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Abstract. We study daily surface air temperature (SAT) reanalysis in a grid over the Earth’s surface to iden-
tify and quantify changes in SAT dynamics during the period 1979–2016. By analysing the Hilbert amplitude
and frequency we identify the regions where relative variations are most pronounced (larger than ±50 % for the
amplitude and ±100 % for the frequency). Amplitude variations are interpreted as due to changes in precipita-
tion or ice melting, while frequency variations are interpreted as due to a northward shift of the inter-tropical
convergence zone (ITCZ) and to a widening of the rainfall band in the western Pacific Ocean. The ITCZ is the
ascending branch of the Hadley cell, and thus by affecting the tropical atmospheric circulation, ITCZ migration
has far-reaching climatic consequences. As the methodology proposed here can be applied to many other geo-
physical time series, our work will stimulate new research that will advance the understanding of climate change
impacts.

1 Introduction

The unprecedented intensification of weather extremes is
motivating research aimed at understanding long-term cli-
matic variations (Barreiro et al., 2008; Coumou and Rahm-
storf, 2012; England et al., 2014; Cai et al., 2014; Turco et al.,
2015) that can have profound socio-economic impacts (Ghil
et al., 2011) and trigger complex ecological adaptation mech-
anisms (Lejeune et al., 2002; Beaumont et al., 2011; Got-
tfried et al., 2012; Bordeu et al., 2016).

Quantifying variations in surface air temperature (SAT)
dynamics over several decades is a challenging problem be-
cause of non-stationarity and the presence of trends, mea-
surement noise, multiple timescales, memory, and correla-
tions in the data (Franzke, 2012; Massah and Kantz, 2016);
in addition, reanalysis data can be unreliable (due to the lack
of observational constraints in many geographical regions),
and reanalysis time series are insufficiently long (as reanal-
ysis starts at the beginning of the satellite era). These chal-
lenges have motivated the use, for climate data analysis, of

data-driven approaches that have been commonly used for
investigating observed complex signals in other fields of sci-
ence (e.g. neurological, physiological, financial, etc.). Uni-
variate analysis tools that have been used to analyse SAT time
series include detrended fluctuation analysis, fractional anal-
ysis, and wavelet analysis. Bivariate analysis and the com-
plex network approach has also allowed us to uncover inter-
relations between SAT anomalies in different regions (Tso-
nis and Swanson, 2008; Donges et al., 2009; Barreiro et al.,
2011). In this approach the seasonal cycle is removed to elim-
inate the influence of solar forcing, and the links represent
correlations (linear or non-linear) or statistical similarities
between SAT dynamics in different areas (Tirabassi and Ma-
soller, 2016). On the other hand, changes in the SAT sea-
sonal cycle have also been investigated, and a trend toward
reduced cycle amplitude has been detected in many regions
(Stine et al., 2009; Qian et al., 2011; Dwyer et al., 2012; Stine
and Huybers, 2012; Duan et al., 2017; Chambers et al., 2013;
Wang and Dillon, 2014). However, changes in SAT dynamics
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Figure 1. Relative change in the time-averaged Hilbert amplitude. (a) Amplitude averaged over the first 10 years (January 1979 to Decem-
ber 1988). (b) Amplitude averaged over the last 10 years (July 2007 to June 2016). (c) Relative change in the Hilbert amplitude,1a/ < a >.
(d) Relative change in amplitude of the seasonal cycle computed from the amplitude of the climatology,1a(clim)/a(clim). A good qualitative
agreement is seen in the spatial structures in (c) and (d). Importantly, the structures uncovered by the Hilbert amplitude are well defined in
comparison with those uncovered by the analysis of the climatology amplitude, which look noisier.

over several decades (such as those observed in Fig. 1) have
not yet been investigated at a global scale. In order to fill this
gap, we use Hilbert analysis (described in the Supplement)
to investigate SAT time series with daily resolution (reanal-
ysis covering the Earth’s surface in the period 1979–2016).
Our goal is to detect the most sensitive regions (“hotspots”)
where variations in SAT dynamics over the last decades are
more pronounced.

