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Abstract

Sea surface temperature (SST) is the main driver of simulated climate in coupled
atmosphere-ocean general circulation models. A reliable reconstruction of past SST is
necessary to simulate past climate realistically. We here present a novel method for
reconstructing SST on the basis of terrestrial Holocene palaeothermometer data such5

that a climate model is able to represent the climate mean state in the land temperature
time series.

For our study, we use the Earth system model of intermediate complexity Planet Sim-
ulator (PlaSim). The land climate is represented by the high-resolution and long-term
palaeothermometer time series from Lake Ammersee (Southern Germany), where the10

temperature is derived from the stable δ18O isotope in ostracod valves. To provide a
climate simulation which reflects the proxy-derived climate during the Holocene, we (i)
determine the sensitivities of the terrestrial PlaSim climate with respect to SST anoma-
lies for present day conditions; (ii) define the inverse of these sensitivities to find the
SST conditions necessary for representing past land proxy climate; and (iii) reapply the15

climate model to this newly reconstructed SST. We iterate over steps (ii) and (iii) until
the mean model and proxy climate converge.

We demonstrate the applicability of this new method to reconstruct past climate by
comparing the simulated land temperatures to an independent (pollen derived) proxy
data set of land temperatures for Europe. The implementation of a wider range of ter-20

restrial palaeotemperature information from proxy archives analogous to our method
will foreseeably yield better reconstructions of past SST. These can, for example, be
used to overcome many models’ difficulties with simulations extending to the time be-
fore 8500 yr before present, when the North American (Laurentide) ice sheet caused a
no-analogue climate.25
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1 Introduction

Bringing together a climate simulated with general circulation models (GCMs) and the
“real” climate – derived from observations – presents one of the largest challenges to
the modelling community. For present day conditions, models are compared to either
direct observations or to reanalysis data (e.g. Kållberg et al., 2005); reanalysis data5

are treated as the best possible replication of the actual observations and are often
used for validation of GCMs. This implies that GCMs should be able to reproduce the
climate indicated by observational or reanalysis data – despite inherent deficiencies of
individual models.

Besides the ability to simulate the present day climate with a GCM, the model should10

at the same time be capable to represent a climate that is different from current con-
ditions; this task is unequally more complicated. Driven by reconstructions of climate
forcing factors to account for long-term changes of the atmospheric state, the GCM
can potentially produce diverging simulation results because of its unknown internal
variability or general model limitations (Widmann et al., 2010).15

For the comparison of simulated past climates, palaeoenvironmental data can be
considered as “observations”. These observations are indirect, or proximate, measure-
ments of climatic variables; they are derived from theoretical or empirical relationships
of the climate variable with a physical, chemical, or biological quantity in the environ-
mental archive. Only rarely, the relationship is well enough understood to provide a20

quantitative measure of past temperature or precipitation from the proxy. Proxy data
provide spatially incomplete information, and the data may be intermittent and poorly
dated.

Uncertainties in model and proxy data make it difficult to find out whether the dif-
ferences between both are caused by model biases or by the diverse realizations of25

internal variability in both model and data (Goosse et al., 2010). It is an important
and ongoing challenge to solve this problem of the inconsistency between proxies and
models. One way to overcome this are data assimilation techniques (DA hereinafter).
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DA have been utilized for a long time in weather forecasting with the aim that the at-
mospheric states as given by the climate model – or more specifically the numerical
weather prediction models (NWP) – agree with observations; in recent years, DA have
been applied to model-proxy relationships in palaeoclimate simulations, with the prox-
ies serving as the observations. DA developed for the weather forecast cannot be5

transferred to palaeoclimate studies due to the strong differences between observa-
tions and proxy data (Widmann et al., 2010). Besides the problems of coarse spatial
and temporal resolution, many proxies do not provide an instantaneous and periodic
signal of the climate state but seasonal, annual, or longer-term means. In their study,
Widmann et al. (2010) present three DA which were developed for palaeoclimatic anal-10

yses and overcome the inherent difficulties of the proxy data. These DA have been
used to predict the extratropical Northern Hemisphere climate over the last millen-
nium through the use of a climate model and several proxy records. Although all three
methods succeeded in closing the gap between the simulations and the reconstruc-
tions, there still remained uncertainties which were caused by the inconsistency of the15

different proxies, which showed partly opposing signals, and by the methodological dif-
ficulties of each DA and its inherent limitations. As Goosse et al. (2010) point out, it is
very unlikely that it will ever be technically possible to bring the two components model
climate and proxy data together, i.e. to find a system state that is compatible with the
model physics and is at the same time consistent with the observational data: the more20

complex structure in the data cannot be represented by the simplified physics of the
model (Goosse et al., 2010).

In the framework of DA, the inverse procedure can be equally used to bring together
models and data. Both data assimilation and inverse modelling are closely related
and arise from a similar theoretical background. They both employ the basic princi-25

ple of estimating the input from the knowledge of the output or target state (Wu et al.,
2007; Widmann et al., 2010; Guiot et al., 2000, 2009). Different, mainly statistical,
approaches to the inversion problem have been used in diverse applications: for ex-
ample, they have been used for palaeovegetation modelling (Guiot et al., 2000, 2009;
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Wu et al., 2007; Garreta et al., 2010), where modelled and reconstructed vegetation
(through pollen assemblages) are compared to deduce the climatic conditions which
correspond best to the reconstructed vegetation. Other examples of applications of in-
verse methods are the identification of atmospheric CO2-patterns (e.g. Bousquet et al.,
1999a,b; Göckede et al., 2010a,b), or an analysis of the deep ocean circulation during5

the past, based on the 231Pa/230Th-ratio in ocean sediments (Burke et al., 2011); this
ratio can serve as a proxy for the overturning circulation. In their study, Burke et al.
(2011) investigate the spatially only limited occurrence of 231Pa/230Th using an inverse
approach to test potential consistencies with the estimated ocean circulation of modern
times.10

Our study follows the inverse modelling idea; unlike other studies, it is not based
on an analytical inversion but on an iterative and dynamical procedure: we gradually
proceed to converge the proxy climate with the GCM, with the focus on introducing a
method to adjust a specific climate model to a specific set of proxies. We compare
simple maps of both model and proxy, considering that, in any case, there will be a15

more or less strong difference between them.
We do not intend to investigate the real Holocene SST pattern any further, which has

been identified and analyzed in many studies so far, such as Kim et al. (2004), Rimbu
et al. (2003, 2004), Berner et al. (2008), or Grosfeld et al. (2008). Nor do we aim at mak-
ing qualitative contributions to the question of how the SST looked like during that time,20

nor do we analyze the robustness of either the proxy or the climate model, as done by,
for example, Wirtz et al. (2010), Mayewski et al. (2004), or Wanner et al. (2008).

Our intention is the more technical approach of the model adjustment to a given
dataset rather than a profound analysis of the differences in order to make a statement
of how the climate was during the past. We restrict ourselves to putting forward this25

new method, applied for a specific GCM; thus, the reconstructed SST is also GCM-
dependent. A further comparison to SST-proxies should not be neglected, but goes
beyond the scope of this study. We argue that the methodology applied here can be
easily transferred to any other GCM.
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The larger framework in which our work is embedded, aims at the simulation of the
climatic conditions which led to the settlement of early humans during the Holocene
and, as a second step, to analyze their influence on the climate. Recent analyses
of early Holocene land use and climate impact identified Europe as one of the key
regions for human-climate interactions (Olofsson and Hickler, 2008; Lemmen, 2009;5

Kaplan et al., 2011). Also, the validation of simulated human-climate interactions is
most feasible for Europe from archaeology (e.g. Lemmen et al., 2011) and palaeob-
otany (e.g. Gaillard et al., 2010). Thus, the main region of interest of this study is the
European sector with a focus on European temperature changes, given by selected
European proxies.10

The outline of this paper is as follows: after briefly describing the Earth system model
Planet Simulator, the experimental setup and the proxy data, we introduce our iterative
reconstruction method; we show the results of the reconstruction of SST for selected
time slices during the Holocene, at present day, 6000 and 9000 yr ago. We further look
at the outcome of the reconstruction for the whole region of Europe, which then leads15

to the discussion and a critical assessment of this new reconstruction method, mainly
with regard to its general usefulness and benefits but also its limitations. We conclude
our study with an outlook on potential refinements of this procedure.

