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Abstract. Inferred effective climate sensitivity (ECSinf) is estimated using a method combining radiative forc-
ing (RF) time series and several series of observed ocean heat content (OHC) and near-surface temperature
change in a Bayesian framework using a simple energy balance model and a stochastic model. The model is
updated compared to our previous analysis by using recent forcing estimates from IPCC, including OHC data
for the deep ocean, and extending the time series to 2014. In our main analysis, the mean value of the estimated
ECSinf is 2.0 ◦C, with a median value of 1.9 ◦C and a 90 % credible interval (CI) of 1.2–3.1 ◦C. The mean es-
timate has recently been shown to be consistent with the higher values for the equilibrium climate sensitivity
estimated by climate models. The transient climate response (TCR) is estimated to have a mean value of 1.4 ◦C
(90 % CI 0.9–2.0 ◦C), and in our main analysis the posterior aerosol effective radiative forcing is similar to the
range provided by the IPCC. We show a strong sensitivity of the estimated ECSinf to the choice of a priori RF
time series, excluding pre-1950 data and the treatment of OHC data. Sensitivity analysis performed by merg-
ing the upper (0–700 m) and the deep-ocean OHC or using only one OHC dataset (instead of four in the main
analysis) both give an enhancement of the mean ECSinf by about 50 % from our best estimate.

1 Introduction

A key question in climate science is how the global mean sur-
face temperature (GMST) responds to changes in greenhouse
gases or other forcings. Climate sensitivity is determined by
complex feedbacks that operate on very different timescales
and may depend on the transient climate state. The standard
metric for climate sensitivity is the equilibrium climate sen-
sitivity (ECS) (or Charney sensitivity) given as the change in
temperature at equilibrium for a doubling of CO2, neglect-
ing long-term feedbacks associated with vegetation changes,
carbon feedbacks and ice sheet dynamics. Estimates of the
ECS are either based on complex climate models or observa-
tions of past climate (Collins et al., 2013; Knutti et al., 2017).
The Intergovernmental Panel on Climate Change (IPCC) pre-
sented a likely (> 66 % probability) range for ECS of 1.5 to
4.5 ◦C (Collins et al., 2013).

Regarding the Earth as a climate laboratory and the
changes in atmospheric composition and land use over the
historical record as a perturbation experiment, observation-
ally based analyses of Earth’s energy budget have been used
to infer the climate sensitivity (Forster, 2016). Since the
current climate is in a nonequilibrium state, observation-
ally based methods can only account for the feedbacks op-
erating during the historical period. These methods using
the historical period with observations are referred to as in-
ferred estimates (Armour, 2017; Forster, 2016) and only have
the capability to derive an effective climate sensitivity and
are generally significantly lower than ECS estimates from
atmosphere–ocean general circulation models (AOGCMs)
(Armour, 2017; Knutti et al., 2017).

Since the IPCC’s fifth assessment report (AR5), there
has been an improved understanding of the causes of the
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differences in estimates of climate sensitivity from climate
models and observationally based methods for two main
reasons. First, recent analysis of time-varying feedbacks in
AOGCM simulations from Coupled Model Intercomparison
Project Phase 5 (CMIP5) (Proistosescu and Huybers, 2017;
Armour, 2017; Andrews et al., 2015) has indicated that in
most AOGCMs the net feedbacks become more positive over
time as a new equilibrium is approached. This is most likely
due to the evolution of the pattern of sea surface temperature
increase in the Pacific and Southern oceans and associated
cloud feedbacks. Whether this slow warming has manifested
itself in the climate record used for the analysis is the dif-
ference between effective and equilibrium climate sensitiv-
ity (Armour, 2017; Knutti et al., 2017). Second, ECS for-
mally refers to global near-surface air temperature (“tas” in
CMIP5 nomenclature), and in observationally based meth-
ods observed surface temperature records that are a blend of
air temperature over land and sea surface temperature (SST)
over ocean are used in the estimation. Several observed sur-
face temperature records exist with different methods to ac-
count for gaps in the observations. Differences in histori-
cal surface temperature warming among various analyses is
more than 0.1 ◦C (Haustein et al., 2017), arising mainly from
approaches taken in regions that are missing or have limited
spatial coverage of observations. According to Richardson et
al. (2016), there is a general bias in the surface temperature
records since water heats more slowly than the air above and
due to undersampling in fast-warming regions (e.g., the Arc-
tic). Taking both effects into account, Armour (2017) shows
that previous estimates of inferred effective climate sensitiv-
ity (ECSinf) of about 2.0 ◦C are consistent with estimates of
ECS of 2.9 ◦C from climate models.

Although it is now established that the ECS estimated by
the use of complex climate models and ECSinf estimated by
using historical observations would differ, there is still con-
siderable spread in ECS estimates from models and between
observationally based ECSinf estimates. Using observation-
ally based methods and complex models are complementary
approaches to quantifying the net effect of the feedbacks that
determine the climate sensitivity. Complex climate models
include processes that are highly parameterized, in particu-
lar the representation of clouds, precipitation and convection,
and associated feedbacks, which are crucial for estimating
the ECS (Bony et al., 2015; Tan et al., 2016). There is also
a large spread in observationally based estimates (Knutti et
al., 2017). A better understanding of the feedbacks in the
complex models as well as improvements and understand-
ing differences among the observationally based methods are
needed.

Observational estimates of climate sensitivity can be im-
proved using longer data series of higher quality (e.g., cor-
recting for observational biases in temperatures or better
forcing estimates) (Urban et al., 2014). Estimates can also be
improved by including observational data on other climate
variables which were not previously available. Several stud-

ies indicate that the temporary slowdown in GMST at the
beginning of the millennium coexisted with increased accu-
mulation of heat in the deep ocean (e.g., Meehl et al., 2011,
2013; Balmaseda et al., 2013; Watanabe et al., 2013; Chen
and Tung, 2014; Lyman and Johnson, 2013). Johansson et
al. (2015) found that if ocean heat content (OHC) change
below 700 m over this period were included in their obser-
vationally based methods, the mean value of ECSinf would
increase.

