
We would like to thank the two referees for their detailed discussion of our manuscript and their 
valuable suggestions. We hope that in the following we can clear some misunderstandings and 
answer the questions raised in a comprehensive manner. 

Reviewer 1:

1. The manuscript could use more citations, contrasting its methodology and 
findings to previous work on probabilistic AMOC projections. It advertises itself as 
"the first probabilistic assessment of the future AMOC behavior using a calibrated 
conceptual model and global mean temperature data for the RCP3-PD and RCP4.5 
emission scenarios". This wording is dangerous, as it can be interpreted to mean 
that this manuscript is the first to present probabilistic AMOC projections. There 
is an existing literature on this subject. 

Answer:

We thank the reviewer for the comprehensive list of suggestions, which is highly 
appreciated. We added several references in the introduction section at page 1 and 2. 
For further clarification, we changed the mentioned paragraph to: 

“In summary, we presented a probabilistic assessment of the future AMOC 
behaviour using a calibrated conceptual model and global mean temperature 
data for the RCP3-PD and RCP4.5 emission scenarios.”

We also changed a similar paragraph in the conclusion section from 

“This is to our knowledge the first probabilistic projection of dynamic sea-level 
rise and an example for the potential of a modular approach in climate system 
projections within the limits of interpolation.”

to 
“This probabilistic projection of dynamic sea-level rise is an example for the 
potential of a modular approach in climate system projections within the limits of 
interpolation.”

2. There is additional literature that could be reviewed concerning the dynamic sea 
level effects of AMOC variations.

Answer:  

Several references discussing this relation in further detail are added in section 7 on 
page 6 of the manuscript. 



3. It is not entirely clear to me how the predictive envelopes for the various 
projections are obtained, given the different AMOC emulators. Are the projections 
from the five different emulators superimposed assuming each is equally likely, 
and a common predictive envelope constructed for this mixture of models?

Answer: 

Yes, the models have been given the same weight each. While there are observations 
from which the overall strength of the overturning can be inferred, we find that available 
data does not allow to discriminate between models with respect to their ability  to model 
future changes in the AMOC. We thus assume that our five models can serve as 
independent realisations of future AMOC response to external forcings. We combined 
the 600 random representation pathways of the MAGICC output with each of our five 
models leading to 3000 different AMOC mean pathways that are considered equally 
likely. Figure 4, 5 and 6 are based on this data set. To make that point clearer, we 
modified the following paragraph (section 5 on page 5) of our manuscript 

“We then combine each of the 600 realisations with our five AMOC emulator 
settings to obtain a distribution of AMOC responses under these scenarios.” 

to 

“We then combine each of the 600 realisations with each of our five models 
leading to 3000 different AMOC mean pathways that are considered equally 
likely.”

4. There are several points at which the manuscript fails to propagate uncertainties 
(or at least, fails to mention uncertainties being propagated). 

Answer: 

We agree that there is a need to clarify  the method used in our manuscript more 
explicitly  and are grateful for this comment. We are indeed unable to propagate all errors 
in this paper and have made this more explicit in the text.



5. Forcing the AMOC box model with MAGICC temperature projections, without first 
adding noise to the temperature projections to simulate natural variability

Answer:

We appreciate the suggestion by the reviewer to add noise to the system prior to the 
temperature projections. We have decided against it for the following reason. The idea of 
our study is to provide estimates of the expected mean change not considering internal 
variability. In fact, conceptual box models as the Stommel-type model used here are not 
capable of capturing year-to-year variability  but are designed to describe long term 
trends of the mean AMOC strength. Introducing noise on a subdecadal time scale would 
thus not be consistent with the physical processes included in the model, while decadal 
noisy variability would be problematic in a century long projection.