The Hilbert transform (HT) provides, for a real oscilla-
tory time series, x(t) with t ∈ [1, T ], an instantaneous am-
plitude, a(t), and an instantaneous frequency, ω(t), for each
data point of the time series and thus allows us to charac-
terise how the amplitude and the frequency of a signal vary
in time. If a signal does not have a sufficiently narrow fre-
quency band, a(t) and ω(t) will not have a clear physical
meaning (Pikovsky et al., 2001). The usual solution is based
on band-pass filtering to isolate a narrow frequency band;
however, HT directly applied to the signal can still yield
useful information. An alternative solution is based on the
Hilbert–Huang transform (Huang et al., 1998) that combines
Hilbert analysis with empirical mode decomposition that de-
composes an arbitrary real time series into components, each
having the physical meaning of a rotation in the complex
plane.

Because many natural geophysical time series have a sea-
sonal periodicity, this has motivated the use of Hilbert analy-
sis to characterise the time-varying oscillation amplitude and

to investigate phase shifts and phase–amplitude couplings.
Applications in various geophysical fields are discussed in
Huang and Wu (2008). As more recent examples, Massei
and Fournier (2012) used Hilbert analysis to characterise the
daily variability of the Seine river flow from 1950 to 2008,
uncovering linkages between river flow variability and global
climate oscillations (the North Atlantic Oscillation and the
Madden–Julian Oscillation). Sun (2015) used Hilbert analy-
sis to compute the daily phase shift between temperature sig-
nals recorded at the ground surface and at a depth of 5 m in
two meteorology stations in Taiwan from 1952 to 2008. Sig-
nificant reductions in the phase shift from the 1980s to 1990s
were found, which was interpreted to be related to the warm-
ing of the Pacific Decadal Oscillation. Reddy and Adarsh
(2016) applied Hilbert analysis to rainfall time series in India
and found that the multi-scale components of rainfall series
have a similar periodic structure as global climate oscilla-
tions (the Quasi-biennial Oscillation, El Niño Southern Os-
cillation, etc.).

We have recently applied the Hilbert transform to unfil-
tered daily SAT reanalysis (Zappalà et al., 2016). We have
shown that the maps of time-averaged Hilbert frequency,
< ω >, and standard deviation, σω, revealed well-defined
large-scale structures which were consistent with known dy-
namical processes.

Here we use a(t) and ω(t) to quantify SAT variations. Our
hypothesis is that changes in a(t) and ω(t) can yield informa-
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tion about variations in SAT dynamics. Specifically, we are
interested in addressing the following questions: which prop-
erties of a(t) and ω(t) display relevant variations? Where are
the regions in which these variations are more pronounced?
Which processes can be responsible for these variations? Can
these variations be used as a quantitative measure of regional
climate change?

2 Data

In the main text we present results from an ERA-Interim
daily SAT reanalysis (Dee et al., 2011) that covers the pe-
riod from January 1979 to June 2016 with a spatial resolu-
tion of 2.5◦, both in latitude and in longitude. Thus, there
are N = 73× 144= 10 512 geographical sites and in each
site the SAT time series has T = 13696 days. In the Supple-
ment we compare ERA-Interim with NCEP-DOE Reanaly-
sis 2, which is an improved version of the NCEP Reanaly-
sis I model (Kistler et al., 2001). It covers a longer time in-
terval and has 94× 192= 18 048 geographical sites. In order
to perform a precise comparison between the results of the
two datasets, in the NCEP-DOE Reanalysis 2 we consider
the same time interval as the ERA-Interim dataset.

