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Abstract. The East Asian summer monsoon (EASM) is an important part of the global climate system and
plays a vital role in the Asian climate. Its seasonal predictability is a long-standing issue within the monsoon
scientist community. In this study, we analyse the seasonal (the leading time is at least 6 months) prediction
skill of the EASM rainfall and its associated general circulation in non-initialised and initialised simulations for
the years 1979–2005, which are performed by six prediction systems (i.e. the BCC-CSM1-1, the CanCM4, the
GFDL-CM2p1, the HadCM3, the MIROC5, and the MPI-ESM-LR) from the Coupled Model Intercomparison
Project phase 5 (CMIP 5). We find that most prediction systems of simulated zonal wind over 850 and 200 hPa
are significantly improved in the initialised simulations compared to non-initialised simulations. Based on the
knowledge that zonal wind indices can be used as potential predictors for the EASM, we select an EASM index
based upon the zonal wind over 850 hPa for further analysis. This assessment shows that the GFDL-CM2p1 and
the MIROC5 added prediction skill in simulating the EASM index with initialisation, the BCC-CSM1-1, the
CanCM4, and the MPI-ESM-LR changed the skill insignificantly, and the HadCM3 indicates a decreased skill
score. The different responses to initialisation can be traced back to the ability of the models to capture the ENSO
(El Niño–Southern Oscillation) and EASM coupled mode, particularly the Southern Oscillation–EASM coupled
mode. As is known from observation studies, this mode links the oceanic circulation and the EASM rainfall.
Overall, the GFDL-CM2p1 and the MIROC5 are capable of predicting the EASM on a seasonal timescale under
the current initialisation strategy.

1 Introduction

The Asian monsoon is the most powerful monsoon sys-
tem in the world due to the thermal contrast between the
Eurasian continent and the Indo-Pacific Ocean. Its evolu-
tion and variability critically influence the livelihood and the
socio-economic status of over 2 billion people who live in
the Asian-monsoon-dominated region. It encompasses two
sub-monsoon systems, the South Asian monsoon (SAM)
and the East Asian monsoon (EAM; Wang, 2006). In sum-
mertime (June–July–August), the EAM, namely the East
Asian summer monsoon (EASM), occurs from the Indo-
China peninsula to the Korean Peninsula and Japan and
shows strong intraseasonal-to-interdecadal variability (Ding
and Chan, 2005). Thus, an accurate prediction of the EASM
is an important and long-standing issue in climate science.

To predict the EASM, there are two approaches: sta-
tistical prediction and dynamical prediction. The statistical
method seeks the relationship between the EASM and a
strong climate signal (e.g. ENSO, NAO; Wu et al., 2009;
Yim et al., 2014; Wang et al., 2015). This method estab-
lishes an empirical equation between the EASM and climate
index. However, it is limited by the strength of the climate
signal. The other method is dynamical prediction. It em-
ploys a climate model to predict the EASM (Sperber et al.,
2001; Kang and Yoo, 2006; Wang et al., 2008a; Yang et al.,
2008; Lee et al., 2010; Kim et al., 2012). Without initialisa-
tion, both atmosphere general circulation models (AGCMs)
and coupled atmosphere–ocean general circulation models
(CGCMs) cannot predict the climate on a seasonal timescale
(Goddard et al., 2001). Given an initial condition, AGCMs
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Table 1. Details of the prediction systems investigated in this study.

Non-

System
Institute Resolution initialisation Initialisation Reference

Atmospheric Oceanic Members Members Type

BCC-CSM1-1 Beijing Climate Center,
China

T42L26 1lon× 1.33lat
L40

3 3 Full-field Wu et al. (2014)

CanCM4 Canadian Centre for Cli-
mate Modelling and Analy-
sis, Canada

T63L35 256× 192 L40 10 10 Full-field Arora et al. (2011)

GFDL-CM2p1 Geophysical Fluid Dynam-
ics Laboratory, USA

N45L24 1lon×0.33−1lat
L50

10 10 Full-field Delworth et al. (2006)

HadCM3 Met Office Hadley Centre,
UK

N48L19 1.25× 1.25 L20 10 10+ 10 Full-field and
anomaly

Smith et al. (2013)

MIROC5 Atmosphere and Ocean Re-
search Institute, Japan

T85L40 256× 192 L44 5 6 Anomaly Tatebe et al. (2012)

MPI-ESM-LR Max Planck Institute for
Meteorology, Germany

T63L47 GR15 L40 3 3 Anomaly Matei et al. (2012)

have the ability to predict the climate, but show little skill
in predicting the EASM (Wang et al., 2005; Barnston et al.,
2010). Because AGCMs fail to produce a correct relationship
between the EASM and the sea surface temperature (SST)
anomalies over the tropical western North Pacific, the South
China Sea, and the Bay of Bengal (Wang et al., 2004, 2005),
the monsoon community endeavours to predict the EASM
with CGCMs (Wang et al., 2008a; Zhou et al., 2009; Kim et
al., 2012; Jiang et al., 2013).

