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Abstract. One of the approaches to constrain uncertainty in climate models is the identification of emergent
constraints. These are physically explainable empirical relationships between a particular simulated characteris-
tic of the current climate and future climate change from an ensemble of climate models, which can be exploited
using current observations. In this paper, we develop a theory to understand the appearance of such emergent
constraints. Based on this theory, we also propose a classification for emergent constraints, and applications are
shown for several idealized climate models.

1 Introduction

Improving the accuracy of climate projections is one of the
most important challenges in climate modelling. The un-
certainty can be reduced by the development of more and
more sophisticated global climate models, capturing more
processes and scales. However, the societal importance of
climate projections calls for a faster pace of improvement
and alternative approaches that aim to better determine the
accuracy of existing models. One of the proposed methods
to accomplish this has been the use of so-called emergent
constraints, where current observations are used to constrain
future projections (Collins et al., 2012).

In multi-model ensembles of complex climate models, an
apparent linear relation can be found between short-term and
long-term changing variables. More credibility is attached
to models that match the observed variability or trend well
over the recent period. In this way, current observations pro-
vide a constraint to long-term trends. The observed variable
is called the predictor, while the variable that is to be con-
strained is called the predictand (Klein and Hall, 2015). In
recent years, emergent constraints have been found for Arctic
warming, snow-albedo feedback, tropical carbon, the global
precipitation among other variables (Allen and Ingram, 2002;

Bracegirdle and Stephenson, 2013; Hall and Qu, 2006; Wen-
zel et al., 2014) and more recently, climate sensitivity (Cox
et al., 2018).

A prominent example is the emergent constraint found
in Hall and Qu (2006) where an emergent relationship
was found between the strength of the snow-albedo feed-
back (SAF) on a seasonal timescale and the SAF under global
warming in a Coupled Model Intercomparison Project phase
3 (CMIP3) ensemble. They also elucidated the key physical
process behind the emergent constraint. Models where the
maximum albedo of snow is highest have the largest SAF on
both timescales because the contrast between snow-covered
and snow-free areas is high (Qu and Hall, 2007).

However, a more general dynamical picture on how emer-
gent constraints occur in multi-model ensembles or even in a
parameter ensemble of a single model is still lacking. Un-
der which circumstances are these constraints expected to
arise? Some emergent constraints may be spurious and could
arise because of shared errors in a particular multi-model en-
semble (Bracegirdle and Stephenson, 2013). A mathemati-
cal framework is desired to identify spurious constraints and
to give an indication as to where new emergent constraints
might arise.
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Here, we investigate how and under what conditions emer-
gent constraints appear and what can be learned about the
physics of the climate system. We will use linear response
theory (LRT) to address the problem of forcing-response re-
lations on different timescales (Risken, 1996). Ruelle demon-
strated that LRT can be extended to study the response of
non-equilibrium systems to external forcing. As with the
fluctuation–dissipation theorem, Ruelle’s LRT uses the sta-
tistical properties of the unforced (equilibrium) state only, but
it does not assume (quasi)-equilibrium. Recently, LRT has
been proposed as a rigorous framework for computing the
response of the climate system and its applicability has been
tested on the Lorenz-96 model and on the idealized global
climate model PlaSim (Lucarini and Sarno, 2011; Ragone
et al., 2016).

The paper is organized as follows. To obtain an under-
standing of emergent constraints, we start by formulating a
mathematical framework in terms of susceptibilities by mak-
ing use of LRT (Sect. 2). This results in explicit expressions
for the appearance of emergent constraints in terms of sus-
ceptibility functions. In Sect. 3, a classification scheme for
emergent constraints is proposed. Then, in Sect. 4, applica-
tions are presented for conceptual climate models, such as
Ornstein–Uhlenbeck processes in one and two dimensions,
an energy balance model and the PlaSim model. The results
are summarized and discussed in Sect. 5.

2 Response functions

In this section, explicit expressions are given for response
functions of the state of a dynamical system which de-
pends on a single parameter and which is subjected to a
non-stationary forcing. Such response functions are used in
the following section to classify the different emergent con-
straints. Rigorous results for linear response properties of
large class of general stochastic systems was obtained by
Hairer and Majda (2010) (linear response theory for non-
equilibrium systems was developed by Ruelle, 1998, 2009).

We illustrate the approach using the general one-
dimensional forced stochastic differential equation (SDE):

dXt =
(
−V ′ (Xt )+F (t)

)
dt +
√
σdWt . (1)

Here, V (x) is a smooth confining potential, meaning that a
equilibrium solution exists for the unforced system (Pavlio-
tis, 2014), and F (t) is a prescribed forcing. Furthermore, σ is
the noise amplitude and the associated Wiener process is in-
dicated byWt . Usually, the potential depends on a parameter.

The probability density function of the unforced (F (t)=
0) system, say p, satisfies the Fokker–Planck equation:

∂p

∂t
=
∂(V ′(x)p)

∂x
+
σ

2
∂2p

∂x2 = L
∗(p), (2)

which defines the Fokker–Planck operator L∗. The equi-
librium distribution of the unforced system, here indicated
by pe, is given by

pe(x)=
1
Z
e
−2V (x)
σ ; Z =

∞∫
−∞

e
−2V (x)
σ dx. (3)

Linear response theory (Ragone et al., 2016) provides an ex-
pression for the change in the expectation value of the change
in an observable O (e.g. the temperature, ice extent or the
standard deviation of either), say 1O(t) when the system is
forced, compared to the unforced case, i.e.

