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Abstract

Using a method of discrete Fourier transform with varying starting point and length
of time window and the long time series provided by millennium Earth System
Model simulations, we get good fits to power laws between two characteristic oscil-
latory timescales of the model climate: multidecadal (50–80 yr) and El Nino (3–6 yr)5

timescales. For global mean temperature, we fit β∼0.35 in a relation S(f )∼ f −β in a
simulation without external climate forcing and β over 0.7 in a simulation with external
forcing included. We also fit a power law with β∼8 to the narrow frequency range be-
tween El Nino frequencies and the Nyquist frequency. Regional variability in best-fit β
is explored and the impact of choosing the frequency range on the result is illustrated.10

When all resolved frequencies are used, land areas seem to have lower βs than ocean
areas on average, but when fits are restricted to frequencies below 1/(6 yr), this dif-
ference disappears, while regional differences still remain. Results compare well with
measurements both for global mean temperature and for the Central England temper-
ature record.15

1 Introduction

Power laws for spectra and frequency distributions are commonly found in complex
systems from turbulent flows and intensities of earthquakes to some economic vari-
ables (Clauset et al., 2009) and are usually intuitively characterised as the system
lacking a characteristic length or time scale in the range, where the power law is20

valid. In the context of climate data, power laws have been found in a wide range of
timescales (Bloomfield , 1992; Pelletier, 1998; Wunsch, 2003; Fraedrich and Blender,
2003; Gil-Alana, 2005; Rhines and Huybers, 2011). Huybers and Curry (2006) anal-
ysed temperature variability at all timescales from monthly variations to millenial and
longer timescales and found different exponents for best-fit power laws in the 1.1-10025

yr (smaller βs) and 100–15 000 yr (larger βs) ranges as well as a latitude-dependence
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of the exponent when analysing the NCEP reanalysis data for periods between two
months and 30 yr. Blender et al. (2006) used a long simulation with a general circula-
tion model and ice core data to reach power law fits near Greenland and elsewhere.
Blender and Fraedrich (2003) analysed reanalysis data and global warming simula-
tions and in a fit S(f )∼ f −β quantified β=1 over the oceans, β=0 over the continents5

and β=0.3 in coastal areas. More theoretical insight has also been given by, e.g. a
simple ocean model (Fraedrich et al., 2004), considerations involving the Hurst expo-
nent (Blender et al, 2006; Vyushin and Kushner, 2009; Vyushin et al., 2009) and by a
random-walk framework (Stephenson, 2000).

While good fits to power laws have been achieved for many datasets, some scatter10

around the fits remain. In this study, we utilise long climate simulations belonging to the
Millenium experiment (Jungclaus et al., 2010; http://www.mpimet.mpg.de/en/science/
internal-projects/millennium.html) to achieve statistical spectral estimates using long
time series.

2 The Earth System Model and the spectral method used15

We use the COSMOS network Earth System Model, consisting of the atmospheric
model ECHAM5 (Roeckner et al., 2006), the ocean model MPI-OM (Marsland et al.,
2003), the land use and vegetation model JSBACH (Raddatz et al., 2007) and the
ocean biogeochemistry model HAMOCC (Wetzel et al., 2006). The PRISM/OASIS3
coupler (Valcke et al., 2003) interactively couples the atmospheric and ocean models.20

The coupled atmosphere-ocean system in the model features multidecadal variability
(Jungclaus et al., 2005) as well as El Nino type variability in the tropical Pacific (Jung-
claus et al., 2006). El Nino frequencies tend to be lower than in observations (Jungclaus
et al., 2006). The importance of the variability at these timescales is seen in the next
section. The Millenium experiment (Jungclaus et al., 2010) consisting of millennium-25

scale simulations was made to allow for a wide range of studies regarding the climate
of the last millenium. We analyse a 1201-yr simulation without external climate forcing
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and a 1206-yr simulation with external forcing by volcanoes, solar radiation changes
and anthropogenic greenhouse gases and aerosols included. The advantage of the
unforced simulation in this context is that we can assume the internal variability to
be homogeneous throughout the 1201 simulated years and thus obtain a large sam-
ple. Another simulation including the external forcings and thus being more realistic5

compares better with measurements, as will be shown later. We also briefly analyse
simulations including only solar and only volcanic forcing.

