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Abstract. Early Warning Signals (EWS) have become a pop-
ular statistical tool to infer stability properties of the climate
system. In Part 1 of this two-part paper we have presented a
diagnostic method to find the hotspot of a sudden transition
as opposed to regions that experience an externally induced5

tipping as a mere response. Here, we apply our method to
the atmosphere-vegetation model PlanetSimulator (PlaSim)
– VECODE using a regression model. For each of two vege-
tation collapses in PlaSim-VECODE we identify a hotspot of
one particular grid cell. We demonstrate with additional ex-10

periments that the detected hotspots are indeed a particularly
sensitive region in the model and give a physical explanation
for these results. The method can thus provide information
on the causality of sudden transitions and may help to im-
prove the knowledge on the vulnerability of certain subsys-15

tems in climate models.

1 Introduction

The phenomenon of slowing down, an increase in a sys-
tem’s relaxation time resulting from a loss in stability, has20

been studied for a long time in various systems (for exam-
ple Collins and Teh, 1973; Wissel, 1984; Wolff, 1990). The
effect is often illustrated with the prototype example of one-
dimensional potential whose shape determines the system’s
deterministic dynamics, and a ball which characterizes its25

state (Fraedrich, 1979; Scheffer et al., 2001). The determin-
istic system is supposed to approach an equilibrium (in terms
of dynamical systems, a stable fixed point), determined by a
minimum in the potential. If by varying an external control
parameter the potential becomes flatter, the return time to30

the equilibrium increases and the eigenvalue as determined
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by a linear stability analysis increases towards 0 (in a time-
continuous system).

As the underlying dynamics are rarely known in complex
systems, it has been suggested to infer stability changes of35

a current equilibrium from statistical indicators. If the sys-
tem’s state is subject to external random perturbations (usu-
ally assumed as white noise of constant noise level), a loss
in stability will lead to an increase in autocorrelation and (at
least if the noise is additive) variance. These changes can be40

measured if the change in external conditions is slow enough
to allow a sufficiently precise sampling of the statistical indi-
cators. Assuming that the existence of a non-linear threshold,
in the extreme case a bifurcation point, is known, then it can
be attempted to predict when a sudden transition will occur45

(Thompson and Sieber, 2011a,b). For this reason, statistical
indicators of slowing down have been referred to as Early
Warning Signals (EWS; Scheffer et al., 2009).

The generality of the concept has recently inspired the
search for slowing down and EWS in various contexts such50

as ecological models (Carpenter and Brock, 2006; van Nes
and Scheffer, 2007; Guttal and Jayaprakash, 2008; Contamin
and Ellison, 2009); living populations in laboratories (Drake
and Griffen, 2010; Veraart et al., 2012) and real ecosystems
(Carpenter et al., 2011), geological climate records (Dakos55

et al., 2008; Ditlevsen and Johnsen, 2010), and climate mod-
els (Kleinen et al., 2003; Held and Kleinen, 2004; Livina and
Lenton, 2007; Lenton et al., 2009; Lenton, 2011).

However, most of these studies address the problem within
the one-dimensional framework explained above and thereby60

considerably reduce the spatial complexity of real systems.
Paleoclimate records are inherently one-dimensional and
generally yield spatially integrated information. In ocean
circulation models, integrated mass fluxes are often a use-
ful quantity to characterize large-scale changes. For exam-65

ple, Held and Kleinen (2004) study a collapse of the merid-
ional overturning circulation and obtain a single time series
by projecting on the critical mode of the transition (“degen-
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erate fingerprinting”).
EWS in ecological systems have recently been studied in70

a spatially more explicit way (Oborny et al., 2005; Guttal
and Jayaprakash, 2009; Donangelo et al., 2010; Dakos et al.,
2010, 2011). However, the latter studies involve two simplifi-
cations: first, the analysed systems involve interactions which
couple grid cells in a spatially homogenous way. Second, the75

grid is constructed from identical elements with individual
tipping points and the system’s boundaries are well-defined.

In this regard, the interactions between terrestrial ecosys-
tems and the atmosphere pose a more difficult problem. Con-
sidering a global climate model, all land cells are globally80

coupled via the atmosphere, the spatial coupling is inho-
mogenous, and the critical region producing a tipping point
is embedded in a larger system with other dynamical charac-
teristics.

In such a complex setting, it is of interest not only if or85

when a tipping occurs, but also where it occurs and causally
originates (hotspot). In Part 1 of this article (Bathiany et al.,
submitted) we have shown that the detection of local EWS
at individual grid cells is generally not sufficient to solve this
problem. However, the hotspot as a nucleus of the abrupt90

transition can potentially be identified with a degenerate fin-
gerprinting approach by determining the area which maxi-
mizes an EWS. Here, we apply the method to Holocene veg-
etation dynamics in North Africa and South West Asia in
the atmosphere-vegetation model PlanetSimulator (PlaSim)95

– VECODE. North Africa is a region where atmosphere-
vegetation interactions have been particularly important dur-
ing the Holocene (Claussen, 1998). In a number of climate
models rapid transitions due to strong feedbacks (Claussen
et al., 1999; Renssen et al., 2003) and multiple equilib-100

ria (Claussen, 1994, 1997, 1998; Zeng and Neelin, 2000;
Wang and Eltahir, 2000; Irizarry-Ortiz et al., 2003) have been
found.

In Sect. 2, we briefly introduce the two models, the meth-
ods of coupling, as well as the dynamic vegetation changes105

simulated by PlaSim-VECODE. In Sect. 3 we discuss the
restrictions of applying EWS to time series generated by
PlaSim-VECODE, introduce a regression model, and de-
rive parameter values to match our PlaSim-VECODE re-
sults. We then apply the hotspot detection scheme to our110

regression model in Sect. 4. In Sect. 5, we verify the results
with PlaSim-VECODE and give a physical explanation of
the model’s behaviour. Sect. 6 provides our conclusions.

2 Mid-holocene vegetation dynamics in PlaSim-
VECODE115

To simulate mid-Holocene vegetation dynamics, we couple
the atmosphere model Planet Simulator (PlaSim; Fraedrich
et al., 2005; Fraedrich, 2012) to the simple dynamic global
vegetation model VECODE (Brovkin et al., 1997, 2002).
The experimental setup is identical to Bathiany et al.

(2012): sea surface temperatures are prescribed from present
day observations, atmospheric CO2 is fixed at 280 ppm, and
the resolution is T21 with 10 vertical layers. Equilibrium
vegetation cover V ∗ in VECODE directly depends on annual
precipitation P :

V ∗=



0 if P <P1

1 if P >P2

1.03− 1.03

1+α
(
P −P1

exp(γ δ)

)2 otherwise,
(1)

with

P1 = β exp(γ δ/2)

P2 = β exp(γ δ/2)+
exp(γ δ)√

0.03 α
.

In order to allow for vegetation collapses, we implement a
steeper threshold in the equilibrium vegetation cover’s re-120

sponse to precipitation by choosing α= 0.0011, β = 140,
γ = 1.7× 10−5, and δ = GDD0− 900K, where GDD0 are
the growing degree days above 0 ◦C (a function of temper-
ature only). This version is called the modified VECODE in
Bathiany et al. (2012) (Fig. 1). VECODE distinguishes trees125

and grass as the only vegetation types. The surface cover
types, trees, grass and desert, have different physical proper-
ties which are constant over time.