In this study we use our estimation model that was first
documented in Aldrin et al. (2012) and further developed
in Skeie et al. (2014). Our method is more complex than
the common energy-balance-based estimates (Forster, 2016)
in that we embed a simple climate model into a stochastic
model with radiative forcing time series as input, treating the
Northern and Southern Hemisphere (NH and SH) separately
and including a vertical resolution of the ocean (40 layers).
The radiative forcing time series are linked to the observa-
tions of OHC and temperature change through the simple
climate model and the stochastic model, using a Bayesian ap-
proach. A unique feature with our method is that we use sev-
eral observational datasets. The method estimates not only
the ECSinf but simultaneously also provides posterior esti-
mates of the radiative forcing, as well as posterior uncer-
tainty estimates in the observations datasets and correlations
between them. In this study we further develop our estima-
tion model with additional observational datasets, including
heating rates of the deep ocean (below 700 m), new forcing
time series from the IPCC AR5 as well as extended time se-
ries from 2010 to 2014 to update our estimate of ECSinf. We
carry out a number of sensitivity experiments to investigate
causes of differences in observationally based ECSinf esti-
mates due to differences in the input data (observations of
surface temperature, OHC and radiative forcing (RF)).

2 Data and methods

2.1 The model

Our full model consists of a simple climate model (SCM)
with an idealized representation of the Earth’s energy bal-
ance, a data model that describes how observations are re-
lated to the process states and finally a parameter model that
expresses our prior knowledge of the parameters (Aldrin et
al., 2012).

The core of our model framework is the SCM, a determin-
istic energy balance/upwelling diffusion model (Schlesinger
et al., 1992). The SCM calculates annual hemispheric near-
surface temperature change (blended SST and surface air
temperature) and changes in global OHC as a function of es-
timated RF time series. The vertical resolution of the ocean
is 40 layers down to 4000 m. The output of the SCM can be
written asmt (x1750:t ,θ ), where x1750:t (the RF from 1750 un-
til year t) and θ are the true, but unknown, input values to the
SCM. θ is a vector of seven parameters, each with a physical
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Table 1. List of data used in the estimation, the abbreviation used in the text, references, in which cases the datasets are used, and time of
download. The months in parentheses are when data used in case A (see Sect. 2.2) were downloaded.

Abbreviation References Dataset used Downloaded
in case

Surface temperature change

GISS Hansen et al. (2006, 2010) A, B, C, D, E March 2015 (March 2011)
HadCRUT4 Morice et al. (2012) A, B, C, D, E March 2015 (March 2011∗)
NCDC Smith and Reynolds (2005), Smith et al. (2008) A, B, C, D, E March 2015 (June 2011)
CowtanWay Cowtan and Way (2014) A, B, C, D, E March 2015 (April 2014)

Ocean heat content upper 700 m

Levitus Levitus et al. (2009) A, B, C, E March 2015 (March 2011)
CSIRO Domingues et al. (2008), Church et al. (2011) A, B, C, E April 2014 (October 2011)
Ishii and Kimoto Ishii and Kimoto (2009) A, B, C, E March 2015 (October 2011)
ORAS4 Balmaseda et al. (2013) B, C, E March 2015

Ocean heat content below 700 m

ORAS4 Balmaseda et al. (2013) B, C, E March 2015

Ocean heat content above 2000 m

Levitus2000 Levitus et al. (2012) D July 2015

SOI index

SOI Southern Oscillation index, Bureau of Meteorology, Australia A, B, C, D, E March 2015 (November 2011)
http://www.bom.gov.au/climate/current/soihtm1.shtml

Forcing time series

Forc_Skeie14 Skeie et al. (2011, 2014) A
Forc_AR5 Myhre et al. (2013) B, C, D, E

∗ HadCRUT3.

meaning. One of these parameters is the climate sensitivity,
and the other parameters determine how the heat is mixed
into the ocean, which includes the mixed layer depth, the
air–sea heat exchange coefficient, the vertical diffusivity in
the ocean and the upwelling velocity (see Schlesinger et al.,
1992 and Aldrin et al., 2012 for details).

The true state of some central characteristics (gt ) of the
climate system in year t with corresponding observations
can then be written as gt =mt (x1750:t ,θ )+ nt , where nt is a
stochastic process, with three terms, representing long-term
and short-term internal variability and model error. For the
short-term internal variability, we use the Southern Oscilla-
tion index (Table 1) to account for the effect of El Niño–
Southern Oscillation (ENSO). The term for the long-term in-
ternal variability was implemented in Skeie et al. (2014), and
the dependence structure of this term (i.e., correlations over
time and between the three elements) is based on control sim-
ulations with a general circulation model from CMIP5 (see
Skeie et al., 2014, for details) This term will also represent
other slowly varying model errors due to potential limitations
of the SCM and forcing time series. The third error term is
included to account for more rapidly varying model errors.

For the (available) long-term observational data that de-
fines gt we consider the surface temperatures separately for
the Northern and Southern Hemispheres and the OHC sep-
arately for 0–700 m and below 700 m. Each of these ele-
ments of gt are associated with one or more corresponding
observationally based data series (Table 1), with individual
error terms. To gain as much information as possible, we use
several datasets for the same physical quantity (e.g., OHC
above 700 m) simultaneously (Aldrin et al., 2012; Skeie et
al., 2014). Most of the data series are provided with corre-
sponding yearly standard errors (Fig. S7a in the Supplement).
However, we only use the temporal profiles of the reported
errors and estimate their magnitudes within the model, tak-
ing into account the possibilities that the reported standard
errors may under- or overestimate the true uncertainty (Ap-
pendix A and Aldrin et al., 2012; Skeie et al., 2014).