3 Methods

3.1 Hilbert analysis

To apply the Hilbert transform (described in the Sup-
plement) we first pre-process each raw SAT time series,
rj (t) (where j ∈ [1, N ] represents the geographical site
and t ∈ [1, T ] represents the day): we eliminate the lin-
ear trend and normalise to zero mean and unit variance,
obtaining xj (t). The Hilbert transform is then applied
to xj (t), obtaining yj (t)=HT[xj (t)]. From xj (t) and yj (t),
the amplitude aj (t) and the phase ϕj (t) were calculated as

aj (t)=
√
[xj (t)]2+ [yj (t)]2 and ϕj (t)= arctan[yj (t)/xj (t)].

Taking into account the signs of xj (t) and yj (t), the phase
is constrained to the interval [−π , π ). Whenever an extreme
value of the interval is reached, the phase jumps to the other
end of the interval. By eliminating these sudden jumps (us-
ing a standard library function that appropriately adds ±2π )
we “unwrapped” the phase obtaining a continuous variation
in time from which the frequency time series, ωj (t), was ob-
tained by calculating the derivative. Since the Hilbert algo-
rithm (Bilato et al., 2014) gives deviations from the true val-
ues of the amplitude, phase, and frequency near the extremes,
in each time series (aj (t), ϕj (t), and ωj (t)) we disregarded
the initial and final 5% (see the Supplement). This way, we
have time series of length T = 12 328.

3.2 Measures used to quantify variations in SAT
dynamics

Variations in the Hilbert amplitude were quantified by
the relative change, 1a/ < a >= (< a>l−< a>f)/ < a >,
where < a>f is the average value of the amplitude dur-
ing the first 10 years of the time series (January 1979
to December 1988), and < a>l during the last 10 years
(July 2007 to June 2016). Analogously, we calculated the rel-
ative change in amplitude variance, 1σ 2

a /σ
2
a , of average fre-

quency,1ω/ < ω >, and of frequency variance,1σ 2
ω/σ

2
ω. In

the Supplement we analyse how the spatial structures uncov-
ered depend on the time intervals used to calculate the rel-
ative variations: we compare with relative variations during
the first and final 5 years of the reanalysis and also during the
first half-period and the second half-period of the reanalysis.
While the values of the relative variations vary with the time
interval considered, the spatial maps are remarkably robust
as the same structures are found with the three time intervals
considered.

A similar analysis was performed to detect changes di-
rectly from the raw SAT time series, rj (t), by computing the
amplitude of the climatology (or seasonal cycle), cj (t), and
the variance of anomaly time series, zj (t).

Specifically, the amplitude of the climatology was calcu-
lated as a(clim)

j (I )=max[cIj (t)]−min[cIj (t)], where cIj (t) is
the climatology series calculated only in the time interval I .
We remark that the climatology amplitude a(clim)

j (I ) is a
scalar number that depends on the choice of the time in-
terval I . We calculated the climatology amplitude in the
first and last decade, as well as in the whole series. As be-
fore, we used these values to calculate the relative change
1a(clim)/a(clim). Also, the variance of the anomaly time se-
ries zj (t) was calculated and then used to find the relative
change, 1σ 2

z /σ
2
z .

With the goal of relating changes in Hilbert frequency with
changes in the statistical properties of SAT time series, an
analysis of the number of zero crossings was performed: for
each xj (t) we counted the number of crossings through the
mean value, x= 0. As with other quantities, we then calcu-
lated the relative change.

