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Abstract

The permafrost methane emission problem is in the focus of attention of different cli-
mate models. We present new approach to the permafrost methane emission model-
ing. The tundra permafrost lakes is potential source of methane emission. Typically,
tundra landscape contains a number of small lakes and warming leads to lake exten-5

sion. We are making use of this process by the nonlinear theory of phase transitions.
We find that climate catastrophe possibility depends on a feedback coefficient con-
necting the methane concentration in atmosphere and temperature, and on the tundra
permafrost methane pool.

1 Introduction10

In this paper we consider the methane emission problem, which is important for cli-
mate change. Recently it has become that in Siberia permafrost exists a ”methane
bomb”, namely, about 80×1015 kg of carbon in a frozen state. As a result of tundra
permafrost thawing, a number of small lakes form and extend, with methane enter-
ing the atmosphere. In turn, atmosphere methane can reinforce warming, and there15

appears a positive feedback that finally can lead to a climate catastrophe.
Firstly, we consider a mathematical model of lake growth and then using this model

we propose a simple phenomenological equation that allows us to evaluate the impact
of the Siberia permafrost on climate.

Mathematically, permafrost thawing can be described, for example, by the classical20

Stefan approach (Caginalp, 1989). However, it is difficult to resolve the multidimen-
sional Stefan problem numerically. It is known that two-dimensional Stefan layers are
unstable which can lead to difficulties in numerical simulations (Caginalp, 1989). To
overcome this difficulty, we can use a modified approach based on the phase transi-
tion theory (Caginalp, 1989). This takes into account that thawing layer has a small but25

non-zero width.
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The main idea is as follows. Typically, the lakes have horizontal sizes of 100–2000 m,
and a small depth. It is clear that temperature at the lake bottom is essentially below
than that at the lake boundary, where depths are smaller. The 3-D phase transitions
are difficult to describe, in general. However, we use some elementary arguments that
allows us to obtain simple approximations.5

The transition from the frozen state to the thawing state is a microscopic process,
while lakes are great macroscopic objects. Thus we can assume that locally a lake
boundary is a sphere of a large radius of curvature R. Therefore, the lakes are similar
to a shallow large bowl (cup) (see Fig. 1). Moreover, the growth is a slow process. Under
such assumptions, thawing front velocity can be investigated. Indeed, there are pos-10

sible asymptotical approaches based on so-called mean curvature motion (Angenent,
1994; Angenent et al., 1995; De Mottoni and Schatzman, 1995). This approximation
can be obtained for all models where we have an energy functional and where the
thawing front is narrow. Notice that in this approach the thawing layer has a size, it
is not infinitely narrow. The mean curvature motion has been extensively investigated15

by a great number of papers (Brakke, 1978; Huisken, 1984; Crandall and Lions, 1983;
Ilmanen, 1990; Bronsard and Kohn, 1991; Chen, 1992; Barles et al., 1993; Ilmanen,
1993; Buckdahn et al., 2001). In this way we have obtained that the lake increasing
rate is proportional to a constant, that can be empirically estimated, plus a small contri-
bution inversely proportional to averaged lake curvature R, the lake surface area A(R)20

is, approximatively, cR2, where c is a constant connected with averaged lake form. Ac-
cording to these theoretical ideas, the lake surface form becomes close to ellipsoidal
or circular for large times.

As a result, we obtain a deterministic equation serves as an extremely simplified
model of the lake growth.25

This equation can be improved and transformed to a more realistic model. It is clear
that this growth is a complicated stochastic process. To take into account stochastic
effects, we derive a Fokker-Planck equation corresponding to the deterministic model.
This equation has, as a solution, the Pareto distribution. It is consistent with some
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experimental data (Downing et al., 2006). Parameters of this Pareto density can be
evaluated by experimental data obtained for the Central Yakutia region (Kravtsova and
Bystrova, 2009).

At the second step, we use this model to compute the methane emission generated
by lakes of the Central Yakutia. As a result, we can, therefore, propose here a simple5

method to compute methane emission. using a natural assumption that the horizontal
dimensions of the lakes are much larger than the lake depth. This allows us to obtain
simple relations for the methane increasing rate.