CGCMs have proved to be the most valuable tools in pre-
dicting the EASM (Wang et al., 2008a; Zhou et al., 2009;
Kim et al., 2012; Jiang et al., 2013). However, the per-
formance of CGCMs in predicting the EASM on seasonal
timescales strongly depends on their ability to reproduce the
air–sea coupled process (Kug et al., 2008) and on the given
initial conditions (Wang et al., 2005). In the Coupled Model
Intercomparison Project (CMIP) phase 3 (CMIP3; Meehl et
al., 2007) era, the models simulate not only a too-weak trop-
ical SST–monsoon teleconnection (Kim et al., 2008, 2011),
but also a too-weak East Asian zonal wind–rainfall telecon-
nection (Sperber et al., 2013). Compared to CMIP3 models,
CMIP phase 5 (CMIP5; Taylor et al., 2012) models improve
the representation of monsoon status (Sperber et al., 2013).
Therefore, given the initial conditions, the CMIP5 models do
have the potential to predict the EASM.

As mentioned, initial conditions play a vital factor in pre-
dicting the EASM on a sub-seasonal to seasonal timescale
(Wang et al., 2005; Kang and Shukla, 2006). Under the cur-
rent set-up of initialisation, the CMIP5 models show the abil-
ity to predict the SST variation index (i.e. El Niño–Southern
Oscillation (ENSO) index; Niño3.4) up to 15 months in ad-
vance (Meehl and Teng, 2012; Meehl et al., 2014; Choi et al.,
2016). This extended prediction skill of the ENSO suggests
that the EASM can be predicted on a seasonal timescale if the
dynamical link between the ENSO and monsoon circulations

is well represented in these models. Two scientific questions
will be addressed in this study: (1) how realistic are the ini-
tialised CMIP5 models in representing the EASM? (2) Can
the CMIP5 models capture the dynamical link between the
ENSO and EASM?

In this paper, we will intercompare the influence of the
initialisation on the capability of the CMIP5 models to cap-
ture the EASM and the ENSO–EASM teleconnections. The
model simulations, comparison data, and methods are intro-
duced in Sect. 2. Section 3 describes the seasonal skill of the
rainfall predictions and the prediction of the associated gen-
eral circulation of the EASM. The mechanism causing the
differential response of the models to the initialisation is pre-
sented in Sect. 4. The discussions are presented in Sect. 5.
Section 6 summarises the findings of this paper.

2 Models, data, and methods

2.1 Models and initialisation

In this study, we evaluate six prediction systems from the
CMIP5 project (Table 1) which have performed a yearly ini-
tialisation (Meehl et al., 2014). Their simulations can be used
in seasonal prediction studies. There are two groups of ex-
periments: without initialisation (non-initialisation) and with
initialisation. For non-initialised simulations, the models are
forced by observed atmospheric composition changes (re-
flecting both anthropogenic and natural sources) and, for the
first time, including the time-evolving land cover (Taylor et
al., 2012). For initialised simulations, the models update the
time-evolving observed atmospheric and oceanic component
(Taylor et al., 2012). Following the CMIP5 framework, the
six models establish their initialisation strategies, which are
summarised in Table 2. More details about the initialisation
strategy of each model can be found in the reference paper
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Table 2. Brief summaries of initialisation strategies used by modelling groups in the study. ECMWF: European Centre for Medium-Range
Weather Forecasts; GODAS: Global Ocean Data Assimilation System; NCEP: National Centers for Environmental Prediction; S: salinity;
SODA: Simple Ocean Data Assimilation; T : temperature. Initialised date shows the first initialised day of every prediction year.

system Atmosphere Ocean Initialised date Internet

BCC-CSM1-1 – Integration with ocean T

nudged to SODA product
above 1500 m

Ensemble 1:
1 September
Ensemble 2:
1 November
Ensemble 3:
1 January

http://forecast.bcccsm.ncc-cma.net/
(last access: July 2018)

CanCM4 ECMWF
reanalysis

Off-line assimilation of SODA
and GODAS subsurface
ocean, T and S adjusted to
reserve
model T − S

1 January http://www.cccma.ec.gc.ca/
(last access: July 2018)

GFDL-CM2p1 GFDL
reanalysis

Assimilates observations of T

and S from World Ocean
Database

1 January https://www.gfdl.noaa.gov/multi-decadal-prediction-stream/
(last access: July 2018)

HadCM3 ECMWF
reanalysis

Off-line ocean reanalysis
product

1 November https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
(last access: July 2018)

MIROC5 – Integration using
observational gridded ocean T

and S

1 January https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
(last access: July 2018)

MPI-ESM-LR NCEP
reanalysis

Off-line ocean hindcast forced
with NCEP

1 January https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
(last access: July 2018)

in Table 1. To simplify the comparison, we select the first
lead year (up to 12 months) results for further analysis. The
HadCM3-ff is the full-field initialised simulation, which em-
ploys the same CGCM (HadCM3) as the anomaly initiali-
sation. Satellite era (1979 to 2005) simulations are used in
the study due to the spatial coverage of precipitation obser-
vations.

