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Abstract. Many meteorological forcing datasets include bias-corrected surface downwelling longwave and
shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean
value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be
corrected have a higher spatial resolution than the observational data used to determine the biases. This was the
case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely
resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorolog-
ical forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile
mapping methods designed specifically for this purpose, including those used for the production of EWEMBI
rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical
upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB.
It is shown how temporal and spatial variability deflation related to bilinear interpolation and other determinis-
tic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the
SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data
is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical
estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias
correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors
are taken into account.

1 Introduction

High-quality observational datasets of surface downwelling
radiation are of interest in many fields of climate science,
including energy budget estimation (Kiehl and Trenberth,
1997; Trenberth et al., 2009; Wild et al., 2013) and climate
model evaluation (Garratt, 1994; Ma et al., 2014; Wild et al.,
2015). As part of so-called climate or meteorological forcing
datasets such as those generated within the Global Soil Wet-
ness Project (GSWP; Zhao and Dirmeyer, 2003), at Prince-
ton University (Sheffield et al., 2006), and within the In-
tegrated Project Water and Global Change (WATCH; Wee-
don et al., 2011), the longwave and shortwave components
of surface downwelling radiation (abbreviated as rlds and
rsds or just longwave and shortwave radiation in the fol-
lowing) are used to correct model biases in climate model

output (Hempel et al., 2013; Iizumi et al., 2017; Cannon,
2017) and drive simulations of climate impacts, for exam-
ple (Müller Schmied et al., 2016; Veldkamp et al., 2017;
Chang et al., 2017; Krysanova and Hattermann, 2017; Ito
et al., 2017).

These meteorological forcing datasets are global, long-
term meteorological reanalysis datasets such as those pro-
duced by the National Centers for Environmental Predic-
tion – National Center for Atmospheric Research (NCEP–
NCAR; Kalnay et al., 1996; Kistler et al., 2001) and
the European Centre for Medium-Range Weather Forecasts
(ECMWF; Uppala et al., 2005; Dee et al., 2011), refined by
bias correction using global, gridded observational data. For
the components of surface downwelling radiation, such a bias
correction is often necessary because observations of these
variables are not assimilated in the reanalyses, which makes
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them subject to modelling biases of land–atmosphere interac-
tions and cloud processes, for example (Kalnay et al., 1996;
Ruane et al., 2015).

Different approaches are adopted in order to carry out
these bias corrections. Weedon et al. (2011, 2014) apply indi-
rect corrections at the monthly timescale using near-surface
air temperature observations for rlds and observations of at-
mospheric aerosol loadings and cloudiness for rsds. Sheffield
et al. (2006) directly rescale rlds and rsds to match observed
multi-year monthly mean values. Ruane et al. (2015) directly
adjust distributions of daily mean rsds. The observational
dataset commonly used for such direct adjustments of rlds
and rsds is the Surface Radiation Budget (SRB) dataset as-
sembled by the National Aeronautics and Space Administra-
tion (NASA) and the Global Energy and Water Exchanges
project (GEWEX; Stackhouse Jr. et al., 2011).

Another meteorological forcing dataset, the
EartH2Observe, WFDEI and ERA-Interim data Merged
and Bias-corrected for ISIMIP (EWEMBI; Lange, 2016),
was recently assembled to be used as the reference dataset
for bias correction of global climate model output within
the Inter-Sectoral Impact Model Intercomparison Project
phase 2b (ISIMIP2b; Frieler et al., 2017). The surface down-
welling longwave and shortwave radiation data included in
EWEMBI are based on daily rlds and rsds from the climate
forcing dataset compiled for the EartH2Observe project
(E2OBS; Calton et al., 2016). In order to reduce deviations
of E2OBS rlds and rsds statistics from the corresponding
SRB estimates in particular over tropical land (Dutra, 2015),
for EWEMBI, the former were bias-adjusted to the latter at
the daily timescale using two newly developed parametric
quantile mapping methods.

These methods are conceptually similar to the Ruane et al.
(2015) method, which fits beta distributions to reanalysed
and observed daily mean rsds for every calendar month,
thereby accounting for upper and lower physical limits of
rsds using the multi-year monthly maximum value as the
upper and zero as the lower limit of the distribution, and
then uses quantile mapping to adjust the distributions. In con-
trast to Ruane et al. (2015), the methods developed to adjust
E2OBS rlds and rsds for EWEMBI applies moving windows
to estimate beta distribution parameters for every day of the
year. This precludes discontinuities at the turn of the month
(Rust et al., 2015; Gennaretti et al., 2015) and promises a bet-
ter bias correction where the seasonality of radiation is very
pronounced such as for rsds at high latitudes. Also, the new
methods estimate the physical upper limits of rlds and rsds
differently, acknowledging that these limits are necessarily
greater than or equal to the greatest value observed during
any fixed period. Lastly, while Ruane et al. (2015) linearly
interpolate SRB rsds from its natural horizontal resolution
of 1.0◦ to the 0.5◦ reanalysis grid prior to bias correction,
the new methods aggregate the E2OBS data from their origi-
nal 0.5◦ grid to the 1.0◦ SRB grid, where the bias correction
is then carried out, and disaggregates these aggregated and

bias-corrected data back to the E2OBS grid. Depending on
the disaggregation method, this approach promises to gener-
ate bias-corrected data with more realistic temporal as well
as spatial variability.

The new methods are comprehensively described and
cross validated in this article. Moreover, several modifica-
tions of the new methods are tested here that differ in how
they handle the spatial resolution gap between the E2OBS
and SRB grids, and how they account for the physical up-
per limits of rlds and rsds. Also included are bias correction
methods that operate at the monthly timescale in order to test
if bias correction of daily or monthly mean values yields bet-
ter overall cross-validation results. The lessons learned from
these analyses shall benefit bias corrections of surface down-
welling radiation to be carried out in future generations of
climate forcing datasets.

2 Data

2.1 E2OBS

The EartH2Observe (E2OBS; Dutra, 2015; Calton et al.,
2016) daily mean rlds and rsds data bias-corrected for
EWEMBI cover the whole globe on a regular 0.5◦×0.5◦

latitude–longitude grid and span the 1979–2014 time period.
Over the ocean, E2OBS rlds and rsds are identical to bi-
linearly interpolated ERA-Interim (ERAI; Dee et al., 2011)
rlds and rsds. Over land, they are identical to WATCH Forc-
ing Data methodology applied to ERA-Interim reanalysis
data (WFDEI; Weedon et al., 2014) rlds and rsds. WFDEI
rlds, in turn, is identical to bilinearly interpolated ERAI rlds,
adjusted for elevation differences between the ERAI and
Climatic Research Unit (CRU; Harris et al., 2013) grids.
WFDEI rsds is identical to bilinearly interpolated ERAI
rsds bias-corrected at the monthly timescale using CRU
TS3.1/3.21 mean cloud cover and considering effects of
interannual changes in atmospheric aerosol optical depths
(Weedon et al., 2010, 2011, 2014).

