moisture and plant-derived inputs to soils that are predicted under 11 

environmental change (Heimann and Reichstein, 2008; Ostle et al., 2009; Billings et 12 

al., 2010; Conant et al., 2011; Zhu and Cheng, 2011). In large part, this uncertainty is 13 

a result of incomplete understanding of the complex chemical, physical and biological 14 

processes (and interactions) that govern SOM decomposition, and the influence of 15 

environmental factors on these processes (Paterson et al., 2009; Subke and Bahn, 16 

2010; Dungait et al., 2012). This has limited the extent to which the processes 17 

mediating SOM decomposition have been represented explicitly in models, 18 

potentially limiting their accuracy in predicting impacts of environmental change 19 

across ecosystems.  20 

Terrestrial models predict fluxes of C and water and more recently also (N) and fire in 21 

the earth system. Several terrestrial models exist, such as Lund-Potsdam-Jena (LPJ), 22 

the Joint UK Land Environment Simulator (JULES) and the Community Land Model 23 

(CLM) (Sitch et al., 2003; Best et al., 2005; Oleson et al, 2010). These models can be 24 

integrated into Earth System Models (ESMs) to predict the biotic feedback to climate 25 

change. ESM studies have demonstrated that climate–carbon-cycle feedbacks over the 26 

next century may have a large impact on future CO2 levels and climate (Cox et al., 27 

2000; Friedlingstein et al., 2001), although this is not true in all simulations 28 

(Thornton, 2009). As well as being a tool in climate prediction, ESMs also provide 29 

tools for integration of knowledge about the land surface. A comparison of earth 30 

system models included in the Intergovernmental Panel on Climate Change (IPCC) 31 

showed that one of the largest uncertainties in predicting biotic feedback to climate 32 



change is how the soil will respond (Friedlingstein et al., 2006). The soil response to 1 

global warming is a critical parameter in determining future CO2 concentrations and 2 

therefore the magnitude of feedbacks to the rate of future climate change (Jones et al., 3 

2003) and represents a large uncertainty in future climate prediction overall, including 4 

physical climate effects (Huntingford et al., 2009). Improving the soil part of the 5 

model is therefore a priority for earth system modellers. 6 

Soils receive inputs of organic matter from plants via living roots (rhizodeposition) 7 

and senescent tissue (litter), whereas the dominant loss is as CO2 from microbial 8 

decomposition of these inputs and of native SOM (Yuste et al., 2007; Paterson et al., 9 

2008; 2009; Metcalfe et al., 2011). A large proportion of plant-derived inputs is 10 

rapidly mineralised to CO2 (supporting the activities of diverse microbial 11 

communities) with the remainder contributing to the stock of SOM, and for soils in 12 

equilibrium, balancing the decay of SOM pools. In simulation models, SOM is 13 

usually represented as 2-6 pools defined by their respective rates of C turnover. In 14 

almost all models the temperature sensitivity of soil organic C (SOC) turnover is 15 

assumed to be constant for all pools, irrespective of their mineralization rate, or other 16 

factors controlling relative turnover rates (e.g. Jenkinson et al., 1987; Parton et al., 17 

1987; 1988; 1994; Williams, 1990; Li et al., 2000). In addition, SOC content is 18 

modelled to increase as a direct function of increasing rates of plant inputs, which 19 

makes the implicit assumption that the decomposition rates of individual pools do not 20 

affect each other, i.e. that there is no priming (Kuzyakov, 2010). However, in recent 21 

years, evidence derived from mechanistic studies of soil processes has challenged the 22 

validity of these assumptions. Firstly, some studies have now reported that SOC pools 23 

exhibit distinct temperature sensitivities, although this is still debated (Waldrop and 24 

Firestone, 2004; Fang et al., 2005; Knorr et al., 2005; Reichstein et al., 2005; 25 

Davidson and Janssens, 2006). Differential temperature sensitivity of SOC pools has 26 

been interpreted as being consistent with kinetic theory, where reactions with high 27 

activation energy (e.g decomposition of relatively recalcitrant SOC) have greater 28 

temperature sensitivity (Conant et al., 2011). Therefore, it has been suggested that 29 

incorporation of pool-specific temperature sensitivity into models could be 30 

approached through inclusion of an Arrhenius-form equation to modify pool turnover 31 

rates (Knorr et al., 2005). Secondly, increased decomposition of native SOM pools in 32 

response to fresh inputs from plants (priming effects) has now been demonstrated in 33 



many laboratory and field-based experiments (e.g. Fontaine et al., 2003; 2007; 2011; 1 