The six models employ different initialisation strategies
for atmospheric and oceanic process and for initial date (Ta-
ble 2). These initialisation strategies contribute to a new ap-
proach for climate prediction on a decadal timescale (Meehl
et al., 2014). As the ocean is driving the long-term predic-
tion skill rather than the initial condition of the atmosphere,
the timing of the initialisation has to be considered on the
timescale of the ocean circulation, i.e. years to decades. On
an ocean timescale, the initialisation takes place with com-
parable timing and therefore the results are comparable. This
approach is based on decadal prediction experiments, which
deviates from the scores of other seasonal prediction ex-
periments based on initialisation techniques derived from
weather forecasting.

2.2 Comparison data

The main datasets used for comparison in this study in-
clude the following: (1) monthly precipitation data from the
Global Precipitation Climatology Project (GPCP; Adler et
al., 2003); (2) monthly circulation data from the ECMWF

Interim reanalysis (ERA-Interim; Dee et al., 2011); and
(3) monthly mean SST from the National Oceanic and At-
mospheric Administration (NOAA) improved Extended Re-
constructed SST version 4 (ERSST v4; Huang et al., 2015).
All the model data and the comparison data are remapped
onto a common grid of 2.5◦× 2.5◦ by bilinear interpolation
to reduce the uncertainty induced by different data resolu-
tions.

2.3 East Asian monsoon index and ENSO index

In recent decades, more than 25 general circulation indices
have been produced to define the variability and the long-
term change in the EASM. Wang et al. (2008b) arranged the
25 monsoon indices according to their ability to capture the
main features of the EASM. The Wang and Fan index (here-
after WF index; 1999) shows the best performance in captur-
ing the total variance in precipitation and three-dimensional
circulation over East Asia. We thus select the WF index for
further analysis. Its definition is a standardised average zonal
wind over 850 hPa at 5◦–15◦ N, 90◦–130◦ E subtracting at
22.5◦–32.5◦ N, 110◦–140◦ E. The WF index is a shear vor-
ticity index which is described by a north–south gradient of
the zonal winds. In the positive (negative) phase of the WF
index years, two strong (weak) rainfall belts are located at
the Indo-China peninsula to the Philippine Sea and northern
China to the Japanese Sea, and a weak (strong) rainfall belt
occurs from the Yangtze River basin to the south of Japan.
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The average summer (June–July–August) WF index is used
to represent the EASM for further analysis in this study.

Here, we choose the Niño3.4 and Southern Oscillation
index (SOI) to represent the ENSO status. The Niño3.4
is calculated by the SST anomaly in the central Pacific
(190–240◦ E, 5◦ S–5◦ N), while the SOI is based upon the
anomaly of the sea level pressure differences between Tahiti
(210.75◦ E, 17.6◦ S) and Darwin (130.83◦ E, 12.5◦ S). To cal-
culate the SOI, we interpolate the grid data to the Tahiti and
the Darwin point by bilinear interpolation.

2.4 Methods

In this study, we employ the un-centred pattern correla-
tion coefficient (PCC; for more details see Barnett and
Schlesinger, 1987) to analyse the model performance in com-
parison to the observational data because centred correlations
alone are not sufficient for the attribution of seasonal predic-
tion (Mitchell et al., 2001). The un-centred PCC is defined
by

PCC=

∑n
x=1

∑m
y=1w(x,y)F(x,y)A(x,y)√∑n

x=1
∑m

y=1F
2
(x,y)

∑n
x=1

∑m
y=1w(x,y)A

2
(x,y)

, (1)

where n and m are grids on longitude and latitude, respec-
tively. F(x,y) and A(x,y) represent two dimensions comparing
and validating value. w(x,y) indicates the weighting coeffi-
cient for each grid. An equal weighting coefficient was ap-
plied in the study area.

We also use the anomaly correlation coefficient (ACC) to
analyse the model performance in reproducing observational
variations. The ACC is the correlation between anomalies of
forecasts and those of verifying values with the reference val-
ues, such as climatological values (Drosdowsky and Zhang,
2003). Its definition is

ACC=

∑n
x=1wi

(
fi − f

)
(ai − a)√∑n

i=1wi

(
fi − f

)2∑n
i=1wi(ai − a)2

,

(−1≤ ACC≤ 1) (2)

fi = Fi −Ci,f

(
n∑

i=1
wifi

)/ n∑
i=1

wi, (3)

ai = Ai −Ci,a

(
n∑

i=1
wiai

)/ n∑
i=1

wi, (4)

where n is the number of samples, and Fi , Ai , and Ci rep-
resent comparison, verifying value, and reference value such
as climatological value, respectively. Also, f is the mean of
fi , a is the mean of ai , and wi indicates the weighting coef-
ficient. If the variation in anomalies of comparison is coinci-
dent with that of the anomalies of verifying value, ACC will
be 1 (the maximum value). It indicates that the forecast has
good skill.