2.2 SRB

The observational data used for the bias correction of E2OBS
daily mean rlds and rsds for EWEMBI were the NASA–
GEWEX Surface Radiation Budget (SRB; Stackhouse Jr.
et al., 2011) primary-algorithm estimates of daily mean
rlds and rsds from the latest SRB releases available at
the time, which were release 3.1 for rlds and release 3.0
for rsds. These data cover the whole globe on a regular
1.0◦×1.0◦ latitude–longitude grid and span the July 1983–
December 2007 time period. For bias correction and cross
validation, a 24-year subsample of these data that spans
the December 1983–November 2007 time period was used
and is used here. Additional data from the adjacent months
November 1983 and December 2007 are employed for com-
putations of running mean values. The SRB estimates of
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rlds and rsds are based on satellite-derived cloud parameters
and ozone fields, reanalysis meteorology, and a few other
ancillary datasets. Due to a lack of satellite coverage dur-
ing most of the July 1983–June 1998 time period over an
area centred at 70◦ E, SRB data artefacts are present over
the Indian Ocean (https://gewex-srb.larc.nasa.gov/common/
php/SRB_known_issues.php, last access: 18 May 2018; see
Figs. 2–4, 7). Every SRB grid cell contains exactly four
E2OBS grid cells.

3 Methods

For the reader who is is not familiar with the concepts of
quantile mapping and/or statistical downscaling, a short in-
troduction including definitions of relevant terms is given in
Appendix A. The parametric quantile mapping methods in-
troduced in the following are named according to the scheme
BCvtpx, where v, t,p are used to distinguish between meth-
ods for longwave and shortwave radiation (v = l,s) oper-
ating at the daily and monthly timescales (t = d,m) using
basic and advanced distribution types or parameter estima-
tion techniques (p = b,a). Index x = 0,1,2 is used for vari-
ants of these methods that differ in how they handle the
spatial resolution gap between the SRB and E2OBS grids.
For the BCvtp0 methods, the SRB data are spatially bilin-
early interpolated to the E2OBS grid and the E2OBS data
are then bias-corrected using these interpolated SRB data;
this is to mimic the Ruane et al. (2015) approach. For bias
correction with the BCvtp1 methods, E2OBS data are spa-
tially aggregated to the SRB grid, and the aggregated data
are then bias-corrected and the resulting data disaggregated
back to the E2OBS grid; this approach was used to produce
the EWEMBI radiation data. Lastly, the BCvtp2 methods
adjust mean values and variances at the E2OBS grid such
that mean values and variances of spatial aggregates to the
SRB grid match the corresponding SRB estimates while the
sub-SRB-grid-scale spatial structure of mean values and vari-
ances present in the original E2OBS data is retained; this
is to overcome the variability deflation induced by the other
two approaches. Since the BCvtp0 and BCvtp2 methods are
based on the BCvtp1 methods, the latter are introduced first.
Readers who are merely interested in how the EWEMBI radi-
ation data were produced are informed that methods BClda1
and BCsda1 were used for that purpose.

3.1 Bias correction at the SRB grid scale

For the BCvtp1 methods, daily mean E2OBS rlds and rsds
are first aggregated to the SRB grid using a first-order con-
servative remapping scheme (Jones, 1999). The conservative
remapping ensures that each aggregated value is the grid-cell
area-weighted mean of the underlying four E2OBS values.
The methods of bias correction of these aggregated values
are described in the following. The method used for the sub-

sequent disaggregation to the E2OBS grid is described in
Sect. 3.1.3.

The BCvtp1 methods use parametric transfer functions of
the form F SRB

vtp

−1(F E2OBS
vtp (·)), where F E2OBS

vtp and F SRB
vtp are

climatological cumulative distribution functions (CDFs) of
aggregated E2OBS and SRB data, respectively. The CDFs
are estimated individually for every SRB grid cell and day
of the year (Fig. 1). In order to quantify the extent to which
bias correction results benefit from explicitly accounting for
physical radiation limits, the basic and advanced methods
BCltb1 and BClta1 for longwave radiation use normal and
beta distributions, respectively. For shortwave radiation, the
relevance of physical limits is less questionable, given that
the lower limit of zero matters at least during polar night, and
that the solar radiation incident upon land and ocean surfaces
is limited by the solar radiation incident upon the top of the
atmosphere (see Fig. 1). Therefore, all BCstp1 methods use
beta distributions and the basic and advanced methods only
differ in how they estimate the beta distribution parameters
(see Fig. 1, Table 1).

3.1.1 Bias correction at the daily timescale

The parameters of the climatological CDFs F E2OBS
vdp and

F SRB
vdp are estimated based on empirical multi-year mean val-

ues, variances, and maximum values of daily mean radia-
tion from the December 1983–November 2007 time period.
Data from the whole period were used for the production of
EWEMBI rlds and rsds. Data from some half of the period
(see Sect. 4.1) are used for cross validation in this study.

For shortwave radiation, the basic daily bias correction
method is designed to resemble the method outlined by Ru-
ane et al. (2015, Sect. 3.4). BCsdb1 estimates mean val-
ues and variances of climatological beta distributions by 25-
day running mean values of multi-year daily mean values
and variances, respectively, and their upper bounds by 25-
day running mean values of 25-day running maximum val-
ues of multi-year maximum values of daily mean rsds (solid
red line in Fig. 1c). The idea behind this upper-bound esti-
mate is that 25-day running maximum values of multi-year
maximum values of daily mean rsds resemble the multi-year
monthly maximum values of daily mean rsds used by Ru-
ane et al. (2015). Please note that using the same window
length for the running maximum calculation and the addi-
tional smoothing ensures that the resulting upper bounds are
always greater than or equal to the multi-year maximum val-
ues of daily mean rsds.

The BCsda1 method employs the climatology of daily
mean shortwave insolation at the top of the atmosphere (rsdt;
see Appendix B for how rsdt is calculated in this study) for
the upper-bound estimation. This is motivated by rsds being
limited by rsdt in most locations and seasons, which suggests
that the annual cycle of the upper bound of daily mean rsds
has a similar shape as the climatology of daily mean rsdt.
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Figure 1. Estimation of parameters of quantile mapping methods used for the bias correction of longwave (a, b) and shortwave (c, d)
radiation at the daily (a, c) and monthly (b, d) timescales. This example is based on SRB daily mean rlds and rsds data from 79.5◦ N,
12.5◦ E and the December 1983–November 2007 time period. Climatological distribution parameters are estimated based on empirical 24-
year mean values (dark grey), standard deviations (light grey range around mean values), and minimum and maximum values (black) of
daily mean (a, c) and 31-day running mean (b, d) radiation computed for every day of the year. The distribution parameters estimated for
the basic (red) and advanced (blue) bias correction methods (see Table 1) include mean values and standard deviations (dotted red, dashed
blue), and upper bounds (solid red, solid blue) where beta distributions are used. Note that the basic and advanced estimates of mean values
and standard deviations only differ in panel (c) near the beginning and end of polar night (see Table 1). The green line in panel (a) represents
25-day running mean values of 25-day running maximum values of 24-year maximum values of daily mean rlds, which are used to estimate
the upper bounds of the climatological beta distributions used by the BClda1 method (solid blue line in panel a). The lower bounds of all
climatological beta distributions are set to zero.

Table 1. Distribution types and parameter estimation methods of bias correction methods BCvtp1 for day d of the year (see Fig. 1). Please
note that the lower bounds of all climatological beta distributions are set to zero and that 24-year statistics are replaced by 12-year statistics
for cross validation.