1O(t)= E [O (Xt )]−E [Oe (Xt )] , (4)

where again the subscript “e” indicates the equilibrium of the
unforced system. It follows that

1O(t)=

t∫
0

RO(t − s)F (s)ds;

RO(t)=H(t)

∞∫
−∞

O(x)eL
∗t

(
−
∂pe

∂x

)
dx, (5)

where RO(t) is the response function, which is extended to
be zero for t < 0 to ensure causality with a Heaviside func-
tion H(t). When Eq. (5) is Fourier transformed, we find, us-
ing the convolution theorem,

F(1O(t))(ω)= χ (ω)F̂ (ω), (6)

where the Fourier transform χ (ω) of the response func-
tion RO(t) is the susceptibility. If we take a cosine forcing,
i.e. F (t)= F0 cosω0t , then F̂ (ω)= F0π (δ(ω−ω0)+ δ(ω+
ω0)), so once we know χ (ω), we can determine the re-
sponse 1O(t).

In the Appendix, it is shown that when we take the identity
operatorO = x as the observable, thus taking the mean value
of this variable, the response function and its corresponding
susceptibility can be written as

RO(t)=
2
σ

∞∑
l=1

βle
−λl t , χ (ω)=

2
σ

∞∑
l=1

βl

λl + iω
, (7)

where λl indicates the eigenvalues of the so-called genera-
tor L,

Lu= V ′(x)
∂u

∂x
+
σ

2
∂2u

∂x2 , (8)

and the βl represents projection coefficients that indicate how
strongly the system responds to the forcing; see the Appendix
for a more detailed description.

The amplitude A of the response to a periodic forcing
F (t)= F0 cosω0t is determined by the absolute value of the
susceptibility:

A(1X(t)) (ω0)=
2F0

σ

∞∑
l=1

βl√
λ2
l +ω

2
0

. (9)
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When the predictor is a response to a uniform frequency
forcing, it can be expressed as in Eq. (9). The predictand
will generally also have this form, as a forcing with a long
timescale can be approximated by a low-frequency forcing.
The previous analysis can be generalized to more dimen-
sions. In two dimensions, for example, with a state vector
Y t = (Y1t , Y2t )T , the SDE becomes

dY t =
(
−∇V (Y t )+F (t)î

)
dt +
√
σ I2dWt , (10)

where the term F (t)î denotes a forcing in the direction of the
first variable and I2 the identity matrix. As shown in Pavliotis
(2014), the derivation of the response function follows the
one-dimensional case closely, resulting in

RY1 (t)=
2
σ

∞∑
l=1

gle
−λl t ; (11)

RY2 (t)=
2
σ

∞∑
l=1

hle
−λl t , (12)

where gl and hl are again projection coefficients; gl and
hl contain a term describing strength of the response in Y1
and Y2, respectively. The derivation of the exact terms is
given in the Appendix. Calculating the response is analogous
to the one-dimensional case, so that the Fourier transforms of
the response functions are given by

A (1Y1(t)) (ω0)=
2
σ

∞∑
l=1

gl√
λ2
l +ω

2
0

; (13)

A (1Y2(t)) (ω0)=
2
σ

∞∑
l=1

hl√
λ2
l +ω

2
0

. (14)

Note that, generalizing to uncoupled multidimensional sys-
tems, the eigenfunctions are found to be the tensor products
of the eigenfunctions in the one-dimensional case, while the
corresponding eigenvalues are the sum of the eigenvalues in
the one-dimensional case.

3 Classification of emergent constraints

Although a wide set of different emergent constraints has
been found, no attempts have been made to classify them
so far using dynamical criteria. Here, a classification is pro-
posed based on the time characteristics of the predictor and
on the relationship between the predictor and the predictand.
Using this classification, assessment of their applicability be-
comes easier. Furthermore, a classification is a prerequisite
for a dynamical description of emergent constraints.

Firstly, an emergent constraint can be either direct or indi-
rect. In the direct case, the predictor and predictand are the
same observable, while in the indirect case they are not. In
the latter case, the predictor variable and predictand variable

Figure 1. The emergent constraint on snow-albedo feedback 1αs
1Ts

(from Hall and Qu, 2006, αs given in units of percent). This is an
example of a direct emergent constraint (it links the SAF in both
past and future time) and a dynamical emergent constraint (it uses a
response to a seasonal forcing as its predictor).

have to be closely linked, for instance, via a physical process.
We make a further distinction between static and dynamic
emergent constraints. In a dynamic emergent constraint, a
response to a known, or sometimes even unknown, forcing
in the (present-day) predictor is linked to the response of
the (future) predictand under the same (or a similar) forc-
ing. For example, the forcing can be the annual cycle of solar
radiation but can also be caused by ENSO or historical cli-
mate change. In a static emergent constraint, a relationship
between the time-independent quantity of the unforced sys-
tem in the present-day (predictor) is linked to the response in
a quantity under climate change.