PlaSim and VECODE can be coupled in two ways: in a
transient mode (PlaSim-VECODE-tr), we use an annual cou-130

pling, and vegetation cover fractions at each grid box ap-
proach their equilibrium according to a linear relaxation law
using a climate dependent timescale. In equilibrium mode
(PlaSim-VECODE-eq), we iteratively run PlaSim with fixed
vegetation cover for several years, and then set vegetation135

cover to its new equilibrium corresponding to the multi-year
average of P and GDD0. This mode thus corresponds to an
asynchronous coupling.

The asynchronous coupling corresponds to the limit of in-
finitely fast vegetation dynamics so that there is no timescale140

separation between P and V anymore. In addition, the vari-
ability of P (the fast subsystem) is averaged out and replaced
by its mean response. This way, the stable deterministic
equilibria of the slow part of the system can be identified
as the system is always very close to these equilibria. In this145

sense, the interactive timescale of several years in PlaSim-
VECODE-tr and the large variability provide a more realis-
tic case. However, the relationship of climate and vegeta-
tion timescale in the model is an empirical fit to observations
from different ecosystems that may not be directly transfer-150

able to changes in time at one and the same location. As it
is our aim to investigate the stability properties of PlaSim-
VECODE rather than its realism, we accept this limitation as
a side-effect of the model’s simplicity.

When running PlaSim-VECODE-tr with orbital forcing155

from 9 k (k is kiloyears before present) to 2 k, we obtain two
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major vegetation collapses in different regions at different
times (Bathiany et al., 2012). The spatial and temporal fea-
tures of these transitions are presented in Figs. 2 and 3. From
9 k to 6 k, almost all land cells are at least partly covered by160

vegetation and cover fractions show large fluctuations due to
natural climate variability but almost no trend. Around 5.5 k,
vegetation cover in large parts of northern Africa and south-
western Asia collapses and thereafter stays in desert-like con-
ditions. Interestingly, the timing of this collapse corresponds165

to paleoclimate time series from a sediment core (deMeno-
cal et al., 2000) and earlier model studies (Claussen et al.,
1999), despite differences in the models and our modifica-
tions to the vegetation model. Around 3.5 k, a similar abrupt
event occurs in a more confined region in the Sahel region.170

In the following, we refer to these two sudden transitions as
collapse 1 (5.5 k event) and collapse 2 (3.5 k event).

The two vegetation collapses are related to the large
atmosphere-vegetation feedback in the model which can al-
low for multiple equilibria. In PlaSim-VECODE-eq, multi-175

ple steady states in the region of collapse 1 can be found until
approx. 7 k., and in the region of collapse 2 at 4.5 k–5 k (see
Figs. 6, 7 and Table 2 in Bathiany et al., 2012). For each of
these orbital forcings, starting from a forest world leads to
a partly vegetated state (in the following called the “green180

equilibrium”), while starting from desert conditions leads
to a dry state (“desert equilibrium”) in PlaSim-VECODE-
eq. However, due to the large climate variability and non-
linearities in the model formulation, a noise-induced tran-
sition (Horsthemke and Lefever, 1984) can occur and multi-185

ple steady states are not found in PlaSim-VECODE-tr, where
natural variability is large. The collapses presented in Figs. 2
and 3, although a result of the intrinsic multiple equilibria in
the system, thus do not exactly coincide with the determinis-
tic bifurcation points, but rather result from a sudden change190

in the system’s probability density function.

3 A stochastic model for EWS analysis

3.1 Idealized model setup

To further analyse the stability properties of the modified
PlaSim-VECODE and to find hotspots in the model, we ap-195

ply our hotspot detection method.
In agreement with our algorithm for hotspot detection pre-

sented in Part 1, we first generate a number of time slices for
fixed orbital forcing. To analyse collapse 1, we choose or-
bital forcings corresponding to 9 k, 8.5 k, 8 k, 7.5 k, 7 k, 6.5 k200

and 6 k (dashed red lines in Fig. 3, top); to analyse collapse
2 we choose 5.5 k, 5 k, 4.5 k, 4 k, and 3.6 k (dashed red lines
in Fig. 3, bottom). As any year is associated with a partic-
ular orbital forcing we refer to this forcing as an orbit year.
Each time slice simulation consists of 20 000 yr in transient205

coupling mode.

However, a direct application of the hotspot detection
scheme to these time series is not adequate for the follow-
ing three reasons:

1. Due to the distinction of cases in Eq. (1), vegetation210

cover fraction V does not always show free variations
but is often exactly 0 or 1. The application of EWS is
not suited for such a case as the stability properties of
the equilibrium cannot be sampled properly. For exam-
ple, before reaching a desert state, the vegetation cover215

fraction shows an exponential decay after a particularly
wet year and stays constant afterwards (Fig. 3). More
importantly, the same phenomenon occurs at the other
limit of phase space, V = 1. EWS like autocorrelation
or variance then depend on the frequency of such cutoff220

events, which are not related to the stability of a climate
state.

2. The timescale τ of dynamic vegetation cover change in
VECODE depends on the system’s state and thus con-
taminates the signal of slowing down. In particular, τ is225

large for dry regimes and small for wet regimes (see Fig.
3 in Bathiany et al., 2012). When background precipita-
tion is reduced, an increased timescale will be reflected
in an increased autocorrelation. This state-dependent
slowing down is not necessarily related to any change230

in stability and thus distorts the signal.

3. Atmospheric variability in PlaSim-VECODE-tr is too
large to justify the small noise approximation. As ex-
plained above, the two collapses cannot be expected to
coincide with a vanishing eigenvalue because they re-235

sult from nonlinear interactions between the amplitude
of the multiplicative noise and the system’s state (Bathi-
any et al., 2012).

Insofar, the prerequisites for an application of EWS-based
analysis are in conflict with the case of PlaSim-VECODE-tr.
We therefore use the regression model introduced in Part 1
of our study. In this stochastic model, precipitation P at
any grid cell i is described as a linear function of the veg-
etation cover fractions Vj at all cells, following the concept
of Brovkin et al. (1998), Wang (2004), and Liu et al. (2006):

P t
i =P0i

+siB+
N∑

n=1

kij V
t
j +σP η

t
i (2)

Vegetation dynamics are represented by the simple dynamic
equation

V t+1
i =V t

i +
V ∗i (P t

i )−V t
i

τ
+σV η

t
i (3)

with t as the discrete time and a timestep of one year. The
bifurcation parameter B is the time (in kiloyears before240

present) that corresponds to a certain orbital forcing. De-
creasing B implies an orbital forcing that evolves forward
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in time. This in turn tends to decrease P during the late
Holocene due to the impact of orbital forcing on northern
hemisphere summer insolation and thus convective precipi-245

tation. Spatial interactions are captured by matrix k, and cli-
mate variability is accounted for by a Gaussian white noise
process ηi, which is also uncorrelated in space.

In contrast to PlaSim-VECODE, the three caveats listed
above can be resolved within the framework of this regres-250

sion model:

1. We remove the second condition in Eq. (1), thereby al-
lowing for V > 1 which corresponds to an extrapola-
tion of the empirical P (V )-relation obtained in PlaSim-
VECODE. As a maximum of V = 1.03 is still not ex-255

ceeded, we accept the unphysical nature of cover frac-
tions larger than 1 in the regression model.