Paterson et al., 2008, 2011; 2013; Kuzyakov 2010; Zhu and Cheng, 2011;). It is 2 

increasingly recognised that such priming effects are general phenomena intrinsic to 3 

plant-soil interactions, but have only recently become reliably quantifiable (Paterson 4 

et al., 2009; Kuzyakov, 2010). Plant-mediated decomposition of native SOM is an 5 

important means of sustaining plant biomass production, through mobilisation of 6 

limiting nutrients from organic forms and may be a key process mediating the balance 7 

of ecosystem C-exchange (Paterson, 2003). Therefore, particularly under future 8 

environmental conditions where plant growth may be enhanced (e.g. in response to 9 

increased atmospheric CO2 concentration) and result in increased inputs of plant-10 

derived organic matter to soil, consideration of priming effects may be necessary for 11 

prediction of soil C-dynamics. 12 

Here we carry out a sensitivity study using the Community Land Model (CLM) with 13 

both a carbon and a nitrogen cycle (CN) (Thornton et al., 2007; Oleson et al., 2010) to 14 

assess the potential global effects of changing the assumptions about temperature 15 

sensitivities of SOM pools and the effect of organic matter input on SOC 16 

mineralization rate. We assess the effects on a global scale and compare model output 17 

to available observational data, and conduct simulations using both standard and 18 

modified SOM models with predicted climate change. 19 

 20 

2. Materials and methods 21 

2.1 Model 22 

All model experiments were conducted with the terrestrial model CLM version 4.0, 23 

which simulates photosynthesis, C fluxes and storage, heat and water transfer in soils, 24 

and vegetation-radiation interactions (Oleson et al., 2010). The model has been 25 

updated to include the N cycle in addition to the C cycle (Thornton et al., 2007; 26 

Thornton, 2009). The model is described in detail in the CLM technical description 27 

and appropriate papers (Thornton et al., 2007; Thornton, 2009; Oleson et al., 2010). 28 

The SOC sub-model in CLM is described in detail by Thornton and Rosenbloom 29 

(2005). The model has three litter pools and four SOC pools with different turnover 30 

time, similar to most SOM models. The fraction of plant litter allocated to each of the 31 

three litter pools depends on which plant functional type it is from. In addition, woody 32 



material is assumed to fractionate before it enters any litter pool, using a fractionation 1 

constant (Kfrag). As the litter pools decompose, a fraction of the C is released as CO2 2 

and a fraction is transformed into the corresponding SOC pool. The SOC pools either 3 

mineralize to CO2 or decompose to enter another pool except the last (and slowest 4 

turning over SOC pool) that only mineralizes to CO2. The response of the model to 5 

climate change in offline and fully coupled simulations has been explored (Thornton 6 

et al., 2007; 2009), and comparisons to detailed observations has been examined 7 

(Randerson et al., 2009). A version of this model was included in the Coupled Model 8 

Intercomparison Project (CMIP5) analysis prepared in part for the 5th Assessment 9 

report of Intergovernmental Panel on Climate Change (IPCC) (Lindsay et al., 2013). 10 

The model has also been compared to other fully coupled models (e.g. Arora et al., 11 

2013; Jones et al., 2013). 12 

2.2 Modifications 13 

The model was modified in two ways to assess the effect of other plausible 14 

assumptions about soil processes than those currently in the model. These 15 

modifications are described below.  16 

2.2.1 Temperature sensitivity of pools 17 

In the standard version of the model, decomposition rates of all soil and litter organic 18 

C pools are equally sensitive to temperature, using a Q10 formulae (Q10=1.5). Knorr et 19 

al. (2005) suggested how decomposition rates of pools could be calculated based on 20 

Arrhenius kinetics: 21 

k T( ) = Ae
−Ea
RT     (1) 22 

Where k is the decomposition rate, Ea is activation energy, R is the universal gas 23 

constant, T is temperature in Kelvin, and A is the theoretical decomposition rate at 24 