The spectral method we used is a discrete Fourier transform (DFT) with varying
starting point and length of time window. Previously, we used the same method to
analyse the multidecadal (50–80 yr timescales) oscillation observed in measured global10

mean temperature and in the simulations we analyse here (Henriksson et al., 2012).
In that paper we looked at absolute value of Fourier coefficient in order to evaluate the
contribution of an oscillation to global mean temperature, but in this study we look at
the power spectrum for consistence with earlier studies. By varying the starting point of
the time window, we obtain several spectra for a given length of time window and can15

average over them. Obvious advantages for calculating averages over several spectra
are seen in the next section. In Sect. 6 in the context of Fig. 11, we also compare our
method to an earlier result obtained by multitaper analysis, a method often encountered
in climate literature (Yiou et al., 1996; Mann and Park, 1999).

3 Analysis of global mean temperature20

In this section, we fit power laws to power spectra of global mean temperature:
S(f )∼ f −β. The global mean temperature timeseries consists of annual means (ex-
cept in Fig. 4, where we consider the monthly mean timeseries). Figure 1 shows the
power spectrum of the unforced simulation averaged over all possible power spectra
from 300-yr DFTs (see Henriksson et al., 2012 for more plots and details). Spectral25

peaks can be seen at the multidecadal (∼50–80 yr) and El Nino (∼3–6 yr) timescales
and smaller peaks at centennial (not shown) and ∼20 yr timescales.
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In the following, we present plots of the logarithm of frequency vs. logarithm of the
power spectrum, with the power spectrum calculated using different lengths of time
window. We fit power laws for two ranges: the multidecadal to the El Nino timescale
(reaching from maximum amplitude at multidecadal scales to minimum before El Nino
timescales) and frequencies higher than El Nino (starting at the maximum amplitude at5

El Nino frequencies). The latter range is quite narrow, corresponding approximately to
frequencies between 1/(3.2 yr) and 1/(2 yr). Next, in Fig. 2 we show spectra, where we
have not utilised the possibility to average over different spectra and then, in Fig. 3, we
show averaged spectra.

The logarithm of the power spectrum obtained by a DFT of the first 64 yr of the10

simulation is shown in Fig. 2a, together with power-law fits. The best fits are β=0.24
and β=7.9. Figure 2b shows the spectrum calculated using the full 1201-yr timeseries.
The best fits are now β=0.13 and β=8.6, respectively.

The advantage of averaging over several spectra is seen in Fig. 3, showing the power
spectrum obtained by averaging over all possible spectra with a time window of 300 yr15

and 64 yr. Random noise is averaged away and the underlying statistical spectral form
is seen more clearly. For the spectrum in Fig. 3a using the 300-yr time window the
best fits are β=0.35 and β=7.6 and for the spectrum in Fig. 3b using the 64-yr time
window the best fits are β=0.35 and β=7.5.

When monthly mean values of global mean temperature are used instead of annual20

mean values, we obtain the result shown in Fig. 4. One observation that can be made
is the large amplitude for the annual cycle and its harmonics. The power-law fits are
not modified much, with β being 0.30 and 7.9, respectively, for the multidecadal to El
Nino and El Nino to interannual frequency ranges and 0.87 for frequencies higher than
1/yr (annual cycle and two first harmonics ignored in fit).25

Figure 5 shows the spectrum from the simulation including all external forcings. Fig-
ure 5a shows the spectrum obtained by doing the transform after quadratic detrend-
ing for each 300-yr sequence separately to avoid mixing of contributions from longer-
term externally-forced trends and oscillatory components. Best-fit β is 0.79 (0.80 if
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detrending is not done) in the multidecadal to El Nino range and 8.3 for higher-than-El
Nino frequencies. Figure 5b shows the spectrum using a 64-yr time window (without
detrending as the length of time window is so short) and here β is 0.71 and 7.4. β
in the multidecadal to El Nino range is thus significantly higher than in the unforced
simulation. Most of the difference comes from the low frequencies corresponding to5

multidecadal and somewhat shorter timescales as can be seen by comparing Figs. 3
and 5. Although we use arbitrary units, the units are the same in these two figures
(for the respective subfigures a and b). The minimum between the multidecadal and El
Nino frequencies is at the same level, but the multidecadal amplitudes are higher for
the forced simulation.10