2 Data and methodology

2.1 Planet Simulator20

The simulations are carried out with the Planet Simulator (PlaSim), an Earth System
model of intermediate complexity (EMIC)1. Its dynamical core for the atmosphere is
adopted from the Portable University Model of the Atmosphere (PUMA). The atmo-
spheric dynamics uses the primitive equations for vorticity, divergence, temperature

1PlaSim is freely available software, download from http://www.mi.uni-hamburg.de/plasim
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and the logarithm of surface pressure. These equations describe the momentum, en-
ergy and mass balance and are solved using the spectral transform method (Eliasen
et al., 1970; Orszag, 1970). Unresolved processes are implemented using parame-
terizations for the long- (Sasamori, 1968) and shortwave (Lacis and Hansen, 1974)
radiation, moist (Kuo, 1965, 1974) and dry convection, large-scale precipitation, inter-5

active clouds (Stephens, 1978; Stephens et al., 1984; Slingo and Slingo, 1991), bound-
ary layer fluxes of latent and sensible heat and vertical and horizontal diffusion (Louis,
1979; Louis et al., 1982; Laursen and Eliasen, 1989; Roeckner et al., 1992). Over
land, soil temperature and hydrology are simulated by a five layer heat diffusion and a
bucket model, respectively. A more comprehensive description of the Planet Simulator10

can be found in Lunkeit et al. (2010). A simulation of present day climate (Haberkorn
et al., 2009) with prescribed SST and sea ice based on the climatological annual cycle
taken from the Atmospheric Model Intercomparison Project (AMIP II, Gates, 1992 and
Taylor et al., 2000) showed good agreement with the reanalysis data ERA-40 (Euro-
pean Center for Medium Range Weather Forecast reanalysis, Uppala et al., 2005 and15

Kållberg et al., 2005) in terms of spatial distributions of the first and second moments of
the climate variables. The global energetics appear to be well represented, too. Major
differences are apparent in the polar regions, where the model exhibits a cold bias and
a too strong zonality of the stationary wave pattern.

PlaSim has been used in a wide range of fields; due to its medium complexity and20

associated less extensive computing requirements, it is especially suitable for palaeo-
climate research. The modular structure of the model is beneficial as it easily enables
a problem-dependent configuration. These are, for example, hysteresis experiments
on a Snowball Earth (Lucarini et al., 2010) with regard to thermodynamic aspects
and the identification of potential tipping points in the system. Another application25

of PlaSim is the work by Fraedrich and Lunkeit (2008) who investigated the entropy
balance of the Earth system. Other studies – by Fraedrich et al. (2005) or Dekker
et al. (2010) – analyzed the interactions between atmosphere and biosphere under
extreme vegetation scenarios. PlaSim can couple to different ocean models besides
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using climatological (fixed) SST. These ocean models can be a mixed-layer ocean
or the large-scale geostrophic ocean (LSG, Maier-Reimer et al., 1993). In the study
by Schmittner et al. (2011), PlaSim is used together with the University of Victoria
model (UVic), combining the atmospheric circulation of PlaSim with the ocean, sea ice,
land surface and ocean biogeochemical components of UVic to form the new ocean-5

atmosphere Oregon State University-University of Victoria model (OSUVic) to investi-
gate the impact of mountains and ice sheets on the large-scale circulation. Compared
to other EMICs in the scientific community, such as CLIMBER, ECBILT-CLIO, or others
listed in the paper by Claussen et al. (2002), PlaSim can, from the atmospheric point
of view, be regarded as a more complex, i.e. full, GCM: all atmospheric processes10

are included, but with the limitation of less sophisticated parameterizations. Instead
of the coarser atmosphere, other EMICs are composed of, for example, a much more
complex ocean model or include other subcomponents like a carbon cycle model. Be-
sides their individual differences, all EMICs have in common that they are suitable for
long-term and problem-specific experiments.15

2.2 Palaeoenvironmental data

For comparison, we rely on palaeoclimate proxy time series from the long-term high
resolution time series compilation by Wirtz et al. (2010). They assembled a total of
124 climate proxies at 103 globally distributed sites from existing literature. All time se-
ries span at least 4000 yr, and most have a resolution of 200 yr or better. In their study,20

Wirtz et al. (2010) analyzed the palaeoclimate records with regard to their statistical
behavior, i.e. mainly the variability on different time scales. They found evidence for a
variability change in the mid-Holocene, around 5000 yr before present (BP, relative to
1950), and they identified geographically organized clusters of each six to ten proxies
which exhibit identical variability trends. This is interesting because diverse climatologi-25

cal variables are forming these clusters so one would have expected a different spectral
behavior. These clusters are composed on a subcontinental scale with a diameter of
roughly 3000 km. The statistical similarity is significant over a relatively large area and
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not only for one single proxy (Wirtz et al., 2010). This result is relevant for the choice of
our proxy with regard to its representativeness as a valuable indicator of European cli-
mate change over the Holocene (see Sect. ??). As, for our studies, we want to directly
relate the climate model to climate proxy data, only those data are chosen which give
quantitative information on the climatological variables surface temperature and annual5

precipitation, for example mid- and high-latitude palaeothermometer proxies based on
δ18O.

For testing our SST reconstruction method, we initially confine to one specific proxy
time series, which has been obtained from Lake Ammersee in southern Germany at
48◦ N and 11◦ E. From 80 m water depth, von Grafenstein et al. (1998) analyzed the10

oxygen isotope ratio (δ18O) of ostracod valves, which reflects the temporal variation
in local precipitation; this, in turn, is controlled by mean annual air temperature (von
Grafenstein et al., 1998). The original data curve of the Ammersee proxy is built on the
raw data (von Grafenstein et al., 2003) of the δ18O-values for the whole Holocene, i.e.
the period from 0 to 12 kiloyear (kyr) BP, and is presented in Fig. 1.15

The oxygen isotope fractionation (δ18O) as the difference of the sample ratio of 18O
to 16O relative to the PDB standard (von Grafenstein et al., 1998) is a well-established
indicator of climate changes. It is affected by changes in the local water balance (i.e.
balance of precipitation, evaporation and runoff) with higher amounts of evaporation
leading to lower 16O, leaving 18O unaffected, and hence to a higher δ18O-value. The20

strong sensitivity of δ18O to the water balance implies on the one hand a strong depen-
dency on the geographic location and the environmental settings. On the other hand,
the fractionation is also highly temperature-dependent because the water balance is
strongly affected by the mean air temperature. Higher evaporation occurs during colder
periods, whereas warmer periods are influencing the heavier 18O with the result of a25

lower δ18O (Fig. 1).
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The seeming discrepancy between a proxy reflecting precipitation variations and its
interpretation with regard to temperature changes has been rectified by, for example,
Dansgaard (1964) or Rozanski et al. (1992), who demonstrated a strong relationship
between annual mean precipitation and annual mean surface air temperature. Rozan-
ski et al. (1992) found a close correlation between both climatic variables for different5