This estimate for the lake increasing allows us to obtain a formula describing a de-
pendence of methane production in tundra on temperature. Here we also take into10

account empirical relations for methane emission by a lake obtained in Frolking and
Grill (1994) and Kotsyurbenko et al. (2004) and some theoretical ideas leading to a
relation of Arrhenius’s type (Komarov, 2003).

The numerical simulations based on these theoretical results show that there are
three different possible scenarios of methane emission. The first case appears if the15

feedback coefficient γ that connects temperature at the lake surfaces and methane
concentration is small enough. Then the methane concentration growth can be de-
scribed by a linear function in time.

The most interesting situation occurs if γ is large enough. Then one has firstly a
linear growth on an initial time interval, then a parabolic increasing curve and finally,20

this transforms into a sharply increasing curve, that can be interpreted as a “Arctic Ar-
mageddon” (Kerr, 2010). For real parameters, however, Armageddon proceeds within
a very large time period (years).
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2 Lake growth model

2.1 Stefan problem

Let us consider a cylindrical domain D=Ω× [0, h], where Ω is a sub-domain of 2-D
sphere corresponding to the permafrost surface, (x, y) are coordinates on Ω, z ∈ [0, h].
The unknown function is temperature u=u(x, y , z, t). We assume that h�L, where5

L=diam (Ω) and that the boundary of Ω is a smooth curve. Let us denote by l (x, y , t)
the thawing front position, the front surface is defined by z= l . The classical Stefan
problem can be then formulated as follows:

ut = K1 ∆u, 0 < z < l (t), (1)

10 ũt = K2 ∆ũ, l (t) < z < h, (2)

and we have the following boundary conditions on the depth

ũz(x, y , h, t) + b(x, y) ũ(x, y , h, t) = V (x, y , t), (3)

on surface

u(x, y , 0, t) = U(x, y , t), (4)15

and at the thawing transition front:

n ·
(
∇(u(x, y , z, t) − ũ(x, y , z, t)) |(x,y ,z)∈Γ

)
= Q v , (5)

where n is the unit normal vector with respect to the thawing front, v is the normal
front velocity, Q is a dimensionless latent heat. We define a separating surface Γ by the
following equation20

u(x, y , l (x, y , t), t) = θ. (6)

Therefore, the water corresponds to the domain {u(x, y , z, t) > θ}, while the ice
domain is {u(x, y , z, t) < θ}.
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2.2 Phase transition theory approach

Following Caginalp (1989), one can use an improved approach, which reduces to the
Stefan method as the interface width is small. We introduce the so-called order pa-
rameter which equals 1 f for the interface. We denote this order parameter by φ,
φ(x, y , z, t). We use the following equations for two unknown functions φ, u:5

ut = K ∆u − b
2
φt, (7)

αξ2φt = ξ2∆φ + a−1 g(φ) + 2(u − θ), (8)

where g=0.5(φ−φ3), θ is the temperature of the phase transition (temperature of
thawing).10

This model allows us to describe the thawing zone of non-zero width. To explain the
main idea of the front formation in this model, let us consider the 1-D variant of Eq. (8)
removing the term with the temperature:

αξ2φt = ξ2φzz + a−1 g(φ), (9)

where we assume that the front moves along the z-axis. Let us assume α=1. Then this15

equation has the solution tanh(x/ε), where ε=a−1/2ξ−1 is a parameter that defines the
front width. To describe the influence of 2(u−θ), we can apply the perturbation theory.
The front appears at a point, where u≈θ, i.e. at the thawing temperature.

We have the following boundary conditions on the depth

ũz(x, y , h, t) + b(x, y) ũ(x, y , h, t) = V (x, y , t), (10)20

φ(x, y , h, t) = −1, (11)

on surface

u(x, y , 0, t) = U(x, y , t), φ(x, y , 0, t) = 1. (12)
240
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The thawing transition front should be defined now by relation

φ(x, y , l , t) = θ, (13)

just the initial value problem is resolved. Here α, a, ξ, b are parameters.
Let us consider a connection between this formulation and the Stefan problem (Cagi-

nalp, 1989).5

Assume the parameters a, ξ→0, and ξa−1/2, α are fixed. In this case the Ginzburg-
Landau (phase field model) reduces to the modified Stefan problem with K1 =K2 =K :

(∇u(x, y , z, t) − ∇ũ(x, y , z, t)) · n |Γ = b v(x, y , l , t), (14)

10 ∆S((u(x, y , z, t)|Γ − θ)) = −σκ − ασ v , (15)

where κ is the front curvature, ∆S is a constant describing a difference between ter-
modynamics of ice and water. Additional contributions in the modified and alternative
modified situations have a stabilizing influence.