When fitting power laws to a simulation with only volcanic forcing included, best-fit β
in the multidecadal to El Nino range is 0.71 (64-yr time window; plot not shown). In a
simulation with only solar forcing, best-fit β is 0.52 (64-yr time window; plot not shown),
though in this case the fit is not quite as good. Thus it seems that volcanic forcing has
a larger effect on β than solar forcing when applied as sole external forcing, but both15

increase the amplitudes of low frequencies.
These results indicate that the multidecadal and El Nino timescales are the most

important when considering statistical properties of spectra on interannual to centen-
nial timescales. As the largest differences between the spectra of the unforced and
forced simulations are in the low-frequency range, it seems that the external forcings20

feed the low frequencies. One question that can be raised is why the spectrum in the
multidecadal to the El Nino frequency range has a power-law shape in both cases. It
is interesting that internal climate dynamics alone seem to produce a power law, and a
much less steep one than that for Milankovitch cycle frequency ranges (Huybers and
Curry, 2006).25

We can hypothesise that the spectral form has to do with the probability distribution
of temperature fluctuations, but we have not managed to develop a satisfactory theo-
retical explanation along this line as yet. In any case, the spectrum is self-similar in this
range. We also looked at spectral dynamics (results not shown here) and time-lagged
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correlations to look for evidence that amplitudes are fed from the multidecadal and El
Nino frequencies to higher frequencies, but we did not find statistically significant sup-
port for this idea (although weak indication for it existed). Although some earlier studies
have been able to explain variability of β in different cases or regions to some extent,
we are not aware of a theoretical explanation of the power-law shape of the spectrum5

in the literature. The question would thus be interesting to study further.

4 Error and sensitivity analysis

As a sensitivity analysis, we calculate the best fit βs, together with 95 % confidence
intervals for different lengths of time window and for different window functions. We
have chosen a variety of lengths for the time window that are not integer multiples of10

each other. We do this for the unforced simulation. The results are shown in Table 1.
As can be seen, all but one of the fits for the multidecadal to El Nino range are nicely
within each others error bars, with estimates of beta ranging from 0.34 to 0.39. The
single exception is that for the 1201-yr rectangular time window, beta is lower. Also in
the frequency range above El Nino frequencies the fits are close to each other, mostly15

lying in the narrow range of 7.5–8, but indeed the confidence intervals do not overlap.
For the forced simulation results, shown in Fig. 5a, the error bars for β are 0.79±0.06
(0.80±0.06 without detrending) and 8.3±0.01 for the two ranges, and in Fig. 5b, they
are 0.71±0.11 and 7.4±0.04. Additional checks have been done with Kaiser-Bessel
windows (not shown), and results when using them are consistent with results from20

using the other window functions.
The error term in the regressions for the 64-yr time window spectrum from Fig. 3b is

plotted in Fig. 6a. The error term is typical of regressions using any length of time win-
dow or window function. It shows what seems like uncorrelated and random scatter in
the multidecadal to El Nino range, which is supported by Fig. 6b showing the histogram25

of the error term from Fig. 3a resembling a Gaussian distribution. While some cluster-
ing of amplitudes above the fit line can be seen at periods 20–30 yr and 10–15 yr in
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Fig. 3a, which would be interesting to study further not the least from a physical point
of view, these deviations largely disappear when looking at the spectral range with
coarser resolution in Fig. 3b. Figure 6a also shows an important part of the reason
behind the scatter within β=7.5–8. The spectrum has some curvature at the end and
also the lowest frequencies included are above the power-law fit as we have defined5

the fit to start from the El Nino frequency with maximum amplitude. However, we decide
to keep the fit for the whole range from El Nino frequency with maximum amplitude to
the Nyquist frequency as the distortion is small and the fitted range already narrow as it
is, acknowledging that in this range the power law more is merely a numerical fit rather
than a fundamental property of the climate system. The curving tail could maybe also10

be modeled, but it might simply turn out to be mixing with the spectral form of the next
higher frequencies shown for instance in Fig. 4.

5 Local and regional temperatures

In this section, we investigate first the spectra of two well-known modes of internal
variability: El Nino and the Atlantic Multidecadal Oscillation (AMO), represented by the15

mean sea surface temperatures in the Nino 3 region and the North Atlantic (between
0–75◦ W and 0–60◦ N) in the unforced simulation. We then proceed to study the spatial
distribution of β when the fitting is done gridpointwise. The latter is done for the simu-
lation including all external forcings to allow for a better comparison with (Blender and
Fraedrich, 2003) using forced simulations and reanalysis data.20

Figure 7 shows the spectra of the Nino 3 region and the AMO in the unforced
simulation, using a 300-yr time window. The El Nino spectrum in Fig. 7a shows a
maximum at frequency ∼1/(3.2 yr), decaying thereafter with β=8.9±0.02. Thus β is
larger than in the global average, simply because at ENSO frequencies, temperatures
in the Nino 3 vary much more than the global-mean temperature. The AMO spec-25

trum in Fig. 7b shows high amplitudes in the centennial and multidecadal timescales,
and local maxima at ∼30, ∼8 and ∼3 yr. Thus a power law does not fit well to any
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frequency range for the AMO, except maybe at the highest frequencies, for which we
fitted β=3.41±0.06.