regions around the globe, which indicates the suitability of these isotopes as a palaeo-
climatic indicator. Besides general uncertainties affecting all proxies – temporal and
spatial resolution – the difficulty of a correct dating (Alley et al., 1997; Wiersma and
Renssen, 2006) is important. For the Ammersee proxy, the chronology of the core has
been tested using two independent age models: both show a strong similarity and thus10

reliability (von Grafenstein et al., 1998).
The oxygen isotope fractionation in the Ammersee proxy in particular has been

proven a very sensitive archive for high-resolution palaeotemperature reconstructions
(von Grafenstein et al., 1998, 1999). Following these studies, the responses of a varved
sediment record in the Ammersee have been investigated with regard to changes in15

the hydrological cycle by Czymzik et al. (2010): the authors reconstructed a flood time
series from this sediment for the last half millennium taking into account that the de-
trital layers in those varved lake sediments are caused by flood-triggered fluxes from
the nearby Ammer River (Alefs, 1997; Czymzik et al., 2010). Czymzik et al. (2010)
identified a clear seasonal signal of flood-induced detrital material in the annual sedi-20

mentation rates.
Focussing on the palaeotemperature reconstructions, von Grafenstein et al. (1998)

identified a signal pointing to the 8.2 kyr event (Alley et al., 1997; Alley and Ágústsdóttir,
2005), during which strong freshwater pulses (affecting the δ18O-ratio) were triggered
by the final melting stages of the Laurentide ice shield, and which strongly influenced25

the North Atlantic thermohaline circulation by affecting the North Atlantic deep water
formation. These freshwater pulses impeded the northward heat transport (Rohling
et al., 2002) and initiated cooler and drier conditions lasting about 300 yr. Although
the causal relation between the proxy signal in the Ammersee and the freshwater
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discharge is not fully resolved (von Grafenstein et al., 1998), a close relationship is
strongly hypothesized. Due to the very complex structure of this cooling event, only
few modelling studies have been performed, such as those by Ágústsdóttir (1998),
Renssen et al. (2001, 2002) or Bauer and Ganopolski (2004). Wiersma and Renssen
(2006) compared model output with proxy data for the 8.2 kyr event and found a strong5

model-data agreement which confirmed the assumed freshwater forcing mechanism
of the event. Consistent with the problems of models to simulate this event, it is also
not easily identified by the proxy data in the affected regions. Whereas for the models
the problem is mostly due to simulating the forcing correctly, several obstacles come
along with the proxy data, including the chronology uncertainty. This uncertainty be-10

comes even more significant when a short duration event is of interest, like the 8.2 kyr
event: the brevity of the event (≈300 yr) complicates the selection of proxies further as
many sites do not have a sufficient temporal resolution to find a signal of this temporal
span (Alley and Ágústsdóttir, 2005). The 8.2 kyr signal is, however, registered in sev-
eral high-resolution proxy data around the North Atlantic (Renssen et al., 2001), such15

as in ice cores from Greenland (Alley et al., 1997; Blunier et al., 1995), ocean or lake
sediments of the North Atlantic (Bond et al., 1997) or the ones cited in the study by
Wiersma and Renssen (2006), tree ring records from northern and southern Germany
(Klitgaard-Kristensen et al., 1998) and the cores of lake Ammersee in southern Ger-
many (von Grafenstein et al., 1998). Summing up, because of the consistency and the20

contemporaneous signal also in other studies – even on temporally very small scales
as for the 8.2 kyr event – the δ18O-record of the Ammersee proxy seems to be a reli-
able and significant climate indicator, providing quantitative material for palaeoclimatic
analyses.

2.3 Experimental design25

We use PlaSim in T21 horizontal resolution (≈5.6◦ ×5.6◦ on the corresponding Gaus-
sian grid) with ten not equally spaced sigma levels in the vertical. As a reference
experiment, we choose a Holocene climate simulation with prescribed SST based on
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the climatological annual cycle. Sea ice and other subsystems are prescribed by their
climatological annual means. This transient reference experiment is forced by long-
term orbital (Berger, 1978b) and greenhouse gas (GHG) forcing (from Taylor Dome,
Indermühle et al., 1999); all forcings are shown in Fig. 2. The model is used with a
calendar of 360 days per year, i.e. 30 days per month. The performance of this model5

setup, i.e. with the climatological cycle of SST and sea ice, has previously been as-
sessed by Haberkorn et al. (2009) for present day conditions. The reference simulation
yields a time series of SST for the Holocene which is characterized by the long-term
changes in orbital and GHG forcing. The main deficiency of the ocean with climatolog-
ical SST is the lack of internal variability which occurs at all time scales up to several10

millennia. This low frequent variability cannot be recovered by this ocean represen-
tation because all oceanic responses and potential feedbacks are strongly dampened
when the SST are predefined and not subject to change. Hence, the ocean is unable
to vary which impedes the formation of any kind of internal (oceanic) variability. Proxy
data may therefore stand in for providing information about the variability patterns.15

2.4 Model-data differences

The reconstructed time series of the Ammersee proxy for the period 0 to 11 kyr BP
is presented in Fig. 3 together with the time series taken from the transient Holocene
reference simulation with PlaSim, where we selected the corresponding grid points
of the Ammersee proxy (48◦ N and 11◦ E). The proxy shows the commonly observed20

temperature trend for the Holocene with an early Holocene cooling, followed by a mid-
Holocene warming (climate optimum) and again a cooling from around 3000 yr BP until
the preindustrial period (Wanner et al., 2008). PlaSim instead shows a smooth warming
trend until the late Holocene, but no comparably remarkable trend during the mid-
Holocene. The model variability is much smaller than that of the proxy which is, on the25

one hand, a direct consequence of the usage of climatological SST, and, on the other
hand, related to the fact that the model variability is smaller than the natural variability
analyzed from observations. The mean differences over the whole period are small; for
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several longer periods during the mid-Holocene, PlaSim is slightly colder. During the
early and late Holocene there is a tendency of a warmer model climate compared to
the proxy.

2.5 Methodology

We employ an iterative assimilation procedure to incorporate a proxy time series into a5

GCM to initialize new palaeoclimate simulations. Our approach follows the assumption
of a distinct dependency between an imposed forcing on the climate system and its
response with the result that any kind of external perturbation to the climate system
will lead to a change in climate. This response in terms of global mean temperature
changes is then related to the global mean radiative forcing (Boer and Yu, 2003). The10

constant of proportionality which relates the forcing to the changes in climate is equiv-
alent to a measure of the strength of the feedback processes and of the sensitivity of
the climate system (Boer and Yu, 2003; Gregory et al., 2004; Pachauri and Reisinger,
2007). It can be determined in climate change simulations with a GCM and, as Boer
and Yu (2003) point out, is approximately constant and hence independent of both cli-15

mate state and forcing (Boer and Yu, 2003; Gregory et al., 2004). Consequently, each
GCM and the real climate system have different response parameters (sensitivities).
Therefore, this concept is commonly used in analyses of climate change when differ-
ent models and/or forcings are intercompared (Gregory et al., 2004). When the climate
sensitivity is constant, it can be used to reconstruct the response to any kind of forc-20

ing – not only radiative – in a straightforward way, which is also shown by Good et al.
(2011) who used this theory to reconstruct climate model projections. As Wirtz et al.
(2010) point out in their proxy analysis, variations in one variable like SST may have a
strong influence on another variable in close vicinity, and which can be, for example,
surface air temperature. This statistically determined spatial relationship is also shown25

by Wilson et al. (2010) who identified a strong correlation between tree ring series in
the western parts of South America and SST in the tropical Pacific, which they used
for reconstructing the El Niño-Southern Oscillation (ENSO) during the past century.
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These above studies support the idea of directly linking SST anomalies to modifica-
tions of adjacent land temperatures. Following this theory, our approach is based on
the assumption of a linear sensitivity relationship between the SST and the adjacent
land climate. This assumed linearity is also emphasized by Ljungqvist et al. (2012) in
their analysis of Northern Hemisphere temperature variability over the last century. The5