6. Fitting the AMOC box model to GCM output without propagating the parametric 
uncertainty in the fits. Figure 2 and 3 indicate a large amount of noise in the GFDL 
model and one could imagine a wider range of its fits being possible, at least for 
that model. For example, the validation plot in Figure 3 shows a predicted AMOC 
decline that is compatible with, but probably stronger than the actual decline 
visible in the GFDL output. Could other, almost-as-good fits to the GFDL output in 
Figure 2 produce a weaker decline in Figure 3 that are also compatible with the 
validation data?

Answer:

What is obvious from Figure 2 and 3 is that the inter-model variability  of the AMOC 
strength is much larger than the model specific inter-annual variability. The ensemble 
spread of the equilibrium AMOC strength ranges from 25 Sv  to 15 Sv  and also the 
difference in the freshwater response is significant. The GFDL model for example 
weakens from a strong equilibrium state of 25 Sv  by  about 8 Sv  within the 100 years 
forcing period and recovers within 50 years afterwards, whereas the NCAR model 
weakens only  by  4 Sv from 16 Sv  to 12 Sv, but does not fully  recover in the 100 years 
after the forcing has stopped. We hence assume that fitting the box model to the 
different AOGCMs accounts for the major part of the parametric uncertainty  of the box 
model, while the AOGCM specific parameters uncertainties seem to be much smaller. To 
capture these great dynamical differences in our non-linear model with a narrow 
convergence-space we had to adjust our parameter manually.

However, in order to underline that the associated uncertainties are small in comparison 
to other sources of uncertainty  considered by  us, we provide an estimate of the possible 
variation in the projections of the AMOC strength by  “almost-as-good” fitting parameters 
estimated from experiment (b) (see Figure 2 of the manuscript). As an example we focus 
on that parameter, since it turned out to have dominant influence on the simulated 



AMOC strength under global warming. Likewise, we concentrate here on the GFDL 
model, since it shows the strongest variability. Oscillatory  behaviour is much less 
pronounced in the other four ensemble members (compare Fig.  3). 

We chose p=0.25  and p=0.5 as a 
lower and upper bound, where the 
reproduction of the AMOC behavior  
in the warming experiment is already 
rather poor as shown in Fig. R1 a) 
that corresponds to Fig. 2b) in the 
manuscript. The influence of this 
varied parameter on the ensemble 
behaviour under the RCP4.5 
scenario is shown in Fig. 1 b). Even 
strong variations of the most 
influential parameter change the 
ensemble median by  less than 1 %. 
Only  the 10th percentile shows a 
more pronounced change by 2 % 
whereas the upper bound remains 
v i r tua l l y  unchanged . Th is i s 
remarkable, since in this case we 
vary  the parameter for one model by 
25 %, which already  results in a 
strong reduction of the model 
emulation capacity, whereas the 
same parameter varies between the 
models by  a factor of 9. It appears 
that the impacts of parameter 
variations of single models are of 
secondary  importance compared to 
the variations between the different 
models, that differ up to 6 %  in the 
median projection for the RCP4.5 
scenario as shown in Fig. R2. We 

will provide this figure also as supplementary material to the manuscript.

Therefore, we would like to argue that our approach of using a five-model ensemble with  
inter-model parameter differences up  to one order of magnitude covers most of the 
uncertainty  related to the emulation parameters. Additionally, we restricted ourselves to 
interpolations within the calibration range, to avoid uncertainty amplification. 
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Figure R1. Parameter variations for GFDL, p = 0.4 
(control,black), p = 0.25 (green), p = 0.5 (red) 
a) Calibration results as in Fig. 2b) of the manuscript, 
b) Ensemble emulation results for RCP4.5 as in Fig. 4 
a) of the manuscript, 90th percentile (upper), median 
(middle), 10th percentile (lower)



We introduced the following modifications in the manuscript: 

Page 3, Section 4: 

“... and the parameter-set was manually optimised to reproduce each AOGCM 
output (Table 2).”