Method Distribution type Mean value µd Variance σ 2
d

Upper bound bd

BCldb1 normal 〈〈xij 〉i24〉j25d 〈{xij }i24〉j25d –
BClda1 beta 〈〈xij 〉i24〉j25d 〈{xij }i24〉j25d A 〈〈xij 〉i24〉j25d +B
BClmb1 normal 〈〈xij 〉j31d 〉i24 {〈xij 〉j31d }i24 –
BClma1 beta 〈〈xij 〉j31d 〉i24 {〈xij 〉j31d }i24 〈blda1

j
〉j31d

BCsdb1 beta 〈〈xij 〉i24〉j25d 〈{xij }i24〉j25d 〈[[xij ]i24]j25k〉k25d
BCsda1 beta 〈〈xij 〉i24〉j25d∗ 〈{xij }i24〉j25d∗ C rsdtd
BCsmb1 beta 〈〈xij 〉j31d 〉i24 {〈xij 〉j31d }i24 〈bsdb1

j
〉j31d

BCsma1 beta 〈〈xij 〉j31d 〉i24 {〈xij 〉j31d }i24 〈bsda1
j
〉j31d

xij is the daily mean rlds (for BCltp1) or rsds (for BCstp1) on day j of year i. Brackets 〈 ·〉, { ·}, and [ ·] denote the
calculation of sample mean values, variances, and maximum values, respectively. Bracket subscripts i24, j31d, j25d,
and j25d∗ indicate that these sample statistics are calculated over years i ∈ {1, . . .,24}, over days j ∈ {d − 15, . . .,d + 15},
over days j ∈ {d − 12, . . .,d + 12}, and over days j ∈ {d − n, . . .,d + n} with
n=min{12,max{n≥ 0 : ∀j ∈ {d − n, . . .,d + n} : rsdtj > 0}}, respectively. Constants A, B, and C are determined by

argminA,B′
∑365
l=1(〈[[xij ]i24]j25k〉k25l −A 〈〈xij 〉i24〉j25l +B

′)2,
min{B > 0 : ∀l ∈ {1, . . .,365} : A 〈〈xij 〉i24〉j25l +B ≥ 〈[[xij ]i24]j25k〉k25l }, and
min{C > 0 : ∀j ∈ {1, . . .,365} : C rsdtj ≥ [xij ]i24}, respectively.

Therefore, method BCsda1 uses a rescaled daily mean rsdt
climatology as the upper-bound climatology of daily mean
rsds (solid blue line in Fig. 1c). The rescaling is performed
with the smallest possible factor that guarantees that the re-

sulting upper bounds are greater than or equal to the multi-
year maximum values of daily mean rsds on all days of the
year with rsdt≥ 50 W m−2. An extension of this guarantee to
days of the year with lower rsdt would inflate the rescaling
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factor because during dusk and dawn of polar night, rsds can
exceed rsdt due to diffuse radiation coming in from lower lat-
itudes. Therefore, on days of the year with rsdt < 50 W m−2,
the maximum of the rescaled rsdt and the empirical multi-
year maximum daily mean rsds is used as the upper rsds
bound. Mean values and variances of the climatological beta
distributions of the BCsda1 method are estimated by running
mean values of multi-year daily mean values and variances,
respectively. The window length used for these running mean
calculations is 25 days by default. On days that are fewer than
13 days away from the beginning or end of polar night (as de-
fined by daily mean rsdt going to zero), the window length is
shortened to 2n+ 1, where n is the number of days between
the day in question and the beginning or end of polar night.

For longwave radiation, both the basic and the advanced
daily bias correction methods use 25-day running mean val-
ues of multi-year daily mean values and variances to esti-
mate climatological mean values and variances, respectively.
The upper bounds used by BClda1 are not estimated by the
often rather un-smooth 25-day running mean values of 25-
day running maximum values of 24-year maximum values
of daily mean rlds (solid green line in Fig. 1a) but by a suit-
ably shifted and rescaled mean value climatology (solid blue
line in Fig. 1a; formulas in Table 1).

Since the choice of the window length used for all the
running mean and maximum value calculations mentioned
above is somewhat arbitrary, the window length dependence
of the overall performances of the BCvda1 methods is inves-
tigated in Appendix D. Sensitivities are found to be very low
for window lengths between 10 and 40 days.

3.1.2 Bias correction at the monthly timescale

In order to mimic a bias correction at the monthly timescale
as was performed by Sheffield et al. (2006, Sect. 3.d.3),
for example, the BCvmp1 methods bias-correct 31-day run-
ning mean values and then rescale each daily value by the
corrected-to-uncorrected ratio of the respective 31-day run-
ning mean value.

Mean values and variances of the climatological CDFs
F E2OBS
vmp and F SRB

vmp of 31-day running mean values are simply
estimated by 24-year (or 12-year for cross validation) daily
mean values and variances of 31-day running mean values,
respectively, with 29 February values replaced by averages
of 28 February and 1 March values.

Upper bounds of beta distributions are estimated by 31-
day running mean values of the upper bounds of the corre-
sponding CDFs F E2OBS

vdp and F SRB
vdp of daily mean radiation

(see Fig. 1, Table 1) because 31-day running mean values
of multi-year maximum values of daily mean radiation are
mathematically always greater than or equal to multi-year
maximum values of 31-day running mean radiation. The re-
sulting upper bounds are typically much larger than observed
24-year maximum monthly mean radiation (see Fig. 1d) be-
cause 31 consecutive days of daily mean radiation at the re-

spective physical upper limit are very unlikely to occur in
reality.

3.1.3 Disaggregation to the E2OBS grid

In principle, the disaggregation of aggregated and bias-
corrected E2OBS data from the SRB to the E2OBS grid
can be carried out in various ways. The simplest approach
would arguably be a mere interpolation, which is disadvan-
tageous since it ignores the sub-SRB-grid-scale spatial vari-
ability present in the original E2OBS data. Probabilistic dis-
aggregation methods that are designed to retain that variabil-
ity (see Sheffield et al., 2006, Sect. 3.b.1), are impractical if,
as in the present case, the purpose of the disaggregation is the
production and publication of a dataset because all variants
of the dataset that can potentially be generated by a proba-
bilistic algorithm are, as long as all conceivable constraints
have been incorporated in the algorithm, equally plausible
candidates for the one dataset to be published. Therefore, not
a probabilistic but the following deterministic disaggregation
approach was used for the production of EWEMBI rlds and
rsds and is adopted here for all BCvtp1 methods.

First, E2OBS-grid-scale upper bounds of daily mean radi-
ation are estimated by bilinearly interpolated maximum val-
ues of the climatological upper bounds of SRB all-sky and
clear-sky radiation, which in turn are estimated using the
BClda1 method for rlds and the BCsda1 methods for rsds
(see Table 1 and blue lines in Fig. 1a, c). The clear-sky ra-
diation data are included in order to prevent the E2OBS-
grid-scale upper bounds from being much lower than the real
physical limits of daily mean radiation at that spatial scale,
given that due to sub-SRB-grid-scale spatial variability, up-
per radiation bounds at the E2OBS grid scale may exceed
those at the SRB grid scale.