The unknown quantities are given prior distributions as
presented in Skeie et al. (2014). The ECSinf is given a
vague prior, uniform (0, 20), and the informative priors for
θ based on expert judgment are listed in Table S1. We
apply a Bayesian approach in the spirit of Kennedy and
O’Hagan (2001) to the calibration of computer models and
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Figure 1. Posterior 90 % CI for ECSinf (a) and TCR (b) for the different analyses in this study. The estimated posterior mean is indicated
by a dot and the median by an open triangle. The IPCC AR5 likely range (> 66 % probability) for ECS (a) and TCR (b) is presented as gray
shading. Figure S2 show the corresponding probability density functions.

use Markov Chain Monte Carlo (MCMC) techniques to sam-
ple from the posterior distribution (Aldrin et al., 2012).

2.2 Setup

The starting point, here called case A, is the main result
from Skeie et al. (2014) (hereafter named Skeie14) with
some modifications (see Appendix A). These modifications
changed the mean ECSinf value from 1.8 ◦C (median 1.7 ◦C,
90 % credible interval (CI) 0.92–3.2 ◦C) to 2.0 ◦C (median
1.8 ◦C, 90 % CI 1.0–3.4 ◦C) (Fig. 1a, case A). The transient
climate response (TCR) is calculated by running the model
with 1 % per year increase in CO2 using the joint posterior
distribution of the model parameters. These modifications in-
creased the mean value of TCR from 1.4 to 1.5 ◦C and the
90 % CI shifted slightly to larger values (Fig. 1b).

In case A, we used four hemispheric pairs of observation-
ally based estimates of surface temperatures from about 1880
to 2010 and three series for OHC above 700 m from about
1950 to 2010 and RF from Skeie et al. (2011, 2014) (Table 1).
The forcing time series used in case A are hereafter named
Forc_Skeie2014 and the priors of each forcing mechanisms
included (Table S2) are described in detail in the Appendix D
of Skeie14.

The potential for improving the constraint of the estimate
of the climate sensitivity using observationally based meth-
ods depends crucially on the quality of the input forcing data
and the quality and amount of observational data. In case B,
we include new and improved knowledge of the forcing time
series and add new data for OHC below 700 m, and observa-
tional data are extended to 2014. More specifically, in case B
we did the following:

1. replaced the Forc_Skeie14 prior with the AR5 effective
radiative forcing (ERF) estimates (Myhre et al., 2013),
hereafter named Forc_AR5. The priors for the forcing
mechanisms included (Table S2) are constructed to be
consistent with the uncertainties provided in AR5 and
the same relative uncertainty for the prior forcing is
used over the entire time period. ERF includes rapid ad-
justments allowing the full influence on clouds except
through surface temperature changes (Sherwood et al.,
2014; Boucher et al., 2013; Myhre et al., 2013).

2. included data for OHC below 700 m (ORAS4) and
added one extra data series for OHC above 700 m (also
ORAS4). Note that the deep-ocean OHC is added as a
separate dataset and not merged with the upper ocean.
Including data on OHC in the deep ocean thus has the
potential to better constrain the parameters in the SCM
that determine how the heat is mixed into the ocean as
well as the posterior estimates of the effective radiative
forcing.

3. used updated versions of the data prior to 2010.

4. extended the time series from 2010 to 2014.

Previous studies using similar methods have obtained dif-
ferent results with respect to the estimated ECSinf (Knutti et
al., 2017). We perform three sensitivity experiments to inves-
tigate the effects of different choices about how to use OHC
data (cases C and D, Sect. 4.1) and how sensitive the results
are to pre-1950 data (case E, Sect. 4.2).
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Figure 2. Observed and fitted (posterior mean) values for the GMST for cases A to E (a–e). The shaded areas show the 90 % CI for fitted
values, i.e., the sum of the output from the deterministic SCM and the short-term internal variability excluding the terms for long-term
internal variability and model error. Figure S3 shows three sets of fitted values for the GMST for the main analysis that include the long-term
internal variability and model error.

3 Improved estimate of inferred effective climate
sensitivity

Here we present our revised estimate of ECSinf by replac-
ing the RF prior with IPCC data, including OHC data below
700 m and extending the time series to 2014 (case B). We
consider this analysis using the IPCC forcing estimates, in-
cluding deep-ocean OHC and extending the length of the in-
put data series as the most trustworthy and physically based
case and thus regard it as our main estimate of the ECSinf,
with a mean of 2.0 ◦C (median 1.9 ◦C, 90 % CI 1.2–3.1 ◦C).
The mean value is similar while the 90 % CI is narrower com-
pared to the refined Skeie14 estimate (Fig. 1a). The individ-
ual influence of the four major updates between cases A and
B is shown in Fig. S1 and described at the end of this sec-
tion. The mean value of TCR in case B is 1.4 ◦C (median
1.3 ◦C, 90 % CI 0.9–2.0 ◦C) (Fig. 1b). As for the ECSinf es-
timate, the TCR mean value is similar and the 90 % CI is
narrower compared to the refined Skeie14 estimate (Fig. 1b).
The GMST change is well reproduced (Fig. 2, case B), and
less of the recent GMST change is attributed to long-term
internal variability compared to the refined Skeie14 estimate
(Fig. S5a–b).

The rate of change in anthropogenic forcing is larger
between 1940 and 1970 using Forc_AR5 compared to
Forc_Skeie14 (Fig. 3). The fit to the GMST in the 1980s–
1990s improved (Fig. 2 case B vs. A), where the root mean
square error between 1980 and 1999 decreased from 0.12 to
0.077 ◦C. Figure S5 shows posterior estimates of the long-
term internal variability, the ENSO term and the model er-
rors. Parts of the increase in GMST over the last decades
are explained as long-term internal variability, but the ampli-
tude decreases in case B compared to case A (Fig. S5a–b). In
case B, the estimated amplitude of the multi-decadal inter-
nal variability (about 0.2 ◦C in each hemisphere, cf. Fig. S5)
is in good agreement with the decadal trends in global sur-
face temperatures found in unforced control simulations in
the multi-model ensemble from CMIP5 (0.2–0.4 ◦C; Palmer
and McNeall, 2014).