As an illustration, we apply our classification to examples
of emergent constraints found in the literature in Table 1. Al-
though this is not a complete overview, examples are found
of the four types of emergent constraints. There are many
examples of direct dynamical constraints, such as the one in-
volving the snow-albedo feedback shown in Fig. 1 (Hall and
Qu, 2006). Dynamic direct emergent constraints are the most
intuitive. As long as the variations in the predictor are of a
sufficient amplitude compared to those of the predictand, a
correlation between the predictor and predictand automati-
cally points towards a common physical basis, for example,
a common dynamical response to an external forcing. The
direct static emergent constraint found by Bracegirdle and
Stephenson (2013) makes use of spatial patterns. All of the
indirect constraints involve equilibrium climate sensitivity as
the predictand. Often the mean of some variable with some
known bias in the model ensemble is linked to ECS. For in-
stance, in Tian (2015), the asymmetry bias in the Intertropical
Convergence Zone (ITCZ) is linked to climate sensitivity. An
example of a dynamical indirect emergent constraint is pro-
vided by Cox et al. (2018), who relate a function of autocor-
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Table 1. Application of our classification of emergent constraints to a selection of examples found in literature. DD is a direct dynamical
constraint, DS is a direct static constraint, and IS is an indirect static constraint, while ID denotes indirect dynamical emergent constraints.
Abbreviations are as follows: RH: relative humidity, ITCZ: Intertropical Convergence Zone, TOA: top of atmosphere, SH: Southern Hemi-
sphere, ECS: equilibrium climate sensitivity, LLC: low-level cloud, SAF: snow-albedo feedback, SAT: surface air temperature; GMST: global
mean surface temperature. The emergent constraint found by Trenberth and Fasullo (2010) seems to be spurious: no physical mechanism
was proposed and it did not appear in different ensembles, such as CMIP5 (Grise et al., 2015).

Reference Climate predictor Future climate predictand Type

Knutti et al. (2006) Seasonal cycle land temperature amplitude ECS DD
Hall and Qu (2006); Qu and
Hall (2014)

Springtime SAF SAF under climate warming DD

Boe et al. (2009) Arctic sea ice extent trend 1979–2007 Arctic sea ice extent DD
Clement et al. (2009) Sensitivity LLC to pacific decal variability Sign LLC feedback DD
Trenberth and Fasullo (2010) SH net radiation TOA ECS IS
Fasullo and Trenberth (2012) Mid-tropospheric RH over ocean in

subsidence region
ECS IS

Bracegirdle and Stephenson
(2013)

Arctic SAT Arctic SAT under climate warming DS

Gordon and Klein (2014) Sensitivity of extratropical LLC optical depth
to temperature

Extratropical LLC optical depth response to
climate warming

DD

Qu et al. (2014) Sensitivity of LLC cover to SST LLC cover changes under climate warming DD
Sherwood et al. (2014) Strength of cloud-scale and large-scale lower

tropospheric mixing over oceans
ECS IS

Su et al. (2014) RH and cloud fraction tropics ECS IS
Wenzel et al. (2014) Short-term sensitivity of atmospheric carbon

dioxide
Sensitivity tropical land carbon storage to
climate warming

DD

Tian (2015) Precipitation and mid-tropospheric RH
asymmetry bias (for ITCZ)

ECS IS

Kwiatkowski et al. (2017) Tropical primary production under
ENSO-driven SST variations

Tropical primary production under climate
change

DD

Cox et al. (2018) Function of autocorrelation of GMST ECS ID

relation of global surface temperature to ECS. In this case,
the short-time forcing is assumed to be caused by internal
variability.

Based on the response function theory in Sect. 2, we fur-
ther elaborate on the classification and also discuss condi-
tions for each type of constraint for a dynamical system with
varying parameters (which defines the ensemble of models).

For a direct dynamical emergent constraint, in the standard
case of a linear relationship, the relation has the following
form: Predictand=Cst× Predictor, where Cst is a constant
that is independent of the parameter used to generate the en-
semble of models. Rewriting this, the ratio of the responses
to forcing of frequencies ω1 and ω2 should be constant over
the (parameter) ensemble members ei . For the simple case of
two forcings that only differ in frequency, we find the condi-
tion from the ratio of the susceptibilities SR as

SR(e)=
A(1O(t)) (ω2)
A(1O(t)) (ω1)

=

∞∑
l=1

βl√
λ2
l +ω

2
2

∞∑
l=1

βl√
λ2
l +ω

2
1

= Cst . (15)

One variable (B) can act as forcing to a second vari-
able (O), while being itself forced externally (F ). The pre-

dictor and predictand are then given by the quotient of the
response functions of O and B. A further complication
is that often the forcing patterns are not exactly the same
for the short (F2) and long (F1) periodic forcing. In this
case, (Eq. 15) has to be adjusted to

SR(e)=
A
(
1O(t)|F2

)
(ω2)

A
(
1O(t)|F1

)
(ω1)

A
(
1B(t)|F1

)
(ω1)

A
(
1B(t)|F2

)
(ω2)
= Cst . (16)

This is further discussed in the example of the idealized en-
ergy balance model.