SST serves as an essential and common boundary condition in a model and leads to
a specific (and, at the beginning, unknown) mean climate as the direct linear response
of the SST forcing. We focus only on SST; all other boundary conditions (e.g. glacier
mask or vegetation-related parameters like albedo or roughness length) or external
forcings (e.g. orbital and GHG) are not considered in this context. This standard proce-10

dure is limited to present day conditions or at least to those circumstances where the
boundary conditions are completely known – apart from their general uncertainty. The
linear relationship can be expressed as

T = λ×SST, (1)

where T and SST are the annual mean climate and SST respectively. The coefficient15

λ is calculated from Eq. (1) and serves as the correcting (sensitivity) term between
the global mean climate and the global mean SST, determining the strength of the
response. If not stated otherwise, in the following all parameters such as T , λ and
SST are specified to their annual values. This approach cannot be easily transferred to
palaeoclimatic studies, where both quantities are unknown: we neither know the mean20

climate nor, and even less, the oceanic conditions at a certain time period in the past.
Here, the proxy data become important by serving as a direct indicator of the past
mean climate in the influence region of the proxy. This implies a switch from the global
to the regional perspective – Europe in our case. The various SST proxies existing in
the literature are not taken into account in this study. The main reason is the inherent25

uncertainty of the SST proxies. According to Berner et al. (2008) or Leduc et al. (2010),
the existing SST proxies give different (partly even opposing) results, depending on the
kind of proxies used, e.g. alkenone unsaturation or Mg/Ca ratio. This complicates an
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intercomparison of different proxy types (Kim et al., 2004; Weldeab et al., 2007; Wirtz
et al., 2010) and, even more, a comparison to climate model output. Studies which
have made assumptions about specific features like the climate (Rimbu et al., 2004;
Lorenz et al., 2006) or SST variability (Kim et al., 2004) during the Holocene, have only
a single SST proxy type. Our aim is to overcome the apparent discrepancy between5

the still unknown oceanic conditions and the known mean climate given by the proxies.
This implies that the model’s boundary conditions (SST) have to be adjusted to a given
climate instead of setting up a climate simulation where known boundary conditions
are leading to an unknown mean climate. The adjustment of the SST is made possible
by using the sensitivity which is calculated in Eq. (1). This is equivalent to a switch from10

forward to inverse modelling, i.e. to estimate the input from the known output or target
state (Wu et al., 2007; Widmann et al., 2010; Guiot et al., 2000, 2009). Through this, we
are able to derive the SST which are appropriate to simulate a predefined climate. For
this purpose, Eq. (1) needs to be slightly modified, to include the deviations between
the simulated and the land proxy climate. This is expressed as15

∆T = λ×∆SST, (2)

where ∆T is defined as the difference between the annual mean model climate T for
Europe and the proxy climate TP, i.e. T −TP, and ∆SST as the corresponding annual
mean SST anomalies.

Our method can be roughly divided into three stages (i)–(iii) and three substeps (a)–20

(c) which are explained below. The relationship between SST and T is shown in Fig. 4.
To give the proxy (or observation)-derived land climate, the SST is modified with the
sensitivity λ which is determined below.
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(i) Establish the sensitivity λ;

(a) define a proxy (target) region where proxies are available and represent cli-
mate during the period of interest;

(b) choose the source region in the ocean which is most relevant for the target
region;5

(c) define λ as the sensitivity of the model climate T in the target region to a
change of SST in the source region (Eq. 2);

(ii) determine source SST conditions necessary for the adjustment to the target cli-
mate by using the inverse of this sensitivity, or feedback parameter (λ−1, Boer and
Yu, 2003);10

(iii) reapply the climate model with the reconstructed source SST.

(i) Calculation of sensitivity

For the European focus region (substep (a)), the oceanic source region with the
strongest influence is detected by a set of sensitivity studies. These are carried out
under present day conditions, and assuming that the interaction between the climate15

subsystems remains the same through time. This is consistent with assumptions made
in other studies (Wu et al., 2007; Guiot et al., 2009; Sundqvist et al., 2010; Laepple and
Lohmann, 2009; Wilson et al., 2010; Ljungqvist et al., 2012) on palaeoclimatic recon-
structions and an essential prerequisite for the overall possibility of reconstructing past
climates. In these first sensitivity experiments, we forced different oceanic regions with20

arbitrary (but known) SST anomalies and subsequently calculated the responses of the
land temperatures in the adjacent regions – relative to a control simulation without SST
forcing. We found that for a proxy in central Europe, the source region in the ocean with
the strongest influence on the European land climate is the North Atlantic (0◦–60◦ N,
Fig. 4). Our findings are in line with the study by Rodwell et al. (1999), where the au-25

thors quantified the oceanic role in the forcing of the climate of the North Atlantic and
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Europe. They revealed that SST anomalies and the strength of the North Atlantic Os-
cillation (NAO) are strongly related and that the oceanic information is exchanged with
the atmosphere in terms of hydrological processes directly influencing the climatic con-
ditions in Europe. Other studies, for example by Sutton and Hodson (2003, 2005), by
Löptien and Ruprecht (2005), or by Grosfeld et al. (2008), also emphasize the special5

role of the North Atlantic and the NAO for European weather and climate. After having
identified the oceanic region (substep (b)), the sensitivity λ needs to be determined
(substep (c)). For this, we apply Eq. (2) to a simulation where we modified the SST
in the North Atlantic (∆SST) and subsequently calculated the responding temperature
change over Europe (∆T ).10

(ii) Determination of the source SST conditions

We now determine the SST conditions which are appropriate to simulate a predefined
climate; this implies the switch to the inverse modelling procedure. We assume an
arbitrary annual temperature change over Europe (∆T , this will be given by the proxy
climate in a later stage) and adapt Eq. (2) using the inverse of the sensitivity λ to de-15

termine the corresponding annual SST anomalies (∆SST). As an alternative solution,
Eq. (2) is modified to consider seasonally varying sensitivities. Taking into account
the seasonal signal for the sensitivities in contrast to the annual mean temperature
changes, which build the basis for the comparison of model and proxy data, may be
inconsistent but becomes more comprehensible when considering the different ther-20

mal inertia of the ocean influencing the land temperature. Although we do not use
a free ocean in our studies, the annual cycle is included in the climatological SST.
Our seasonal modification is corroborated by Laepple and Lohmann (2009), who pre-
sented a statistical model to simulate the palaeoclimatic temperature evolution. Their
idea is based on the modern relationship between temperature and insolation which25

is governed by the seasonally varying insolation. Assuming an identical temperature
response, this relation is then applied to palaeoclimate timescales. Mainly with re-
gard to the Holocene insolation distribution, our procedure with the seasonal splitting
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is therefore consistent. This distribution changes on geological time scales (i.e. for
glacials and interglacials) due to variations in the Earth’s orbit around the sun. This
led to more (less) incoming solar radiation during summer (winter) in the mid-Holocene
(cf. Fig. 2), which then caused an intensification of the seasonal cycle. Assigned to an
annual signal, these changes in insolation (and the respective changes in e.g. temper-5

ature) are small but the annual temperature change is indeed influenced by the sea-
sonal variations (Fischer and Jungclaus, 2010). Apart from these modelling studies,
our approach is further underpinned by proxy analyses, such as the work of Davis et al.
(2003), who clearly identified seasonal differences in Holocene temperature trends in
their pollen climate reconstruction. In their investigations of SST proxy records, both10

Leduc et al. (2010) and Schneider et al. (2010) revealed a seasonal signal which is
induced by the changing orbital forcing throughout the Holocene.