2. We fix the dynamic timescale τ to a the climate-
independent value of 5 yr in agreement with Liu et al.
(2006) and Bathiany et al. (2012).260

3. We prescribe a particularly small and constant noise
level of σV = 0.00013 with σP = 0 (additive noise) or
σP = 2 with σV = 0 (multiplicative noise).

We refer to this model as regression model 1 (RM1) when
studying collapse 1, and as regression model 2 (RM2) when265

studying collapse 2. Both models only differ in the number
of grid cells and the parameter values.

To keep the regression models as simple as possible, we
only include grid cells in northern Africa and south-western
Asia which show substantial fluctuations in vegetation cover.270

Grid cells with V permanently close to 1 or 0 in all time
slices are static elements of the system under consideration
and can thus be interpreted as external conditions which are
indirectly reflected in the constants P0i . For RM1, we in-
clude all grid cells where V averaged over time and all time275

slices is between 0.1 and 0.96 (red area in Fig. 2). For RM2
we select the 8 grid cells in the south-west which show sub-
stantial collapse at 3.5 k (purple area in Fig. 2).

Besides precipitation, growing degree days GDD0 are also
a space and time dependent variable of the system which280

affects V ∗ (Eq. 1). However, by choosing γ = 1.7×10−5,
the sensitivity of V ∗ to changes in GDD0 is very small in
the modified VECODE. Differentiation of V ∗ with respect
to δ as well as a graphical analysis reveals that shifts in P-
direction do not exceed some mm for typical changes in δ. As285

plants in arid regions are limited by water rather than temper-
ature, the neglect of temperature fluctuations seems reason-
able. Typical spatial differences in GDD0 (time means are
between 7000 and 12 000) exceed the temporal variability in
North Africa (approx. 1000 at most grid cells) in PlaSim-290

VECODE-tr. Therefore, we prescribe a constant value of
GDD0 (and thereby δ) at each grid cell of our regression
models. Each value corresponds to the average over all
years and time slices (9 k–6 k for RM1, 5.5 k–3.6 k for RM2).

Hence, the function V ∗i (P ) very slightly depends on the par-295

ticular grid cell i, but is constant in time.
It remains to determine suitable parameter values of P0i

,
si, and kij to reproduce the stability properties of PlaSim-
VECODE with the regression models. To this aim, we fit
these parameters to our stationary PlaSim-VECODE-tr sim-300

ulations using a multivariate linear regression:
First, we extend the vector Vi at every year from PlaSim-

VECODE-tr by one additional dimension, assigned with the
orbit year corresponding to each time slice. Although V ac-
tually consists of trees and grass cover in VECODE, we can305

safely neglect this distinction, as tree cover is always close
to 0 in the grid cells we consider. Using the extended vec-
tor as a predictor and the corresponding PlaSim-VECODE-tr
time series of Pi as responses, we calculate regression coef-
ficients using the MATLAB function mvregress. Each P0i

is310

then obtained as the constant offset of the regression line, si

is its slope with regard to orbit year, and kij are its slopes
with regard to Vj (Fig. 4).

3.2 Robustness and stability properties of the regression
models315

To investigate the stability properties of the two regression
models over a range of B we numerically determine deter-
ministic equilibria and the eigenvalues of these equilibria as
obtained from a linear stability analysis (Fig. 5). To obtain
the eigenvalues, we derive the Jacobian of the correspond-320

ing time-continuous deterministic system (for which a bi-
furcation is indicated by an eigenvalue approaching 0) and
calculate its properties by inserting the numerically obtained
equilibrium. For the first value of B (8.8 k for RM1, and
6 k for RM2) we use Vi = 1 as an initial condition and run325

the model to equilibrium. For all subsequent steps of B, we
insert the previously obtained equilibrium as an initial con-
dition (which always results in the same solution as using
Vi = 1 for any B in our two regression models).

In both models the obtained equilibria are stable fixed330

points, as indicated by the negative real parts of all eigen-
values. Before a sudden transition to a different equilibrium
occurs due to a saddle-node bifurcation, one eigenvalue ap-
proaches 0. A reversed scanning of the B-range with our
numeric approach to find equilibria indeed results in a static335

hysteresis (not shown). The equilibria coincide well with the
green and desert equilibria found with PlaSim-VECODE-eq
(Bathiany et al., 2012) which indicates that the regression
model is of sufficient quality.

In RM1, there are several bifurcations along the forward340

branch, two in the B-range of interest: at approx. 8 k, grid
cell 3 (marked in Fig. 2) collapses. At around 6.7 k, most
other grid cells collapse in a second bifurcation.

This second bifurcation clearly corresponds to the dis-
appearance of the green equilibrium in PlaSim-VECODE-345

eq (Bathiany et al., 2012). Considering that the variability
which is still present to some extent in PlaSim-VECODE-eq
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prevents a detection of the green equilibrium close to the bi-
furcation point, the timing of the bifurcation also coincides
well. However, the collapse of grid cell 3 at 8 k only occurs350

in RM1, whereas in PlaSim-VECODE-eq vegetation cover is
gradually reduced over time.

Fig. 4 indicates that the relation between a certain Pi and
Vj is generally rather weak. However, the large variations
can partly be explained with the influence of the other 52 pre-355

dictor variables which are not taken into account in Fig. 4. As
the residuals of our regression are not Gaussian distributed
and their variance depends on the predictors (heteroscedas-
ticity), we refrain from calculations of errors or confidence
intervals. Instead, we test the robustness of our results to-360

wards changes in the predictor variables: Excluding certain
time slices from PlaSim-VECODE-tr (e.g. 9 k, 8.5 k and 8 k
at the same time) and/or including the 5.5 k experiment to
determine the regression parameters for RM1 leads to sim-
ilar results with regard to the system’s stability properties.365

Also, slight changes in the selected grid cells to build RM1
(for example, excluding the rather stationary cells near the
mediterranean and the 4 most northern grid cells) do not al-
ter the properties of the regression model substantially. This
even holds true if we replace the original PlaSim-VECODE370

time series by a set of 20 000 bootstrapped pairs of P and
V (Efron, 1979). However, some of these alternative regres-
sion models show additional bifurcations in RM1. Nonethe-
less, the main bifurcation point at which most elements of the
system collapse in synchrony always occurs. The persistent375

tendency of RM1 to show more bifurcations than PlaSim-
VECODE may result from intrinsic limitations of our linear
fit. For example, orbital forcing and its impact on annual
precipitation does not change linearly over time.

In contrast, RM2 behaves more robustly as its 8 elements380

(80 coefficients) allow a more reliable regression than the 52
elements of RM1 (2808 coefficients). All elements in RM2
collapse in synchrony, regardless of the choice of time slices
or the realization in our bootstrapping experiments.

Altogether, the regression models therefore cannot repro-385

duce the PlaSim-VECODE results in every aspect but qual-
itatively show many similarities and provide a simple and
appropriate framework for EWS analysis.

The emergence of multiple equilibria from the noisy
PlaSim-VECODE-tr time series provides further evidence390

that multiple deterministic equilibria are present in the mod-
ified PlaSim-VECODE but do not become apparent in prob-
ability density functions due to a noise-induced transition
(Bathiany et al., 2012). Using an interactive noise level
and an interactive vegetation timescale as in Bathiany et al.395

(2012) leads to similar transitions as in PlaSim-VECODE-tr,
but in contrast to Bathiany et al. (2012) in a spatially explicit
way (not shown).