Page 4, Section 4: The following text is added at the end of section 4:

“The uncertainty associated with single emulation parameters of the different 
models is much smaller than the inter-ensemble spread. Thus, we account for 
the major parametric uncertainty component when assuming all five emulator 
configurations obtained here as equally likely representations of the AMOC and 
quantifying the resulting spread.”
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Figure R2. The projected AMOC weakening as in Fig. 4 of the manuscript for each 
ensemble member separately: a) GFDL_R30, b) MRI_CGCM_2.3, c) MPI_ECHAM5, d) 
MIROC3.2, e) NCAR_CCSM2.0. 



7. Projecting the AMOC weakening from the box model output without adding noise 
to the AMOC projections to simulate natural variability

Answer:

Continuous AMOC measurements are just available since 6 years which makes it 
very  difficult to make profound statements about the current state of the 
circulation,. Furthermore, these observations reveal an inter-annual variability  of 
the AMOC ranging from 10 to 30 Sv (Cunningham et al. 2010), and a strong 
interdecadal variability, sometimes associated with the Atlantic Multidecadal 
Oscillation (e.g.. Park et al. 2008; Dong et al., 2005 and references therein). 

In our opinion, it is by  no means justified to assume that all of these effects are 
covered by  all the five AOGCMs used as a basis for our emulation, which means 
that taking the models internal variability  and adding it as a noise signal could 
greatly  underestimate the uncertainty. Furthermore, whether or not this variability 
might change under global warming scenarios is very  uncertain and assuming a 
constant variability might be also misleading in this case. 

Therefore, we decided to restrict ourselves to projections of the AMOC mean, as 
it is done in similar studies, e.g. Zickfeld et al., (2004) and Urban and Keller 
(2010).    

For further clarification, we changed all phrases denoting “project ... the further 
evolution of the AMOC” or phrases with similar meaning to “project ... the further 
evolution of the AMOC mean strength” 

e.g. in the abstract: 

“we project the future evolution of the AMOC mean strength within the covered 
calibration range”

8. Projecting dynamic sea level rise from a regression of sea level rise on MOC 
weakening, without propagating the uncertainty in the regression. (This properly 
should use the regression prediction interval, not to be confused with the 
parametric confidence interval of the regression slope coefficient.)

Answer: 

As the reviewer suggested, we have repeated our SLR projections including uncertainty 
propagation of the regression procedure, the updated Fig. 6 of our manuscript is shown 



in Fig. R3. The reviewer suggested to use 
the regression prediction interval, but  since 
we restrict ourselves to projections of the 
mean behaviour as discussed above, 
propagation of the individual parameter 
uncertainties is sufficient. These uncertainty 
intervals are shown in an updated version of 
Table 3 of the manuscript in Tab. R1.  

To account for the parameter uncertainty of the linear regression parameters, we 
randomly  picked a value out of a Gaussian distribution with a standard deviation of the 
parameter uncertainty  and combined it for each of the five models that were analysed in 
Yin et al. (2009) with our 3000 AMOC representations.

The main difference between Fig. 6 of the manuscript and the updated version is a 
broader uncertainty envelope for the 2000-2050 period due to the uncertainty of the 
offset-parameter b, whereas the projection-envelopes for 2100 remain virtually 
unchanged (maximum changes are less than 1mm). Again, most of the parameter 
uncertainty is already covered by the inter-model variability of our ensemble. 

We accordingly  updated Fig. 6 in the manuscript with Fig. R3 shown above and the 
following paragraphs of the manuscript have been modified:

10 C. F. Schleussner et al.: AMOC Emulator

Table 1. List of the emulated AOGCMs.

Model: Institute Reference

MPI/ECHAM5 Max Planck Institute for Meteorology, Germany (Jungclaus et al., 2006a)
GFDL R30 Geophysical Fluid Dynamics Laboratory, USA (Delworth et al., 2002)
MIROC3.2 University of Tokyo, Japan (Hasumi and Emori, 2004)
MRI CGCM2.3 Meteorological Research Institute, Japan (Yukimoto and Noda, 2002)
NCAR CCSM2.0 National Center for Atmospheric Research,USA (Kiehl and Gent, 2004)

Table 2. Results of the parameter optimisation. Values are given
in: k [1018 m3 a−1], Veff [10−17 m3], λ dimensionless, ∆T ∗

0 [K], p
dimensionless and h [Sv K−1].