A seasonal modification of Eq. (2) is

∆Tann = λs×∆SSTs, (3)

where the increment s denotes the consideration of the seasonal signal, i.e. the re-15

spective seasonal sensitivity and SST, and

λann×∆SSTann = λs×∆SSTs. (4)

The linearity assumption on λann implies that the annual sensitivity is the mean over
the four seasons, i.e.

λann =1/4×λs =1/4× (λDJF+λMAM+λJJA+λSON). (5)20

We find that the oceanic influence is largest in winter and summer and therefore de-
fine the sensitivities of MAM and SON to their annual values, i.e. λMAM = λSON = λann
(Tab. 1). Only λDJF and λJJA must be adjusted so that Eq. (5) is fulfilled. This yields
λDJF > λMAM = λSON > λJJA.

Using these annual and seasonal sensitivities, the SST are determined on the basis25

of the assumed annual temperature change over Europe (∆Tann) and are subsequently
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used to initialize a new set of sensitivity experiments (stage (iii)) of which the most rel-
evant results are listed in Table 1. The three columns show the assumed temperature
change ∆Tann of +1.5 ◦C, the corresponding (annual and seasonal) SST anomalies
∆SST and the simulated annual temperature change ∆Tsim,ann. It turns out that the an-
nual sensitivity λann and hence the annual SST anomalies ∆SSTann are not appropriate5

to resimulate the assumed mean climate change: the constant annual SST anomaly
of +2.71 ◦C leads to a higher than expected simulated temperature change ∆Tsim,ann
of 1.62 ◦C (first line). In the second line, the seasonally differentiated SST are shown.
As the simulated temperature anomaly fits well to the assumed temperature change of
+1.5 ◦C, it turns out that a consideration of the seasonal cycle of the SST leads to a10

strongly improved result. These seasonal sensitivities, given in the last line, will now
remain constant for all subsequent experiments, which is consistent with the remarks
in Sect. 2.5.

Our approach is illustrated and summed up in Fig. 5: starting with the default (stan-
dard) set of SST from the AMIP climatology, which is used for a first simulation, a mean15

model climate, i.e. the mean temperature, calculated for a certain period of time and
for a specific region – Europe in our case, is obtained. This simulated mean is then
compared to the assumed climate mean, or equally the climate mean which is prede-
termined by the proxies. This comparison leads to the ∆Tann, defined as the anomaly
between the annual mean model climate T and the proxy climate TP. At this stage, the20

splitting to the seasonal sensitivities is taking place, on which we confine in this dia-
gram, as they are subsequently used to adjust the SST through Eq. (3), i.e. higher SST
if ∆T is <0 (PlaSim is colder than the proxy), or vice versa. The seasonal SST anoma-
lies are then used to modulate the initial set of SST and to start a subsequent simulation
which will then give a new mean model climate which is then again compared to the25

proxies. This procedure leads to a stepwise determination of SST necessary for recon-
structing the proxy climate. This iterative scheme can thus be equally applied to our
preliminary studies finding out the final seasonal sensitivies as well as to the process of
periodically reconstructing the proxy climate over a longer time period, e.g. the whole
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Holocene. The most important and recurrent part of this procedure is highlighted in
bold. Wu et al. (2007) and Guiot et al. (2000) use a similar schematic representation
of their inverse vegetation modelling approach. The included transfer matrix accounts
for the use of raw data from the vegetation proxies to be converted into the appropriate
model output for the different biomes and is comparable to other transfer functions for5

the conversion of metadata from proxies into climatic data. These final sensitivities are
now applied to the transient Holocene simulation to reconstruct the climate of selected
time slices.

3 Results

3.1 Time slice reconstructions10

Our results are presented for selected time slices of the Holocene: the late Holocene
or present day (0 k: years 0–999 BP), the mid-Holocene (6 k: years 6000–6999 BP) and
the early Holocene (9 k: years 9000–9999 BP). These time slices are extracted from
the transient Holocene simulation by taking the respective periods as references for
the reconstruction (Fig. 3). For the application of our method and Eq. (3), the temporal15

means over the whole time slices, i.e. 1000 yr, are used. ∆T is calculated as the dif-
ference between the mean over the time slice and the temporally corresponding mean
of the proxy time series. Based on the seasonal sensitivities determined in Sect. 2.5
(Table 1), the ∆SST are deduced in a straightforward way. With these new sets of SST,
the respective time slices are resimulated and compared to the corresponding time20

series of both the proxy and the PlaSim reference simulation. Consistent with Fig. 3,
we first confine our comparison to the region, i.e. grid points of the Ammersee proxy.
The outcome for the three time slices is shown in Fig. 6a–c. The time series of the
proxy is always shown in dark gray (stairs), those of the transient reference simula-
tion with prescribed SST in light gray and those with the reconstructed SST in black.25

The light (dark) gray bands are indicating the 1σ and 2σ ranges of the proxy. In 0 k
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(Fig. 6a), PlaSim is warmer than the proxy in the reference experiment, despite some
colder periods at the beginning of the time slice. Although the reconstruction leads to
a decreasing mean temperature, PlaSim is still warmer over large parts of the 0 k time
slice. In 6 k (Fig. 6b), the PlaSim reference simulation is colder than the Ammersee
proxy in the long-term mean despite some periods where PlaSim is warmer. After the5

reconstruction, the mean temperature is increasing, leading to a convergence of both
time series. In the early Holocene (9 k, Fig. 6c), PlaSim is also colder in the long-
term mean of the reference experiment, although longer periods exist, where PlaSim
is warmer than the proxy. In the resimulation of the time slice with the reconstructed
SST, PlaSim becomes warmer in general, apart from only some years where PlaSim is10

colder. Apparent in all PlaSim time series is the much lower variability compared to the
proxy, leading to a comparably smooth structure. An overview about the results of the
reconstruction is presented in Table 2, where the time slice means of both the proxy
and the PlaSim experiments including the 2σ-variability range as well as the anomalies
between the PlaSim simulations and the proxy are listed. In general terms, the means15

are converging in all time slices, leading to a strong improvement of the reconstruction
over the reference experiment in 6k and especially in 9 k. However, regarding the statis-
tical significance of the reconstructed time series (given by the shaded σ-ranges), the
reconstruction of the mid-Holocene climate seems to show the best results, whereas it
is only minor in the other two time slices, especially in 0 k. We interprete these results20

of limited statistical significance for the region of the Ammersee proxy with quantile-
quantile (qq) plots to provide a graphical comparison between reference and simulated
data through relating the percentiles of the empirical cumulative distribution function
of both data sets (Wilks, 2006). In case of a perfect match between both, all points
will fall on the straight line, leading to the assumption of identically distributed data25

points. We compare the time series of the surface air temperature of the Ammersee
proxy for the three time slices with the reference experiment (Fig. 7, left columns) as
well as the reconstruction (right columns in Fig. 7). For the 0 k time slice, the qq graph
of the PlaSim data is above the proxy graph in the lower and higher range, whereas
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the central body fits well to the proxy distribution. The deviations in the lower (higher)
range are indicative of a narrower (wider) distribution there. The overall differences
between the reference and the reconstruction are only minor in 0 k, which is in line
with the aforementioned results of only hardly converging time slice means. In the mid-
Holocene, the distribution of the PlaSim data is a bit wider in the lower range (indicated5

by the simulated data points below the proxy) which is even more pronounced in the
reconstruction. Equally, the points are more similarly distributed in the mid range com-
pared to the proxy, which is slightly improved in the reconstruction. The higher range is
very similarly distributed in both PlaSim simulations. The results for the early Holocene
show the strongest deviations from the distribution of the proxy. In both the reference10

and the reconstructed time slice, the data points lie above the proxy in the lower range
and below in the higher range, whereas the mid range is represented similarly. Con-
sequently, the distribution of the PlaSim points is much narrower, i.e. the variability is
lower and less extreme values occur. This is also clearly visible in Fig. 3 and in more
detail in Fig. 6c and will be further discussed below. Although the reconstruction did15

not lead to a distinctive improvement of the distribution in 9 k, the convergence of the
time means is strongest (Table 2), when compared to the other two time slices.