4 Hotspot detection in the regression models

We can now answer the question where each tipping in Fig. 5400

originates by applying our hotspot detection algorithm:

1. We generate time slices of 100 000 yr each with RM1
and RM2. The chosen values of B for these time slices
are again depicted as dashed vertical lines in Fig. 5. Two
time series are generated for each forcing, one with ad-405

ditive noise and one with multiplicative noise.

2. As the noise level is small, some grid cells in RM1
are already unvegetated and thus can be discarded
as hotspot candidates (the desert cells in PlaSim-
VECODE-eq). We therefore do not consider grid cells410

where V falls below 0.004 at any time step in any time
slice.

3. To the rest of the grid cells we apply the hotspot detec-
tion scheme presented in Part 1 of our study: in short,
we repeatedly apply a degenerate fingerprinting (Held415

and Kleinen, 2004) to a random selection of grid cells
and each time determine an EWS. During this analysis
we successively remove grid cells which contribute least
to the signal and finally identify a hotspot from the re-
sulting signal list as the combination of grid cells which420

maximizes the signal.

The detection algorithm developed in Part 1 requires some
parameters and options, in particular the definition of a sig-
nal (SD 1 or 2), the choice of an elimination rule (ER 1 or 2),
the construction of the EOFs from covariance or correlation425

matrices and the use of autocorrelation or relative variance as
an EWS (relative here means relative to the first value most
distant from the Tipping Point). Here, we test all possible
combinations of these options which are discussed in Part 1
of our article. To keep the algorithm sufficiently fast, the430

system under analysis is repeatedly divided into parts with a
maximum number of elements prescribed by nmax. Here, we
use values of 3, 5 and 8 for nmax. For the successive removal
of elements during the procedure, a relative threshold is ap-
plied which starts at an initial value tini and is increased in435

steps of tinc. For both parameters we use the standard values
from Part 1: tini = 5% and tinc = 5%.

In order to illustrate the hotspots geographically, we in-
dicate an element’s weight at its corresponding grid cell
(Fig. 6). As a weight we define the sum of signals a certain el-440

ement contributes to, as illustrated by Table 3 in Part 1 of our
article. It must be noted though, that the random sampling
and the systematic removal of elements during the hotspot
detection algorithm only allows qualitative conclusions like
the position of the hotspot. The quantitative differences be-445

tween the grid cells in Fig. 6 should therefore not be over-
interpreted. The significance of the coloured areas will be
explained in Sect. 5.2.

We find that before the collapse of grid cell 3 in RM1,
this grid cell is detected as a hotspot of the transition. This450
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is of course not surprising as this grid cell is the only one
showing a collapse. In the more complex case of collapse
2 in RM1, its neighbouring grid cell 4 is identified as the
hotspot of the transition. The collapse of the 8 grid cells
in RM2 is detected to be initiated by the most western grid455

cell (cell 5). Hence, each collapse in our regression models
originates at one single grid cell.

To investigate the robustness of these results, we compare
the results for all possible combinations of our parameter op-
tions as listed above (SD, ER, EOFs, EWS, nmax). We find460

that the determined hotspots are always the same for all com-
binations of these parameter settings. Furthermore, omitting
time slices or using bootstrapped versions of our regression
models as explained in Sect. 3.2 yields the same hotspots de-
spite the uncertainty in the regression parameters.465

When reducing the length of the time series we generate
with the regression models the hotspots clearly emerge from
the noise until a total length of several 1000 yr in case of au-
tocorrelations and several 100–1000 yr in case of variances.
RM2 is even more robust: 100 yr of each time series are suf-470

ficient to detect the hotspot when using relative variance as
an EWS.

In summary, our detected hotspots are a very robust char-
acteristic of PlaSim-VECODE. In the following section we
document that they are also meaningful, in the sense that475

they yield information on the stability properties of PlaSim-
VECODE.

5 Evaluation of results with PlaSim-VECODE

To verify the detected hotspots we seek evidence for their
existence in PlaSim-VECODE and an explanation in terms480

of the model’s physics. As we apply PlaSim-VECODE with
low resolution, present day SSTs and a quite crude repre-
sentation of physical surface parameters, the model cannot
be expected to provide a very realistic climate of the mid-
Holocene.485

Despite these limitations, the large-scale features of the
North African summer circulation are captured reasonably.
We here focus on the conditions during July to September
because in the model most precipitation in northern Africa
and south-western Asia occurs during these months. The490

south-westerly monsoon flow is confined to the lowest model
levels and advects moisture over the North African continent
towards the heat low in central north-western Africa (Fig. 7a,
b). The intertropical front is very prominently indicated by
a surface convergence and a strong jump in specific mois-495

ture around 15–20◦ N. To the north of this front, the north-
easterly trades advect dry air from the Mediterranean region.

As in observations, easterly winds prevail in all tropo-
spheric levels above the shallow monsoon flow. Due to the
low model resolution, the African Easterly Jet (AEJ), Trop-500

ical Easterly Jet (TEJ) and the low-level westerly jet (Patri-
cola and Cook, 2007) cannot be captured well as the horizon-

tal gradients in zonal wind are small. Since precipitation in
the Sahel is related to the strength and position of these jets
(Nicholson, 2009), the model cannot capture the small-scale505

nature of precipitation events. The seasonal migration of
the rainbelt and its northward shift during the mid-Holocene
are nonetheless captured by PlaSim-VECODE. However, the
zonal structure of the rainfall pattern is in conflict with ob-
servations. While the eastern Sahel is drier than the west in510

present-day observations (Andersson et al., 2010), precipita-
tion in PlaSim-VECODE strongly increases towards the east.
There, the south-westerly flow becomes even stronger and
advects moisture from central Africa. This azonal structure
is present in the complete Holocene.515

5.1 Collapse 2

The west to east gradient in precipitation and the advection of
moisture are also the key to understanding why the western-
most grid cell (grid cell 5) is a hotspot in RM2. The substan-
tial precipitation gradient is reflected in the regression param-520

eters P0i
. In addition, the interaction matrix k reveals that the

impact of grid cell 5 on other cells is exceedingly large for
reasons explained below. When orbital forcing evolves, the
precipitation pattern shifts towards the east. Therefore grid
cell 5 is the driest element in RM2. Its influence on its east-525

erly neighbors due to moisture advection keeps the system
green for a long time. When precipitation in cell 5 finally
is too low for vegetation to be sustained, precipitation in the
other cells also decreases below the critical threshold. Hence,
these other elements experience an induced tipping and the530

hotspot is to be found at cell 5.
The non-trivial structure of interactions kij implies that

more equilibria may exist in PlaSim-VECODE than those
found by choosing global forest or desert initial conditions
as in Bathiany et al. (2012). Our conceptual model frame-535

work (Eqs. 1, 2, and 3) is suitable to determine fixed points
of the system in a more systematic way. To dispose of the de-
ficiencies of including time in the regression model, we now
apply the regression to our 4.5 k simulation with PlaSim-
VECODE-tr only, which corresponds to dropping the term540

siB in Eq. (2). Again, we consider the same line of eight
grid cells as in RM2. As it is not possible to find the fixed
points analytically, we randomy select 10 million initial con-
ditions and run RM2 (without noise) to a steady state. As
a strategy to sample the initial conditions in phase space we545

apply a regular, completely random, and a latin hypercube
sampling (using MATLAB function lhsdesign). Independent
of the sampling method we obtain 5 deterministic solutions
(Fig. 8). By re-introducing these fixed points as initial con-
ditions in PlaSim-VECODE-eq with a coupling frequency550

of 30 yr we can verify the existence of all five solutions in
PlaSim-VECODE-eq.