Ea=0. This therefore provides a methodology for how to calculate pool decomposition 25 

rates based on theoretical considerations from thermodynamics. We used this 26 

methodology to modify the standard Q10 model temperature sensitivity (kmod) while 27 

retaining the shape of the temperature response: 28 

kmod = kQ10e
−Ea
RT     (2) 29 

Standard model approximations of k(T) are based on data from experiments on 30 



quickly decomposing SOC pools. However, Knorr et al. (2005) argued that the 1 

decomposition of slowly decaying SOC is more sensitive to temperature than 2 

decomposition in the quickly decaying pools common to most experiments.  3 

Therefore, we modified the Arrhenius model term in Eq. 2 to be dependent on the 4 

turnover time characteristic of each soil and litter pool, expressed as the difference 5 

between the activation energy of the pool and a standard activation energy (Eastd). The 6 

sign convention was chosen such that the temperature sensitivity of k increases with 7 

pool turnover time, as used by Knorr et al. (2005): 8 

kmod = kQ10e
Ea−Eastd( )
RT    (3)   9 

To be consistent with the conclusions of Knorr et al. (2005) as mentioned above, we 10 

use the activation energy of the fastest decomposing soil pool as the standard in this 11 

expression. Activation energy was calculated for each C pool using the turnover times 12 

from Thornton and Rosenbloom (2005), also used in CLM4, and a linear fit to 13 

empirical activation energy data given by Knorr et al. (2005) (Table 1).  14 

In addition, we modified the term in the exponent from Eq. 3 to equal zero when the 15 

pool temperature equals 15˚C, or roughly the global average temperature, by 16 

multiplying by the factor (T-T15)/T15 where T15 is T=15˚C. This ensured that the 17 

temperature response of the model was the same for kmod and kQ10 at this temperature.  18 

kmod = kQ10e
Ea−Eastd( ) T−T15( )

RTT15   (4) 19 

We computed new decomposition rates for all C pools and temperatures using Eq. 4 20 

and fitted a new Q10 coefficient to the temperature sensitivity of kmod for each pool 21 

(Table 1, Figure 1). The quickly decomposing soil 1 pool was used as the standard 22 

and was kept unchanged. The values of Q10 increase up to 2.27 in the more slowly 23 

decomposing pools (Table 1). 24 

2.2.2 Priming effect 25 

Plants add C to the soil, broadly in proportion to their growth rate. In the standard 26 

model, this means that everything else being equal, C contents of soils will increase 27 

with increasing plant biomass production. However, there is evidence that input of 28 

fresh C can increase the decomposition rate of the C that is already there, through the 29 

priming effect (Kuzyakov, 2010). To account for priming of native SOM, we used 30 



data from a laboratory incubation experiment (Garcia-Pausas and Paterson, 2011).  1 

This experiment used 13C-enriched glucose as a surrogate for plant-derived inputs 2 

allowing the mineralisation of native SOM to be quantified by isotopic mass balance 3 

(partitioning SOM-derived CO2 efflux from that derived from the added glucose).  4 

They found that the SOM-derived CO2-C efflux from soils increased by roughly 25% 5 

with the addition of the glucose.  Here we modified the SOM decomposition scheme 6 

in CLM to account for up to a 25% increase in decomposition rate from an input of C 7 

from the litter pools. 8 

CLM calculates a potential C flux from each soil and litter pool that occurs if N is not 9 

limiting. We expressed priming as a function of the ratio between the potential C loss 10 

flux from all litter pools (Flitter) and potential C loss flux from all soil pools (Fsoil) 11 

before priming had been introduced. Priming can then be represented as a 12 

proportional increase in the decomposition rate of each soil pool that grows with an 13 

increase in the ratio of Flitter to Fsoil and reaches a maximum at a proportional increase 14 

in soil decomposition rate of 25%, following the results of Garcia-Pausas and 15 

Paterson (2011). This relation was described with a continuous function that 16 

asymptotes to the maximum proportional increase in decomposition rate (25%) and is 17 

added to the potential C flux from decomposition of SOM (Cp): 18 

Cp−mod =Cp ∗ 1+ a∗ 1− e
−b∗Flitter Fsoil( )( )#

$
%
&    (5) 19 

where a and b are constants, here a=0.25 (maximum proportional increase) and 20 

b=0.1291, and Cp-mod is the modified potential C flux from decomposition. The 21 

parameter b was fitted such that the function nears the maximum proportional 22 

increase, a=0.25, for a ratio of Flitter to Fsoil that corresponds roughly to the ratio of C 23 

added through the glucose treatments to the soil C efflux in the experiments of 24 