3.2 Spatial pattern of European climate change

The reconstruction of the land temperature for the region of the Ammersee proxy has
led to ambiguous results: converging time slice means, improving the representation20

of the mean proxy climate, are accompanied by statistically non-significant modifica-
tions after the SST-adjustment (except for 6 k). We will now test whether a statistical
significant improvement is achieved when a wider region is considered, i.e. a higher
number of grid points. In addition, as mentioned earlier in this study, we are not only in-
terested in the mere response to the SST forcing in the region of the Ammersee proxy,25

but rather in the climate changes for the whole region of Europe. The outcome of our
reconstruction is now evaluated in terms of the spatial patterns of surface air temper-
ature changes over Europe, presented as anomalies for all three time slices between
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the reconstructed time slices and the corresponding ones of the reference simula-
tion (Fig. 8a–c). Shown are only anomalies exceeding the 95 %-significance level of
a two-tailed standard t-test. By doing so, the significant climate changes for Europe
(non-significant areas are indicated in white), induced by the reconstructed SST, can
immediately be identified.5

In accordance with the negative (positive) anomaly (Fig. 3 and Table 2) between the
reference simulation and the proxy in 9 k and 6 k (0 k), the reconstruction leads to a
warming (cooling) in the respective time slices, and exhibits antipodal patterns in all
three time slices. The reconstruction of the SST leads to a spatially inconsistent pic-
ture, with the warming in 6 k and 9 k (Fig. 8b and c) more pronounced in the western10

and eastern parts of Europe, i.e. the reference experiment is too cold there. Over
central and northern Europe, the warming is less distinctive. It is strongest and more
pronounced in both regions in 6 k. This may be indicative of a better representation
of the mid-Holocene climatic optimum with the reconstructed SST based on the Am-
mersee proxy where the climate optimum is clearly visible (cf. Fig. 3). This hypothesis15

needs more investigation and can be verified in a future transient simulation with re-
constructed SST. The cooling in 0 k (Fig. 8a) is visible in the positive anomaly of the
reference simulation and the proxy, and is also more pronounced in the western and
eastern parts of Europe. These time slice means only show the changes over the
whole period of 1000 yr and suppress the submillennial – especially interannual – vari-20

ability which may show a different picture for individual years. However, the statistical
significance of our results is strongly increased when considering the European region
and not only the grid points around the Ammersee proxy. Summing up, a very variable
temperature distribution occurs over Europe during the Holocene. This can be clearly
attributed to the incoming solar radiation as well as to the influence of the Laurentide25

ice shield, which persisted over North America during the early Holocene (Renssen
et al., 2009). Both forcings affected the European climate differently: as Fig. 2 shows,
the insolation signal was strongest in the early and mid-Holocene, inducing a warm-
ing mainly in the high northern latitudes. The impact of the Laurentide ice shield was
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also most pronounced in the early time slices of the Holocene, however, it exerted a
strong cooling in the high northern latitudes and thus counteracted the insolation in-
duced warming. As Renssen et al. (2009) show, the ice shield determined to a large
extent the timing and magnitude of the Holocene thermal maximum over the northern
high latitudes. We will further discuss the inherent difficulties of the ice sheet in the5

following section.

3.3 Anomalies to preindustrial climate

Anomalies to preindustrial climate are presented to enable a further concluding com-
parison to other climate reconstructions for Europe existing in the literature, and hence
a reflection of our results in a wider context. For preindustrial, a 200 yr mean around10

the preindustrial year 1860 (=̂90 BP) is chosen, which is also taken from the PlaSim
reference simulation.

The anomalies between the reference experiment time slices and preindustrial cli-
mate at a significance level of 95 % are presented in Fig. 9. In 9 k (Fig. 9c), the climate
was colder than at preindustrial times, mainly in the northern and central parts of Eu-15

rope where a cold anomaly can be observed. In the western and southern parts of
Europe, a slight warming occurs. When we compare these findings to the anomaly
between the reconstructed 9 k time slice and the preindustrial (Fig. 10c), the pattern is
more variable. In the northern high latitudes, a cooling can be still observed, but it is
weaker than before. Large parts of Europe, except central Europe, which also shows a20

cooling, are warmer than the preindustrial period. The reconstruction has even led to a
warmer climate in regions which showed colder conditions in the reference simulation

For the time slice of the mid-Holocene (6 k, Fig. 9b), the pattern is nearly identical
compared to 9 k. A general cooling trend occurs in the anomaly of the reference sim-
ulation (Fig. 9b), which is a bit weaker in the northern high latitudes compared to 9 k,25

but stronger in the eastern parts of Europe. The warmer regions in the western and
southern parts are less pronounced compared to 9 k. In the anomaly of the recon-
structed 6 k time slice (Fig. 10b), colder conditions only persist in central Europe and
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the high northern latitudes, but they are much weaker. On the contrary, the warm-
ing in the eastern and western parts of Europe is significantly more pronounced as in
9 k. In general it can be said, that nearly the whole region of Europe is characterized
by warmer conditions compared to the preindustrial, which can be attributed by the
mid-Holocene climate optimum. Its representation in PlaSim is now much better than5

before.
For the 0 k time slice (Fig. 9a), the trend is antipodal. The differences between the

reference PlaSim simulation and preindustrial climate are very small with a slightly
more pronounced cooling in the eastern parts of Europe. Due to the reconstruction
(Fig. 10a), the cooling intensifies, most strongly in the western and eastern parts of10

Europe, so the mean over the whole time slice is lower than the preindustrial mean.

4 Discussion

In the context of other reconstructions and Holocene simulations for the European re-
gion, our findings highlight potential benefits as well as deficiencies of the iterative
SST reconstruction method. Although our reconstruction is based only on the few15

grid points around the Lake Ammersee, Germany, the comparison of the extrapolated
reconstructed climate to the whole region of Europe shows trends which are simi-
lar to those shown by other studies. Our results for the 6 k time slice are consistent
with Davis et al.’s (2003) temperature reconstruction. They found warmer conditions
over the northwestern, western and eastern central Europe during the mid-Holocene.20

Only the reconstruction, not the reference experiment agrees with this pollen-based
reconstruction: clearly the reconstruction (Fig. 10b) performs better than the reference
simulation (Fig. 9b) for this time slice. Further to the south, however, where our re-
construction indicates a warming, Davis et al. (2003) identified a cooling. This will be
further discussed below.25

The cold anomaly of the late Holocene (0 k) as a result of the colder proxy climate can
be expected from the slightly stronger CO2-forcing during the preindustrial period. The
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anomaly may still be underestimated, as can be seen from the lower time slice mean
in the proxy compared to PlaSim. Nevertheless, a gap of several decades in the time
series of the Ammersee proxy for 0 k impedes a reliable temperature reconstruction.
This may also be the reason for the remaining deviations in the distribution of the
PlaSim data (cf. Fig. 7a, right column). Besides this gap in the proxy time series, the5

results for this time slice show the feasibility of the method to not only adjust the model
to a warmer but also to a colder climate (i.e. the symmetry of Eq. 2), as well as the
inherent complexity of the adjustment being strongly dependent on the proxy data.