3.3 Significance analysis

A statistical significance analysis was performed by surro-
gating Hilbert series. For each amplitude time series (i.e.
in each grid point) 100 shuffle surrogates were generated
and for each surrogate the relative change, 1as/ < as >,
was calculated. Then, the average over the 100 surrogates,
<1as/ < as>>s, and its standard deviation, σs, were used
to define the significance threshold: the relative change com-
puted from the original data was considered significant if
it was higher than <1as/ < as>>s+ 2σs or lower than
<1as/ < as>>s− 2σs. In the colour maps, regions where
variations are not significant are displayed in white. The
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Figure 2. Surface air temperature in two regions where a clear change in the oscillation amplitude in the last ten years, with respect to the

first ten years, is observed. (a) Site of coordinates (7.5 S, 307.5 E), marked with a triangle in Fig. 1(c). (b) Site of coordinates (75 N, 40 E),

marked with a circle in Fig. 1(c).

we expect its amplitude change to give similar indications as the Hilbert amplitude change. On the other hand, the anomaly
term contains all the rapid variability, so we expect its variance to give similar results as the variance of Hilbert amplitude.

Figures 1(c) and 1(d), which display respectibely the relative change of Hilbert amplitude and of climatology amplitude,
and Figs. 3(a) and 3(b), which display respectively the relative change of Hilbert amplitude variance and of anomaly variance,
confirm these expectations.5

The good qualitative agreement seen in the spatial structures in these maps confirms that Hilbert analysis directly applied
to unfiltered SAT indeed gives a physically meaningful instantaneous amplitude, with average and variance values that are
consistent with those computed from SAT.

In Figs. 3(a) and 3(b), however, there is a difference in the eastern Pacific Ocean, in the area marked with a circle. In
particular, in Fig. 3(b) there is an area with large decrease of variance (deep blue, around -100%), while in (a) the decrease is10

less pronounced (light blue, around -65%) and extended over a smaller area. In addition, in Fig. 3(a) there is an orange-red area
that indicates a moderate increase of variance (around 45%), while in (b) such area is absent. The reasons underlying these
differences will be discussed later.

6

Figure 2. Surface air temperature in two regions where a clear change in the oscillation amplitude in the last 10 years is observed with
respect to the first 10 years. (a) Site of coordinates (7.5◦ S, 307.5◦ E) marked with a triangle in Fig. 1c. (b) Site of coordinates (75◦ N, 40◦ E)
marked with a circle in Fig. 1c.

same test was applied to frequency variations and the other
quantities, except for the climatology for which a surrogate
test is not applicable. In the Supplement various thresholds
are considered and, in addition, a non-parametric signifi-
cance test is used. Here we present only the maps obtained
with threshold ±2σ because it is a compromise between
uncovering the spatial regions where SAT changes are pro-
nounced and disregarding the areas where the variations are
small.

4 Results

We analyse the maps of < ω >, < a >, σ 2
ω, and σ 2

a in the
first 10 years and in the last 10 years of the period covered
by the reanalysis, as well as the relative change between the
two decades.

4.1 Analysis of amplitude variations

Figure 1a and b display < a > in the first and in the last
10 years, respectively, and Fig. 1c displays the relative dif-
ference (see Sect. 3 for details). In Fig. 1c we see an area of
large increase (more than 50 %) in average amplitude located
in South America (red spot marked by a triangle) and an area
of large decrease (again, more than 50 %) located in the Arc-
tic (blue spot marked by a circle). The raw SAT time series
in these regions are displayed in Fig. 2.

In both time series we clearly observe a change in the am-
plitude of the oscillations in the last 10 years with respect to
the first 10 years, having a visual confirmation of the changes
detected by the Hilbert amplitude. The red spot in Amazonia,
whose SAT series shown in Fig. 2a has an increasing ampli-
tude, can be interpreted in terms of changes in precipitation.
In particular, the increase in the Hilbert amplitude is linked