Garcia-Pausas and Paterson (2011). Here we assume that the effect of increasing the 25 

amount of added substrate levels off near the highest glucose concentration added in 26 

their experiments. The behaviour of this function for a range of Flitter:Fsoil values is 27 

shown in Figure 2. Further experiments have shown that the priming effect does 28 

saturate at high substrate addition rates, but sometimes at rates much higher than the 29 

maximum used here (Paterson and Sim, 2013). Therefore, the representation of the 30 

magnitude of priming effects can be considered conservative. These coefficients are 31 

only valid for an initial assessment of the global effects of including priming. If 32 



priming were to be permanently included in the model, a more thorough calibration 1 

including interactions with environmental variables, would be required. 2 

2.3 Simulation protocol 3 

We tested the sensitivity of global C stocks to these changes in the decomposition 4 

rates in CLM experiments using the standard, unmodified model (referred to as ES), 5 

the model including the modified temperature sensitivity of decomposition (referred 6 

to as ET), and the model including the modified priming effect on decomposition 7 

(referred to as EP). Initially, equilibrium simulations were performed with CLM for 8 

ES, ET, and EP, to assess the impacts of the modified decomposition treatments on 9 

steady-state model C stocks. For these equilibrium simulations we used present-day 10 

land cover (Hurtt et al., 2006), atmospheric CO2 concentration, and N and aerosol 11 

deposition. The terrestrial biosphere was forced from the atmosphere by prescribed 12 

temperature, precipitation, solar radiation, wind, specific humidity and air pressure, 13 

and data for this analysis were taken from the re-analysis by Qian et al. (2006).  A 25-14 

year period (1972-2004) from the re-analysis was cycled throughout the CLM 15 

equilibrium simulations. The cycling was continued until the total global drift in net 16 

ecosystem C exchange was less than 0.05 PgC/y averaged over a 25-year atmospheric 17 

forcing cycle. This “spin-up” procedure required approximately 1000 model years for 18 

all cases. The model was simulated at 1.9 degree latitude by 2.5 degree longitude 19 

horizontal grid spacing and a time step of 30 minutes.  20 

Additional simulations were carried out with the modified and unmodified SOC 21 

model versions to explore how the different models predict future changes in SOC.  22 

These simulations were initialized from the final state of the corresponding 23 

equilibrium runs, but used transient atmospheric CO2 and meteorological forcing.  24 

Output from the ECHAM5/MPI-OM CMIP3 runs (Roeckner et al., 2006) based on 25 

the SRES A1B greenhouse gas projection (Nakicenovic et al., 2000) was used to 26 

define future climate anomalies (for the period 2000-2100, relative to the 1948-1972 27 

mean) for the quantities used in the atmospheric forcing (listed above). The climate 28 

anomalies are applied to a repeating, 25-year cycle of atmospheric reanalysis (from 29 

the years 1948-1972) to create the atmospheric forcing datasets.  With this method we 30 

retain observed diurnal, seasonal and interannual climate variability into the future 31 

even as it is scaled to the predicted future climate trends (Kloster et al., 2012; Ward et 32 

al., 2012). Transient atmospheric CO2 concentrations also follow the SRES A1B 33 



scenario for the year 2000 through 2100.  In this scenario, CO2 concentrations 1 

increase through the 21st century, exceeding 700ppm by the year 2100. Global N 2 

deposition distributions from the year 2000 (Lamarque et al. 2005) were used 3 

throughout for all simulations. 4 

2.4 Soil data 5 

Soil data from ISRIC-WISE 05 degree (Batjes, 2005) were used to compare against 6 

output from the simulations. The model generates SOC as a stock in each grid cell, 7 

while the ISRIC-WISE dataset gives SOC as a percentage of soil mass in each map 8 

unit within a grid cell. Therefore we converted the observed data to SOC stocks with 9 

the following expression: 10 

Cs = d ∗10∗ 1−
g
100

#

$
%

&

'
(∗b∗

Cp

100
    (6) 11 

Where Cs are SOC stocks (kg/m2), d is thickness of soil layer (cm), g is gravel content 12 

(%) b is bulk density (g/cm3) and Cp is SOC content (%) from the ISRIC-WISE 13 

dataset. The calculation was done separately for the two soil layers in the ISRIC-14 