Notice that numerically the phase field approach is more attractive than the method15

based on the Stefan problem. Indeed, it is difficult to prove existence of solution to the
3-D Stefan problem. The phase field model is well posed and the corresponding initial
value problem is well posed. Moreover, here we can take into account that the thawing
front has a non-zero width. We will show below that complicated equations lead to quite
transparent results, if we take into account actual lake parameters.20

2.3 A phenomenological model for lake growth

First we make some preliminary mathematical comments. We consider the case C. If
∆s in Eq. (15) equals zero, we obtain the relation

v(x, y , z, t) = −µκ(x, y , z, t), (16)
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where v is the normal thawing front velocity at the point (x, y , z), κ is the mean front
curvature at this point, µ is a positive coefficient.

This relation describes so-called mean curvature flows well studied by numerous
works (Huisken, 1984; Gage and Hamilton, 1986; Ecker and Huisken, 1989; Bron-
sard and Kohn, 1991; Ecker and Huisken, 1991; Evans et al., 1992; De Mottoni and5

Schatzman, 1995; Giga, 2002). Such a flow also occurs if we eliminate the tempera-
ture from our equations. Actually, Eq. (16) also is a nontrivial nonlinear equation, even
in 2-D case. In fact, if the front Γ is defined by equation z=S(x, t) then we have the
following formula for κ:

κ = Sxx

(
1 + S2

x

)−3/2
. (17)10

Relation Eq. (16) entails remarkable consequences that can be checked experimen-
tally. Let us consider the plane case. Then our fronts are curves. All front closed curves,
which initially are not too distinguished of ellipses or circles, approaches for large times
to circles. For circular fronts of the radius R(t) Eq. (16) takes the form

dR
dt

= −µR−1, (18)15

and can be resolved explicitly. This solution describes a circle that slowly shrinks.
To take into account a natural lake extension, we add to Eq. (18) a positive term and

obtain the following asymptotical relation for averaged lake growth:

dR
dt

= δ − µR−1, (19)

the quantity δ can be expressed via microscopic parameters a, ξ, b, however, it is sim-20

pler to find this quantity by experimental data since the δ determines the main contribu-
tion in the lake area increasing. This equation can be resolved analytically and solution
describes a growing lake of a circular form. Formally, in the case C this constant δ
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can be obtained from Eq. (15) if ∆S 6=0. To explain δ appearance, we use Eqs. (20)
and (21). For small curvatures (large R) we can use an one-dimensional approximation
of these equations where u, φ depend on n,t and n(x, y , z, t) is the distance between
the observation point M = (x, y , z) and the front. We assume here that n has a sign,
i.e. n>0 if M before the front and n<0 if M is beyond the front. Then, up to small5

corrections proportional to O(κ), one has ∇=∂/∂n, and the Laplacian ∆=∂2/∂n2.
Assume, moreover, following standard ideas (Molotkov and Vakulenko, 1988), that the
melting front can be described by a slowly moving traveling wave, φ=Φ(Z), where
Z =n− V t is a new variable and where the velocity V =δ is small. Then Eq. (20),
Eq. (21) can be transformed into10

K uZZ =
bV
2

ΦZ , (20)

−V αξ2ΦZ = ξ2ΦZZ + a−1 g(Φ) + 2(u − θ). (21)

Following some standard calculations (Molotkov and Vakulenko, 1988) one obtains that

V = const
∞∫
−∞

(u(z)−θ)ΦZdZ that allows us to find V =δ as a function of the microscopic15

parameters α, a, ξ, b.
Notice, however, that some of these parameters are difficult to evaluate precisely,

it is simpler to find δ directly from experimental data. This constant defines a main
contribution to growth of the lake area.