The structure of these solutions is suggestive with regard
to the position of the hotspot: all equilibria have in common
that any green grid cell permits only green grid cells to its555
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east. This feature is due to the advection of moisture with
the westerly monsoon flow. In addition to this moisture recy-
cling, the enhanced evaporation affects atmospheric stability
and the circulation itself (Goessling and Reick, 2011). Also,
an impact of easterly on westerly cells exists due to albedo560

induced changes in monsoon strength. In case of grid cell
5 both effects work in the same direction which explains its
large importance: first, it supplies additional moisture to its
eastward neighbors via recycling. Second, it enhances the
thermal low and thus the low-level south-westerly monsoon565

flow which supplies the more easterly region. As this flow is
overcompensated by the export of moisture towards the west
in higher levels, the vertically integrated moisture flux is to-
wards the west (Fig. 7d), but the difference between green
and desert equilibrium (Fig. 7f) indicates the enhancement570

of low-level westerlies due to the vegetation.
Thus, RM2 as shown in Fig. 5 stays in the greenest equi-

librium for a long time, while some of the fixed points with
intermediate vegetation cover disappear. When vegetation at
the hotspot collapses, precipitation at all other grid cells be-575

comes too low to sustain vegetation and the system drops into
the driest equilibrium.

5.2 Collapse 1

The zonal gradient in precipitation and its shift over time are
also present from 9 k to 6 k. Like for RM2, the grid cells580

with the least precipitation are also at the western margin of
the model region. This is the reason for the collapse of grid
cell 3 in RM1, which has no consequences for the rest of the
system. In contrast, our hotspot detection method identifies
the rather wet grid cell 4 as the hotspot of collapse 1 (sec-585

ond collapse in RM1), implying a decreasing stability and
thus an increasing sensitivity to perturbations at this point.
To verify this result we initialize PlaSim-VECODE-eq with
8k forcing and a coupling frequency of 20 yr in the green and
desert equilibrium but impose a perturbation in certain test590

areas (enclosed by coloured boxes in Fig. 6). In case of the
green equilibrium, we set the test area to desert conditions, in
case of the desert equilibrium we set it to 100 % grass cover.
In the test areas, cover fractions are kept fixed at these initial
conditions, while the dynamic vegetation is still active in all595

other areas. As a result we find that the complete system can
be forced to flip into the opposing equilibrium by a perturba-
tion at grid cells 3 and 4 (area 1; Fig. 9). Even a perturbation
just in grid cell 4 (area 2) has this effect, though after some
time in an intermediate state in the case of green initial con-600

ditions. In contrast, the two westernmost grid cells in the
Sahara (area 3) and even the complete north-eastern half of
the model region (area 4) do not have a comparable effect on
V in the remaining system part, which remains unaffected by
the perturbations (Fig. 10).605

An analysis of the moisture fluxes at 8 k reveals the reason
for the model’s vulnerability at the hotspot: North Africa, as
well as south-west Asia, are both supplied by moisture which

originates in the Atlantic and Indian ocean and then passes
over the Arabian peninsula (Fig. 7a, c). There the low-level610

circulation splits into an easterly part, turning back to North
Africa, and a branch that extends northward over south-west
Asia, and joins the mid-latitude westerlies. Therefore, the
west African part of the bistable region not only receives
moisture from the direct low-level monsoon flow but also615

from this moisturing of the easterlies aloft. The contribution
of these two sources is most apparent in the difference be-
tween the green and desert equilibria in PlaSim-VECODE-eq
(Fig. 7e). With vegetation present, both sources are enhanced
and contribute to the local convergence of moisture. The620

maximum surface pressure difference is located at the north-
ern Red Sea, coinciding with the detected hotspot. Hence,
imposing desert conditions in this key area weakens the heat
low and the cyclonic circulation over Arabia and thus cuts off
the moisture supply to both circulation branches. Therefore,625

the rest of the vegetation disappears and the resulting lack of
moisture convergence leads to a rapid transition to the desert
equilibrium in PlaSim-VECODE.

6 Conclusions

The possibility to use indicators of slowing down to anal-630

yse the climate system has been documented extensively in
recent years (Held and Kleinen, 2004; Dakos et al., 2008;
Lenton et al., 2009, 2012). In Part 1 of this two-part pa-
per we have proposed a new method to infer the position of
hotspots in a diagnostic way from model output. Here, we635

have applied our method to a regression model based on re-
sults from a global atmosphere-vegetation model, and have
identified its hotspots.

We have thus documented that the hotspot detection
method can provide information on the causality of a tipping640

and on the sensitivity of the model under consideration. If
the model represents reality in an adequate way, an analysis
with EWS can indicate where the earth system is particularly
vulnerable to perturbations. On the other hand, if the model
behaves in an unrealistic way, a hotspot detection analysis645

may improve the knowledge on its shortcomings and make
its limitations more apparent. This knowledge can be ben-
eficial for further model development. In case of PlaSim-
VECODE, a perturbation of surface parameters at a single
grid cell can change the circulation on a regional to conti-650

nental scale, and it remains doubtful if this result is realistic.
However, we have identified the Red Sea area in the model
as a crucial region for the moisture supply of Northern Africa
and South West Asia at 8 k.

The application of EWS to infer this information was only655

possible via the somewhat technical detour of fitting a re-
gression model to PlaSim-VECODE-tr. A direct analysis of
the model output would have yielded inscrutable results as
the requirements for EWS are not met. This restriction il-
lustrates that applying EWS-based tools of analysis to data660
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of unknown origin is problematic. Instead, it should always
be established if the conceptual framework of analysis is an
adequate description of the processes which have generated
the data. In the case of PlaSim-VECODE-tr, we have doc-
umented before that the large multiplicative noise is in con-665

flict with this concept (Bathiany et al., 2012). In particu-
lar, the small noise approximation breaks down under such
conditions: higher-order terms would become important so
that the linearization around an equilibrium and thus the link
between EWS and local stability would not be strictly valid670

anymore. Even more importantly, the multiplicative nature
of the noise leads to a noise-induced transition. The Tipping
Point then depends on properties of the noise and does not
coincide with the deterministic bifurcation point. Variance
would be a particularly unreliable indicator under such con-675

ditions. If it depends on the forcing (directly or indirectly
through other variables), variance can decrease towards the
Tipping Point if these effects overcompensate the influence
of slowing down (Dakos et al., 2012).

Although the green equilibria in PlaSim-VECODE-eq dis-680

appear due to an instability at the corresponding hotspot, we
therefore cannot draw a conclusion regarding the causality of
the collapses in PlaSim-VECODE-tr. There, the large vari-
ability eliminates the complex deterministic stability proper-
ties and the hotspots of the model are probably much less685

focussed.
The application of a hotspot detection scheme to other

(potentially more complex) models therefore requires a thor-
ough mechanistic understanding. First, it must be established
that a sudden transition results from a destabilization of an690

equilibrium due to internal feedbacks when the forcing is var-
ied. This concept is in contrast to other possible reasons for
sudden changes such as a discontinuous response function
(not involving feedbacks) or chaotic dynamics like regime
changes or intermittency that do not require any external pa-695

rameter changes. The hotspot detection scheme therefore
cannot dispose of the task to determine the most appropri-
ate minimal model for explaining a sudden transition.