WISE dataset (0-0.3 m and 0.3-1 m). The SOC content of both layers is summed, and 15 

a weighted average of Cs over the map units was calculated based on fractional area 16 

covered by each map unit.  17 

 18 

3. Results and discussion 19 

The unmodified CLM predicts about 26% less SOC than estimated from the ISRIC-20 

WISE data set (the ISRIC-WISE dataset is abbreviated as “OBS” in the tables and 21 

figures) (Table 2). It should be noted that the data set only has SOC in the top 1 m, so 22 

that real SOC storage and underprediction is even higher. The main reason for the 23 

underprediction is that the model is unable to predict the very high SOC contents in 24 

northern latitudes (Figure 3). This is unsurprising as the model does not include 25 

effects of waterlogging, low pH and permafrost on SOC dynamics. However, the 26 

model also underpredicts slightly in many other areas. Exceptions are tropical rain 27 

forests in Amazonia and Africa and temperate forests in Asia and eastern United 28 

States where the model overpredicts SOC (Figure 3). These are all high productivity 29 

regions, which suggests that plant productivity is a stronger determinant of SOC in the 30 

model than in reality (overall r2 between net primary productivity (NPP) and the 31 



magnitude of the model overprediction of SOC compared to the observed is 0.56). It 1 

is also important to note that the standard model does not account for influences of 2 

soil texture and structure, which are strong determinants of stabilisation of SOC 3 

through constraining the access of decomposers to SOM (von Lutzow et al., 2006; 4 

Dungait et al., 2012). This will account for some of the unexplained variability in the 5 

distribution of SOC. 6 

Including temperature and priming modifications did not dramatically alter 7 

predictions of total global SOC, but did affect the predicted distribution (Table 2; 8 

Figure 4). The results do not include litter pools, but the difference in litter pools 9 

between the various versions of the model was negligible (data not shown) as is to be 10 

expected as the modifications introduced act on SOC pools but not directly on litter 11 

pools. While the standard model has been calibrated to reproduce global SOC stocks, 12 

the lack of explicit representation of soil processes may limit their capacity to capture 13 

spatial variability in these stocks. That is, setting standard model functions to 14 

represent global means can reproduce global SOC stocks, but without further 15 

modification may not improve prediction of geographical variation. Such spatial 16 

variability would be expected where soil and environmental factors affect the relative 17 

importance of SOC-accrual and SOC-loss processes, causing deviation from mean 18 

responses on a global scale. In addition, analogously to predicting geographic 19 

variation in SOC, modelling impacts of environmental change on global SOC stocks 20 

may require more explicit representation of soil processes, as factors such as CO2 21 

fertilisation, N addition through deposition and/or fertilisation and temperature rise 22 

may directly affect the balance of these soil processes. 23 

SOC decreased at most grid points for ET relative to ES, especially in the high 24 

latitudes of the Northern Hemisphere (Figure 4a). However, the magnitude of the 25 

decrease was small, never exceeding 1 kgC/m2 at any location, compared to the 26 

difference in SOC between the ES results and OBS, which falls between 5 and 20 27 

kgC/m2 at many locations (Figure 3). This comparison is made even clearer in Figure 28 

4c, which shows how the difference between the model and observations changes 29 

when the modified temperature sensitivity is included in the simulation.     30 

Including the simple priming effect also reduced global SOC (Table 2, Figure 4b) and 31 

by a higher magnitude compared to the reduction from the modified temperature 32 

sensitivity. The global decrease results from the representation of priming in EP for 33 



which C turnover could only decrease or remain unchanged. Importantly, the land 1 

areas where the priming had the greatest effect on SOC were those with high NPP 2 

(tropical and temperate forest). These are the same regions where the standard model 3 

over-predicted SOC relative to measured data to the greatest extent (Figures 3 and 4 

4d). Including a priming effect improved predictions in these areas by 20-25%, but 5 

predictions got worse in lower productivity ecosystems such as grasslands, shrubs, 6 

and boreal forests (by 1-9%) (Figure 5). While underprediction in lower productivity 7 

regions can be explained by water-logging and perma-frost, overprediction in high 8 

productivity regions can be resolved by better mechanistic predictions of turnover and 9 

its dependence on productivity. We suggest that including a priming effect is a 10 

credible and mechanistically sound way to improve these predictions in high 11 

productivity regions.  12 

The conservative assumption used here was that the maximum change in C turnover 13 

from input of plant-derived C is 25%. Although our results indicate where priming 14 

effects may be expected to have the greatest impact, the magnitude and geographic 15 

variation in these effects may be greater, as changes in SOC turnover of up to 300% 16 

have been reported (Zhu and Cheng, 2011). Further work should focus on 17 

parameterizing how various factors affect the strength of SOC turnover, and evaluate 18 

if this further improves predictions of SOC. For example, empirical data are emerging 19 

indicating that priming responses can be quantified as soil-specific functions of C-20 

input rate (Paterson and Sim, 2013), are affected by composition of inputs (Ohm et 21 

al., 2007), are modified by nutrient availability (Fontaine et al., 2003; Garcia-Pausas 22 

and Paterson, 2011), change with soil depth (Fontaine et al., 2007; Salome et al., 23 