The root mean square error (RMSE) is employed to check
the model deviation from the observation and its definition is

RMSE=

√√√√ n∑
i=1

wiD
2
i

/√√√√ n∑
i=1

wi, (5)

where Di represents the deviation between comparison and
verifying value, wi is the weighting coefficient for each sam-
ple, and n is the number of samples. If RMSE is closer to
zero, it means that the comparisons are closer to the verify-
ing values.

3 Seasonal prediction skill of the EASM

The EASM has complex spatial and temporal structures that
encompass the tropics, subtropics, and mid-latitudes (Tao
and Chen, 1987; Ding, 1994). In the late spring, an en-
hanced rainfall pattern is observed in the Indo-China penin-
sula and in the South China Sea. At the same time, the rain-
fall belt advances northwards to the south of China. In the
early summer, the rainfall occurs in the Yangtze River basin
and in southern Japan; these are called the Meiyu and Baiu
seasons, respectively. The rainfall belt can reach as far as
northern China, the Korean Peninsula (called the Changma
rainy season), and central Japan in July (Ding, 2004; Ding
and Chan, 2005).

The EASM is characterised by both seasonal heteroge-
neous rainfall distribution and associated large-scale circu-
lation systems (Wang et al., 2008b). In the summer season,
water moisture migrates from the Pacific Ocean to central
and eastern Asia, which is carried by the south-west sur-
face winds. Generally, a strong summer monsoon year is
followed by precipitation in northern China, while a weak
summer monsoon year is usually accompanied by heavier
rainfall along the Yangtze River basin (Ding, 1994; Zhou
and Yu, 2005).

For multi-model ensemble mean (MME), the prediction
skill of the June–July–August mean rainfall and the associ-
ated general circulation variable (i.e. zonal and meridional
wind and mean sea level pressure) are presented in Fig. 1.
These variables have been widely used to calculate the mon-
soon index (Wang et al., 2008b). Table 3 shows the contribu-
tion of these variables to the EASM. Their abbreviations fol-
low the guidelines of CMIP5 (Taylor et al., 2012). Compared
to the non-initialised experiment, a larger predicted area can
be found in the initialised experiment, especially for the psl,
ua850, and ua200. There are small changes to the predicted
area between the non-initialised and initialised experiment
for the pr, va850, and va200. The individual model shows
an acceptable performance (high PCC) in capturing the ob-
served spatial variation of the six variables, but a poor perfor-
mance in simulating their temporal variation (with low ACC;
Fig. 2). There is no improvement in estimating the spatial
variation of the six variables with initialisation. We can see
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psl ua850 va850 ua200 va200pr

Non-initial

Initial

Figure 1. Anomaly correlation coefficient of six variables (i.e. precipitation, mean sea level pressure, and winds over 850 and 200 hPa)
between multi-model ensemble mean and observations in non-initialisation and initialisation. The green dotted grids illustrate the significance
level at 0.05. The number in the lower left corner indicates the ratio of significant grid points to entire grids. The GPCP is employed as the
reference data for precipitation (pr), while winds (i.e. ua850, va850, ua200, and va200) and mean sea level pressure (psl) are compared with
ERA-Interim reanalysis.

Table 3. Description of the six variables which contribute to the EASM. The abbreviation of these variables follows the guidelines of CMIP5.

variable Standard name Contribution to the EASM

pr Precipitation Precipitation distribution indicates the strength of EASM
psl Mean sea surface pressure Differences in mean sea surface pressure between land and ocean lead to EASM
ua850 Zonal winds over 850 hPa A component of low-level cyclone which transports vapour from ocean to land
va850 Meridional winds over 850 hPa As ua850, and contributes to Hadley cell
va200 Meridional winds over 850 hPa A component of upper-level Hadley cell
ua200 Zonal winds over 850 hPa As va200

that the models show a higher ACC in the initialised sim-
ulations than that in the non-initialised ones. The improve-
ment in simulating the temporal variation of zonal winds
(i.e. ua850 and ua200) is larger than that for the rainfall and
meridional winds. One can exploit this improvement by us-
ing a general-circulation-based monsoon index as a tool to
predict the EASM. As mentioned in Sect. 2.3, the WF in-
dex better represents the monsoon rainfall and its associated
general circulation structure than the other monsoon index.
Therefore, the prediction skill of EASM in the following
analysis is based on the WF index.