Second, the relation between the stability of an equilib-
rium and EWS is not a priori clear in a complex model. It700

must therefore be understood how the variability arises and
how it affects the variable under consideration.

Third, the critical subsystem that is supposed to show
slowing down must be identified so that an appropriate vari-
able is chosen in the analysis.705

The challenge for applying the hotspot detection scheme
is therefore an investigative and intellectual challenge rather
than a technical one. If the conditions for the applicability of
EWS are met, the hotspot detection scheme is easy to apply
as it is only a diagnostic tool and no changes to the model710

under analysis are required.
However, one technical limitation of the hotspot detection

method is the requirement of very long time series, a con-
dition hardly to be fulfilled by complex earth system mod-
els. In example system 3 in Part 1 of our study we needed715

time series of the order of 10 000–100 000 time steps (the
dynamic system’s relaxation time being 5) to obtain robust
results. In the case of our regression models the results are
much more promising. Even in RM1 with its 52 state vari-
ables, the hotspot is detectable from several 100 to 1000 time720

steps, and is basically independent of parameter choices dur-
ing the analysis. The reason is that the hotspots consist of
one single element which is well separable from the others,
in contrast to our idealized setting of 9 identical elements in
Part 1.725

Models with higher spatial resolution could therefore pose
a more difficult challenge if hotspots consist of many grid
cells whose individual signal is hard to distinguish from oth-
ers. The demand of long time series to increase the signifi-
cance of the results would be particularly problematic regard-730

ing the computing time for such higher resolution models.
However, large hotspots can still be detected if the system
is divided into larger parts (determined by parameter nmax)
which would slow down the hotspot detection algorithm. As
the increase in computing time of the algorithm results from735

the large number of possible combinations of elements that
are considered independently, parallel computing could be
applied to speed up the hotspot detection algorithm to some
extent.

This issue relates to the problem of finding multiple steady740

states in the sense that they are difficult to identify in complex
models. Due to the vast number of variables in a global cli-
mate model, strategies like hysteresis experiments or choos-
ing different initial conditions are no fail-proof methods. It
can be speculated that this caveat is one reason why multiple745

steady states have not been found in complex climate mod-
els in contrast to low-dimensional models. The detection of
different stable equilibria in PlaSim-VECODE turned out to
be possible using our regression model. However, the appli-
cability of such an approach is very limited: 1. In PlaSim-750

VECODE, the variability is large enough to sufficiently sam-
ple large parts of the phase space. 2. The regression can only
be done in a limited area or for low resolution, otherwise too
many regression coefficients would need to be estimated. 3.
We based our regression model on the knowledge of V ∗(P ).755

In case of a more complex vegetation model, many more
variables would be involved and the relationships would be
less clear.

Despite all these structural limitations, our method is
generic in the sense that it is independent of the physical760

meaning of the model. For example, it may be applied to
fluctuations in sea ice cover close to the snowball earth bifur-
cation (Lucarini et al., 2010; Voigt and Marotzke, 2010).

It therefore seems possible that the hotspot detection
method or related approaches can yield useful information765

on the susceptibility not only of climate models but also of
other systems.

Acknowledgements. SB is grateful to Thomas Kleinen for his
helpful comments, to Holger Kantz and his group for their kind



S. Bathiany et al.: Detecting hotspots via slowing down - Part 2 9

advice, to Steven Lade for the fruitful discussion and to Robert770

Schoetter for exciting bets at the edge of moral integrity. KF,
Max Planck Fellow, acknowledges the support by the Max Planck
Society. This work is funded by Deutsche Forschungsgesellschaft,
Cluster of Excellence “CliSAP” (DFG EXC 177). The simulations
were performed at the German Climate Computing Center (DKRZ).775

The service charges for this open access publication
have been covered by the Max Planck Society.

References

Andersson, A., Bakan, S., and Grassl, H.: Satellite derived pre-780

cipitation and freshwater flux variability and its dependence
on the North Atlantic Oscillation, Tellus A, 62, 453–468, doi:
10.1111/j.1600-0870.2010.00458.x, 2010.

Bathiany, S., Claussen, M., and Fraedrich, K.: Implications of
climate variability for the detection of multiple equilibria and785

for rapid transitions in the atmosphere-vegetation system, Clim.
Dynam., 38, 1775–1790, doi:10.1007/s00382-011-1037-x, http:
//dx.doi.org/10.1007/s00382-011-1037-x, 10.1007/s00382-011-
1037-x, 2012.

Bathiany, S., Claussen, M., and Fraedrich, K.: Detecting hotspots790

of atmosphere-vegetation interaction via slowing down - Part I:
a stochastic approach, Earth. Syst. Dynam. Discuss., submitted.

Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A con-
tinuous climate-vegetation classification for use in climate-
biosphere studies, Ecol. Model., 101, 251–261, doi:10.1016/795

S0304-3800(97)00049-5, 1997.
Brovkin, V., Claussen, M., Petoukhov, V., and Ganopolski, A.:

On the stability of the atmosphere-vegetation system in the Sa-
hara/Sahel region, J. Geophys. Res.-Atmos., 103, 31 613–31 624,
doi:10.1029/1998JD200006, 1998.800

Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki,
C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation,
and climate dynamics in the Holocene: experiments with the
CLIMBER-2 Model, Global Biogeochem. Cy., 16, 1139, doi:
10.1029/2001GB001662, 2002.805

Carpenter, S. R. and Brock, W. A.: Rising variance: a leading
indicator of ecological transition, Ecol. Lett., 9, 308–315, doi:
10.1111/j.1461-0248.2005.00877.x, 2006.

Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A.,
Cline, T., Coloso, J., Hodgson, J. R., Kitchell, J. F., Seekell,810

D. A., Smith, L., and Weidel, B.: Early warnings of regime shifts:
a whole-ecosystem experiment, Science, 332, 1079–1082, doi:
10.1126/science.1203672, 2011.

Claussen, M.: On coupling global biome models with climate
models, Clim. Res., 4, 203–221, doi:10.3354/cr004203, http:815

//dx.doi.org/10.3354/cr004203, 1994.
Claussen, M.: Modeling bio-geophysical feedback in the African

and Indian monsoon region, Clim. Dynam., 13, 247–257, doi:
10.1007/s003820050164, 1997.

Claussen, M.: On multiple solutions of the atmosphere-vegetation820

system in present-day climate, Global Change Biol., 4, 549–559,
doi:10.1046/j.1365-2486.1998.t01-1-00122.x, 1998.

Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelz-
mann, P., and Pachur, H. J.: Simulation of an abrupt change in
Saharan vegetation in the mid-Holocene, Geophys. Res. Lett.,825

26, 2037–2040, doi:10.1029/1999GL900494, 1999.

Collins, M. R. and Teh, H. C.: Neutron-scattering observations
of critical slowing down of an Ising system, Phys. Rev. Lett.,
30, 781–784, doi:10.1103/PhysRevLett.30.781, http://link.aps.
org/doi/10.1103/PhysRevLett.30.781, 1973.830

Contamin, R. and Ellison, A. M.: Indicators of regime shifts in eco-
logical systems: What do we need to know and when do we need
to know it?, Ecol. Appl., 19, 799–816, doi:10.1890/08-0109.1,
2009.

Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov,835

V., and Held, H.: Slowing down as an early warning signal for
abrupt climate change, P. Natl. Acad. Sci. USA, 105, 14 308–
14 312, doi:10.1073/pnas.0802430105, 2008.

Dakos, V., van Nes, E. H., Donangelo, R., Fort, H., and Scheffer,
M.: Spatial correlation as leading indicator of catastrophic shifts,840

Theor. Ecol., 3, 163–174, doi:10.1007/s12080-009-0060-6,
2010.

Dakos, V., Kefi, S., Rietkerk, M., van Nes, E. H., and Scheffer, M.:
Slowing down in spatially patterned ecosystems at the brink of
collapse, Am. Nat., 177, E153–E166, doi:10.1086/659945, 2011.845

Dakos, V., van Nes, E. H., D’Odorico, P., and Scheffer, M.: Ro-
bustness of variance and autocorrelation as indicators of critical
slowing down, Ecology, 93, 264–271, doi:10.1890/11-0889.1,
http://dx.doi.org/10.1890/11-0889.1, 2012.

deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein,850

M., Baker, L., and Yarusinsky, M.: Abrupt onset and termi-
nation of the African Humid Period: rapid climate responses
to gradual insolation forcing, Quaternary Sci. Rev., 19, 347–
361, doi:10.1016/S0277-3791(99)00081-5, http://dx.doi.org/10.
1016/S0277-3791(99)00081-5, 2000.855

Ditlevsen, P. D. and Johnsen, S. J.: Tipping points: early warning
and wishful thinking, Geophys. Res. Lett., 37, L19 703, doi:10.
1029/2010GL044486, 2010.

Donangelo, R., Fort, H., Dakos, V., Scheffer, M., and Van Nes,
E. H.: Early warnings for catastrophic shifts in ecosystems: com-860

parison between spatial and temporal indicators, Int. J. Bifurcat.
Chaos, 20, 315–321, doi:10.1142/S0218127410025764, 2010.

Drake, J. M. and Griffen, B. D.: Early warning signals of extinc-
tion in deteriorating environments, Nature, 467, 456–459, doi:
10.1038/nature09389, 2010.865

Efron, B.: 1977 Rietz Lecture - Bootstrap Methods - Another
Look At the Jackknife, Ann. Stat., 7, 1–26, doi:10.1214/aos/
1176344552, 1979.

Fraedrich, K.: Catastrophes and resilience of a zero-dimensional
climate system with ice-albedo and greenhouse feedback, Q. J.870

Roy. Meteor. Soc., 105, 147–167, doi:10.1002/qj.49710544310,
http://dx.doi.org/10.1002/qj.49710544310, 1979.

Fraedrich, K.: A suite of user-friendly global climate models: hys-
teresis experiments, Eur. Phys. J. Plus., 127, doi:10.1140/epjp/
i2012-12053-7, 2012.875

Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., and Lunkeit, F.:
The Planet Simulator: towards a user friendly model, Meteorol.
Z., 14, 299–304, doi:10.1127/0941-2948/2005/0043, 2005.

Goessling, H. F. and Reick, C. H.: What do moisture recycling es-
timates tell us? Exploring the extreme case of non-evaporating880

continents, Hydrol. Earth Syst. Sc., 15, 3217–3235, doi:10.5194/
hess-15-3217-2011, 2011.

Guttal, V. and Jayaprakash, C.: Changing skewness: an early warn-
ing signal of regime shifts in ecosystems, Ecol. Lett., 11, 450–
460, doi:10.1111/j.1461-0248.2008.01160.x, 2008.885



10 S. Bathiany et al.: Detecting hotspots via slowing down - Part 2

Guttal, V. and Jayaprakash, C.: Spatial variance and spatial skew-
ness: leading indicators of regime shifts in spatial ecological
systems, Theor. Ecol., 2, 3–12, doi:10.1007/s12080-008-0033-1,
2009.

Held, H. and Kleinen, T.: Detection of climate system bifurcations890

by degenerate fingerprinting, Geophys. Res. Lett., 31, L23 207,
doi:10.1029/2004GL020972, 2004.

Horsthemke, W. and Lefever, R.: Noise-Induced Transitions,
Springer, 1984.

Irizarry-Ortiz, M. M., Wang, G. L., and Eltahir, E. A. B.: Role of the895

biosphere in the mid-Holocene climate of West Africa, J. Geo-
phys. Res.-Atmos., 108(D2), 4042, doi:10.1029/2001JD000989,
2003.

Kleinen, T., Held, H., and Petschel-Held, G.: The potential role
of spectral properties in detecting thresholds in the Earth sys-900

tem: application to the thermohaline circulation, Ocean Dy-
nam., 53, 53–63, doi:10.1007/s10236-002-0023-6, http://dx.doi.
org/10.1007/s10236-002-0023-6, 2003.

Lenton, T. M.: Early warning of climate tipping points, Nature
Clim. Change, 1, 201–209, doi:10.1038/NCLIMATE1143, 2011.905

Lenton, T. M., Myerscough, R. J., Marsh, R., Livina, V. N., Price,
A. R., and Cox, S. J.: Using GENIE to study a tipping point in
the climate system, Phil. Trans. R. Soc. A, 367, 871–884, doi:
10.1098/rsta.2008.0171, 2009.

Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H.,910

and Scheffer, M.: Early warning of climate tipping points
from critical slowing down: comparing methods to improve
robustness, Phil. Trans. R. Soc. A, 370, 1185–1204, doi:
10.1098/rsta.2011.0304, http://rsta.royalsocietypublishing.org/
content/370/1962/1185.short?rss=1, 2012.915

Liu, Z. Y., Wang, Y., Gallimore, R., Notaro, M., and Prentice, I. C.:
On the cause of abrupt vegetation collapse in North Africa dur-
ing the Holocene: climate variability vs. vegetation feedback,
Geophys. Res. Lett., 33, L22 709, doi:10.1029/2006GL028062,
2006.920

Livina, V. N. and Lenton, T. M.: A modified method for detect-
ing incipient bifurcations in a dynamical system, Geophys. Res.
Lett., 34, L03 712, doi:10.1029/2006GL028672, 2007.

Lucarini, V., Fraedrich, K., and Lunkeit, F.: Thermodynamic anal-
ysis of snowball earth hysteresis experiment: efficiency, entropy925

production and irreversibility, Q. J. Roy. Meteor. Soc., 136, 2–11,
doi:10.1002/qj.543, 2010.

Nicholson, S. E.: A revised picture of the structure of the ”mon-
soon” and land ITCZ over West Africa, Clim. Dynam., 32, 1155–
1171, doi:10.1007/s00382-008-0514-3, 2009.930

Oborny, B., Meszena, G., and Szabo, G.: Dynamics of populations
on the verge of extinction, Oikos, 109, 291–296, doi:10.1111/j.
0030-1299.2005.13783.x, 2005.

Patricola, C. M. and Cook, K. H.: Dynamics of the West African
monsoon under mid-Holocene precessional forcing: regional cli-935

mate model simulations, J. Climate, 20, 694–716, doi:10.1175/
JCLI4013.1, 2007.

Renssen, H., Brovkin, V., Fichefet, T., and Goosse, H.: Holocene
climate instability during the termination of the African Hu-
mid Period, Geophys. Res. Lett., 30, 1184, doi:10.1029/940

2002GL016636, 2003.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.:

Catastrophic shifts in ecosystems, Nature, 413, 591–596, doi:
10.1038/35098000, 2001.