Physically, we expect that the same mechanism is respon-
sible for the response at a short and long timescale to ob-
tain this type of emergent constraint. The system should have
response times smaller than the timescale of the forcing or
equivalently: the generator should have eigenvalues λ larger
than the frequency of the forcing. Naturally, the response
times 1

λ
of the dominant processes are expected to be at least

smaller than the timescale of the slow forcing 1
ω1

.
Mathematically, the ratio in Eq. (15) becomes 1 in the case

that all eigenvalues λl are much larger than the forcing fre-
quencies. Interestingly, the linear relation breaks down in the
case that the fast forcing has the same order of magnitude
as the eigenvalues of the dominant terms in the susceptibil-
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ity. Under the assumption of a single dominant term in the
susceptibility and a slow forcing with frequency ω2→ 0, the
first correction term to the slope-one linear relation between
predictand y and predictor x, is cubic in x.

In the case of indirect dynamical emergent constraints, a
relationship between a predictor Y1 and a predictand Y2 is
found. Assuming the predictor Y1 is again a response to some
forcing, we can repeat the analysis above for direct con-
straints for a system of two dimensions, where a forcing is
added in one direction. Mutatis mutandis, a condition very
similar to Eq. (15) is found, as

A (1Y1(t)) (ω2)
A (1Y2(t)) (ω1)

=

∞∑
l=1

gl√
λ2
l +ω

2
2

∞∑
l=1

hl√
λ2
l +ω

2
1

= Cst , (17)

where gl and hl are defined as in Eq. (12). For an emerging
constraint to exist, the projection terms of the different ob-
servables should thus change in a similar fashion under the
change in parameter.

Static direct constraints link the mean of an observable
(predictor) to a change in the system under a specific forcing
(predictand). Note that the susceptibility only contains infor-
mation about the response to such forcing. Even in the limit
of ω→ 0, it denotes the linear response of the system, with-
out any information on the mean state (Lucarini and Sarno,
2011). So, to derive the condition for a linear relationship,

the mean E[Oe(Xt )] =
∞∫
−∞

peO(x)dx and the susceptibility

at frequency ω1 are used.
For static emergent constraints, the linear relationship be-

tween the predictand and the predictor is not expected to
pass through the origin, since the predictor will in general
be non-zero. Therefore, an additional term I is added to the
ratio, denoting the intercept of the line between the predic-
tor’s mean state and the predictand. Instead, the susceptibil-
ity is compared to the mean state and the following condition
is derived, where Cst should again be a constant that is in-
dependent of parameter(s), which are used to generate the
ensemble:

E [O1t ]− I
A (1O2(t)) (ω1)

=

∞∫
−∞

peO1(x)dx− I

∞∑
l=1

2
σ

hl√
λ2
l +ω

2
1

= Cst . (18)

Again, Cst can either be positive or negative, depending on
the physics under consideration. This equation is both valid
for direct and indirect static emergent relationships; in the
case of a direct constraint, O1 =O2 and the term hl con-
tains information about the response ofO1 to a forcing, while
in the indirect case O1 6=O2 and hl contains information
about O2.

As an illustration of the theory from Sect. 2 and a di-
rect dynamical emergent constraint, we take the Ornstein–
Uhlenbeck process (OU process). Here, V ′(x)= γ x, where
γ is a parameter that indicates the steepness of the poten-
tial. The eigenvalues and eigenfunctions of the generator are
given by (Pavliotis, 2014)

λl = γ l; φl(x)=
1
√
l!
Hn

(√
2γ
σ
x

)
, (19)

where Hn are the Hermite polynomials. For the Ornstein–
Uhlenbeck case, the ratio of response amplitudes reduces to

SR(γ )=
β1/

√
λ2

1+ω
2
2

β1/

√
λ2

1+ω
2
1

=

√
1+ (ω1/γ )2√
1+ (ω2/γ )2

, (20)

since both the observable and the derivative of the potential
are orthogonal to all eigenfunctions other than φ1. This ratio
is dependent on γ . In the case of γ � ωi for i ∈ {1, 2}, this
ratio is nearly 1 and an emergent relationship is present for a
model ensemble generated by varying γ .

4 Application to idealized climate models

From the previous sections, it appears that the computation of
the eigensolutions of the generator of the dynamical system
are central to determine whether an emergent constraint will
appear or not. In this section, we will provide examples using
idealized climate models.

The eigenvalues and eigenfunctions of the generator were
numerically determined using the fact that the eigenvalues
of the Fokker–Planck operator L∗ are equal to those of
the generator and that the eigenfunctions can be computed
from the transformation φl = φ

∗

l /pe. The Fokker–Planck
operator was discretized with use of Chang–Cooper algo-
rithm (Chang and Cooper, 1970). Eigenvalues and eigenvec-
tors were determined using an implicitly restarted Arnoldi
method (Lehoucq et al., 1998). Explicit simulations of
the SDEs were performed using a stochastic Runge–Kutta
method (Kloeden and Platen, 1992).

4.1 Ornstein–Uhlenbeck cases

First, the one-dimensional Ornstein–Uhlenbeck process is
considered with SDE

dXt = (−γXt +Fi(t))dt +
√
σdWt , (21)

forcing Fi(t)= sin2πtωi and frequencies ω1 = 0.001 and
ω2 = 0.1. A parameter ensemble is created by varying γ .
In this case, analytic solutions exist for the eigenvalues and
eigenvectors of the generator. Eigenvectors and eigenvalues
were determined using the Chang–Cooper scheme on a do-
main [−25, 25] with 1x = 0.25. The numerically computed
susceptibilities, as shown in Fig. 2b, are in agreement with
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Figure 2. (a) Response to forcings at two different frequencies of the one-dimensional Ornstein–Uhlenbeck process. Shown is the average
of a 500-member simulation of trajectories. (b) The susceptibility at these frequencies, whose ratio is given in the inset figure. This is an
example of a direct dynamical emergent relationship.
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Figure 3. Eigenvalue spectrum for (a) δ = 0.2 and (b) δ = 0.5. The dashed line corresponds to the frequency ω2 of the fast forcing. (c, d) Cor-
responding susceptibilities, with their ratio in the inset figures. This is an example of an indirect dynamical emergent relationship. Note that
for reasons of numerical stability, the range of γ1 is different than that of γ in Fig. 2.

the analytic ones and capture the response (Fig. 2a) well, as
expected in this linear case.