to the decrease in precipitation and to the lengthening of the
dry season (as reported in Gu et al., 2016; Liebmann et al.,
2004; Fu et al., 2013). This is due to the fact that when pre-
cipitation decreases, the fraction of solar radiation that is not
used for evaporation is used to heat the ground, which in turn
heats the surface air. This leads to higher extreme tempera-
tures during the dry seasons, as can be observed in Fig. 2a.
Regarding the blue spot in the Arctic region where the SAT
series shown in Fig. 2b has a decreasing amplitude, it can
be interpreted as due to the melting of sea ice. In fact, when
ice is present at the surface of the sea, it acts as an insulator
preventing heat exchange between sea and air. This causes a
large amplitude in the SAT cycle. On the other hand, if the
ice melts, the air–sea heat exchange reduces the amplitude of
the cycle. In particular, during winter the air temperature is
mitigated by the sea and tends to have more moderated val-
ues. It is important to take into account that this blue spot is
in a region for which the observational constraints from satel-
lites on the reanalysis are scarce, which decreases the quality
of the reanalysis in the region. Therefore, in order to check
whether the detected changes are robust, we performed the
same analysis using the NCEP-DOE reanalysis dataset. The
results, presented in the Supplement, confirm the presence of
the blue spot in the Arctic.

Next, we compare the changes detected by the Hilbert am-
plitude with those computed directly from SAT (by decom-
posing the SAT time series into climatology and anomaly, as
explained in Sect. 3). Since the climatology term retains the
seasonal variation, we expect its amplitude change to give
similar indications as the Hilbert amplitude change. On the
other hand, the anomaly term contains all the rapid variabil-
ity, so we expect its variance to give similar results as the
variance of the Hilbert amplitude.
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Figure 3. Relative change of amplitude fluctuations computed from the variance of (a) Hilbert amplitude, ��2
a/�2

a; (b) the anomaly time

series, ��2
z/�2

z .

4.2 Analysis of Frequency Variations

Figure 4(a) displays the average frequency h!i in the first ten years, Fig. 4(b) in the last ten years, and Fig. 4(c) displays the

relative change, �!/h!i. In Fig. 4(c) we note that in the eastern Pacific Ocean there are two small areas, enclosed by the circle,

of intense increase (red) and decrease (blue) of frequency. They both represent frequency changes whose absolute values are

larger than 100% and correspond to the same region where differences were detected in Fig. 3.5

These two areas of opposite signs suggest that, between the initial and the final decade, there is a shift of the inter-tropical

convergence zone (ITCZ) toward the north. The ITCZ involves strong convective activity, which causes rapid fluctuations of

SAT, thus giving high values of instantaneous frequency, as shown in Figs. 4(a,b). Therefore, in the relative change of frequency,

in regions corresponding to the initial position of the ITCZ we see a decrease, while in regions corresponding to the present

position of the ITCZ we see an increase. For the same reason, the two red areas in the western Pacific Ocean (indicated by10

two squares) suggest an expansion of the tropical convective regions. This interpretation is in agreement with previous works

that have related a northward shift of ITCZ to an inter-hemispheric temperature gradient, as the one experienced during the

last decades (Yoshimori and Broccoli, 2008; Kang et al., 2009; Frierson and Hwang, 2012; Schneider et al., 2014; Talento and

Barreiro, 2016). Regarding the red areas in the north Atlantic, in the north Pacific and in the south Pacific, they are consistent

with an increase in the occurrence of fronts which cause large daily fluctuations of temperature and thus an increase of Hilbert15

frequency.

To gain insight into the physical meaning of the changes that are captured by Hilbert frequency, we use an alternative

approach to estimate frequency variations: we define as “events” the zero crossings of SAT time series (Pikovsky et al., 2001)

(detrended and normalised to zero-mean as described in Methods). Then, we count the number of events in the first ten years,

in the last ten years, and calculate the relative variation.20

Figure 4(d) displays the map of relative change of zero-crossings. We see that there is a qualitative good agreement with the

spatial structures seen in Fig. 4(c), thus providing a physical interpretation for the observed variation of Hilbert frequency: the

7

Figure 3. Relative change in amplitude fluctuations computed from the variance of the (a) Hilbert amplitude,1σ 2
a /σ

2
a ; (b) the anomaly time

series, 1σ 2
z /σ

2
z .
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Figure 4. Relative change of time-averaged Hilbert frequency (in units of oscillations/year). (a) Average in the first ten years (1979–1988).