Figure 8 shows the distribution of best-fit β when done gridpointwise for the forced
simulation data. As the spectral shape varies regionally, we cannot split up the spectra
into frequency ranges and have therefore decided to make a Fourier transform on the5

full 1206-yr annual mean temperature record and to fit a power law to the full spectrum,
which is then varied in Fig. 9. We use a Hann window based on the considerations in
Sect. 4. The patterns seen in Fig. 8 are consistent with Blender and Fraedrich (2003),
giving βs close to 1 over oceans and close to 0 over land areas, except for the tropical
Pacific Ocean with surroundings, where the strong El Nino causes β even to be positive10

(which can be understood by looking at the previous figure). In Fig. 9, where we restrict
the fit to frequencies up until 1/(6 yr), we can see that the βs over ocean generally
decrease and the βs over land increase as compared to Fig. 8. Thus the frequency
range between 1/(6 yr) and 1/(2 yr) is responsible for a large part of the difference
between results over oceans and land in our results. At frequencies higher than 1/(6 yr),15

over land there is more variability in relation to lower frequencies than in areas over the
ocean. These results show the importance of analysing the spectrum piecewise as was
done in Sect. 3, especially since in a least-squares fit procedure each point receives
equal weight and here the interval between 1/(6 yr) and 1/(2 yr) contains two thirds of
the resolved frequencies. When considering frequencies below 1/(6 yr), the ocean and20

land areas seem to exhibit more similar behavior in terms of best fits to power laws,
with some regional variation nonetheless.

As a detail from the maps over oceans, we see a local maximum in estimated β
south of Greenland as was reported and shown in the CSIRO model results in Fig. 2a
and b of Blender et al. (2006) and supported by ice core measurements. In our results,25

there is a similar maximum also in the northernmost part of the North Pacific gyre.
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6 Comparison to measurements

In this section, we fit power laws to available measurement time series. Although the
fits are not as good as for the long simulations, they serve to compare simulation and
measurement results and in the case of the Central England temperature (CET), to
compare our results with previous results obtained by multitaper analysis.5

Figure 10 shows the spectrum of the CRU global mean temperature for the years
1850 to 2011 (Gil-Alana, 2005), detrended quadratically and spectrum averaged over
transforms with 132-yr time windows. The El Nino amplitudes are not as strong as in the
simulation and at least with the time series of available length, the second power-law
range is not distinguishable. However, for multidecadal to El Nino timescales, the fitted10

β=0.86±0.09 corresponds quite well to that fitted for the forced simulation (Fig. 5).
Figure 11 shows the spectrum of the CET measurement record (Parker et al., 1992)

computed both from measurements and model results (simulation with all external forc-
ings included; as simulation data for the CET we use the gridpoint at 50.1◦ N, 0◦ E). Fig-
ure 11a shows the measurement spectrum together with a fit stretching from the mul-15

tidecadal time scale to the Nyquist frequency with β=0.35±0.05, very close to what
Huybers and Curry presented. This raises confidence in our method as compared to
the multitaper method used by Huybers and Curry and many others. Figure 11b shows
the same spectrum calculated as an average from the forced simulation. The result
β=0.34±0.02 is consistent with the result of Huybers and Curry. This gives more20

confidence in the model’s ability to simulate regional temperature variations as Central
England’s β deviates a lot from β for global mean temperature.