GFDL MRI MPI MIROC NCAR

k 3.55 1 1.1 1.05 1.14
Veff 7.2 6 5 6 4.2
λ 0.032 0.185 0.7 0.16 0.02
∆T ∗

0 −3.8 −4 −2.75 −4.3 −5.5
p 0.4 0.1 0.2 0.45 0.9
h 0.019 0.038 0.013 0.013 -0.003

Table 3. Results of a linear regression of DSLR vs. AMOC weak-
ening (y = ax+ b) for a AR4 model ensemble derived from SRES
A1B scenario runs and for the grid-point closest to NYC from (Yin
et al., 2009)

a [cm/Sv] b [cm]

GFDL CM2.1 1.68 ± 0.08 3.30 ± 0.56
MIROC MEDRES 2.81 ± 0.14 1.95 ± 0.62
MPI ECHAM5 2.74 ± 0.26 2.63 ± 0.65
IPSL CM4 2.58 ± 0.15 2.32 ± 0.67
MIROC HIRES 1.45 ± 0.21 4.01 ± 0.59
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Figure R3. Update of Fig. 6 of the manuscript

Table R1. Update of Tab. 3 of the manuscript



Section 7, Page 6:

“By combining these linear regression results of all five models with our AMOC 
projections for different emission pathways we can provide probabilistic 
projections of the dynamic sea-level rise in the New York City region (Fig. 6).”

“To account for the parameter uncertainty of the linear regression parameters 
shown in Table 3, we randomly picked a value out of a Gaussian distribution with 
a standard deviation of the parameter uncertainty and combined it for each of the 
five models with our 3000 AMOC  representations. Thus, we provide probabilistic 
projections of the mean dynamic sea-level rise in the New York City region (Fig. 
6).”

Caption of Fig. 6:

“Probabilistic projections of the dynamic sea-level rise at the New York City 
coastline for the RCP3-PD (blue) and the RCP4.5 (orange) emission pathway  till 
2100.”

to

“Probabilistic projections of the mean dynamic sea-level rise at the New York City 
coastline for the RCP3-PD (blue) and the RCP4.5 (orange) emission pathway  till 
2100.”

9. What is responsible for the oscillatory behavior of the MAGICC temperature 
projections in Figure 4b?

Answer: 

The signal is due to the solar cycle that is flattened in Meinshausen et al. (2009). We 
updated this figure to the flattened version in the manuscript to avoid confusion.

 



Reviewer 2:

10. One point to make on section 2, concerning terminology. The word “emulator” 
tends to be reserved (in statistics and more widely) for stochastic representations 
of deterministic functions, for example as fitted using Gaussian processes. 
Simpler deterministic models fitted to more complicated deterministic models 
tend to be called “surrogates”. The box model would be a surrogate for the 
AOGCM.

Answer:

We appreciate the reviewers concern, but would like to keep the notation as we think 
that it will be best understood in the community  that we aim at. Fielding this community 
the term “emulator” is usually  used to describe simplified models describing more 
complex systems, so it should be more intuitively  understandable then surrogate. For 
example the simple climate model MAGICC providing our global mean temperature 
projections is also considered to be an AOGCM emulator (compare Meinshausen et al. 
(2009)). In a very  similar context to the presented one a simple box model is as well 
described as an AMOC emulator (Zickfeld et al. (2004)).