The prior anthropogenic mean forcing in 2010 increased
from 1.5 to 2.3 W m−2 from case A to case B when
Forc_AR5 replaced Forc_Skeie14. For case A, the poste-
rior forcing is shifted to higher values compared to the prior,
suggesting that the historical data and our method support
higher forcing than the Forc_Skeie14 prior. When the prior is
changed to Forc_AR5 in case B, the posterior for the anthro-
pogenic forcing is much closer to the prior (Fig. 3), which in-
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Figure 3. Posterior distribution of time series (a) and prior (dashed) and posterior (solid) probability density function (PDF) in 2010 (b) for
anthropogenic forcing. The shaded areas in panel (a) represent the 90 % CI.

dicates that the method and observational data are more in ac-
cordance with the new prior than the old one. The same holds
for the total forcing (Fig. S4). The 90 % CI for the posterior
anthropogenic forcing was 1.3 to 2.8 W m−2 in case A com-
pared to 1.3 to 3.4 W m−2 in case B. The upper limit of the
90 % CI is shifted to larger values. The most uncertain part of
the forcing time series is associated with aerosols. The differ-
ence between the two forcing priors is mainly due to a much
weaker aerosol forcing in Forc_AR5 than in Forc_Skeie14
(compare the two dashed–dotted bars in Fig. 4a). While the
posterior aerosol forcing was shifted to smaller negative val-
ues in case A, the prior and posterior for aerosol forcing
are similar in case B (Fig. 4b). A relatively weak aerosol–
cloud interaction as included in Forc_AR5 is consistent with
the recent findings in Malavelle et al. (2017) on how sulfate
aerosols from volcanic emissions influences clouds.

The ERFs in AR5 are based on an assessment of several
studies reflecting improved knowledge of the forcing mecha-
nisms compared to the one-model RF results used in Skeie14.
The new ERFs gave a better posterior estimate of GMST
(Fig. 2) and reduced change from prior to posterior forc-
ing (Fig. 3). Note that the number of forcing time series that
can be combined was 18 in Skeie14, including 3 time series
for volcanic and 8 for aerosols, compared to only 1 time se-
ries for each of these forcing mechanisms in Forc_AR5 (Ta-
ble S2). This gives less flexibility in the time development
of the forcing in case B compared to case A; however, the
GMST change is better reproduced in the 1980s–1990s us-
ing Forc_AR5 compared to Forc_Skeie14.

Ultimately, global climate change is governed by the radia-
tive imbalance at the top of the atmosphere (TOA) and modu-
lated by the internal variability. Forcing by greenhouse gases
and aerosols as well as albedo changes, feedback processes
and the radiative responses to temperature changes determine

this imbalance. With a positive net imbalance at TOA, energy
accumulates in the Earth system, mainly as increasing OHC
(Church et al., 2011). Since OHC is the dominant energy
storage in the system, these data series have profound influ-
ence on the ECSinf estimates (Tomassini et al., 2007; Skeie
et al., 2014; Aldrin et al., 2012; Johansson et al., 2015). In
case B, we have extended our use of OHC data, so in addition
to the three OHC data series above 700 m, we have included
the ORAS4 data above and below 700 m (Table 1) as two sep-
arate data sources. Including the deep-ocean OHC data gives
a stronger constraint on the overall accumulation of heat in
the system, and the posterior estimates of the parameters of θ

that determine the vertical transport of heat in the ocean – the
effective diffusivity and the upwelling velocity – increase by
44 and 31 %, respectively. Having separate data series for the
two ocean layers also provides information that influences
the balance between negative (by aerosols) and positive forc-
ings, since these forcings have different evolution over time
(cf. Sect. 4.1).

In Fig. 5 the observed and fitted OHC for cases A and B
are shown. Including data on OHC change below 700 m in-
creases the total heat uptake. The increase in the fitted OHC
above 700 m over the last decade is larger in case B com-
pared to case A. In case B the increase in the fitted OHC
above 700 m is larger than the observational data, while be-
low 700 m, the observed OHC increase is higher than the fit-
ted one (Fig. 5). This is to be expected since the parameters of
θ do not change over time. Thus, the observed rapid change
in OHC below 700 m over the last years with corresponding
slower warming above 700 m is attributed to long-term inter-
nal variability (a part of the nt term) in the model (Fig. S5c–
d). Note that the Ishii and Kimoto series is outside the 90 %
CI. The reason is that the assumed observational errors for
all series are much larger back in time than in the recent
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Figure 4. Posterior 90 % CI for aerosol ERF in 2010 for the different analyses in this study (a). The estimated posterior mean is indicated
by a dot. The two sets of priors used are shown as dash–dotted bars with the mean value as an open circle. The IPCC AR5 90 % probability
range for aerosol ERF is presented as gray shading. The prior and posterior probability density function (PDF) of aerosol ERF in 2014 in
case B are shown in (b). Red color is for the posterior distributions, and the black line is for the prior distribution. Panel (c) shows the
relationship between ECSinf and aerosol ERF for case B. The posterior 90 % CI is indicated by dashed lines.

years (see Appendix A). Therefore, the various data series
are aligned quite closely to each other in recent years, and
since the Ishii and Kimoto series has a much weaker trend
than the others, it lies above the 90 % CI in the first part of
the data history.

The update of the ECSinf from case A to B was done step-
wise in four steps (Fig. S1f, g, i and j). The new ERFs were
first implemented. The posterior forcing is much closer to
the prior using Forc_AR5 instead of Forc_Skeie14, and the
fit to the GMST in the 1980s–1990s also improved with a de-
crease in the root mean square error between 1980 and 1999
from 0.12 to 0.087 ◦C compared to case A. The stronger forc-
ing resulted in a shift of the ECSinf estimate to lower values
(Fig. S1f vs. e), with an ECSinf mean value of 1.5 ◦C (90 %
CI 0.9–2.3 ◦C). So far, only OHC data in the upper 700 m
were used, leaving the model unconstrained with respect to
the heating of the deeper ocean.

We then included the ORAS4 data above and below
700 m as two separate data sources. Similar to Johansson
et al. (2015) we found that including the OHC change be-

low 700 m increases the total heat uptake and thus the mean
value of ECSinf from 1.5 to 1.7 ◦C (Fig. S1g vs. f). The 90 %
CI shifted to larger values ranging from 1.0 to 2.8 ◦C.