In the two-dimensional Ornstein–Uhlenbeck case, the
same forcing Fi(t) is added but only in the first dimension.
The governing SDE is given by

dXt =

[(
−γ1 δ
δ −γ2

)
Xt +

(
Fi (t)

0

)]
dt +
√
σ

(
1 0
0 1

)
dW t , (22)

and a parameter ensemble is generated by changing the
damping rate γ1. Two ensembles are compared with δ = 0.2
in the first ensemble and δ = 0.5 in the second. The damping
term γ2 is held constant at γ2 = 0.6.

In Fig. 3, the eigenvalues and susceptibility ratios are plot-
ted. In the case of a relatively weak coupling (δ = 0.2), all
non-zero eigenvalues are larger than the fast forcing fre-

quency ω2, so the system response time is smaller than the
forcing timescales. On the other hand, the strong coupling
(δ = 0.5) leads to a slowdown of the system, so that some
eigenvalues now become smaller than ω2. In these cases
(γ1 < 0.5), the system does not have time to portray the full
response to a forcing, while for others (γ1 > 0.5) it does.
Consequently, the strength of the response actually decreases
for γ1 < 0.5. Directly calculating the expectation value as the
mean of 500 stochastic trajectories confirms this result (not
shown).

The results in Fig. 4 show a large variation over the en-
semble in the projection term of the predictor on the eigen-
functions (gl ; see the Appendix). In contrast, the product of
the two projection terms in the predictand (hl) changes rel-
atively little over the ensemble for both coupling strengths.

Earth Syst. Dynam., 9, 999–1012, 2018 www.earth-syst-dynam.net/9/999/2018/
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Figure 4. (a, b) Projections gl (of predictor variable) and hl (of predictand variable) for a weakly coupled two-dimensional OU system with
δ = 0.2 and (c, d) the same for δ = 0.5.

Even though the projection terms now play a significant
role in determining the response, the eigenvalues still deter-
mine whether the relation is linear (fast compared to forc-
ing) or non-linear (similar size to forcing frequency). In
the weak-coupling system, the susceptibility ratio is almost
constant, and an emergent linear relationship is found. The
strong-coupling system only portrays an emergent relation-
ship for certain regimes (low or high γ1). A case can be
made though that the highly coupled system is the system
for which finding an emergent constraint is more likely, be-
cause the strength of the response is substantially higher and
a better signal-to-noise ratio can be obtained.

4.2 Energy balance model

In this section, a specific emergent constraint is examined in
more detail, namely the one pertaining to the SAF first de-
scribed by Hall and Qu (2006). They found a correlation be-
tween SAF on a seasonal scale and SAF as a result of climate
change. In models with a high snow albedo, the contrast be-
tween snow-covered and bare surfaces was largest and conse-
quently the sensitivity to changes in temperature was largest
(Qu and Hall, 2007). To study this emergent constraint, we
modify a simple energy balance model based on the semi-
nal work by Budyko (1969) and Sellers (1969). The albedo
is made temperature dependent following Fraedrich (1979),
and a stochastic term is added following Sutera (1981). A
parameter in the albedo function will be used to define a pa-
rameter ensemble.

Table 2. Constants for the energy balance model.

Constant Value Constant Value

cT 5.0× 108 J m−2 K−1 ε 1.0
A 20.5 W m−2 σB 5.67× 10−8 W m−2 K−4

Q0 342 W m−2 αmin 0.2
Qs 115 W m−2 αamp 0.05–0.5
G 150 W m−2 k 0.5
Cref 280 ppmv Th 284 K
τs 4.0× 106 s σT 2.0× 10−7 K2 s−1

σα 1.0× 10−5 s−1

With constant albedo, the energy balance model reads

dT =
1
cT

(
Q(1−α)+A ln

C

Cref
+G− εσBT

4
)

dt +
√
σT dWt , (23)

where dT is the temperature change, cT the atmospheric heat
capacity, Q the solar insolation, α the albedo, C the concen-
tration of greenhouse gases, Cref a reference concentration,
G the radiative forcing due to the reference greenhouse gas
concentration, σB the Stefan–Boltzmann constant and ε the
emissivity of the Earth. The standard parameter values for
this model can be found in Table 2. The parameters of the
albedo function are chosen to ensure that no bistability is
present in the model, in which case LRT would break down.