11. I would like to have more information about how the box model was initialized for 
each AOGCM. I would like a lot more information concerning the statement “the 
parameter set was optimized to reproduce each AOGCM output”. Inspecting 
Figure 2 I guess that the authors have minimized the sum of squared residuals 
between the box model output and the AOGCM. Why would that be a good idea? 
Well, the resulting parameter estimate will be the maximum likelihood estimate if it 
were the case that the residuals are IID Gaussian with mean zero. With the 
exception of GRDL_R30 this would seem to be a reasonable assertion about the 
residuals. I would like to make two further points. First, the marginal variance of 
the residuals appears to be increasing with the AMOC strength. This suggests to 
me that a better criterion would be to minimize the sum of squared residuals of 
the logarithms. Second, the authors have missed an opportunity to use the very 
detailed theory of maximum likelihood estimators to provide an uncertainty 
estimate for the parameters.

Answer:

As explained in the answer to reviewer 1, our model parameters are manually  adjusted 
to capture the great dynamical differences between the ensemble AOGCMs with our 
non-linear Stommel model. The Stommel model as it is reported in the literature (e.g. 
Stommel (1961), Rahmstorf (1995)) shows a strong non-linear behaviour with regard to 
freshwater forcing with a very  narrow, in our case five dimensional, convergence-space. 
An implicit description of the convergence space is not available. 



Within our model ensemble we nevertheless cover a wide range of different parameter 
configurations that account for the majority  of the parameter uncertainty  as discussed in 
detail above (Answer to point 6 of reviewer 1). 

12. Section 5 also raises some interesting questions. It appears as though the five 
surrogates, standing in for the five AOGCMs, have been averaged together. What 
is the epistemic principle behind which justifies this? One can see that the five 
AOGCMs vary widely (e.g. Figure 2 and 3) so it follows that some of them match 
the recent observations better than others. So, on this basis it would have been 
more prudent to show each AOGCM separately.

Answer:
As discussed above, only  a few years of observational data is available, which does not 
allow for a weighting of the different AOGCMs according to their agreement with the 
observations. We instead assumed each of the five models to be equally  likely 
representations of the AMOC and the ensemble spread to cover the parameter 
uncertainty. The individual AOGCM are shown separately in Fig. R2. We will provide this 
figure also as a supplement to the manuscript.

13. I am also concerned that Figure 4a underestimates the uncertainty. If the tuned 
box model is standing in for the AOGCM, then the error in its approximations 
must be incorporated into the simulation. But the text does not suggest that this 
has been done; and, indeed, because it needs estimates of sigma, I doubt that it 
has. The authors need to add a Gaussian IID error to the box model output with 
standard deviation sigmahat, in order for their simulation to account for the 
difference between the tuned box model and the AOGCM. This could add a few Sv 
to the range of uncertainty at 2100.

Answer: 
The question raised here is somewhat similar to point 6 and 7 of the first reviewer. We 
showed above that strong deviations of the parameter with the highest impact would 
only  alter the ensemble projections by less than 1 %, whereas the inter-model spread is 
about  6 %. Therefore, we would like to argue that we cover most of the uncertainty 
connected with parameter variations within our ensemble. The variation of the 
temperature scaling coefficient of the GFDL model provides a variation in the ensemble 
median for the RCP4.5 scenario of 0.125 Sv  and of at maximum 1 Sv for the 10th 

percentile assuming an equilibrium AMOC strength of 25 Sv. As these values show, we 
have to disagree that we significantly underestimate the uncertainty of our projection.  
Concerning the reviewerʼs statement of adding a few  Sv  to the uncertainty  to account for 
the residual variability we want to underline again that we just want to describe the mean 
AMOC strength (see e.g. our more detailed answer to point 7 of reviewer 1).



14. Continuing in the same vein, the authors should not use the point estimate 
thetahat for each run of their box model, but should sample from the uncertainty 
about thetahat, in order to incorporate parametric uncertainty.

Answer: 
The parametric uncertainty  of the point estimate thetahat of the individual model fits is 
not included in our uncertainty  estimate as it is small compared to the inter-AOGCM 
variability  as described in more detail above (answer to point 6 of reviewer 1 ). Therefore 
we did not sample from the associated distribution.
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