In non-initialised simulations, none of the models cap-
ture the observed EASM, as indicated by an insignificant
ACC (Fig. 3). The CanCM4 and the GFDL-CM2p1 simu-
late a negative phase, while the BCC-CSM1-1, the HadCM3,
the MIROC5, and the MPI-ESM-LR all predicted a positive
phase of the EASM. With initialisation, the GFDL-CM2p1
and the MIROC5 improve the skill to simulate the EASM,
the CanCM4 and the MPI-ESM-LR displayed hardly any re-
action, while the BCC-CSM1-1 and the HadCM3 show a

worse performance than without initialisation. Particularly
with anomaly initialisation, the HadCM3 significantly lost
its prediction skill in capturing the EASM. The CMIP5 mod-
els show different responses to the initialisation in predicting
the EASM on a seasonal timescale. To understand the po-
tential reason, we analyse the principal components of six
variables which contribute to the EASM. The details are pre-
sented in Sect. 4.

4 EASM–ENSO coupled mode in CMIP5

We employ the EOF method to analyse the anomaly in the
leading EOF modes of the six meteorological variables in the
EASM region (0◦–50◦ N, 100◦–140◦ E). The first EOF mode
of the rainfall is characterised by a “sandwich” pattern, which
shows sharp contrast between the prominent rainfall centre
over Malaysia, the Yangtze River valley, and the south of
Japan and the enhanced rainfall over the Indo-China penin-
sula and the Philippine Sea (Fig. 4). The increased precipi-
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pr psl ua850 ua200 va850 va200

PCC

ACCACC

PCC

ACCACC

Non-initialisation Initialisation

Figure 2. Taylor diagrams displaying the pattern (PCC) and temporal (ACC) correlation metrics of six variables between observation and
model simulation in the EASM region (0–50◦ N, 100–140◦ E). Each coloured marker represents a model, i.e. the BCC-CSM1-1 (black), the
CanCM4 (green), the GFDL-CM2p1 (red), the HadCM3 (blue), the MIROC5 (brown), the MPI-ESM-LR (light blue), and the HadCM3-ff
(orange). The grey marker indicates the multi-model mean (MME).

BCC-CSM1-1 CanCM4 GFDL-CM2p1
HadCM3 MIROC5 MPI-ESM-LR HadCM3-ff

Non-initialisation Initialisation

ACC ACC
MME

Acceptable No prediction skill Acceptable No prediction skill 

Figure 3. Performance of the model ensemble member (open marker) and its ensemble mean (solid marker) on the EASM index. The abscissa
and ordinates are the anomaly correlation coefficient (ACC) and the root mean square error (RMSE), respectively. The observation of the
EASM index is calculated by zonal wind at 850 hPa from the ERA-Interim reanalysis data. The black dotted lines indicate the significance
level at 0.1. The vertical black line represents the correlation between the simulation and the observation of the EASM index at 0.

tation is associated with cyclones in the low level (850 hPa)
and anticyclones in the upper level (200 hPa).

The correlation coefficient of the first eigenvector and the
associated principal component (PC) between the model sim-
ulation and the observation in the non-initialised and the ini-
tialised simulation is presented in Fig. 5. Models capture the
eigenvector of the first EOF for the six meteorological fields
in the non-initialised simulation. However, they fail to re-
produce the associated PC of the first leading EOF mode.
Compared to the non-initialised simulation, models show no
improvement in simulating the first leading EOF mode of

rainfall, but exhibit a better performance in representing the
first leading EOF mode of zonal wind. The CanCM4 and
the GFDL-CM2p1 capture the first PC of ua850, but not
the other five models. For the zonal wind at 200 hPa, the
BCC-CSM1-1 fails to simulate its first EOF mode, while
the other six models can. Only the GFDL-CM2p1 accurately
simulates the first EOF eigenvectors and the associated PC
of va850, which cannot be reproduced in the other models.
No model captures the spatial–temporal variation in the first
EOF mode of meridional wind at 200 hPa. In addition, the
GFDL-CM2p1 and the MIROC5 simulate a reasonable lead-
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（a） (b)

（c） (d)

Figure 4. Spatial distribution of the first leading EOF mode of June–July–August precipitation and winds over 850 hPa (a), mean sea
level pressure and winds over 200 hPa (c), and the associated principal component (PC; b, d). The GPCP and the ERA-Interim data from
1979–2005 are used for the EOF analysis in the EASM domain.

(a) Non-initialisation (b) Initialisation

Figure 5. Portrait diagram display of correlation metrics between
the observation and the model simulation of the first leading EOF
mode for the six fields in the non-initialisation (a) and the initiali-
sation (b). Each grid square is split by a diagonal in order to show
the correlation with respect to both the eigenvector (upper left tri-
angle) and its associated principal component (lower right triangle)
reference datasets.

ing EOF mode and associated PC of psl, while the other mod-
els do not capture it.