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter,945

S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sug-
ihara, G.: Early-warning signals for critical transitions, Nature,
461, 53–59, doi:10.1038/nature08227, 2009.

Thompson, J. M. T. and Sieber, J.: Climate tipping as a noisy bifur-
cation: a predictive technique, IMA J. Appl. Math., 76, 27–46,950

doi:10.1093/imamat/hxq060, 2011a.
Thompson, J. M. T. and Sieber, J.: Predicting climate tipping as a

noisy bifurcation: a review, Int. J. Bifurcat. Chaos, 21, 399–423,
doi:10.1142/S0218127411028519, 2011b.

van Nes, E. H. and Scheffer, M.: Slow recovery from perturbations955

as a generic indicator of a nearby catastrophic shift, Am. Nat.,
169, 738–747, doi:10.1086/516845, 2007.

Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lurling,
M., and Scheffer, M.: Recovery rates reflect distance to a tip-
ping point in a living system, Nature, 481, 357–359, doi:10.1038/960

nature10723, http://dx.doi.org/10.1038/nature10723, 2012.
Voigt, A. and Marotzke, J.: The transition from the present-day cli-

mate to a modern Snowball Earth, Clim. Dynam., 35, 887–905,
doi:10.1007/s00382-009-0633-5, 2010.

Wang, G. L.: A conceptual modeling study on biosphere-965

atmosphere interactions and its implications for physically based
climate modeling, J. Climate, 17, 2572–2583, doi:10.1175/
1520-0442(2004)017$〈$2572:ACMSOB$〉$2.0.CO;2, 2004.

Wang, G. L. and Eltahir, E. A. B.: Biosphere-atmosphere interac-
tions over West Africa. II: Multiple climate equilibria, Q. J. Roy.970

Meteor. Soc., 126, 1261–1280, doi:10.1002/qj.49712656504,
2000.

Wissel, C.: A universal law of the characteristic return time near
thresholds, Oecologia, 65, 101–107, doi:10.1007/BF00384470,
1984.975

Wolff, U.: Critical slowing down, Nucl. Phys. B-Proc. Sup., 17,
93–102, doi:10.1016/0920-5632(90)90224-I, 1990.

Zeng, N. and Neelin, J. D.: The role of vegetation-
climate interaction and interannual variability in shaping
the African savanna, J. Climate, 13, 2665–2670, doi:980

10.1175/1520-0442(2000)013$〈$2665:TROVCI$〉$2.0.CO;2,
http://dx.doi.org/10.1175/1520-0442(2000)013〈2665:
TROVCI〉2.0.CO;2, 2000.



S. Bathiany et al.: Detecting hotspots via slowing down - Part 2 11

50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

P [mm/yr]

V

 

 

P
d
 = 155

P
d
 = 100

P
d
 = 55

V*(P)

Fig. 1. Conceptual stability diagram to illustrate multiple equilibria in the atmosphere-vegetation system. P : annual precipitation, V :
vegetation cover fraction. Green line: equilibrium vegetation cover V ∗(P ) as in the modified VECODE (Eq. (1) with δ= 9100. Blue lines:
dependency of P on V , here assumed to be linear. As orbital forcing causes background precipitation Pd to decrease the system reaches a
bifurcation point (here at approx. Pd=55 where the green equilibrium disappears and the system would have to fall into the remaining desert
state).
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Fig. 2. Mean vegetation cover fractions (trees + grass) in % in the transient PlaSim-VECODE experiment from 9 k to 2 k. Vegetation cover
is averaged over 200 yr starting from the indicated year (7 k, 6 k, 5 k, and 3 k, respectively). Numbers 1 to 5 denote the individual grid cells
referred to in the text. The red region encloses the 52 grid cells considered in RM1, the purple region encloses the 8 grid cells considered in
RM2.
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Fig. 3. Vegetation cover fraction in the transient PlaSim-VECODE experiment from 9k to 2k. Two single grid cells are shown, indicated as
grid cells 1 and 2 in Fig. 2. The vertical dashed lines indicate the B-values of the 20 000 yr long stationary PlaSim-VECODE-tr simulations
used to construct RM1 (top) and RM2 (bottom).
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Fig. 4. Relation between precipitation (P ), vegetation cover fraction (V ) and orbital forcing from the stationary simulations with PlaSim-
VECODE-tr. The indices of P and V refer to the specific grid cells labelled in Fig. 2 (for example, P3 vs. V4 shows P at cell 3 versus V
at cell 4 for all years and simulations. The 4 lower panels show the relation between P and orbital forcing. Left: simulations used to derive
RM1, right: simulations used to derive RM2. The slope of the red lines corresponds to parameters Kij and si as obtained from the multiple
regression, the intersects have been obtained by assuming mean conditions for all other predictor variables.
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Fig. 5. Characteristics of RM1 (left) and RM2 (right), depending on parameter B. Top: Equilibrium vegetation cover at all elements
(greenest solution). The elements identified as hotspots are dashed. Some elements are dotted only to be better distinguishable from
others. Bottom: real part of eigenvalues characterizing the linear stability of the corresponding solution of the time-continuous system. The
vertical dashed lines indicate the B-values of the stationary simulations used for the hotspot detection (red: bifurcation 1 in RM1 and RM2,
orange: bifurcation 2 in RM1).
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Fig. 6. Contribution of grid cells (weights) to the increasing autocorrelation as obtained with the hotspot detection algorithm, (a) in RM1,
tipping point 1, (b) RM1, tipping point 2, (c) RM2. The noise in all time series was additive, hotspot detection was applied with nmax = 3,
elimination rule 1, and covariance-based EOFs. Numbers 1 to 5 denote the individual grid cells referred to in the text. The coloured areas
are the areas of our perturbation experiments explained in Sect. 5.2.
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Fig. 7. Vertically integrated horizontal moisture fluxes (arrows) and vegetation cover (colours) in PlaSim-VECODE-eq. Left column (a, c, e):
8 k conditions; right column (b, d, f): 4.5 k conditions. (a)-(d): green equilibrium; (e)-(f): difference between green and desert equilibrium.
(a)-(b): moisture fluxes are integrated over the two lowest atmosphere levels only; (c)-(f): moisture fluxes are integrated over the whole
atmospheric column. Vegetation cover fractions in (a) and (c) as well as in (b) and (d) are the same. Fluxes are in kg ms−1, vegetation cover
fractions in %. Numbers 4 and 5 denote the individual grid cells referred to in the text.
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Fig. 8. The five equilibria of Eqs. (1), (2), and (3) for 4.5 k conditions as obtained in Sect. 5.1. The regression involves the 8 grid cells
enclosed in the purple box; cover fractions outside this area are set to mean conditions in PlaSim-VECODE-eq.
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Fig. 9. Evolution of vegetation cover fraction in PlaSim-VECODE-eq with perturbations in different areas. All vegetation cover fractions
are averaged over the complete region shown in Figs. 10 and 6 (5◦ N–50◦ N, 14.6◦ W–76.5◦ E). The colours correspond to the areas marked
in Fig. 6, where vegetation cover is set to 0 (a) or 1 (b).
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Fig. 10. Vegetation cover fractions (in %) in asynchronously coupled PlaSim-VECODE after initialization in the greenest equilibrium with
no perturbation (a–c), no vegetation in area 2 (red grid box, d–f), and no vegetation in area 4 (blue, g–i).