Before examining the snow-albedo feedback, note that, for
some variables, notably the climate sensitivity, a simple en-
ergy balance model (EBM) can react differently to forcing
from solar insolation or greenhouse gases. This can be deter-
mined from, withH =G+A ln C

Cref
and for a value of ε = 1,
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∂

∂α

∂T

∂Q
=

σ 1/4

4(Q(1−α)+H )3/4

(
3Q(1−α)

Q(1−α)+H
− 1

)
< 0; (24)

∂

∂α

∂T

∂H
=

3Qσ 1/4

16(Q(1−α)+H ))7/4 > 0. (25)

Sensitivity to greenhouse forcing decreases when albedo
decreases, while sensitivity to solar insolation (seasonal sen-
sitivity) increases for an increasing albedo, using typical val-
ues for Q and H .

To mimic the physical mechanism behind the emergent
constraint, the albedo is taken to be temperature dependent;
i.e. for low (high) temperatures, the albedo is high (low). A
logistic function is used to model this effect:

α(T )= αmin+
αamp

1+ exp(k (T − Th))
, (26)

where αmin is the minimum albedo, αamp is the amplitude,
k is a steepness factor, and Th is the temperature at which
half of the amplitude is reached. The amplitude αamp is the
parameter that is varied over the ensemble.

In the first case, the insolation forcing is given by Q=
Q0(1+Qs sin2πt/τ ), where τ corresponds to 1 year and
Qs is a seasonal modulation amplitude, with parameter val-
ues shown in Table 2. The snow-albedo feedback term is
then computed by dividing the amplitude of the albedo cy-
cle by the amplitude of the temperature cycle. A second case
is considered in which the greenhouse gas concentration C
is increased 0.3 % per year from 295 ppmv over a period
of 300 years. Here, the snow-albedo feedback is computed
by dividing the total albedo response by the total tempera-
ture response. In each case, the variance of the noise σT in
Eq. (23) was chosen as 10−7 K2 s−1. Changing this parame-
ter does not influence the eigenvalues as expected from the
theory (Pavliotis, 2014). While the projections of the eigen-
values and eigenfunctions did change slightly, the suscepti-
bility ratio was not influenced significantly by a variation of
the σT (halving and doubling of σ , not shown). In the com-
putation of the solution of the Fokker–Planck equation us-
ing the Chang–Cooper scheme, we used a resolution of 1 K
which is sufficient to accurately determine the eigenvalues
and eigenfunctions of the generator.

As mentioned above, application of Eq. (15) is not self-
evident. Considering temperature to be a forcing ignores the
fact that temperature responds differently to seasonal and
greenhouse gas forcing, as shown in Eq. (25). Secondly, us-
ing dα/dT as the observable directly does not work either.
Linear response theory does not give the expectation value
of the observable, but the expectation value of the deviation
due to the forcing, while we are interested in the change due
to a parameter change.

Instead, the SAF can be described by two observables:
SAF is determined by taking the ratio of the susceptibili-
ties of albedo to temperature. Therefore, we use the modified
Eq. (16):

RFS
(
αamp

)
=
A
(
1α(t)|Q

)
(ω2)

A (1α(t)|C) (ω1)
:
A (1T (t)|C) (ω1)
A
(
1T (t)|Q

)
(ω2)

=

∞∑
l=1

αl√
λ2
l +ω

2
2

∞∑
l=1

γl√
λ2
l +ω

2
1

:

∞∑
l=1

δl√
λ2
l +ω

2
1

∞∑
l=1

βl√
λ2
l +ω

2
2

= Cst , (27)

where

αl = 〈α,φl〉pe〈(1−α(T ))V ′(T ),φl〉pe ,

γl = 〈α,φl〉pe〈V
′(T ),φl〉pe (28)

βl = 〈T ,φl〉pe〈(1−α(T ))V ′(T ),φl〉pe ,

δl = 〈T ,φl〉pe〈V
′(T ),φl〉pe . (29)

In the case that the susceptibilities are all dominated by one
term with index l, this reduces to Cst = (αlδl)/(βlγl)= 1.

In Fig. 5, the sensitivity of temperature to varying ampli-
tude of the albedo function is shown, as well as the sen-
sitivity of the snow-albedo feedback and condition for the
existence of an emergent constraint. As shown in Fig. 5a,
no emergent relationship is found for climate sensitivity, a
feature that was analytically found in the case of constant
albedo. In Fig. 5b, the emergent constraint on SAF is shown.
In the warm regime (low albedo, lower line in the figure), the
SAF becomes larger for larger αamp. The larger the maximum
albedo, the steeper the logistic albedo function. A second ef-
fect also takes place, the higher the maximum albedo, the
warmer it gets. Consequently, sensitivity of the albedo func-
tion is smaller. This decrease in sensitivity also takes place
in the cold regime; the colder it gets, the less sensitive the
albedo gets. In the cold regime, it is clear that this second
mechanism dominates. The results can be reproduced by use
of LRT, as shown in Fig. 5c and d. The discrepancies dis-
appear when forcing is small; the climate change forcing in
particular is causing most of the differences.

One can extend the energy balance model by represent-
ing the response of snow and ice explicitly as a relaxation
towards the logistic reference albedo function α(T ) given in
Eq. (26). This gives the extended model

dT =
1
cT

(
Q(1−α)+H − εσT 4

)
dt +
√
σT dWt (30)

dα =−
1
τs

(α−α(T ))dt +
√
σαdWt , (31)

where τs = 4× 106 s is the response time of the albedo. The
drift term in the Fokker–Planck equation corresponding to
Eq. (31) is not the gradient of a potential but the eigensolu-
tions of the generator can of course still be computed numer-
ically.