Figure 6 shows the fractional (percentage) variances of the
six variables from the first EOF mode with the total vari-
ances from the observation and the model simulation with
(without) initialisation. The observational total variances for
the pr, the ua850, the ua200, the va850, the va200, and the
psl are depicted by the first leading EOF mode in 21.2, 59.0,
36.5, 20.6, 28.5, and 50.0 percent, respectively. The predic-
tion systems simulate a comparable explanatory variance,

which shows a slight discrepancy for the first leading mode in
the non-initialisation. From the non-initialised to initialised
simulation, the prediction systems tend to enhance the first
EOF leading mode because they show larger fractional vari-
ances of the total variances of six variables. We note that the
CanCM4 and the GFDL-CM2p1 significantly increase the
fractional variances from non-initialisation to initialisation.

The ENSO is the dominant mode of inter-annual vari-
ability in the coupled ocean and atmosphere climate sys-
tem, which has strong effects on the inter-annual variation
of the EASM (Wang et al., 2000; Wu et al., 2003). Wang
et al. (2015) concluded that the first EOF leading mode of
the ASM is the ENSO developing mode. As previously men-
tioned, the first EOF mode is improved in the initialised sim-
ulations compared to the non-initialised simulation. This also
can be found in the ENSO indices (Fig. 7). The individual
members and their ensemble mean of the six models show a
low correlation coefficient to observational Niño3.4 and the
SOI in the non-initialised simulations. The two indices show
strong anti-phases in the observation, with the correlation
range being −0.94 to −0.92 for four seasons (DJF, MAM,
JJA, SON). Without initialisation, the models can describe
the anti-correlation between Niño3.4 and the SOI, but with a
weaker correlation. Compared to the non-initialisation, there
is a significant improvement for models in capturing the ob-
servation of Niño3.4 and the SOI in the initialised experi-
ments. The initialisation lowers the spread of Niño3.4 and the
SOI in all six models. There is a noticeable change between
the model in producing the relationship between Niño3.4 and
the SOI. We find that the GFDL-CM2p1 (HadCM3) shows a
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Figure 6. Fraction of variance (%) explained by the first EOF mode for six fields in the non-initialisation (a) and the initialisation (b).
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Figure 7. Model prediction skill of Niño3.4 (red) and SOI (blue)
from DJF to SON in non-initialised (a) and initialised (b) simu-
lations. Green diagrams show the correlation coefficient between
the model simulation of Niño3.4 and the SOI. Box and whisker di-
agrams show the ensemble mean of each model (asterisk), median
(horizontal line), 25th and 75th percentiles (box), and minimum and
maximum (whisker). The two black dotted lines indicate the 0.05
significance level based upon a Student’s t test.

lower (higher) Niño3.4–SOI correlation in the initialised than
in the non-initialised simulations. With initialisation, the en-
semble mean of each model outperforms its individual mem-
bers in capturing Niño3.4 and the SOI, while without initial-

isation it shows a worse performance than that of the individ-
ual members in simulating Niño3.4 and the SOI.

The EASM strongly relies on the preseason ENSO signal
due to the lag response of the atmosphere to the SST anomaly
(Wu et al., 2003). The lead–lag correlation coefficients be-
tween the EASM index and Niño3.4, as well as the SOI from
JJA(−1) to JJA(+1) are illustrated in Fig. 8. The presea-
son Niño3.4 (SOI) presents a significant negative (positive)
correlation with the EASM, while the postseason Niño3.4
(SOI) shows a notable positive (negative) correlation. This
lead–lag correlation coefficient phase is called the Niño3.4
SOI–EASM coupled mode (Wang et al., 2008b). In the non-
initialised cases, the models do not produce the telecon-
nection between the ENSO and the EASM. The CanCM4,
the HadCM3, and the MPI-ESM-LR fail to represent the
lead–lag correlation coefficient differences between presea-
son and postseason ENSO and EASM. The BCC-CSM1-
1, the GFDL-CM2p1, and the MIROC5 capture the cou-
pled mode of the ENSO and the EASM. However, the pre-
season ENSO has a weak effect on the EASM. Compared
to the non-initialised cases, the MIROC5 and the GFDL-
CM2p1 both demonstrate a significant improvement in sim-
ulating Niño3.4 SOI–EASM coupled mode in the initialisa-
tion. The BCC-CSM1-1, the HadCM3, and the HadCM3-ff
show no improvement, with insignificant correlation between
Niño3.4 (SOI) and the EASM. The CanCM4 and the MPI-
ESM-LR indicate a higher correlation between the EASM
and the simultaneous to postseason ENSO than to the pre-
season ENSO.