2010) and may vary in response to direct and indirect effects of environmental 24 

conditions on the biological processes involved (Dijkstra et al., 2010; Ghee et al., 25 

2013; Thiessen et al., 2013). These effects are potentially complex due to interactions 26 

between environmental factors and the biological processes mediating element fluxes. 27 

For example, plant-derived C enters soil from aboveground litter and rhizodeposition, 28 

supplying organic material of differing quality, affecting retention in soil, microbial 29 

activity and processes mediated by microbial communities (including priming). The 30 

magnitude and relative contribution of above- and below-ground plant-C is affected 31 

by a host of factors, including interactions between plant type, temperature and 32 

nutrient availability (Metcalfe et al., 2011). Under conditions of high nutrient 33 



availability, relative allocation of plant C to roots and mycorrhizal symbionts is 1 

reduced (Yuan and Chen, 2010; Grman and Robinson, 2013). However, whether this 2 

results in an absolute reduction in C-transfer to soil is dependent on whether the 3 

reduction in relative belowground allocation outweighs the impact of increased gross 4 

plant productivity (Henry et al., 2005). These interactions, across ecosystem types, 5 

require further quantitative study to refine the representation of plant-mediated 6 

priming effects in models. 7 

The difference in pool size between the standard and the modified runs is to a large 8 

extent maintained into the future (Figure 6, Table 3), although the vegetation pool in 9 

EP is reduced early in the future simulation. This may be a result of smaller C stocks 10 

in the soil at equilibrium with this modification. That means that there was less N 11 

available for mineralisation, and the effect of warming on N mineralisation and 12 

availability was therefore less. The difference in pool sizes would potentially have a 13 

large effect in a fully coupled simulation, and could therefore mean a different biotic 14 

feedback to climate change than current models predict. The predictions of changes to 15 

the C cycle under global change appear to be relatively robust towards the 16 

assumptions made about SOC sensitivity to temperature, as differences in pool sizes 17 

at equilibrium were maintained (Figure 6, Table 3).  18 

 19 

4. Conclusions 20 

Comparison of CLM model simulations to observations suggest an overprediction of 21 

soil C in the high productivity regions of mid-latitudes and the tropics, with too little 22 

soil C in other regions, especially the high latitudes, as noted elsewhere (e.g. 23 

Randerson et al., 2009; Thornton et al., 2009).  This differential in the soil C bias in 24 

the model can be due to multiple causes, and we explore two of these effects in this 25 

paper, temperature dependence and soil priming.  We did not explore some potentially 26 

important effects specific to high latitudes such as a representation of the inhibition of 27 

biological processes in soils subject to permafrost and waterlogging.  28 

The overprediction of C in the high productivity areas indicated that the model 29 

underpredicts C turnover when plant input is high, and one way of improving that is 30 

to include a priming effect, which does improve the predictions of SOC distribution 31 

by 20-25%. Further work should focus on better quantification of priming, and how it 32 



depends on external factors, and may also improve our ability to predict biotic 1 

feedback to climate change. In this paper we also explored the impact of different 2 

temperature sensitivity of C pools, but this mechanism had less of an effect in most 3 

areas.  4 

As soil C feedbacks in earth system models are some of the most important 5 

uncertainties in future climate predictions (Huntingford et al., 2009), further work 6 

should focus on better quantification of the priming effect and how it depends on 7 

other factors and how this can improve predictions of SOC distribution even further. 8 
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Table 1: Values for the parameters used in the calculation of the temperature 1 

sensitivity of decomposition rates for this study (Eq.4). Turnover times for all carbon 2 

pools are from Thornton and Rosenbloom (2005) and are the same as those used in 3 

CLM4.  Activation energies are computed using the linear fit given by Knorr et al. 4 

(2005) in their Figure 2. A least-squares, best-fit Q10 coefficient is given for each of 5 

the modified decomposition rates, kmod(T).    6 

 7 

	
  