(b) Average in the last ten years (2007–2016). (c) Relative change of Hilbert frequency, �!/h!i. (d) Relative change of the number of

zero-crossings of the normalised SAT time series. In (a) and (b) the colour scale is adjusted to represent in white the regions where the

average frequency is one oscillation per year. In (c) and (d), a good qualitative agreement of spatial structures is seen; however, we note that

Hilbert frequency detects stronger variations than those measured by the number of zero-crossings.

areas where the frequency increases (decreases) correspond to areas where the number of zero-crossings increases (decreases).

We note that the relative variations in Hilbert frequency are more pronounced than those in the number of crossings, and this

specifically holds in the regions where frequency variations are interpreted in terms of ITCZ migration.

Figures 5(a) and 5(b) display SAT time series in the dipole region indicated with the circle in Fig. 4(c), and also indicate

(in red) the zero-crossings. We can understand the difference that was detected in this region between the variance of Hilbert5

amplitude (Fig. 3a) and the variance of anomaly (Fig. 3b). This difference is explained in the following terms: in the first

decade the seasonal cycle is more irregular than in the last decade, probably a consequence of an El Niño event in 1982–1983.

The anomaly series contains these slow fluctuations as well as the rapid ones, and thus its variance is affected by both effects.

In contrast, the Hilbert amplitude is less affected by the slow fluctuations as its variance captures mainly the rapid fluctuations

of SAT.10

8

Figure 4. Relative change in the time-averaged Hilbert frequency (in units of oscillations per year). (a) Average in the first 10 years (1979–
1988). (b) Average in the last 10 years (2007–2016). (c) Relative change in Hilbert frequency,1ω/ < ω >. (d) Relative change in the number
of zero crossings of the normalised SAT time series. In (a) and (b) the colour scale is adjusted to represent in white the regions where the
average frequency is one oscillation per year. In (c) and (d), a good qualitative agreement of spatial structures is seen; however, we note that
the Hilbert frequency detects stronger variations than those measured by the number of zero crossings.

Figure 1c and d, which respectively display the relative
change in Hilbert amplitude and in climatology amplitude,
and Fig. 3a and b, which respectively display the relative
change in Hilbert amplitude variance and in anomaly vari-
ance, confirm these expectations.

The good qualitative agreement seen in the spatial struc-
tures in these maps confirms that Hilbert analysis directly ap-
plied to unfiltered SAT indeed gives a physically meaningful
instantaneous amplitude, with average and variance values
that are consistent with those computed from SAT.

In Fig. 3a and b, however, there is a difference in the east-
ern Pacific Ocean in the area marked with a circle. In particu-

lar, in Fig. 3b there is an area with large decrease in variance
(dark blue, around −100 %), while in Fig. 3a the decrease
is less pronounced (light blue, around −65 %) and extended
over a smaller area. In addition, in Fig. 3a there is a reddish
orange area that indicates a moderate increase in variance
(around 45 %), while in Fig. 3b such an area is absent. The
reasons underlying these differences will be discussed later.

4.2 Analysis of frequency variations

Figure 4a displays the average frequency < ω > in the first
10 years, Fig. 4b in the last 10 years, and Fig. 4c displays
the relative change, 1ω/ < ω >. In Fig. 4c we note that in

www.earth-syst-dynam.net/9/383/2018/ Earth Syst. Dynam., 9, 383–391, 2018



388 D. A. Zappalà et al.: Quantifying changes in temperature dynamics

-4
-3
-2
-1
 0
 1
 2
 3

1985 1990 1995 2000 2005 2010

(a)

Te
m

p.
 [n

or
m

. u
ni

ts
]

Time [year]

n. crosses = 202 n. crosses = 289

-3
-2
-1
 0
 1
 2
 3
 4

1985 1990 1995 2000 2005 2010

(b)

Te
m

p.
 [n

or
m

. u
ni

ts
]

Time [year]

n. crosses = 258 n. crosses = 128

Figure 5. Normalised SAT time series and number of zero-crossings in the regions indicated with a circle in Fig. 4(c). In the red region (2.5

N, 245 E), panel (a), the number of zero-crossings increases in the last ten years with respect to the first ten years (289/202 respectively),

while in the blue region (7.5 S, 250 E), panel (b), it decreases (128/258 in the last/first ten years).