A closer look at the 9 k time slice, of which the reconstruction shows weaker but
similar warming and cooling trends as the 6 k time slice, shows less agreement with10

Davis et al. (2003). Although the results of the reconstruction for the Ammersee proxy
showed the best approximation to the mean proxy climate for 9 k (Table 2), the warming
in most regions of Europe contrasts the cooling identified by Davis et al. (2003) – or
others (Renssen et al., 2005, 2006).

As indicated before, comparing model results with proxy data always includes a15

range of obstacles which have to be considered. Proxies reflect climatic conditions
on a very regional scale, which may indeed sometimes be representative for a larger
region, as it is the case with the Ammersee proxy (cf. Sect. 2.2), and they are mainly
influenced by local processes. These small scales cannot be resolved by the models
as their resolution is mostly too coarse which precludes the incorporation of local pro-20

cesses potentially important for the proxies. Furthermore, these local influences may
either be not fully understood or even completely unknown. Together with the coarse
resolution, they contribute to the discrepancies in our results over southern Europe dur-
ing 6k and also during 9 k, where comparably large spatial differences occur, whereas
the model’s time slice mean converges best to the proxy mean.25

The study by Davis and Brewer (2009) sheds more light on this regional deviation,
which was also identified in a recent study by Fischer and Jungclaus (2011) in their
analysis of the mid-Holocene temperature cycle using a coupled atmosphere-ocean
model. Comparing data from a new pollen-based reconstruction and output from the
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Paleoclimate Modelling Intercomparison Project (PMIP II, Braconnot et al., 2007a) with
regard to an investigation of both the underlying mechanisms and responses of the or-
bital forcing (in terms of the latitudinal insolation gradient) on the climate system, Davis
and Brewer (2009) found the same inconsistency in the southern European climate.
Without going too much into detail in this context, the authors argue that this can be5

largely attributed to how the models simulate the temperature response to a changing
latitudinal insolation gradient between the mid and high northern latitudes (Raymo and
Nisancioglu, 2003). Whereas the pollen data seem to be more sensitive to latitudinal
insolation changes, models are more strongly influenced by the seasonal insolation.
This mismatch, together with the coarse model resolution, may thus contribute to this10

discrepancy.
Although both Davis and Brewer (2009) and Fischer and Jungclaus (2011) make

assumptions about seasonal temperature changes, whereas we investigated annual
changes, these findings can be seen in line with our results, as the seasonal insola-
tion cycle is not only visible on seasonal time scales but also affects the annual mean15

climate response, thus the annual temperature changes are caused by seasonally dif-
ferent temperature changes (Braconnot et al., 2007b; Wanner et al., 2008; Fischer and
Jungclaus, 2011). This again supports our approach of a seasonal adjustment of SST
(cf. Sect. 2.5).

However, rather than to the reconstruction method, the deficiencies in the spatial re-20

construction of the early Holocene time slice (9 k) should also be attributed to northern
high latitude climatic peculiarities of this time period, which is characterized by chang-
ing variability and the Laurentide ice sheet. Strong variability (cf. Fig. 7c) can be seen
in the proxy time series at the early Holocene (Fig. 3). The anomalies between PlaSim
and the proxy alternate in sign on very short time scales. Whereas PlaSim is mostly25

warmer as the proxy in 10 kyr BP, it is much more variable in 9 kyr BP, which leads to the
negative anomaly (Sect. 3.1). This complicates a reconstruction of this time slice, be-
cause the strong variability changes cannot be resimulated instantaneously. Secondly,
and although the insolation was very strong, which would normally have induced a
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strong warming, the persisting Laurentide ice sheet strongly influenced the high north-
ern latitudes and produced a no-analogue climate with both a weaker warming and a
stronger cooling. This effect of the ice sheet on the climate of the northern regions has
been investigated in many studies (e.g. Mitchell et al., 1988; Renssen et al., 2005).
The perturbing influence of the ice sheet further complicates the simulation of a real-5

istic early Holocene climate. In contrast, the warmer mid-and late Holocene can be
reconstructed by climate models more simply as a more or less direct response to the
orbital forcing.

To account for the ice sheet-induced cooling, models either need to include a dy-
namic ice model or a reconstruction of the ice sheet (e.g. Peltier, 2004). The most10

frequent strategy was, however, to circumvent the ice sheet complication by leaving
out early Holocene time slice simulations, and by choosing to simulate only transient
time periods beginning after the retreat of the ice sheet (Lorenz et al., 2006; Renssen
et al., 2009; Mann et al., 2009). By not considering the land ice despite palaeoclimatic
evidence, climate model simulations will always show a substantial bias. Our intention15

for setting up a Holocene experiment at the early Holocene without considering the
land ice and therefore accepting this bias may be inconsistent but can be substanti-
ated in several ways. Instead of analyzing the Holocene climate with PlaSim, our study
intended mainly to introduce and to test this new method on the basis of the actual
model climate, which is not modified – and thus perturbed – by the inclusion of an ice20

sheet reconstruction, affecting not only the mean climate state but also climate feed-
backs. In addition, the general usefulness of this model-proxy-adjustment can also be
argued for with regard to the problem of the missing land ice in climate models. By
using this reconstruction method, one achieves the setup of realistic initial conditions
for the beginning of the Holocene, where the climate model is tuned not only to colder25

temperatures but to existing palaeodata. Indeed, the missing land ice in the PlaSim
simulation very likely contributes to the opposing warming trends in the model recon-
struction versus the pollen reconstruction. Even when an ice sheet was considered,
however, basing the reconstruction on only the 9 k time slice would be inappropriate.
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Instead, the full early Holocene climate should be considered, i.e. the 10 k and 11 k time
slices in addition. Our future transient simulations will be initialized with the anomalies
from the full early Holocene climate.

A problem which has become apparent due to the misleading results of the 9 k time
slice points to a general limitation of our reconstruction method, because the adjust-5

ment can only take into account the prevailing conditions, i.e. the current climatic state
(in terms of temperature) and not any variations on longer time scales. As the results
of the 0 k time slice reveal, the dependency of our reconstruction method on the proxy
data can also be interpreted critically because it strongly relies on the quality of the
proxy data which therefore must be carefully chosen.10

Whereas in this study, we focus on different time slices on the basis of currently
one comparative proxy data, we intend on the one hand to carry out a full transient
Holocene simulation with SST which are reconstructed on the basis of the proxy data,
and on the other hand we will try to incorporate several proxies instead of only one.
The latter will then be consistent with other studies, relying on a wide range of different15

proxies (Renssen et al., 2009). Although the authors show similar trends as Davis et al.
(2003) when comparing climate model output and proxy data from lake sediments,
they also identify a comparably large discrepancy between models and proxy data in
their intercomparison, which may be partly due to the fact that only one single proxy
is used as a reference (Renssen et al., 2009). Although in general, a certain bias20

must be accounted for when only considering one single proxy, the results by Renssen
et al. (2009) are consistent and can thus be seen as an additional corroboration of our
approach of relying the reconstruction on only one proxy before extending it to several
proxies. For Europe, these multiple proxies can be expected to be in close vicinity
to each other. We assume a close proximity of these proxies to be of advantage for25

a successful reconstruction of the SST; Wirtz et al. (2010), for example, showed that
on the spatial scale of few 1000 km, the variability changes found in palaeoclimate
time series are spatially coherent. For the aspired setup of a transient simulation, we
expect improvements concerning the variability aspect and the overall outcome of this
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experiment. Application of these improvements leads to a modified version of Eq. (2),
accounting for the transient mode in a first step:

∂SST
∂τ

=1/λ× [T (τ)−TP(τ)], (6)

where T , TP and 1/λ have the same meaning as before. τ is a slower time scale
(∼100 yr) and complies with the period of adjusting the SST. To incorporate several5

different proxies, we calculate

∂SST
∂τ

=1/λ
N∑

n=1

×[T n(τ)−T P,n(τ)], (7)

so Eq. (6) is simply adjusted to n number of proxies used for the comparison, where
T P,n is the mean over all the proxies which are taken into consideration. Some prob-
lems will come up with those modifications, especially concerning the inclusion of sev-10

eral proxies. When considering this, it must be kept in mind that proxies, even those
which are located very close to each other, can show completely different (temperature)
trends, caused by local phenomena affecting the proxies. For avoiding such an antipo-
dal behavior, which may lead to an annihilation of the signal (positive versus negative
∆T ), it should be considered of constraining on less proxies or only on those showing15

similar trends (Leduc et al., 2010).