The last two steps to update the ECSinf estimate from
case A to case B were to use the most recent version of the
data prior to 2010 and to extend the data series used from
2010 to 2014 (Table 1). Some of the observational data series
have been updated by the data suppliers, so first we use re-
fined data up to 2010 before we extend the data series to 2014
(cf. Appendix B). Using the refined data up to 2010, the es-
timated mean ECSinf increased from 1.7 to 2.0 ◦C (Fig. S1i)
and the 90 % CI was shifted again to larger values ranging
from 1.1 to 3.3 ◦C. Further, when the data series were ex-
tended from 2010 to 2014, the upper bound of the 90 % CI
decreased from 3.3 to 3.1 ◦C while the lower bound remained
unchanged and the mean estimate slightly reduced (Fig. S1j).

In total, the changing from case A to case B did not change
the mean value of ECSinf (it is 2.0 ◦C in both cases), but the
90 % CI was reduced from 1.0–3.4 to 1.2–3.1 ◦C. The reduc-
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Figure 5. Observed and fitted (posterior mean) values for the OHC for case A (a) and case B (b, c). The shaded areas indicate the 90 % CI.
Left-hand side: upper 700 m. Right-hand side: below 700 m if data are included in the analysis.

tion in ECSinf in the first step of the update is more or less
counteracted by the subsequent steps.

4 Sensitivity tests – the use of input data

We now investigate possible causes of differences in obser-
vationally based ECSinf estimates due to the use of input
data. We analyze the impacts of different usage of the OHC
data (cases C and D) and the treatment of uncertainties in the
GMST data (case E).

4.1 The role of the use of OHC data

The vertical transport of heat in the SCM (with 40 vertical
layers) is quite simple. Turbulent diffusion mixes heat down
from the surface, while downwelling transports heat directly
to the deepest layer, i.e., no detrainment to intermediate lay-
ers (Aldrin et al., 2012). Therefore, it is of interest to inves-
tigate a constraint of the model with OHC data for the to-
tal depth of the ocean instead of above and below 700 m.
In case C we do not separate the 0–700 m from the deeper
ocean. We use four datasets for total OHC by adding the
ORAS4 below 700 m data to each of the four OHC above
700 m estimates. Merging the OHC above and below 700 m
(case C) results in a substantial decrease in the posterior ERF
from 2.5 to 1.8 W m−2 (Fig. S6b–c) and an increase in the
ECSinf estimate from a mean value of 2.0 ◦C (median 1.9 ◦C)
to 3.2 ◦C (median 2.9 ◦C) (Fig. 1a). Without the separate con-
straint on the OHC above and below 700 m, the posterior

warming of the ocean increases faster (compared to case B)
over the last 20 years (Fig. 6). This is mainly caused by en-
hanced warming in the upper 700 m (Fig. 7). This allows for a
stronger negative ERF estimate for aerosols (Fig. 4a). While
the prior and posterior radiative forcing in case B is similar,
in case C the posterior aerosol ERF is shifted to lower val-
ues (Fig. 4a) and the posterior net forcing is shifted towards
lower values (Figs. 4a and S6c) and hence a higher estimated
ECSinf (Fig. 1) compared to case B. This anticorrelation be-
tween aerosol forcing and ECSinf is illustrated in Fig. 4c for
case B. However, the observations show a stronger recent in-
crease in heat in the deep ocean (cf. Sect. 3) and not in the
upper 700 m, so this test where this information is not used is
likely to overestimate the aerosol forcing strength and hence
overestimate the ECSinf. Since the IPCC best estimate of
−0.9 W m−2 was published in 2013 for aerosols ERF, studies
point towards weak aerosol–cloud interaction (Gordon et al.,
2016; Malavelle et al., 2017; Toll et al., 2017). These recent
studies indicate that there is no firm evidence to revise the
IPCC AR5 aerosol ERF best estimate yet. We therefore keep
case B as our best estimate, since having separate data series
for the two ocean layers provides information that constrains
the balance between negative and positive forcings due to
their different time evolution.

A unique feature with our method is that we use data from
more than one observational dataset. It is obvious that, as
long as the various data series for the same quantity (here
OHC above 700 m) differ, it is easier to fit a model to one
data series, thus giving less uncertainty in the posterior esti-
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Figure 6. Observed and fitted (posterior mean) total OHC using several OHC datasets (case B: separate OHC data above and below 700 m;
case C: merge OHC data above and below 700 m; a) and using only one dataset for the total OHC (case D; b). The shaded areas indicate the
90 % CI.

Figure 7. Posterior mean (solid lines) of the output from the deterministic SCM for OHC above 700 m (a) and below 700 m (b) for cases B,
C (total OHC four series) and D (total OHC one series).

mates. In case D we test the effect of using one alternative
time series for OHC. We choose to use the Levitus2000 time
series, which is the same OHC data as used in Johansson et
al. (2015). The pentadal heat content is used from 1955 to
2012, treated as annual observations and extended to 2014
using the yearly OHC data for the upper 2000 m from the
same data source. We use the OHC data for the upper 2000 m
as they were data for the total OHC. Observed energy stored
below 2000 m is not included in the estimation, and hence
the ECSinf might be underestimated. Energy stored below
2000 m is uncertain. Purkey and Johnson (2010) found an
increase in OHC in the abyssal and deep Southern Ocean
in the 1990s and 2000s based on sparse observations from
ships, but it is not clear if this is a long-term trend. Llovel et
al. (2014) could not detect a deep-ocean (below 2000 m) con-
tribution to sea level rise and energy budget between 2005

and 2013 using ocean observations and satellite measure-
ments; however, the uncertainties are large.

As in case C, we do not separate the OHC data above and
below 700 m. Quite similar to case C, there is a more rapid
increase in the posterior estimate of total OHC (Fig. 6) com-
pared to case B; the increased warming is mostly in the upper
700 m (Fig. 7), and the posterior forcing is shifted to lower
values than in the prior (Figs. 4a and S6d). In case D the es-
timated mean ECSinf is 2.8 ◦C (median 2.6 ◦C, 90 % CI 1.5–
4.6 ◦C) (Fig 1a, case F). This is higher than in case B, but
lower than for case C.