Extending the model with an explicit albedo function does
not change the dynamics of the system significantly, nor the
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Figure 5. (a) The relation between temperature response to the seasonal cycle and the temperature response to greenhouse gas forcing.
(b) The strength of the snow-albedo feedback to solar and greenhouse gas forcing on different timescales. In the inset: their ratio as a
function of αmax. For clearness, panels (a, b) are shown without noise. (c) The susceptibilities for temperature as the observable. (d) The
ratio of albedo and temperature susceptibilities and their ratio (RFS).

eigenvalues and eigenvectors. Figure 6b shows the eigenval-
ues of the extended EBM to be almost exactly equal to the
eigenvalues of the original model, the imaginary parts contin-
uing to be zero. The projection coefficients are very similar as
well (not shown). Thus, the inclusion of a smaller timescale
does not improve the response.

4.3 PlaSim

To bridge the gap between parameter ensembles in simple
dynamical systems and Earth system models, the SAF emer-
gent constraint is further examined in PlaSim. PlaSim is a nu-
merical model of intermediate complexity, developed at the
University of Hamburg to provide a fairly realistic present
climate which can still be simulated on a personal computer
(Fraedrich et al., 2005). The atmospheric dynamics are mod-
elled using the primitive equations formulated for temper-
ature, vorticity, divergence and surface pressure. Moisture
is included by transport of water vapour. The equations are
solved using the spectral method. A full set of parameteri-
zations is used for unresolved processes such as long- and
shortwave radiation with interactive clouds, boundary layer
fluxes of latent and sensible heat and diffusion.

In this climate model, snow albedo is a function of surface
temperature Ts, snow depth and vegetation cover. The bare
soil snow albedo in PlaSim is described by

Asnow =


Amax, if Ts ≤ 10 ◦C

Amin, if Ts > 0 ◦C
Amin− (Amax−Amin) Ts

10 otherwise

. (32)

This equation is modified in the presence of vegetation
and in the case of shallow snow depth; see Lunkeit et al.
(2011) for more details. A set of simulations was performed
with Amax varying between 0.650 and 0.900. The histori-
cal forcing in PlaSim was approximated by a CO2 increase
from 295 ppm at a rate of 0.3 % per year in the 20th cen-
tury and 1 % per year in the 21st century before it stabi-
lized at 720 ppm; a 50-year spin-up corresponding to the pe-
riod 1850–1900 was used.

In Fig. 7, the PlaSim results are shown which can be com-
pared to the results from Hall and Qu (2006) in Fig. 1. Note
that the variation in CMIP3 is significantly larger than the
variation found in PlaSim but that the PlaSim results fit on
the relation found by Hall and Qu (2006). Variations in other
parameterizations, such as the maximum snow albedo over
forested regions, increase the spread in PlaSim SAF further
(not shown). This simulation shows that the constraint that
emerges in a multi-model ensemble with structurally differ-
ent formulations of the snow response can to some extent
also be reproduced using variations in one parameter. This
provides the justification for simplifying further to energy
balance models to examine the SAF emergent constraint.
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Figure 6. (a) Eigenvalues of the EBM depending on the amplitude of the albedo function for the simple EBM. The zero eigenvalues
correspond to the invariant measure. (b) The extended EBM. (c) Albedo projection terms for solar forcing (αl) as defined in Eq. (29) where
the markers denote l. (d) Same for temperature βl (e, f) projections terms for greenhouse gas forcing γl and δl , respectively.

Figure 7. Same as Fig. 1 but now with results from PlaSim.

5 Summary, discussion and conclusions

In this paper, we have presented a dynamical framework be-
hind the occurrence of emergent constraints in parameter-
dependent stochastic dynamical systems. In these systems,
emergent constraints are related to ratios of response func-

tions which can be determined using linear response theory.
It was shown that for a large class of systems, these ratios
could be expressed in terms of eigenvalues and projections
on eigenvectors of the generator of the system.

A classification of emergent constraints was given and sev-
eral types could be distinguished depending on whether sim-
ilar (direct) or different (indirect) observables are considered
and whether a response in present-day climate (dynamical)
or the time-independent part of present-day climate (static)
is linked to a response of the future climate system. For a
linear dynamical emergent constraint, the ratio of suscepti-
bilities at the two frequencies under consideration should be
a positive constant over the ensemble. When the response is
computed with respect to an internal variable (in contrast to
an external forcing), a condition is posed on the susceptibil-
ities of the two observables in the system. Static constraints
are encountered when a linear relationship is found between
the expectation value of the observable and the susceptibility
at the frequency of the forcing.
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Examples were given using several idealized climate mod-
els. In particular, the emergent constraints involving the
snow-albedo feedback was considered in detail. We found
that linear dynamical emergent relationships can occur when
the timescale of the system, indicated by the eigenvalues,
changes with the parameter and is smaller than the forcing
timescales. This is of particular interest because differences
in response size between climate models is often determined
by feedback strength in climate systems. Larger feedbacks
give rise to larger timescales (Roe, 2009), which is reflected
in the eigenvalues of the generator. For an emergent con-
straint on a feedback quantity, a more complicated constraint
mechanism occurs, where one has to take into account the
response to two different observables, which typically have
different timescales. When the condition of the predictor’s
timescale being smaller than the forcing timescale is not met,
deviations from linearity occur. When the linearity of the re-
lation is exploited in further analysis, such as in the interpre-
tation of emergent constraints by Wenzel et al. (2014), this
might lead to a bias in the estimate of the predictand.