Turnover	
   Activation	
   Q10	
  

Carbon	
   Time	
  (T=25˚C)	
   Energy	
   coefficient	
  
Pool	
   [days]	
   [J	
  mol-­‐1]	
   for	
  Kmod	
  
Soil	
  1	
   21.4	
   39882	
   1.50	
  
Soil	
  2	
   107.1	
   46736	
   1.66	
  
Soil	
  3	
   1071.4	
   56543	
   1.93	
  
Soil	
  4	
   15000.0	
   67783	
   2.27	
  
Litter	
  1	
   2.1	
   30075	
   1.29	
  
Litter	
  2	
   21.4	
   39882	
   1.50	
  
Litter	
  3	
   107.1	
   46736	
   1.66	
  
K-­‐frag	
   1500.0	
   57976.0	
   1.97	
  

 8 
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 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



Table 2: Total SOC storage estimated from the ISRIC-WISE data set in top 1 m, using 1 

the Eq. 6 unit conversion, in comparison to those calculated with CLM at equilibrium 2 

(unmodified) and with each of the modifications described in the text. 	
  3 

 OBS ES ET EP 

Total soil 

organic 

carbon (Pg) 

967.9 712.7 707.1 666.0 

Proportion 

(% of OBS) 

100  74 

 

 73 

 

 69 
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 8 
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 10 
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 12 
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 14 
 15 
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 20 
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 23 
 24 
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 30 
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Table 3: Predicted total carbon in pools at the end of the future simulation (year 2100) 1 

and percentage increase in each carbon pool over the simulation period. 2 

  ES ET EP 

Ecosystem 

carbon (Pg) 

 1862.3 

7.4% 

 

1853.7 

7.5% 

 

1803.6 

6.7% 

 

Vegetation 

carbon (Pg) 

 1058.9 

16.9% 

 

1055.5 

17.0% 

 

1030.9 

13.4% 

 

Soil organic 

carbon (Pg) 

 684.6 

-3.9% 

680.2 

-3.8% 

 

657.5 

-1.3% 

  3 



 1 

Figure 1: Decomposition rate (k) as a function of temperature in the standard Q10 2 

model (unmodified rate) and the modified model given by Equation 4. The rates are 3 

plotted for all model carbon pools, indicated in the top left of each panel.   4 

 5 

  6 



 1 

	
  2 

 3 

Figure 2: Plot of the proportional increase in decomposition rate of all soil pools, 4 

given as percentages, due to priming from an influx of C from the litter pools, 5 

computed from Eq. 5. The changes in rates are plotted as a function of the ratio of the 6 

sum of the unmodified potential C loss fluxes from all litter pools, Flitter, to the sum of 7 

the unmodified potential C loss fluxes from all soil pools, Fsoil.  8 



 1 

Figure 3: Soil carbon from the ISRIC-WISE data set (a) and the difference between 2 

this and simulated SOC with the standard (unmodified) CLM at equilibrium {OBS – 3 

ES}(b). Data from the ISRIC-WISE data set were recalculated for stocks in the top 1 4 

m and a weighted average over map units was produced. A full description of the 5 

calculation method is given in the text. 6 

 7 



 1 

Figure 4: Difference in SOC at equilibrium between ET and ES {ET – ES} (a), 2 

between EP and ES {EP – ES} (c), and the change in error in SOC predictions with 3 

respect to the observations due to the modified temperature sensitivity { |OBS – ES| - 4 

|OBS – ET| } (b), and due to adding priming { |OBS – ES| - |OBS – EP| } (d).  5 

Positive values in (b) and (d) indicate the modification to the model improved 6 

prediction of SOC compared to the observations. 7 
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Figure 5: Deviation from ISRIC-WISE data (OBS) for the ES and the two 3 

modifications, ET and EP grouped on eco-regions. 4 
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 1 

 2 

Figure 6: Predicted total global organic carbon in the entire ecosystem (a), soil (c) and 3 

vegetation (e) starting from equilibrium year 2000 under predicted climate change 4 

with ES (“standard”), ET (“Temperature sensitivity”) and EP (“Priming”). The spatial 5 

maps show the changes between the average of the last 25 years of the equilibrium 6 

run and the average of the last 25 years of the future run (i.e. the period 2075-2099) 7 

for total ecosystem C (b), soil C (d), and vegetation C (f) using the standard model. 8 