The original daily E2OBS data are then clamped between
zero and these upper bounds, and the resulting values (or
their distances to their upper bounds) are rescaled day by
day and SRB grid cell by SRB grid cell such that their SRB-
grid-scale aggregates match the bias-corrected values. More
precisely, for a fixed but arbitrary SRB grid cell and a fixed
but arbitrary day, let Y denote the bias-corrected value at
the SRB grid scale, wk with

∑4
k=1wk = 1 the area weights

of the four E2OBS grid cells k = 1,2,3,4 contained in the
SRB grid cell, Xk the clamped original E2OBS data values
with upper bounds bk , and Yk the bias-corrected values at
the E2OBS grid scale to be computed. If Y ≤

∑4
k=1wkXk ,

then Yk is computed according to Yk = fXk with f =

Y/
∑4
k=1wkXk . Otherwise Yk is computed according to Yk =

bk−f (bk−Xk) with f = (Y −
∑4
k=1wkbk)/

∑4
k=1wk(Xk−

bk). This rescaling procedure ensures that 0≤ Yk ≤ bk and∑4
k=1wkYk = Y .
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3.2 Bias correction at the E2OBS grid scale

3.2.1 The BCvtp2 methods

The disaggregation method introduced above corrects the
original E2OBS values from the four E2OBS grid cells con-
tained in one SRB grid cell as if they must all be too low
(high) if their area-weighted average is too low (high). This
implicit assumption is questionable since it rules out the pos-
sibility that the area-weighted average is too low because
one of the four values is much too low while the others
are slightly too high, to give just one example. A statistical
manifestation of this problem is illustrated and discussed in
Sect. 4.2.

The assumption does not need to be made if the bias cor-
rection is carried out directly at the E2OBS grid. With tar-
get distributions fixed at the SRB grid, target distributions at
the E2OBS grid can be defined such that the bias-corrected
data have the SRB-grid-scale target distributions and the sub-
SRB-grid-scale structure of the original E2OBS data. For
parametric bias correction methods such as those introduced
above, this can be achieved via suitable definitions of the pa-
rameters of the E2OBS-grid-scale target distributions. Here,
for every BCvtp1 method, a corresponding BCvtp2 method
is defined to operate at the same temporal scale and to use the
same source (at the E2OBS grid) and target (at the SRB grid)
distribution type and parameter estimation technique (see Ta-
ble 1). E2OBS-grid-scale target climatologies of mean val-
ues, variances, and (where necessary) upper bounds are de-
fined as follows.

The mean value estimates of the original E2OBS data are
shifted by a common offset per SRB grid cell and day of
the year to obtain the E2OBS-grid-scale target mean values.
The offsets are chosen such that the E2OBS-grid-scale tar-
get mean values aggregated to the SRB grid match the cor-
responding SRB mean value estimates. E2OBS data bias-
corrected using these E2OBS-grid-scale target mean values
have SRB-grid-scale aggregates that match the SRB-grid-
scale target mean values because (i) the aggregation is a lin-
ear operation and (ii) the mean value of a linear combination
of random variables is equal to the same linear combination
of the mean values of these random variables.

To obtain the E2OBS-grid-scale target variances, the vari-
ance estimates of the original E2OBS data are rescaled by
a common (to all four E2OBS grid cells contained in one
SRB grid cell) factor fij per day i of the year and SRB grid
cell j . For the derivation of the formula for fij let Yijk (and
Xijk) denote random variables representing bias-corrected
(and original) E2OBS data from day i of the year and E2OBS
grid cells k = 1,2,3,4 contained in SRB grid cell j . Then the
estimated variance of the SRB-grid-scale aggregate of Yijk
can be expanded to

Var

(
4∑
k=1

wjkYijk

)

=

4∑
k,l=1

wjkwj l Cov(Yijk,Yij l)

=

4∑
k,l=1

wjkwj l Cor(Yijk,Yij l)
√

Var(Yijk)Var(Yij l), (1)

where wjk is the area weight of E2OBS grid cell jk with∑4
k=1wjk = 1 for all j , Cov(Yijk,Yij l) is the estimated co-

variance of Yijk and Yij l , Cor(Yijk,Yij l) is the estimated Pear-
son correlation of Yijk and Yij l , and Var(Yijk) is the estimated
variance of Yijk . A bias correction would be deemed success-
ful if the left-hand side of Eq. (1) was equal to the estimated
variance of Zij , the SRB data from day i of the year and grid
cell j . On the right-hand side of Eq. (1), fij Var(Xijk) can be
substituted for Var(Yijk) by definition of the scaling factors,
and Cor(Yijk,Yij l) can be approximated by Cor(Xijk,Xij l)
since quantile mapping preserves ranks and therefore rank
correlations and therefore approximately Pearson correla-
tions. The variance scaling factors fij for method BCvtp2
are therefore calculated based on

Var(Zij )= fij×

×

4∑
k,l=1

wjkwj l Cor(Xijk,Xij l)
√

Var(Xijk)Var(Xij l), (2)

where the variances are estimated using the respective
BCvtp1 approach (see Table 1), and the Pearson correlations
are estimated by inversely Fisher-transformed 25-day run-
ning mean values of Fisher-transformed 24-year daily Pear-
son correlations of daily (for BCvdp2) or 31-day running
mean (for BCvmp2) radiation data. The Fisher transforma-
tions are invoked here in order to approximately account for
correlation value-dependent sampling error intervals (Fisher,
1915, 1921).

The E2OBS-grid-scale target upper bounds are calculated
in the same way as the E2OBS-grid-scale target mean values.
This way, the latter rarely exceed the former. Where they do,
the latter are reduced to 99 % of the former. For longwave
(shortwave) radiation, such reductions are necessary in four
(11 % of all) E2OBS grid cells on an average of 15 % (5 %)
of all days of the year.

Furthermore, in order to obtain realistic E2OBS-grid-scale
target beta distributions, the E2OBS-grid-scale target vari-
ances calculated using Eq. (2) are limited to 40 % of µ(b−µ),
where µ and b are the E2OBS-grid-scale target mean val-
ues and upper bounds, respectively. This limit is imposed be-
cause (i) the variance σ 2 of a random variable taking values
from within the interval [a,b] can generally not be greater
than (µ− a)(b− µ) if µ is the random variable’s mean value;
(ii) if that random variable is beta distributed and σ 2 > (µ−
a)(b−µ)/2 then the probability density function is U shaped
(Wilks, 1995), which is considered unrealistic for climato-
logical distributions of rlds and rsds; and (iii) σ 2/(µ(b− µ))
has an empirical upper limit of about 40 % in the original
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E2OBS radiation data. The 40 % condition is never met for
longwave radiation whereas for shortwave radiation it is met
in 14 % of all E2OBS grid cells on an average of 2 % of all
days of the year.

3.2.2 The BCvtp0 methods

For the BCvtp0 methods, daily SRB data are first bilinearly
interpolated to the E2OBS grid. The E2OBS data are then
bias-corrected directly at the E2OBS grid using the interpo-
lated SRB data and transfer functions defined exactly as for
the respective BCvtp1 method.

4 Results

In the following, the bias correction methods introduced
above are cross validated at the SRB grid scale (Sect. 4.1),
and their disaggregation performance is assessed by com-
paring sub-SRB-grid-scale spatial variability before and after
bias correction (Sect. 4.2).