5 Conclusions

We reconstructed regional SST patterns for the simulation of a Holocene climate which
is constrained by terrestrial proxy data. Based on the sensitivity between the land cli-
mate and the SST, the latter can be reconstructed through a linear relationship. Our20

approach shows promising results with regard to a successful resimulation of the proxy
climate: we seem to be able to adjust a GCM to a climate which is given by proxy data.
Specifically, we obtain a better representation of the Holocene climate over Europe
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when compared to other proxy reconstructions – such as the mid-Holocene climate,
which is considerably better illustrated in the reconstruction as in a reference Holocene
experiment. In this context, this approach can be used to initialize a realistic simulation
of the early Holocene, even in case of a missing dynamic ice sheet model and instead
of other land ice prescriptions. We envisage this land proxy-based reconstruction of5

sea surface temperature to become part of an ongoing process relating proxies and
GCMs in an easy and straightforward way. As it is not based on statistical properties
but on dynamical iterations, it may open new insights in this field. Our simple technique
may seem too unsophisticated when thinking of the state-of-the-art coupled versions
of existing GCMs – it is, however, very straightforward when keeping our actual inten-10

tions in mind of reconstructing a climate which shows the optimal fit to a specific proxy
climate. We are interested mostly in the response of the atmosphere to the adjust-
ment of the SST: thus, a disregard of oceanic feedbacks is permissible and in line with
Widmann et al. (2010).
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Göckede, M., Turner, D. P., Michalak, A. M., Vickers, D., and Law, B. E.: Sensitivity of a subre-

gional scale atmospheric inverse CO2 modeling framework to boundary conditions, J. Geo-
phys. Res., 115, D24112, doi:10.1029/2010JD014443, 2010b. 153

Good, P., Gregory, J. M., and Lowe, J. A.: A step-response simple climate model25

to reconstruct and interpret AOGCM projections, Geophys. Res. Lett., 38, L01703,
doi:10.1029/2010GL045208, 2011. 161

Goosse, H., Crespin, E., de Montety, A., Mann, M. E., Renssen, H., and Timmermann, A.: Re-
constructing surface temperature changes over the past 600 years using climate model sim-
ulations with data assimilation, J. Geophys. Res., 115, D09108, doi:10.1029/2009JD012737,30

2010. 151, 152
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe,

J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and

182

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/149/2012/esdd-3-149-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/149/2012/esdd-3-149-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/cp-6-483-2010
http://dx.doi.org/10.1029/2009JD012257
http://dx.doi.org/10.1029/2010JD014443
http://dx.doi.org/10.1029/2010GL045208
http://dx.doi.org/10.1029/2009JD012737


ESDD
3, 149–200, 2012

Reconstruction of
SST for terrestrial
Holocene climate

K. Haberkorn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

climate sensitivity, Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747, 2004. 161
Grosfeld, K., Lohmann, G., and Rimbu, N.: The impact of Atlantic and Pacific Ocean sea

surface temperature anomalies on the North Atlantic multidecadal variability, Tellus, 60, 1–
14, 2008. 153, 165

Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J., and Cheddadi, R.: Inverse vegetation5

modeling by Monte Carlo sampling to reconstruct paleoclimates under changed precipitation
seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol.
Model., 127, 119–140, 2000. 152, 163, 168
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Table 1. Overview of results of experiments using annual and seasonal sensitivities.

Sensitivity ∆Tann ∆SST ∆Tsim,ann

constant, +1.5 ◦C +2.71 ◦C +1.62 ◦C
annual

seasonally +1.5 ◦C MAM: +2.71 ◦C +1.51 ◦C
SON: +2.71 ◦C

DJF: +2.0 ◦C
dependent JJA: +3.4 ◦C

λDJF = 0.75
Final λMAM = 0.5532
seasonal λSON = 0.5532
sensitivities λJJA = 0.4411
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Table 2. Time slice means and 2σ-significance for the Ammersee proxy (left column), PlaSim
reference (second left column), PlaSim reconstructed (middle column) and anomalies between
PlaSim reference and the proxy ∆T1 (second right column) and between PlaSim reconstructed
and the proxy ∆T2 (right column).

PlaSim PlaSim
Proxy±2σ reference±2σ reconstructed±2σ ∆T1 ±2σ ∆T2 ±2σ

0 k 8.26±1.34 ◦C 8.95±1.44◦C 8.74±1.44 ◦C 0.69±1.94 ◦C 0.48±2.04 ◦C
6 k 9.09±1.0 ◦C 8.36±1.27 ◦C 8.90±1.04 ◦C −0.73±1.48 ◦C −0.18±1.41 ◦C
9 k 8.66±1.95 ◦C 8.32±1.20 ◦C 8.69±1.04 ◦C −0.34±2.35 ◦C 0.03±2.21 ◦C
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Fig. 1. Raw data (ostracod δ18O-record) from the Lake Ammersee proxy (von Grafenstein
et al., 1998) from 0 to 12 kyr BP.
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Fig. 2. Applied orbital forcing (given by the seasonal insolation at 60◦ N, shown as the anomaly
relative to 0 kyr BP) and greenhouse gas forcing (given by the atmospheric concentration of
CO2).
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Fig. 3. Reconstructed annual mean surface air temperature (◦C) for the Ammersee proxy (dark
gray) and the respective time series (100 year running mean) simulated by PlaSim (light gray)
from 0 to 11 kyr BP.
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∆SST −→ ∆Tλ

Fig. 4. Relationship as determined in Eq. (1) between SST anomalies and land climate, cor-
rected by the sensitivity λ. The forcing (source) region is the North Atlantic (0◦ and 60◦ N),
which has the strongest influence on the European land (target) climate as indicated by terres-
trial proxy data.
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Fig. 5. Schematic of the adjustment of the SST to the land proxy climate through the inverse
modelling procedure. The application of an inverse method is highlighted in bold lettering.
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Fig. 6. Annual mean surface air temperature (◦C) for the Ammersee proxy and the respective
PlaSim time series (50 year running mean). Gray shading indicates 1σ and 2σ ranges in the
proxy data set during each millennium.
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Fig. 7. Quantile quantile plot of annual mean surface air temperature for the Ammersee proxy
and the reference simulation time slices (left columns) and the reconstructed time slices (right
columns).
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a) 0k

b) 6k

c) 9k

Fig. 8. Surface air temperature anomalies (◦C) over Europe between reconstructed time slices
and the PlaSim reference simulation at a significance level of 95 % (two-sided t-test, sample
size N =1000). Non-significant regions are indicated in white.
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a) 0k

b) 6k

c) 9k

Fig. 9. Surface air temperature anomalies (◦C) over Europe between the reference simulation
time slices and preindustrial climate at a significance level of 95 % (two-sided t-test, N =1000).
Non-significant regions are indicated in white.
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a) 0k

b) 6k

c) 9k

Fig. 10. Surface air temperature anomalies (◦C) over Europe between the reconstructed time
slices and preindustrial climate at a significance level of 95 % (two-sided t-test, N1 = 1000,
N2 =200). Non-significant regions are indicated in white.
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