2.4 Stochastic effects, Fokker-Planck equation and Pareto distribution20

Actually, the lake growth is more complicated process. To take into account possible
stochastic effects one can use the Fokker-Planck equation having the form

∂ρ
∂t

= −
∂(f (R)ρ)

∂R
+ d

∂2ρ

∂R2
, (22)
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where ρ=ρ(R, t), R >0 is a time depending lake radius. To see the form of f , let us
remind that for d=0 the Fokker-Planck equation is equivalent to deterministic equation
(Isihara, 1994) dR/dt= f (R). Therefore, in our case f =δ − κ/R.

Let us set δ =0 (the influence of δ >0 reduces to a trivial shift). It is well known that,
typically, ρ(R,t) tends to a stationary equilibrium distribution ρeq(R) for large times t.5

This equilibrium distribution can be defined by the relation

∂(f (R)ρ)

∂R
= d

∂2ρ

∂R2
, (23)

thus, ρ= constexp(−d−1V ), where dV /dR = f . If f =−κ/R we obtain

ρ(R) = const R−β, β = κ/d.

This result is consistent with some experimental observations (Downing et al., 2006).10

In fact, the lake areas in different regions are distributed according to the Pareto law,

ρ(A) = k Ak
min A−(k+1), A ∈ [Amin , ∞ ), (24)

where Amin is a minimal lake size, k is a positive coefficient. Clearly, A=πR2 and
β=−(2k +1).

Some experimental data show that the parameter k lies within the interval (0.6, 1).15

For k =0.8 we have simulated the Pareto distribution for lakes in Central Yakutia. It is
known that this region has about 100 000 lakes with typical sizes R =200−300 m, up
to R =1000−2000 m, that occupied the area about S0 =5×109 m2 in 1976 year. In
2000-th, they occupy about S1 =1×1010 m2.

Numerical simulations by the standard algorithm of the Pareto law generation, give20

Rmin ≈80 m and Amin ≈2000 m2, and the maximal lake radius 1.6×103 m, we see
therefore that the Pareto law is, roughly, consistent with observed lake parameters.

To estimate δ, we consider the area increment rate (S1 −S0)/δT that gives δ ≈0.2 m
per month. Notice that the termocarst lakes are a result of longtime evolution, thus, if
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our ideas on the mean curvature motion are correct, then the lakes should have, ap-
proximatively, a circular form. This is confirmed by some observations, see for example,
aerospace photos from Kirpotin et al. (2008).

3 Methane emission

To describe the methane emission rate, let us assume, following Komarov (2003), that5

the probability to emit a gaseous methane molecule is proportional to

p = exp(−
U0

ku
),

where u is the temperature, k is the Boltzmann constant, U0 is a unknown parameter to
adjust, which describes a potential barrier for a reaction solid-gas producing methane
emission.10

Then the total rate of the methane emission per unit time is given by

Vmet = ρ0

∫
DM

exp
(
−
U0

ku

)
dx dy dz, (25)

where u=u(x, y , z, t) is the absolute temperature at the point (x, y , z) at the moment
t, ρ0 is the methane density in the domain DM, this domain is the methane emission
zone depending on time t, and formally defined by15

DM(t) = {(x, y , z) : u(x, y , z, t) > θ1}.

Now the known results of the phase field theory allow us to propose a simple semi-
heuristic model describing the methane emission by a system of a number of almost
plane lakes. We assume that the lakes are shallow and the lake growth reduces to
the radius Ri increasing. Indeed, the most of such tundra permafrost lakes are shallow20

245

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/235/2012/esdd-3-235-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/235/2012/esdd-3-235-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 235–257, 2012

Mathematical
modelling of climate

feedback

I. A. Sudakov and
S. A. Vakulenko

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(depth 1–10 m, typically 2–3 m) but large (100–1000 m in diameter). The thawing and
erosion lead to the diameter extension, the depth increases essentially slower. To de-
scribe an averaged lake growth we use Eq. (19) assuming that, in average, the form
of the lake is close to circular. Indeed, these lakes developed as a result of longtime
evolution, thus we can assume (see section on mean curvature) that original, possibly5

complicated, forms approached to circular. Then, we can use mean curvature motion
Eq. (19), where µ, δ are positive coefficients. This coefficient can be calculated from
microscopic parameters a, ξ, b of the phase transition theory, but it is more reasonable
to consider Eq. (27) as a phenomenological model, where they should be adjusted by
experimental data.10

We assume that there are a number of Ri , i =1, 2, ..., N lakes. The averaged lake

size is R̄ =N−1
N∑
i=1

Ri , the total area is S =
N∑
i=1

R2
i .