4.1 Cross validation at the SRB grid scale

For the cross validation against SRB data, 24 years worth of
overlapping E2OBS and SRB data are divided into two 12-
year samples of which the first one is used to calibrate and the
second one to validate the method. Common practice would
be to use data from the first and second half of the 24-year pe-
riod to define these samples. However, due to climate change
this definition may yield calibration and validation data sam-
ples that differ statistically. These differences in turn, which
are essentially climate change signals, may differ in extent
between the E2OBS and SRB data. Switanek et al. (2017)
have shown that such differences in climate change signals
may then dominate cross-validation metrics and thereby dis-
tort the comparative validation of bias correction methods.
In order to minimise this climate change impact on cross-
validation results, here, calibration and validation data sam-
ples are composed of data from all odd years and all even
years or vice versa, respectively. The samples are accordingly
labelled every1st and every2nd.

Please note that results for BCvtp2 are not shown or dis-
cussed in this section because BCvtp1 and BCvtp2 produce
virtually identical data at the SRB grid scale.

4.1.1 BCvtp0 vs. BCvtp1

The first question addressed here is how the bilinear spatial
interpolation of SRB data to the E2OBS grid before bias cor-
rection with the BCvtp0 methods impacts the distribution of
bias-corrected rlds and rsds values at the SRB grid scale. To
quantify these impacts, biases in multi-year daily mean val-
ues, standard deviations, and maximum values remaining af-
ter bias correction with methods BCvda0 and BCvda1 are
compared in the left and middle columns of Figs. 2 and 3.

Since linear interpolation always yields values that are
intermediate to the values at the interpolation knots it is
expected that daily SRB data bilinearly interpolated to the
E2OBS grid and then aggregated back up to the SRB grid
will be more smooth overall both in space and time than the
original SRB data. Manifestations of the increased smooth-
ness in time are the more negative biases of standard devia-
tions (Fig. 2) and maximum values (Fig. 3) remaining after
bias correction with BCvda0 than with BCvda1. Standard de-
viations after bias correction with BCvda0 in particular are
negatively biased by more than 4 % (median over calendar
months× validation data samples) in most regions. In moun-
tainous and therefore spatially heterogeneous regions, multi-
year monthly mean radiation is also changed significantly by
the interpolation, with median biases over calendar months×
validation data samples remaining after bias correction with
BCvda0 exceeding 2 W m−2 in many such places (Fig. 2).

4.1.2 BCvtax vs. BCvtbx

Next is an assessment of how the treatment of the upper
bound of the distributions estimated by the BCvdp1 methods
impacts the distribution of bias-corrected rlds and rsds values
at the SRB grid scale. To quantify these impacts, biases in
multi-year daily mean values, standard deviations, and max-
imum values remaining after bias correction with methods
BCvda1 and BCvdb1 are compared in the middle and right
columns of Figs. 2 and 3.

For longwave radiation, the basic method BCldb1 assumes
normally distributed values and therefore does not account
for any upper physical limit of rlds whereas the advanced
method BClda1 assumes the existence of such a limit and
estimates it empirically. Figure 3 shows that the advanced
method generally yields a better correction of 12-year max-
imum values. In contrast, standard deviations are slightly
better corrected by the basic method and mean values are
equally well corrected by both methods (Fig. 2).

For shortwave radiation, both the basic and the advanced
method empirically estimate upper physical limits of rsds and
take these into account in the form of upper bounds of beta
distributions. The limit estimates are based on downwelling
shortwave radiation at the surface and at the top of the atmo-
sphere for BCsda1, and on rsds only for BCsdb1. Figure 3
shows that the basic method generally yields a better cor-
rection of 12-year maximum values. Standard deviations and
mean values are also slightly better corrected by BCsda1 than
by BCsdb1 (Fig. 2).

4.1.3 BCvdpx vs. BCvmpx

Next is a comparative cross validation of methods BCvdpx
and BCvmpx operating at the daily and monthly timescales,
respectively. The cross validation itself is also performed at
the daily and monthly timescales based on statistics of daily
and monthly mean radiation, respectively. A joint assessment
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Figure 2. Biases relative to SRB in mean values (a–f) and standard deviations (g–l) of spatially aggregated (to the SRB grid) daily mean long-
wave (a–c, g–i) and shortwave (d–f, j–l) radiation after bias correction with methods BCvda0 (left), BCvda1 (middle), and BCvdb1 (right).
The biases are calculated individually for each calendar month (January to December) and calibration data sample (every1st, every2nd)
pooling SRB and corrected E2OBS data from all years of the corresponding validation data sample (every2nd, every1st, respectively) and
omitting shortwave radiation data from months with monthly mean rsdt less than 1 W m−2 (see Appendix B and Fig. D1c). Depicted are
median and agreement in direction (sign of bias) of these individual biases, represented by hue and saturation of a grid cell’s colour, re-
spectively. Categories of agreement in bias direction are defined based on one-sided p values obtained from modelling underestimations
and overestimations for individual calendar months and validation data samples as outcomes of independent 50/50 Bernoulli trials. More
saturated colours indicate higher statistical significance of biases remaining after bias correction.

of these cross validations shall reveal whether bias correction
at the daily or monthly timescale is better overall.

By design, the BCvdpx and BCvmpx methods are equally
good at correcting multi-year mean values of daily mean ra-
diation. However, both day-to-day and year-to-year variabil-
ity are expected to be differently well corrected by the meth-
ods operating at different timescales. Since day-to-day vari-
ability is (not) explicitly adjusted by the methods operating
at the daily (monthly) timescale, the BCvdpx methods are
expected to perform better at the daily timescale than the
BCvmpx methods. The year-to-year variability, however, is
explicitly corrected by the BCvmpx methods and it is not by
the BCvdpx methods because daily data from different years
are pooled before quantile mapping is carried out at the daily
timescale. Consequently, biases in interannual standard devi-
ations of monthly mean radiation are much larger after bias
correction with BCvda1 than with BCvma1 (Fig. 4), and the

BCvmpx methods are generally expected to perform better
at the monthly timescale than the BCvdpx methods.

In order to assess whether bias correction at the daily or
monthly timescale is more effective overall, a performance
measure is needed that is comparable across timescales.
Common performance measures of distribution adjustments
at individual timescales are the two-sample Kolmogorov–
Smirnov (KS) and Kuiper’s two-sample test statistics. While
Kuiper’s test is equally sensitive to CDF differences at all
quantiles, the KS test is more sensitive at the median than in
the tails. A straightforward comparison of these test statis-
tics across timescales is not very meaningful because sam-
ple sizes at the daily and monthly timescales differ by a
factor of 30, which implies that the same value of a test
statistic has different statistical significance at the daily and
monthly timescales. A better comparability can be achieved
by comparing the test statistic’s p value, which represents
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Figure 3. Same as Fig. 2 but for biases in skewness (a–f) and 12-year maximum values (g–l).