The estimated total OHC has a narrower range when OHC
above and below 700 m are merged (Fig. 6a). The range is
also narrower in case D than in case C. As expected, using
several data series for OHC (case B: 5; case C: 4; case D:
1) increases the posterior observational error. Note that the
magnitude of the observational errors is estimated (Aldrin et
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al., 2012; Skeie et al., 2014). In case D, the posterior standard
deviation of the observed OHC is similar to the reported stan-
dard deviation (Fig. S8), while when using several OHC time
series, the posterior standard deviation is larger (Fig. S7) and
arguably more correct than reported due to the large variabil-
ity among the datasets (Appendix A). Hence, larger uncer-
tainties in the observed OHC data result in larger uncertain-
ties in the estimated OHC.

Johansson et al. (2015) used the same OHC data series as
in our case D and a similar method; however, their 90 % CI
for the OHC in the upper 2000 m (their Fig. S5) is even nar-
rower. This might not only be due to the use of one OHC
dataset. While we estimate the magnitude of the observa-
tional error, Johansson et al. (2015) use the error given by
the OHC data provider. In Johansson et al. (2015) the esti-
mated uncertainties in OHC were smaller than the given ob-
servational uncertainties (their Fig. S5). The narrower ECSinf
range may primarily be because Johansson et al. (2015) as-
sumed very small measurement errors in the most informa-
tive data (OHC); secondly, they ignored time correlation in
observational errors and did not take into account long-term
internal variability to the same degree as in our method.

To sum up, using several observational series (and esti-
mated observational errors) increases the estimated observa-
tional errors to more realistic values, since data series are
not well correlated and hence increase the range of estimated
OHC with implications for estimated ECSinf.

4.2 The role of uncertainty estimates in the temperature
series

The prior standard deviation for the surface temperature data
is quite different among the datasets (Fig. S7a). The NCDC
data have 3 to 5 times larger standard error prior to 1950
compared to after 1950, while it is more constant back to the
19th century for the three other datasets.

To investigate this, we reestimated our model using data
only after 1950, which is equivalent to assuming a very large
uncertainty prior to 1950. The estimated magnitude of the
ENSO signal increases (Fig. S5a–b) since the data series are
more correlated in the latter part of 20th century. For tem-
perature, the model fits the observations of GMST well, but
with a larger 90 % CI range (Fig. 2), and the observed NH
and SH temperatures are well within the 90 % CI of the
model (Fig. S9). The mean ECSinf increases from 2.0 (me-
dian 1.9 ◦C) to 2.2 ◦C (median 2.1 ◦C), and the upper 90 %
CI limit increases from 3.1 to 3.8 ◦C (Fig. 1a, case E vs. B).
The mean TCR increases from 1.4 to 1.5 ◦C and the 90 % CI
is shifted slightly to lower values compared to the range from
IPCC by 0.1 ◦C (Fig. 1b).

Johansson et al. (2015) used only the NCDC data for
GMST; thus, the data prior to 1950 were given little weight
when fitting the model. Our ENSO signal is now (case E)
of a similar magnitude as in Johansson et al. (2015) (their
Fig. 1b). The ECSinf uncertainty in this study is still larger,

and our mean value is slightly higher than their lower limit
of 2 ◦C.

Excluding data before 1950 also excludes the late 19th-
century period with a large volcanic eruption where the sig-
nal in the GMST data is small and quite uncertain (Santer et
al., 2016). Santer et al. (2016) argued that the method in Jo-
hansson et al. (2015) down-weights the volcanic forcing due
to the small response of the Krakatau eruption in the tem-
perature data. Johansson et al. (2016) responded that the ob-
servational uncertainty was large, so the GMST data at that
time will have a limited effect. In our results, excluding ob-
servations before 1950, the GMST response following the
Pinatubo eruption in 1991 increases (Fig. 2) and is similar
to observations due to the larger ENSO signal and stronger
posterior volcanic signal.

In the early period, the aerosol forcing had a larger relative
contribution to total ERF causing a more uncertain forcing
trend in the early period. Uncertainty in the temporal trend of
the forcing is not included, and better representation of forc-
ing uncertainties than the scaling approach is needed (Tanaka
et al., 2009). Omitting data before 1950 (case E), when the
net forcing is more uncertain (Stevens, 2013), makes it eas-
ier to fit the model to observations, but the uncertainty in es-
timated ECSinf, TCR and GMST and increases (Figs. 1 and
2).

5 Discussions and conclusions

Causes of differences in observationally based estimates of
ECSinf due to the use of input data are analyzed, and an up-
dated ECSinf estimate is presented using our Bayesian esti-
mation model. Adding observational data from 2011 to 2014
and OHC data below 700 m and replacing forcing data with
IPCC AR5 ERFs, the ECSinf posterior mean was 2.0 ◦C (me-
dian 1.9 ◦C, 90 % CI 1.2–3.1 ◦C). The mean value is similar
and the range is slightly narrower than the refined Skeie14
estimated (Fig. 1 case B vs. A). The mean ECSinf estimate is
larger than in Skeie14. Although the estimate in cases A and
B is quite similar, the ECSinf estimate shifted to lower val-
ues when Forc_AR5 replaced Forc_Skeie14 (from a mean
ECSinf estimate of 2.0 to 1.5 ◦C), and it shifted to larger val-
ues when OHC data below 700 m were included (to a mean
ECSinf value of 1.7 ◦C). The ECSinf estimate was very sensi-
tive to the forcing data used, and we showed that the ECSinf
estimate was also sensitive to the assumed uncertainties in
the GMST data (case E: ECSinf mean value increased from
2.0 to 2.2 ◦C) and how the OHC data were treated (cases C
and D, with mean ECSinf of 3.2 and 2.8 ◦C, respectively).