5 Discussion

The model exhibits a better performance in simulating the
general circulation of the EASM with initialisation. Thus,
initialisation is helpful in forecasting the EASM on a sea-
sonal timescale. There are two initialisation methods in our
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Figure 8. Lead–lag correlation coefficients between the EASM index and Niño3.4 (a), as well as SOI (c) in non-initialised simulations
(a,c) and initialised ones (b, d) for observation (marker line) and models (marker) from JJA(−1) to JJA(+1). The two black dotted lines are
the 0.05 significance level based upon a Student’s t test. The vertical line represents JJA(0), where the simultaneous correlations between the
EASM index and Niño3.4, as well as SOI are shown.

study: full-field initialisation and anomaly initialisation (Ta-
ble 1). The full-field initialisation produces more skilful pre-
dictions on the seasonal timescale in predicting regional tem-
perature and precipitation (Magnusson et al., 2013; Smith et
al., 2013). Nevertheless, for predicting the EASM, there is
no significant difference between the two methods. We can
see that both the GFDL-CM2p1 and the MIROC5 have sig-
nificant improvement in capturing the EASM with full-field
and anomaly initialisation, respectively. Only the HadCM3
is initialised by the two initialisation techniques. However,
both of these initialised techniques produce poor predictions
of the EASM with no major differences.

The current initialisation strategy updates the observed
atmospheric component (i.e. zonal and meridional wind,
geopotential height, etc.) and the SST (Meehl et al., 2009,
2014; Taylor et al., 2012). With initialisation, the SST con-
veys its information via the large heat content of the ocean to
the coupled system. Therefore, an index indicating an ocean
oscillation like Niño3.4 shows seasonal-to-decadal predic-
tion skill (Jin et al., 2008; Luo et al., 2008; Choi et al.,
2016). The models studied here demonstrate a prediction
skill in simulating Niño3.4 and the SOI due to this effect.
The change in the correlation between Niño3.4 and the SOI
is insignificant from non-initialised to initialised simulations.
We therefore conclude that the relationship between Niño3.4

and the SOI depends more on the model parameterisation
than on the initial condition.

Wang et al. (2015) found that the second EOF mode of
ASM is the Indo-western Pacific monsoon–ocean coupled
mode, the third is the Indian Ocean dipole (IOD) mode,
and the fourth is the trend mode. The Indo-western Pacific
monsoon–ocean coupled mode is the atmosphere–ocean in-
teraction mode (Wang et al., 2013; Xiang et al., 2013), which
is supported by a positive thermodynamic feedback between
the western North Pacific (WNP) anticyclone and the under-
lying Indo-Pacific sea surface temperature anomaly dipole
over the warm pool (Wang et al., 2015). The IOD increases
precipitation from the South Asian subcontinent to south-
eastern China and suppresses precipitation over the WNP
(Wang et al., 2015). It affects the Asian monsoon by the
meridional asymmetry of the monsoonal easterly shear dur-
ing boreal summer, which can particularly strengthen the
northern branch of the Rossby wave response to the south-
eastern Indian Ocean SST cooling, leading to an intensi-
fied monsoon flow and an intensified convection (Wang and
Xie, 1996; Wang et al., 2003, 2015; Xiang et al., 2011). We
note that the models simulate a reasonable first EOF mode,
but illustrate no skill in capturing the other EOF leading
modes (not shown). We argue that the models cannot rep-
resent the monsoon–ocean interaction well, even with ini-
tialisation. The models do not simulate the third EOF lead-
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ing mode of the EASM since the predictability of the IOD
extends only over a 3-month timescale (Choudhury et al.,
2015). The current initialisation strategies (both anomaly and
full field) enhance the ENSO signal in the model simula-
tions with a higher explained fraction of variance. Kim et
al. (2012) described a similar finding in ECMWF system 4
and NCEP Climate Forecast System version 2 (CFSv2) sea-
sonal prediction simulations. With initialisation, the models
predict ENSO on a seasonal timescale well, which leads to
an overly strong modulation of the EASM by ENSO (Jin et
al., 2008; Kim et al., 2012).

It is worth mentioning that it was an extremely weak mon-
soon and strong El Niño year in 1998. The CanCM4, the
GFDL-CM2p1, the MIROC5, and the MPI-ESM-LR have
the ability to simulate the extreme monsoon event, while the
BCC-CSM1-1 and the HadCM3 do not capture it even with
initialisation. There is potential for the BCC-CSM and the
HadCM to improve the teleconnection between the ENSO
and the EASM.