Modelling emergent constraints with conceptual models
is justified when different Earth system models (ESMs) are
closely related and structural differences can be parameter-
ized. This can, for instance, be tested using an intermediate
complexity model with full parameterization of the process
under consideration.

The classification of emergent constraints provided gives
a hint to which kind of emergent constraints one can look
out for in an ensemble of high-dimensional global climate
models (GCMs). To find an emergent constraint for climate
sensitivity by data mining in a CMIP5 ensemble proved fruit-
less (Caldwell et al., 2014). Using the susceptibilities to find
new emergent constraints does not seem to have a direct ad-
vantage above directly looking for plausible correlations, but
susceptibilities might provide additional information. For ex-
ample, when a susceptibility shows a resonance at a certain
frequency over the ensemble of models, this could suggest
that the same feedback is present in all simulations.

In a high-dimensional dynamical system, eigenfunctions
and eigenvalues can be accessed with the help of transfer op-
erators, associated with the propagation of probability densi-
ties associated with the Fokker–Planck operator. The eigen-
functions that lie on the invariant measure are then computed
by making use of the ergodic properties of the climate sys-
tem. To overcome the burden of high dimensionality, a re-
duced transfer operator can be computed from a very long
simulation, from which the eigenfunctions on the attractor
are approximated (Tantet, 2016). However, a forcing on the
system does not generally lie only on the attractor and should
be split into a part parallel and perpendicular to the attrac-
tor. Consequently, the eigenvectors off the attractor cannot a
priori be ignored (Lucarini and Sarno, 2011). Gritsun and
Lucarini (2017) showed that indeed for some geophysical
systems, specifically quasi-geostrophic flow with orographic
forcing, the response to the forcing may have no resemblance
to the unforced variability in the same range of spatial and
temporal scales.

In conclusion, while the current theoretical framework
provides an understanding on how emergent constraints may
arise in low-dimensional stochastic dynamical systems, its
application to output from GCMs, in particular in finding
novel and useful emergent constraints, is a challenging issue
for future work.

Code availability. All the code used in this paper is available upon
request.
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Appendix A: Response function expansion

For A= x, we find from Eq. (5) that

RA(t)=

∞∫
−∞

xeL
∗t

(
−
∂pe

∂x

)
dx. (A1)

Using the expression for the equilibrium solution pe from
Eq. (3), we find

−
∂pe

∂x
=

2
σ
V ′(x)pe, (A2)

and hence Eq. (A1) becomes

RA(t)=

∞∫
−∞

xeL
∗t

(
2
σ
V ′(x)pe

)
dx. (A3)

With the standard L2 inner product, the adjoint of L deter-
mined as 〈L∗g, h〉 = 〈g, Lh〉, where L is the generator of
the OU process, is given by

Lu= V ′(x)
∂u

∂x
+
σ

2
∂2u

∂x2 . (A4)

Using this property in Eq. (A3), we find

〈x,eL
∗t
(
V ′(x)pe

)
〉 = 〈eLtx,V ′(x)pe〉, (A5)

and hence

RA(t)=
2
σ

∞∫
−∞

eLt (x)V ′(x)pedx. (A6)

Next, an inner product 〈g, h〉pe is defined as

〈g,h〉pe =

∞∫
−∞

ghpedx. (A7)

As a next step, let λl and φl be the eigenvalues of the gener-
ator, i.e. solutions v of

Lφ =−λφ. (A8)

For reversible processes, these eigenvalues are real, posi-
tive and discrete under the inner product 〈, 〉pe . The eigen-
functions form a complete orthonormal basis, such that
〈φn, φm〉pe = δnm (Pavliotis, 2014). Now, eLt (x) represents
solutions u(x, t) of the problem

∂u

∂t
= Lu, (A9)

with initial condition u(x, 0)= x. We can expand u into
eigenfunctions as

u(x, t)=
∞∑
l=1

αlφl(x)e−λl t . (A10)

From the initial condition, we find

∞∑
l=1

αlφl(x)= x, (A11)

and using the orthogonality of the φl under the inner prod-
uct 〈, 〉p̄e , we find

αl = 〈x,φl〉pe . (A12)

On the other hand, substituting the expression for u into
Eq. (A6) gives

∞∫
−∞

∞∑
l=1

αlφl(x)e−λl tV ′(x)pedx =
∞∑
l=1

βle
−λl t , (A13)

where

βl = αl〈V
′(x),φl〉pe = 〈x,φl〉pe〈V

′(x),φl〉pe . (A14)

Repeating the derivation with a general observable A=
f (x) gives 〈f (x), φl〉pe〈V

′(x), φl〉pe . The first term in βl
denotes the projection of the observable on the eigen-
functions and could intuitively be interpreted (for l > 0)
as the amenability of the observable to change. The sec-
ond projection term in βl can be understood to be the
amenability of the whole system to change under the in-
fluence of the forcing field. In Eq. (12), those observables
are Y1 and Y2, so that gl = 〈Y1, φl〉pe〈V

′(x), φl〉pe and hl =
〈Y2, φl〉pe〈V

′(x), φl〉pe .
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