Bayesian methods have recently been reviewed by An-
nan (2015) and Bodman and Jones (2016), and limitation
by assuming constant sensitivity over time, the role of the
ECSinf prior distribution and equal efficacy for different forc-
ings have been discussed. Implementing an alternative prior
for ECSinf as in Skeie14, where 1 /ECSinf is uniformly
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distributed, shifted the mean ECSinf to lower values from
2.0 ◦C (median 1.9 ◦C, 90 % CI 1.2–3.1 ◦C) to 1.6 ◦C (me-
dian 1.6 ◦C, 90 % CI 0.97–2.5 ◦C). The ECSinf estimate is
sensitive to the prior; however, one could argue against this
alternative prior because it has a high probability of low cli-
mate sensitivities that may not be realistic, with 76 % prob-
ability for ECSinf being lower than the pure black-body ra-
diation sensitivity of 1.1 ◦C (Aldrin et al., 2012; Skeie et al.,
2014). Recently, studies have suggested that assuming equal
efficacy for all forcings biases the ECS estimate low (Mar-
vel et al., 2015; Shindell et al., 2015) even when ERFs are
used. In our approach, the efficacy is implicitly included in
the forcing uncertainty and thus accounted for. However, if
we apply an efficacy of 1.5 for ozone, surface albedo, BC on
snow and aerosols, which is the efficacy found in the anal-
ysis of Shindell (2014), the probability density function of
the ECS is shifted to larger values (Fig. S1l), with a 90 % CI
ranging from 1.2 to 3.7 ◦C.

The fit to the temperature data in the 1980s and 1990s im-
proved using Forc_AR5 instead of Forc_Skeie14, indicating
that the forcing trend over this period is better represented
in Forc_AR5 compared to Forc_Skeie14. The trend in the
forcing is more uncertain in the first half of the 20th cen-
tury due to less dominance of CO2, and in our method the
same relative uncertainty for the prior forcing is used over
the entire time period. A sensitivity simulation omitting ob-
servations before 1950, similar to making these observations
very uncertain, gave better representation of the GMST in the
latter part of the 20th century and an increased mean ECSinf.
Future work should include uncertainties in the temporal de-
velopment of the forcing, and there is a clear need for an
international effort to establish forcing time series, using a
consistent forcing definition and allowing for uncertainties
in emissions to give a better representation of the temporal
uncertainties.

Including OHC data below 700 m shifted the ECSinf to
higher values. The estimated ECSinf was found to be very
sensitive to how the OHC data were used. Including four
OHC time series but merging the data above and below
700 m (case C), the ECSinf mean value increased from 2.0
to 3.2 ◦C. The probability of ECSinf above 4.5 ◦C increased
to 13 %, values that are practically excluded in our main esti-
mate (case B). Previous studies have used total-column OHC
data, and due to the simple representation of the ocean one
can argue that this might be more appropriate. However, in
case C most of the recent increase in OHC in the model oc-
curred in the uppermost 700 m, allowing a stronger aerosol
cooling (Fig. 4a) and hence a larger ECSinf, while the ob-
servations indicate that the ocean was warming mainly be-

low 700 m. Using only the total-column OHC might there-
fore overestimate the aerosol forcing strength and hence the
ECSinf. We recognize structural uncertainties in the model,
and a multi-model intercomparison of observational methods
using identical input data would be of great value to investi-
gate these uncertainties.

Using only the Levitus2000 series for OHC for the total-
ocean column (case D), the ECSinf 90 % CI was shifted to
lower values with a range of 1.5–4.6 ◦C and the range shrunk
compared to case C. The historical measurements of ocean
temperatures are sparse (Abraham et al., 2013), with large
differences between the datasets. The temporal structure of
the reported uncertainties differs, and the full uncertainties
are often not assessed. Hence, relying on only one OHC se-
ries and its reported uncertainty may underestimate the ob-
servational uncertainties and hence overestimate the certain-
ties in the estimated OHC with implications for the ECSinf
estimate.

Recent studies indicate that the upper-ocean warming is
underestimated due to the gap-filling methods (Durack et al.,
2014; Li-Jing et al., 2015), in which case the ECSinf will also
be underestimated. When refining historical OHC estimates,
not only the best value, but also the uncertainty is crucial for
observationally based ECSinf estimation.

Other priorities are to improve the GMST series, including
uncertainties – not only for the recent trend (Karl et al., 2015;
Cowtan and Way, 2014) but also for earlier time periods. As-
suming a very large uncertainty prior to 1950, the GMST fit
improved and the ECSinf mean increased while the estimated
uncertainty ranges increased.

Our ECSinf posterior mean was 2.0 ◦C with a 90 % CI of
1.2 to 3.1 ◦C. This is consistent with a mean ECS of 2.9 ◦C
(Armour, 2017), which compares reasonably well with cli-
mate model estimates (Andrews et al., 2012; Forster et al.,
2013). A final remark is that it is not obvious that the true
ECS is a more relevant metric for the climate sensitivity than
the ECSinf in a policy context (i.e., the Paris Agreement). The
United Nations Framework Convention on Climate Change
(UNFCCC) has not adopted a predefined definition of GMST
and the stronger long-term feedbacks found in an analysis
of CMIP5 simulations (Proistosescu and Huybers, 2017) op-
erate on a timescale longer than the timescale for reaching
2 ◦C.

Data availability. Several publicly available datasets were used in
this study. The specific references to the data sources are given in
Table 1. Model outputs are available upon request.
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Appendix A: Refinement of Skeie14

A few updates/corrections to Skeie14 (Fig. S1a) had to be
made prior to the analyses presented in this study. In the
Skeie14 study, the standard error of observed OHC above
700 m for two out of the three series was constant in time,
while for the third dataset the standard error decreased with
time. Due to the limited observational data back in history
(e.g., Abraham et al., 2013), it is reasonable to assume that
the shape of the standard error of observed global OHC in-
creases back in time, as for the CSIRO series. Therefore, we
now assume a common observational uncertainty temporal
profile for OHC above 700 m equal to CSIRO for all the OHC
time series (Fig. S1b). Note that the magnitude of the obser-
vational errors are estimated in our approach (Aldrin et al.,
2012; Skeie et al., 2014); i.e., we account for the possibilities
that the reported observational errors may be biased upward
or downwards compared to the real observational errors.