This study discusses six CMIP5 models in predicting the
EASM on a seasonal timescale. The six models are earth sys-
tem coupled models which present a better SST–monsoon
teleconnection than CMIP3 models (Sperber et al., 2013) and
IRI (International Research Institute for Climate and Society)
models (Barnston et al., 2010). There are four AGCMs con-
tributing to the IRI prediction system, including ECHAM4.5,
CCM3.6, COLA, and GFDL-AM2p14. These models are
forced to forecast the climate on a seasonal timescale with
prescribed SST. Barnston et al. (2010) found that the models
showed low prediction skill over East Asia. Therefore, the
IRI prediction system cannot be used to predict the EASM.
There are two seasonal forecast application systems, the
ECMWF system and the NCEP CFS. Both the application
systems have low prediction skill of EASM (Kim et al., 2012;
Jiang et al., 2013). The CMIP5 models have potential to be
developed as an application system for EASM seasonal pre-
diction, especially the GFDL-CM2p1 and the MIROC5.

To better predict the short- to long-term climate, the
World Climate Research Programme (WCRP) launched two
new projects: the Climate-system Historical Forecast Project
(CHFP; Kirtman and Pirani, 2009; Tompkins et al., 2017)
and the Subseasonal-to-Seasonal (S2S) Prediction Project
(Vitart et al., 2017). The two projects coordinate most climate
modelling research groups and provide a large range of fore-
cast datasets. A comprehensive comparison of all the CHFP
and S2S data with the CMIP5 simulations regarding the sea-
sonal prediction skill of the EASM is certainly an interesting
topic, which should be addressed in an additional paper.

We have compared six CMIP5 systems with their re-
spective initialisation strategies. The GFDL-CM2p1 and the
MIROC5 have the potential to serve as a seasonal fore-
cast application system even with their current initialisation
method. These models have great potential to optimise the
SST–EASM interaction simulation performance to improve
their seasonal prediction skill of the EASM.

6 Summary

Six earth system models from CMIP5 have been selected in
this study. We have analysed the improvement of rainfall,
mean sea level pressure, zonal wind, and meridional wind
in the EASM region from non-initialisation to initialisation.
The low prediction skill of summer monsoon precipitation is
due to the uncertainties of cloud physics and cumulus param-
eterisations in the models (Lee et al., 2010; Seo et al., 2015).
The models show a better performance in capturing the inter-
annual variability of zonal wind than precipitation with ini-
tialisation. Thus, the zonal wind index is an additional factor
which can indicate the prediction skill of the model. When
we calculate the WF index in both non-initialised and ini-
tialised simulations, the GFDL-CM2p1 and the MIROC5
show a significant advancement in simulating the EASM
from the non-initialised to initialised simulation with a lower
RMSE and a higher ACC. There is a slight change in the
WF index calculated from the BCC-CSM1-1, the CanCM4,
and the MPI-ESM-LR data with initialisation. Compared to
the non-initialised simulation, the HadCM3 loses prediction
skill, especially with anomaly initialisation.

To test the possible mechanisms of the models’ perfor-
mance in non-initialisation and initialisation, we have cal-
culated the leading mode of the six fields associated with the
EASM. The models demonstrate a better agreement with the
observational first EOF mode in the initialised simulations.
The first leading mode of zonal wind at 200 hPa shows a sig-
nificant improvement in the models except the BCC-CSM1-1
with initialisation. Therefore, a potential predictor might be
an index based upon the zonal wind at 200 hPa. Compared
to non-initialisation, the models enhance the first EOF mode
with a higher fraction of variance to the total variance after
initialisation. The first EOF mode of the EASM is the ENSO
developing mode (Wang et al., 2015). We have analysed the
seasonal simulating skill of Niño3.4 and the SOI in each
model. The models show a poor performance in represent-
ing Niño3.4 and the SOI in the non-initialised simulation.
Initialisation improves the model simulating skill of Niño3.4
and the SOI. The initialised simulations decrease the spread
of ensemble members in the models. We find that there is
no significant change in the models reproducing the correla-
tion between Niño3.4 and the SOI from non-initialisation to
initialisation.

In general, the preseason warm phase of the ENSO (El
Niño) leads to a weak EASM producing more rainfall over
the South China Sea and north-west China and less rain-
fall over the Yangtze River valley and southern Japan; the
cold phase of the ENSO (La Niña) illustrated a reverse rain-
fall pattern to El Niño in East Asia. The preseason Niño3.4
(SOI) exhibits a strong negative (positive) correlation with
the EASM, while the correlation between the postseason
Niño3.4 (SOI) and the EASM illustrated an anti-phase from
the preseason. In the non-initialised simulations, the mod-
els do not capture the Niño3.4 SOI–EASM coupled mode.
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The MIROC5 is the only model that has the ability to rep-
resent the Niño3.4–EASM coupled mode with initialisation.
For the SOI–EASM coupled mode, the GFDL-CM2p1 and
the MIROC5 capture it in the initialisation, while the BCC-
CSM1-1, the HadCM3, the HadCM2-ff, the CanCM4, and
the MPI-ESM-LR do not. Therefore, we argue that the dif-
ferential depiction of the ENSO–EASM coupled mode in
CMIP5 models leads to their differential responses to initial-
isation.
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