Let us turn to Eq. (19). Then the total methane emission rate per unit time Vmet is
given by

Vmet = C
dS
dt

= C
d
dt

N∑
i=1

R2
i . (26)15

This implies, after a simple calculation, that

Vmet = 2 CN

(
−µ + δN−1

N∑
i=1

Ri

)
= 2 CN(−µ + δ R̄), (27)

where µ, δ are constants that can be found from observation data, R̄ is the averaged
lake radius.

According to the previous section, the coefficient C depends on temperature u as20

C=c0 exp(− a
ku ). Here c0, a are new coefficients to adjust (from experiments). Naturally,

we should average u over some time period, since the lake processes are slow with
respect to atmosphere oscillations, and over a region under consideration.
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Finally, we conclude with the following simplest semi-phenomenological relation

Vmet = β(d R̄ − 1) exp (−b/ū(t)), (28)

where β is a cumulative constant that should be found from experimental data, b, d
are positive constants, the u is the absolute temperature.

This equation is in an accordance with some phenomenological models. We can5

mention here two following models. The first is a result of observations under a large
mire “Bachkarevskoe” within 1994–2002 (Kotsyurbenko et al., 2004). The following em-
pirical formula was proposed (an analogous formula is obtained theoretically by Frolk-
ing and Grill, 1994, and a similar relation see Krylova et al., 2001)

Fmet local = exp(0.492 + 0.126(T12 − 273) − 0.057 W ) , (29)10

where F is the flux measured in Mg m−2 per hour, T12 the temperature at 12 cm depth,
W is the water level. To connect Eqs. (28) and (29) we can use the Taylor extension for
the right hand side of Eq. (28) at some averaged temperature u=u0 assuming that the
absolute temperature deviations are small with respect to u0. This gives us Eq. (29). If
we take u0 =273 K, then b=0.126×273−2. Notice that data (Krylova et al., 2001) give15

coefficient 0.18 instead of 0.126 in Eq. (29), i.e. effect is even stronger.
Notice that approximation Eq. (29) is correct for bounded times, for large times where

the feedback is essential, using this relation gives a numerical instability and it is better
to use the Arrhenius formula Eq. (28).

4 Numerical results20

Here we focuses our attention on a contribution of the Central Yakutia lakes into
methane emission and methane concentration growth. Notice that some experimen-
tal observations show that many lakes in West Siberia vanish or diminish its surfaces
(Kirpotin et al., 2008). The most new data from Kravtsova and Bystrova (2009) and
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Sudakov et al. (2011) show that in almost all regions of West Siberia lakes evolve in
an extremely sophisticated manner, however, the lake general area conserves, but in
the Central Yakutia a strong area growth is observed. A similar picture is observed in
some other regions. Authors Kravtsova and Bystrova (2009) explain this phenomenon
as a result of higher averaged temperature in these regions.5

We simulate a development of a lake system consisting of N�1 lakes. The start
area Ai (0) were distributed according to the Pareto law, which is adjusted to be con-
sistent with observed parameters. The values Ai (t) can be then computed by Eq. (19),
where we take µ=0 to simplify computations, and, moreover, for large lakes, this con-
tribution should be small. Then simulations show that within time intervals of order10

of hundred years the lake area S(t) increases linearly in time, S(t)=S(0)+αt. The
parameter α is chosen according to data (Kravtsova and Bystrova, 2009): within 1976–
2000 the area is increased from 0.5×1010 m2 up 1×1010 m2.

Moreover, in our simulations we use the following experimental facts (Matthews and
Fung, 1987; Cao et al., 1996; Bartlett and Harriss, 1993): the total mass of the methane15

in atmosphere is about 5×1012 mg. The concentration growth is 1 % per year (Kiehl
and Trenberth, 1997). The emission rate is computed by (28), and we take into account
a small positive feedback assuming that u(t)= ū+γX , where X (t) is the total methane
mass in atmosphere, γ is the feedback coefficient, u(t) is temperature, ū is a mean
temperature within July, June and August taken without warming effect.20

To obtain a rough estimate of the feedback coefficient γ we can use the follow-
ing arguments. The complete effect of atmospheric greenhouse gases is about 5 K,
the methane contribution is within 4–9 %. Finally we can assume that γ ∈ [0.2×10−21,
0.8×10−21] K yr−1 mg−1.

