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This paper opens promisingly, with a sentence on the importance of estimating uncer-
tainty ranges. I would like to comment on some aspects of this, making it clear that I
am a statistician and not a climate scientist, although I do do a lot of work jointly with
climate scientists, and I am familiar with the type of experiment being run here.

One point to make on section 2, concerning terminology. The word ’emulator’ tends to
be reserved (in statistics, and more widely) for stochastic representations of determin-
istic functions, for example as fitted using Gaussian processes. Simpler deterministic
models fitted to more complicated deterministic models tend to be called ’surrogates’.
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The box model would be a surrogate for the AOGCM.

Now to section 4. I would like more information about how the box model was initialised
for each AOGCM. I would also like a lot more information concerning the statement "the
parameter set was optimised to reproduce each AOGCM output". Inspecting Fig 2, I
guess that the authors have minimised the sum of squared residuals between the box
model output and the AOGCM. Why would this be a good idea? Well, the resulting
parameter estimate will be the maximum likelihood estimate if it were the case that
the residuals are IID Gaussian with mean zero. With the exception of GFDL_R30 this
would seem to be a reasonable assertion about the residuals. I would like to make two
further points. First, the marginal variance of the residuals appears to be increasing
with AMOC strength. This suggests to me that a better criterion would be to minimise
the sum of squared residuals of the logarithms. Second, the authors have missed an
opportunity to use the very detailed theory of maximum likelihood estimators to provide
an uncertainty estimate for the parameter.

Let me expand on this second point. The standard deviation of the residuals for each
AOGCM is itself uncertain; let’s call it sigma. Its value is not important for estimating
the box model parameters for the AOGCM, but it /is/ important for estimating their un-
certainties. If sigma is incorporated into the log-likelihood the resulting penalty function
to be minimised (which is the negative of the log-likelihood) is

-log L(theta, sigma) = c + n log sigma + (1 / 2 sigmaˆ2) SSR(theta)

where SSR(theta) is the sum of squared residuals as a function of the box model
parameters theta. It is easy to see that sigmahat, the ML estimate of sigma, is the
square root of RSS(thetahat) / n, where thetahat is the ML estimate for theta, which
minimises the RSS. For small n, caution suggests replacing sigmahat with the square
root of RSS(thetahat) / (n - k), where k is the number of parameters.

Standard asymptotic theory can now be used to approximate the standard errors of
thetahat and sigmahat, and to give confidence intervals for each parameter. The esti-
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mated standard errors are the square root of the diagonal of the inverse of the hessian
of the negative log-likelihood. It’s a mouthful but found in any statistics textbook. I like
Davison, 2003, Statistical Models (ch4). These standard errors are crucial for quantify-
ing uncertainty; both sigmahat and the standard errors should have appeared in Table
2. Without them, the authors have not done justice to their first sentence.

The diagnostic in Fig 3 is reassuring.

Section 5 also raises some interesting questions. It appears as though the five sur-
rogates, standing in for the five AOGCMs, have been averaged together. What is the
epistemic principle which justifies this? One can see that the five AOGCMs vary widely
(eg Figs 2 and 3), so it follows that some of them match the recent observations better
than others. So, on this basis it would have been more prudent to show each AOGCM
separately.

I am also concerned the Fig 4a underestimates the uncertainty. If the tuned box model
is standing in for the AOGCM, then the error in its approximation must be incorporated
into the simulation. But the text does not suggest that this has been done; and, indeed,
because it needs estimates of sigma, I doubt that it has. The authors need to add a
Gaussian IID error to the box model output with standard deviation sigmahat, in order
for their simulation to account for the difference between the tuned box model and the
AOGCM. This could add a few Sv to the range of uncertainty at 2100.

Continuing in the same vein, the authors should not use the point estimate thetahat for
each run of their box model, but should sample from the uncertainty about thetahat, in
order to incorporate parametric uncertainty. I expect this will also add a few Sv to the
range at 2100.

Overall, I like this paper because I like the idea of using simple models to understand
complex systems, and AOGCMs qualify as complex. But what we have here seems to
be a missed opportunity to quantify uncertainty in a statistically defensible manner and,
more concerning, a consequence of this is an underestimate of predictive uncertainty.
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