Figure 4. Same as Fig. 2 but for relative biases in interannual standard deviations of monthly mean radiation remaining after bias correction
with methods BCvda1 (left) and BCvma1 (right).
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Figure 5. Overall performance of bias correction methods BCvda1, BCvda0, BCvdb1, and BCvma1 for longwave (top) and shortwave
(bottom) radiation at the daily (left) and monthly (right) timescales as quantified by p values of two-sample Kolmogorov–Smirnov test
statistics of the respective E2OBS and SRB data before (black) and after (colours) bias correction (see Appendix C; greater p values indicate
stronger agreement of E2OBS and SRB distributions). The p values are determined individually for each grid cell, season, and calibration
data sample, with all corresponding values pooled into one distribution and omitting shortwave radiation data from months with average rsdt
less than 1 W m−2. The horizontal lines of each box–whisker plot represent the 90th, 75th, 50th, 25th, and 10th (from top to bottom) grid-cell
area-weighted percentiles of the natural logarithms of these p values over calibration data sample (1sthalf, 2ndhalf), latitude, and longitude.
The grey horizontal line marks the p = 10 % significance level.

the statistical significance of CDF differences. In the present
cross validation, the CDFs compared are based on bias-
corrected E2OBS and the corresponding SRB data, and a
higher p value indicates more similar CDFs and therefore
a better bias correction. For details of the calculation of
p values of the two-sample KS and Kuiper’s two-sample test
statistics see Appendix C.

Global distributions of p values of two-sample test statis-
tics for seasonal distributions of daily and monthly mean rlds
and rsds are shown in Fig. 5 for the KS test and Fig. 6 for
Kuiper’s test. In accordance with expectations, both tests in-
dicate that CDFs are generally better adjusted by BCvdpx
than by BCvmpx at the daily timescale and vice versa at the
monthly timescale. However, performance differences be-
tween BCvdpx and BCvmpx are clearly more significant
at the daily than at the monthly timescale. This suggests
that bias-correcting at the daily instead of at the monthly
timescale yields bias decrements at the daily timescale that
exceed bias increments at the monthly timescale. Therefore,
bias correction at the daily timescale is deemed more effec-
tive overall than bias correction at the monthly timescale.

To elaborate on this further, the p = 10 % significance
level is marked by a grey horizontal line in all panels of
Figs. 5 and 6 and is to be compared with the 10th percentiles
of the global distributions of p values of the two-sample test
statistics. Any coincidence of such a 10th percentile with the
10 % significance level suggests that the corresponding p-
value distribution is in agreement with the null hypothesis of
the respective test. Since the null hypothesis of both tests is
that the samples compared are from the same underlying dis-
tribution, such a coincidence suggests that the bias correc-
tion which produced one of the samples compared worked
perfectly within the limits of sampling uncertainty. Simi-
larly, 10th percentiles of p-value distributions above (below)
the 10 % significance level suggest overcorrections (under-
corrections) in terms of sampling uncertainty. In that sense,
the BCvtpx methods generally overcorrect at the monthly
timescale and undercorrect at the daily timescale.

The KS and Kuiper’s test statistics also confirm the finding
of Sect. 4.1.2 that at the daily timescale, the BCvda1 meth-
ods outperform the BCvdb1 methods for longwave radiation
and vice versa for shortwave radiation. This holds true for all
seasons and irrespective of CDF differences being generally
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Figure 6. Same as Fig. 5 but based on p values of Kuiper’s two-sample test statistic.

greater in summer and winter (DJF and JJA) than in the tran-
sition seasons (MAM and SON) both before and after bias
correction. Moreover, the test statistics find both BCvda1 and
BCvdb1 to outperform BCvda0 at the daily timescale, which
is in line with the finding of Sect. 4.1.1 that the BCvda0
methods deflate day-to-day variability.

The fact that all BCvdp1 methods undercorrect at the daily
timescale demonstrates the imperfections of these parametric
quantile mapping methods. The remaining CDF differences
must be linked to imperfect bias corrections of moments of
higher-than-second order since multi-year mean values and
standard deviations are well adjusted by design. To illustrate
this, relative skewness biases remaining after bias correction
with BCvdp1 are shown to exceed 50 % (median over cal-
endar months × validation data samples) in many regions
(Fig. 3). Another manifestation of the imperfections are re-
maining biases in the tails of the distribution of daily mean
rlds and rsds. These must be larger than the remaining me-
dian biases because p values of Kuiper’s test statistics for
these distributions are generally larger than those of the cor-
responding KS test statistics.

4.2 Spatial disaggregation and sub-SRB-grid-scale
spatial variability

As outlined in Sect. 3.2.1, the BCvtp1 approach to the dis-
aggregation of bias-corrected daily mean rlds and rsds val-
ues from the SRB to the E2OBS grid scale is based on the
implicit assumption that the original E2OBS values of daily

mean radiation onto the four E2OBS grid cells contained in
one SRB grid cell must all be too low (high) if their area-
weighted average is too low (high). The four original values
are then all increased (decreased) by the BCvtp1 method.
In order to account for their upper (lower) physical bounds,
the increases (decreases) are performed by a common scaling
factor applied to the distances to these bounds. This leads to
a reduction of the differences among the four values (this is
necessarily true if the four bounds are equal; it is true in most
cases if they are similar), i.e., to a deflation of sub-SRB-grid-
scale spatial variability.

In order to illustrate and quantify the extent of this vari-
ability deflation and compare the BCvtp0, BCvtp1, and
BCvtp2 methods in terms of their impact on sub-SRB-
grid-scale spatial variability, the root-mean-square deviation
(RMSD) of the four E2OBS-grid-scale values of daily mean
radiation per SRB grid cell from their area-weighted average
is calculated over all days of a given calendar month both
before and after bias correction with either method. Median
relative bias-correction-induced changes of these RMSDs are
depicted in Fig. 7 and demonstrate that BCvda1 indeed gen-
erally deflates them, in some regions by more than 20 % (me-
dian over calendar months) for both longwave and shortwave
radiation. In contrast, BCvtp0 and BCvtp2 deflate or inflate
them depending on variable and region.

In an analogous manner, such RMSDs can be computed
based on data from the four E2OBS grid cells contained
in one staggered SRB grid cell, where the staggered SRB
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Figure 7. Relative change by bias correction with methods BCvda0 (left), BCvda1 (middle), and BCvda2 (right) of the root-mean-square
deviation (RMSD) of daily mean E2OBS-grid-scale longwave (a–f) and shortwave (g–l) radiation from the aggregated SRB-grid-scale values
based on 1◦ grid cells of the SRB grid (a–c, g–i) and the staggered SRB grid (d–f, j–l; see text). For every 1◦ grid cell and calendar month,
the RMSDs are calculated using original or bias-corrected E2OBS data from the four 0.5◦ grid cells contained in the 1◦ grid cell, pooling
data from the entire December 1983–November 2007 time period and omitting shortwave radiation data from months with average rsdt less
than 1 W m−2. Depicted are median and agreement in the direction of monthly RMSD changes by bias correction (same colouring scheme
as in Fig. 2). Very similar results are obtained for the corresponding basic bias correction methods.

grid is a regular 1.0◦×1.0◦ latitude–longitude grid shifted
by 0.5◦ latitude and 0.5◦ longitude relative to the SRB grid,
i.e., every staggered SRB grid cell contains E2OBS grid cells
contained in four different SRB grid cells. Median relative
bias-correction-induced changes of these RMSDs are also
depicted in Fig. 7. Ideally, bias-correction-induced changes
of RMSDs from SRB and staggered SRB grid cell mean val-
ues would be equal. It would then be impossible to tell from
their comparison whether the bias correction’s target distri-
butions were defined on the SRB or on the staggered SRB
grid.