Finally, we resolve two elementary differential equations. The first is as follows25

dX
dt

= βX , (30)

where the coefficient β= ln(1.01) defines the averaged observed methane growth.
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The second equation takes into account the flow from increasing lake area in the
Central Yakutia:

dX
dt

= H(t, X ) + βX , (31)

where

H = 0.25S(t) Fmet local(X ).5

The coefficient 0.25 is inserted since emission goes only within June, July and August.
The simulations give the following typical plots of X (t). For very small feedback

methane-temperature coefficients k we observe a linear growth methane concentra-
tion (see Fig. 2). For slightly larger coefficients we see a parabolic growth (see Fig. 3)
and for larger ones one can see a true “Armageddon” (see Fig. 4). In the beginning,10

the contribution of H is 0.3×10−3 part of βX , however, within hundred and thousand
years this effect can be important.

5 Conclusion and discussion

Thawing permafrost and the resulting decomposition of previously frozen organic car-
bon to methane is one of the most significant potential feedback from terrestrial ecosys-15

tems to the atmosphere in a changing climate. Methane emissions from tundra per-
mafrost lakes can produce a significant positive feedback of climate change. In this
paper a new approach to modeling of methane emission from permafrost lakes is
proposed. Usually the models of methane emission are based a number of differen-
tial equations describing heat and mass transfer in permafrost-climate system. These20

equations are complemented by number of empirical relations characterizing of a par-
ticular terrestrial ecosystems condition. While the approach is very reliable. It is difficult
to be applied to complicated model for prediction of methane flux into the atmosphere
on a global scale. On the other hand, we need to evaluate the positive feedback in

249

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/235/2012/esdd-3-235-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/235/2012/esdd-3-235-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 235–257, 2012

Mathematical
modelling of climate

feedback

I. A. Sudakov and
S. A. Vakulenko

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the permafrost-climate system as a whole. We show how one can use macroscopic
approaches in order to evaluate of this positive feedback. Indeed, in previous models
it is required to use a number of factors to describe the microscopic processes (for
example, diffusion of methane). These factors can only be set by in situ and only for
each particular ecosystem. For realization of new macroscopic approach we can use5

meso-scale data such as an averaged lake radius. It gives us a new way: dynamics
of permafrost lake can be calculated using remote sensing data; it does not require
in situ measurements. In addition, the base on the proposed method we can estimate
the coefficient of positive feedback of the permafrost-climate system and to predict
possible methane flux into the atmosphere from thawing permafrost lakes. This paper10

is described only the test’s estimate, which we can receive in terms of observational
data and mathematical assumptions for phase transition theory. As a result, this re-
search demonstrates that the methane emission can be occurring gradually as well as
catastrophically.

Thus, incorporate the rigorous mathematical approach to different climate models15

(where the permafrost component is studied), we can describe the positive feedback
for the permafrost-climate system in detail to come nearer to a theory of “Arctic Ar-
mageddon” (Kerr, 2010).
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Fig. 1. Schematic of lake growth model. Blue curve: initial positions of thawing fronts; red curve:
final positions of thawing fronts, which form a shall lake of bowl form; horizontal axe – horizontal
radius; vertical axe: distance from surface to bottom.
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Fig. 2. Numerical experiment 1. Vertical axe: the methane mass in atmosphere in
1012 mg, horizontal axe: time in years, The δ is 3 m per year, the feedback coefficient
γ =0.8×10−21 K yr−1 mg−1, the initial area of lakes 3×1010 m.
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Fig. 3. Numerical experiment 2. Vertical axe: the methane mass in atmosphere in 1012 mg,
horizontal axe: time in years. The blue and green curves show growth without and with tundra
lake influence, respectively.
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Fig. 4. Numerical experiment 3. Vertical axe: the methane mass in atmosphere in 1012 mg,
horizontal axe: time in years. The blue and green curves show growth without and with tundra
lake influence, respectively, time interval 500 yr.
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