In fact, the results from Skeie et al. (2014, Appendix B) in-
dicated that the reported standard errors for the Levitus and
the Ishii and Kimoto OHC series were too low. We have in-
vestigated this further by the following simple analysis.

Let y1t and y2t be two different estimates of the true
OHC in year t . Then y1t = “true OHC”+ e1t and y2t =

“true OHC”+ e2t . Here, e1t and e2t are error terms, with re-
ported standard deviations s1t and s2t , and with true, but un-
known standard deviations σ1t and σ2t . The difference of the
series is y1t−y2t = e1t−e2t , so even if we cannot observe the
errors, we can observe their difference. If the two data series
are based on more or less the same data, as for the OHC series
used here, one can expect that e1t and e2t are positively cor-
related. Then Var(y1t − y2t )= Var(e1t − e2t )<= (σ 2

1t + σ
2
2t )

We can estimate the average variance of the differences
y1t − y2t over all time points by Varobs

= 1/(n− 1)
∑
t

(y1t −

y2t −m)2, where m is the average of y1t − y2t and n is
the number of years. This could be compared to the corre-
sponding reported variance under the assumption of uncor-
related errors, by Varrep

= 1/n
∑
t

(s2
1t + s

2
2t ), and if the re-

ported standard deviations are correct, then the variance ratio
Varobs/Varrep should be less than or equal to 1. For differ-
ences of the Levitus, Ishii and Kimoto and ORAS4 (above
700 m) series, the variance ratios are between 2.13 and 3.74
(Table A1), indicating that the reported observational errors
for these series are too low, and the real uncertainty may be
larger. This is an additional argument for using the CSIRO
standard errors for all OHC series.

Another update of Skeie14 that was needed was to use
monthly volcanic RF data (Fig. S1c) compared to yearly data
in Skeie14. In addition to the three global mean surface tem-
perature (GMST) time series used in Skeie14, another time
series for GMST has been published recently (Cowtan and
Way, 2014). This time series finds a stronger increasing trend
in temperature over the last decade compared to the Had-
CRUT4 data, due to the method of accounting for the unsam-

Table A1. Variance ratios Varobs/Varrep for pairwise differences of
OHC series.

OHC series 1 OHC series 2 Varobs/Varrep

CSIRO Levitus 0.21
CSIRO Ishii and Kimoto 0.43
CSIRO ORAS4 0.17
Levitus Ishii and Kimoto 2.13
Levitus ORAS4 3.74
Ishii and Kimoto ORAS4 3.49

pled regions in the world. This data series is now included
(Fig. S1d).

Our previous studies showed that the correlation between
the observational errors in temperature data was almost un-
correlated with the observational errors in the OHC data.
Therefore, to simplify the numerical computations, we from
now on assume that these correlations are exactly zero
(Fig. S1e).

The estimated ECSinf for each step in the refinement of
Skeie14 is presented in Fig. S1a–e.

Appendix B: Extending data up to and including 2014

When extending the analysis from 2010 to 2014, not all the
time series used in the estimation is available up to and in-
cluding the year 2014. Below is a description of how the dif-
ferent datasets are extended if not available up to 2014.

AR5 ERF: The end year for the forcing time series pre-
sented in AR5 is 2011 and has to be extended to 2014.
For long-lived greenhouse gases the time series are ex-
tended using recent observations of global mean concen-
trations and the formulas relating concentrations and forc-
ing used in Skeie et al. (2011). Tropospheric ozone, strato-
spheric ozone, aerosol ERF, land use change, BC on snow
and volcanoes are kept constant between 2011 and 2014.
Stratospheric water vapor follows methane RF. Contrails
RF is extended using aircraft traffic data (http://airlines.
org/dataset/world-airlines-traffic-and-capacity/, last access:
March 2015). Solar RF is extended using the Physikalisch-
Meteorologisches Observatorium Davos (PMOD) composite
(Frohlich and Lean, 2004).

CSIRO: Data up to and including 2012 were downloaded.
The time series were extended from 2012 to 2014 using the
mean rate of change of the other OHC data. The uncertainty
in 2014 and 2013 is set equal to the uncertainty in 2012.

ORAS4: Balmaseda et al. (2013) investigated the time
evolution of global OHC at different depths of the ocean from
1958 to 2009 using the European Centre for Medium-Range
Weather Forecasts ocean reanalysis system 4 (ORAS4). Five
ensemble members of ORAS4 are generated that sample
plausible uncertainties in the wind forcing, observation cov-
erage and the deep ocean. The ORAS4 system runs auto-

Earth Syst. Dynam., 9, 879–894, 2018 www.earth-syst-dynam.net/9/879/2018/

http://airlines.org/dataset/world-airlines-traffic-and-capacity/
http://airlines.org/dataset/world-airlines-traffic-and-capacity/


R. B. Skeie et al.: Climate sensitivity estimates 891

matically in operations, with numerical weather prediction
forcing and observations that are not manually quality con-
trolled. The 1× 1◦ ocean potential temperature up to De-
cember 2014 are made available through the APDRC (http:
//apdrc.soest.hawaii.edu/datadoc/ecmwf_oras4.php, last ac-
cess: March 2015) for one ensemble member. The trend in
OHC for the total depth and upper 700 m from 2010 to 2014
based on the one ensemble member is used to extend the cor-
responding OHC data for all the five ensemble members from
Balmaseda et al. (2013) up to 2014. The data after 2009 are

based on the automatic ORAS4 system and are not quality
controlled, and the results in this paper using the data after
2009 should be interpreted with caution. The same method is
used to extend the ORAS4 data from 2009 to 2010 (Fig. S1g–
i). From the five ensemble members, the estimate with uncer-
tainty is calculated as the annual average and standard devi-
ation of OHC above and below 700 m. The standard devia-
tions are modified by smoothing the curve (9-year moving
average) since the curve was otherwise very static.
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