The BCvdp1 methods do not fulfil this criterion as they
deflate RMSDs from SRB grid cell mean values everywhere
while inflating RMSDs from staggered SRB grid cell mean
values in many regions, in particular over the tropical oceans.
The criterion is much better fulfilled by the BCvdp2 and
BCvdp0 methods. The RMSDs are generally greater af-
ter bias correction with BCvdp2 than with BCvdp0, i.e.,
BCvdp2 produces data with greater sub-SRB-grid-scale spa-

tial variability than BCvdp0. This difference is most visi-
ble for longwave radiation, for which BCvdp0 produces a
stark land–sea contrast of RMSD changes with strong RMSD
reductions over land whereas BCvdp0 does so to a much
lesser extent. This strong deflation of sub-SRB-grid-scale
spatial variability by BCvtp0 is believed to be another arte-
fact caused by the bilinear interpolation of SRB data to the
E2OBS grid.

5 Summary and conclusions

This article introduces various parametric quantile mapping
methods for the bias correction of E2OBS daily mean sur-
face downwelling longwave and shortwave radiation using
the corresponding SRB data. The quantile mapping methods
differ in (i) the timescale at which they operate, (ii) if and
how they take physical upper radiation bounds into account,
and (iii) how they handle the spatial resolution gap between
E2OBS and SRB.
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A cross validation at the SRB grid scale demonstrates
that statistics of daily mean radiation are better corrected by
methods operating at the daily timescale than by methods op-
erating at the monthly timescale, and vice versa for statistics
of monthly mean radiation. Since these performance differ-
ences are statistically more significant at the daily than at
the monthly timescale, overall, bias correction at the daily
timescale is deemed more effective then bias correction at
the monthly timescale.

The cross validation further suggests that it is generally
worthwhile to explicitly take physical upper radiation bounds
into account during quantile mapping. For shortwave radia-
tion, different approaches to their estimation are tested. A
simple approach using running maximum values is found to
outperform a more complicated one based on daily mean in-
solation at the top of the atmosphere (rsdt). This must be due
to other factors besides rsdt that influence the upper physi-
cal bounds of rsds. Atmospheric humidity is an example for
such a factor: The highest rsds values usually occur under
clear-sky conditions and they are higher the drier the atmo-
sphere. Atmospheric humidity in turn is limited by the wa-
ter vapour holding capacity of the atmosphere, which is con-
trolled by atmospheric temperature. The climatology of at-
mospheric temperature lags behind that of rsdt. Hence, the
climatology of the upper physical bounds of rsds can be ex-
pected to deviate from the rsdt climatology.

The cross validation also reveals to what extent the bi-
linear spatial interpolation of SRB data to the E2OBS grid
prior to bias correction with the BCvtp0 methods deflates
day-to-day variability. This variability deflation has a greater
effect on bias correction performance than a change of if and
how physical upper radiation bounds are taken into account
during quantile mapping, but a much smaller effect than a
change of the timescale at which the quantile mapping is car-
ried out.

Lastly, the cross validation at the daily timescale shows
that none of the quantile mapping methods tested here are
perfect, concerning in particular the adjustment of distribu-
tion tails and moments of higher-than-second order. This in-
dicates that the true distribution of rlds and rsds is not al-
ways exactly normal or beta, as assumed by the paramet-
ric quantile mapping methods tested here. Potentially, non-
parametric quantile mapping methods (that do not rely on
such assumptions) could yield better cross-validation results
as long as overfitting is avoided (e.g., Gudmundsson et al.,
2012). However, an introduction of and comparison to such
methods is beyond the scope of this article.

To bridge the spatial resolution gap between E2OBS and
SRB, the methods used for the production of EWEMBI rlds
and rsds deterministically disaggregate the E2OBS data pre-
viously aggregated to and bias-corrected at the SRB grid. It
is shown that the method used for that disaggregation intro-
duces artefacts in the sub-SRB-grid-scale spatial variability,
which can be overcome by applying quantile mapping di-
rectly at the E2OBS grid using either bilinearly interpolated

SRB data or target distribution parameters that are based on
the more coarsely resolved SRB data as well as on sub-SRB-
grid-scale spatial variability present in the original E2OBS
data. This latter approach yields both good cross-validation
results at the SRB grid scale and suitable adjustments of the
sub-SRB-grid-scale spatial variability.

The best methods identified here are therefore BClda2
for rlds and BCsdb2 for rsds. In comparison to BClda1 and
BCsda1 used for the production of EWEMBI rlds and rsds,
bias correction with these methods yields more natural sub-
SRB-grid-scale spatial variability and, in the case of rsds,
slightly better cross-validation results at the SRB grid scale.

Data availability. The EWEMBI dataset is publicly available via
https://doi.org/10.5880/pik.2016.004 (Lange, 2016).
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Appendix A: Quantile mapping and statistical
downscaling

Quantile mapping is used to adjust the distribution of values
from a data sample. In the context of bias correction, the dis-
tribution to be adjusted – the source distribution – is believed
or known to be more biased than the distribution the source
distribution is adjusted to – the target distribution. In prac-
tise, source and target distributions are empirically estimated
from the respective samples, in the present case of E2OBS
and SRB radiation data, in the form of cumulative distribu-
tion functions (CDFs) F E2OBS and F SRB, respectively. Quan-
tile mapping is then defined by

x 7−→ F SRB−1
(F E2OBS(x)), (A1)

where F SRB−1(F E2OBS( ·)) is called the transfer function.
Quantile mapping is called parametric if the CDFs are as-

sumed to take certain functional forms. Their estimation then
reduces to the estimation of the parameters of these func-
tions. Otherwise, quantile mapping is called non-parametric
and CDFs are estimated by estimating selected quantiles, be-
tween and beyond which quantiles are interpolated and ex-
trapolated, respectively (e.g., Gudmundsson et al., 2012).

In the present study, source and target distributions are as-
sumed to be normal or beta distributions. Mean values and
variances of normal distributions are estimated by running
mean values of multi-year daily sample mean values and
variances. Lower and upper bounds of beta distributions are
set to zero and estimated by physical upper limits of daily
mean radiation, respectively. Shape parameters of beta dis-
tributions are estimated with the method of moments (Wilks,
1995) using running mean values of multi-year daily sample
mean values and variances.

Bias correction includes a spatial disaggregation or down-
scaling step if the data behind source and target distributions
have different spatial resolution, as in the present case, or
represent area mean values and point values, as in the case
of quantile mapping between gridded and station data. If the
data behind the target distribution have higher resolution or
represent finer spatial scales than the data behind the source
distribution, then quantile mapping may lead to both tem-
poral and spatial variability inflation (Maraun, 2013). For
the reverse case, the present study shows how quantile map-
ping may lead to both temporal and spatial variability defla-
tion. Maraun (2013) suggests solving the inflation issue with
stochastic downscaling. It is shown here that the deflation
issue of the reverse case can also be overcome with deter-
ministic downscaling at the transfer function level.