7 Conclusions

In the present study, we applied the method of discete Fourier transform with varying
starting point and length of time window to analyze spectra of global- and regional-25

mean temperatures in 1200-yr climate simulations. It is found that for frequencies
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between multidecadal and El Nino timescales, the spectra for global-mean temperature
follow closely a power law: S(f )∼ f −β, where β∼0.35–0.4 in the unforced simulation,
and β∼0.7–0.8 in the simulation including all external forcings. Volcanic forcing had a
larger effect than solar forcing, when applied as the only external forcing in a simulation.
In the narrow frequency range between f =1/(3.2 yr) ... 1/(2 yr) we fitted β∼8.5

It seems that the external forcings feed the low frequencies more than the high fre-
quencies, which is perhaps not so surprising, but why the power-law form is present
in both simulations remains unclear to us. It seems that internal dynamics alone are
able to produce a power law, which is less steep than when external forcing is included,
which in turn is less steep than power laws obtained in previous studies for Milankovitch10

cycle time scales.
Comparisons with measurements were reassuring: the power-law fit for measured

global mean temperature gave β=0.86, relatively close to the value in the simulation
including external forcing. Similarly, the power-law fit to the simulated Central England
temperature spectrum was very close with both measurements and an earlier result15

obtained by multitaper analysis, also raising confidence in the method we used.
In locally fitted power spectra we made an observation that if a power law is fitted to

the full spectrum, there is a clear difference in β over land areas as compared to ocean
areas, but that this difference almost disappears if fitting the power law only up until
frequency 1/(6 yr). Thus the power-law behavior was similar for these frequencies and20

only in the highest resolved frequencies was there more variability over land than over
the ocean in relation to the lower frequencies.

In all, we managed to achieve good power-law fits to spectra in millenium climate
simulations due to the long time series they provide and the fact that they statistically
seem to obey these laws. The results were also validated to important parts against25

measurements and results obtained with other spectral methods. We hope our study
will inspire further research in understanding the origin of the spectral form as well as
the underlying climate variability.
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Table 1. Power-law estimates for the two frequency ranges using different window functions
and different lengths of time window.

Multidecadal to El Nino Rectangular Triangular Hann

64 yr 0.35±0.14 0.37±0.10 0.36±0.09
132 yr 0.37±0.14 0.38±0.09 0.34±0.07
150 yr 0.34±0.13 0.38±0.08 0.38±0.07
300 yr 0.35±0.07 0.37±0.07 0.38±0.07

1201 yr 0.13±0.14 0.34±0.07 0.39±0.07

Above El Nino frequencies Rectangular Triangular Hann

64 yr 7.49±0.04 8.02±0.04 8.03±0.04
132 yr 7.83±0.02 7.85±0.03 7.83±0.03
150 yr 7.65±0.03 7.76±0.03 7.74±0.03
300 yr 7.61±0.02 7.93±0.01 7.61±0.02

1201 yr 8.65±0.01 7.72±0.01 7.73±0.01
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Fig. 1. Power spectrum of global mean temperature calculated by averaging over all possible
300-yr DFTs, unforced simulation.
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a)

b)

Fig. 2. Power spectrum calculated from (a) 64 yr of and (b) the full 1201-yR global mean tem-
perature timeseries, unforced simulation.
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a)

b)

Fig. 3. Averaged power spectrum of global mean temperature calculated using a (a) 300-yr
time window and (b) 64-yr time window, unforced simulation.
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Fig. 4. Averaged power spectrum of global mean temperature calculated using monthly data
and a 64-yr time window, unforced simulation.
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a)

b)

Fig. 5. Averaged power spectrum of global mean temperature calculated using a (a) 300-yr
time window and (b) 64-yr time window, forced simulation.
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a)

b)

Fig. 6. (a) Error term of the regression shown in Fig. 3b and (b) histogram of the error term
shown in Fig. 3a, same units as in Fig. 3.
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a)

b)

Fig. 7. Spectrum of (a) temperature in the Nino 3 region and (b) the AMO index in the unforced
simulation, 300-yr time window.
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a)

b)

Fig. 8. Best-fit β gridpointwise for the forced simulation for all frequencies for (a) land areas,
(b) sea areas.
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a)

b)

Fig. 9. Best-fit β gridpointwise for the forced simulation for frequencies up until 1/(6 yr) for
(a) land areas and (b) sea areas.
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: Power laws 9

a)

b)

Figure 8. Best-fit β gridpointwise for the forced simulation for all
frequencies for a) land areas, b) sea areas.

a)

b)

Figure 9. Best-fit β gridpointwise for the forced simulation for
frequencies up until 1/(6y) for a) land areas and b) sea areas.

Figure 10. Spectrum of measured global mean temperature using
a 132-year time window and averaging.

www.jn.net Journalname

Fig. 10. Spectrum of measured global mean temperature using a 132-yr time window and
averaging.
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a)

b)
b)

Fig. 11. Spectrum of Central England temperature (CET) together with best-fit power laws in
(a) measurements and (b) the forced simulation, 351-yr time window (and averaging in the case
of the simulation) used.
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