Appendix B: Daily mean insolation at the top of the
atmosphere

Over the course of a year, the total solar irradiance,
S, varies according to S = S0(1+ ecos(2))2, where S0 =

1360.8 W m−2 is the solar constant (Kopp and Lean, 2011),
e = 0.0167086 is the Earth’s current orbital eccentricity, and
2 is the angle to the Earth’s position from its perihelion, as
seen from the Sun. If the orbital angular velocity of the Earth
is approximated to vary sinusoidally in time then the total so-
lar irradiance on day n after 1 January of the first year of a
4-year cycle including one leap year is approximately given
by

S = S0

(
1+ ecos

(
2π

n− 2
365.25

+ 2e sin
(

2π
n− 2

365.25

)))2
, (B1)

since S is at its maximum when the Earth is at its perihelion,
which on average occurs on 3 January.

The daily mean insolation at the top of the atmosphere,
rsdt, at some fixed geolocation depends on the location’s lat-
itude, φ, and on the declination of the Sun, δ, which varies
over the course of a year. On day n after 1 January of the first
year of a 4-year cycle including one leap year, the declination
of the Sun is approximately given by

sinδ = cos
(

2π
n+ 10
365.25

+ 2e sin
(

2π
n− 2

365.25

))
sinδmin, (B2)

since δ is at its minimum value δmin =−23.4392811◦ at the
December solstice, which on average occurs on 22 Decem-
ber. Latitude and declination of the Sun determine the hour
angle at sunrise, h, according to

cosh=min{1,max{−1,− tanφ tanδ}}. (B3)

The daily mean insolation at the top of the atmosphere at
latitude φ on day n is then given by

rsdt=
S

π
(hsinφ sinδ+ sinhcosφ cosδ). (B4)

For a given latitude, the rsdt climatology used to estimate
the upper bounds of the climatological beta distribution of
rsds in the BCsdax methods is derived using Eqs. (B1)–(B4)
to compute rsdt over a 4-year cycle including one leap year
and then averaging calendar day values over the four cases of
leap year occurrence in the 4-year cycle.

Appendix C: Two-sample Kolmogorov–Smirnov test
and Kuiper’s two-sample test

The overall effectivity of the bias correction methods intro-
duced in this study is measured by similarities of empiri-
cal CDFs of SRB and E2OBS data before and after bias
correction using the two-sample Kolmogorov–Smirnov (KS)
test (Kolmogorov, 1933; Smirnov, 1948) and Kuiper’s two-
sample test (Kuiper, 1962; Stephens, 1965). Let F1 be the
empirical CDF of uncorrected or corrected daily or monthly
mean longwave or shortwave E2OBS data for one particular
grid cell, calendar month, and validation data sample, with all
corresponding values pooled into one distribution, and let F2
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be the empirical CDF of the corresponding SRB data. Then
the two-sample KS test statistic,D, and Kuiper’s two-sample
test statistic, V , of these CDFs are given by

D = sup
r
|F1(r)−F2(r)| , (C1)

V = sup
r

(F1(r)−F2(r))+ sup
r

(F2(r)−F1(r)) . (C2)

The null hypothesis of both the KS test and Kuiper’s test
is that the two data samples whose empirical CDFs are com-
pared have the same underlying distribution. According to
Vetterling et al. (1992, Sect. 14.3), the probability p of in-
correctly rejecting this null hypothesis can be approximated
by

p = 1−F
([√

n+ 0.12+ 0.11/
√
n
]
D
)

and (C3)
p = 1−G

([√
n+ 0.155+ 0.24/

√
n
]
V
)

(C4)

for the KS test and Kuiper’s test, respectively, where F and
G are the CDFs of the asymptotic distributions of

√
nD and

√
nV , respectively, n= n1n2/(n1+ n2) is the effective sam-

ple size, and n1 and n2 are the sizes of the samples behind F1
and F2, respectively. This approximation of the true p value
is not only asymptotically accurate but already quite good for
n≥ 4 (see Stephens, 1970; Vetterling et al., 1992).

In order to adjust these p values for potential autocorrela-
tions in the samples compared here, which are in fact time se-
ries, n1 and n2 in the formula for n are replaced by n1(1−ρ1)
and n2(1−ρ2), respectively, as proposed by Xu (2013), where
the autoregression coefficients ρ1 and ρ2 of first-order au-
toregressive processes fitted to the time series are estimated
by the respective sample autocorrelation at lag one.

Appendix D: Window length for running mean and
maximum calculations

The climatologies of mean values, variances, and upper
bounds of daily mean radiation estimated by the BCvdpx
methods are based on running mean values of empirical
multi-year daily mean values, variances, and running max-
imum values, respectively. A common window length of
25 days is used for these running mean and maximum value
calculations (see Table 1). An obvious question is how sen-
sitive the bias correction results are to the choice of this win-
dow length.

The question is addressed here via variants of the BCvda1
methods that use uneven window lengths between 10 and
40 days for their running mean and maximum value calcula-
tions and are otherwise identical to the BCvda1 method intro-
duced in Sect. 3.1.1. The performance of these BCvda1 vari-
ants is then quantified by p values of two-sample KS statis-
tics of bias-corrected E2OBS data cross validated against
SRB data (see Sect. 4.1 and Appendix C). The window
lengths that maximise these p values vary considerably
with location, calendar month, and calibration data sample

(Fig. D1). The reason for this high variability is illustrated
in Fig. D2, where the overall performance of the BCvda1
variants, quantified by p values of two-sample KS statis-
tics aggregated over time (calendar months) and space (grid
cells), is shown to only weakly depend on the chosen window
length.

The optimal window length is thus highly uncertain.
For longwave (shortwave) radiation, the overall perfor-
mance of the BCvda1 variants is slightly higher for window
lengths from the upper (lower) end of the investigated range
(Fig. D2). For practical matters, one can apply the methods
using any window length between 10 and 40 days and ex-
pect similarly well adjusted radiation biases. The choice of
25-day running windows made here for both longwave and
shortwave radiation ensures a close-to-optimal performance
of the BCvda1 methods for both variables.
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Figure D1. Optimal window length for running mean and maximum calculations that precede the estimation of parameters of the clima-
tological distributions of longwave (v = l; top) and shortwave (v = s; bottom) radiation that are used for bias correction with BCvda1 (see
Table 1). Window lengths are varied between 10 and 40 days. Optimal window lengths maximise the p value of the two-sample KS statistic
of bias-corrected E2OBS data cross validated against SRB data (see Sect. 4 and Appendix C) and are determined individually for every grid
cell, calendar month (with all corresponding values pooled into one distribution), and calibration data sample (every1st, every2nd). Zonal
medians of optimal window lengths for each month and calibration data sample are shown in panels (a) and (c). Results are masked in (c)
where and when the monthly mean rsdt (Eqs. B1–B4) is less than 1 W m−2. Panels (b) and (d) show medians of optimal window lengths
over months and calibration data samples.

Figure D2. Dependence of two-sample KS statistic p values on window length for different radiation types and calibration data samples (see
text and Fig. D1). Plotted are the grid-cell area-weighted 50th (a) and second (b) percentiles of the natural logarithms of the p values over
months, latitudes, and longitudes.
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