To demonstrate the robustness of our findings, in theSupporting Informationwe compare the results obtained from ERA-
Interim with those obtained from another reanalysis dataset, NCEP-DOE. We find a good qualitative agreement in the spatial
structures in the maps ofh! i , hai , �2

! and�2
a, but we discuss also some relevant differences. In addition, to further understand

the relationship between statistical properties of SAT and those of Hilbert amplitude and frequency, in theSupporting Infor-
mationwe apply Hilbert analysis to synthetic data generated by an autoregressive AR(1) process. We chose an AR(1) process5

because it is commonly used in the literature to model climate data. We find that, when increasing the noise intensity in the
synthetic series, the Hilbert amplitude decreases while the frequency increases and show that this trend is also observed in real
SAT time series.

5 Conclusions

We have used Hilbert analysis to quantify the changes in SAT dynamics, in a global scale, that have occurred over the last10

three decades. From the SAT time series with daily resolution we derived the amplitude and the frequency time series, and then
calculated the relative change (between the first and the last decade) of average and variance of these series.Large variations
of Hilbert amplitude (more than 50%) in the Arctic and in Amazonia were interpreted respectively as due to ice melting and

9

Figure 5. Normalised SAT time series and number of zero crossings in the regions indicated with a circle in Fig. 4c. In the red region (2.5◦ N,
245◦ E) (a), the number of zero crossings increases in the last 10 years with respect to the first 10 years (289 and 202, respectively), while in
the blue region (7.5◦ S, 250◦ E) (b), it decreases (128 and 258 in the last and first 10 years).

the eastern Pacific Ocean there are two small areas, enclosed
by the circle, of intense increase (red) and decrease (blue)
in frequency. They both represent frequency changes whose
absolute values are larger than 100 % and correspond to the
same region where differences were detected in Fig. 3.

These two areas of opposite signs suggest that, between
the initial and the final decade, there is a shift of the inter-
tropical convergence zone (ITCZ) toward the north. The
ITCZ involves strong convective activity, which causes rapid
fluctuations of SAT, thus giving high values of instantaneous
frequency, as shown in Fig. 4a and b. Therefore, in the rel-
ative change in frequency, in regions corresponding to the
initial position of the ITCZ we see a decrease, while in re-
gions corresponding to the present position of the ITCZ we
see an increase. For the same reason, the two red areas in the
western Pacific Ocean (indicated by two squares) suggest an
expansion of the tropical convective regions. This interpre-
tation is in agreement with previous works that have related
a northward shift of the ITCZ to an inter-hemispheric tem-
perature gradient, such as the one experienced during the last
decades (Yoshimori and Broccoli, 2008; Kang et al., 2009;
Frierson and Hwang, 2012; Schneider et al., 2014; Talento
and Barreiro, 2016). Regarding the red areas in the north At-
lantic, the north Pacific, and the south Pacific, they are con-
sistent with an increase in the occurrence of fronts, which
cause large daily fluctuations of temperature and thus an in-
crease in the Hilbert frequency.

To gain insight into the physical meaning of the changes
that are captured by the Hilbert frequency, we use an alter-
native approach to estimate frequency variations: we define
“events” as the zero crossings of SAT time series (Pikovsky
et al., 2001) (detrended and normalised to zero mean as de-
scribed in Sect. 3). Then, we count the number of events in

the first 10 years and in the last 10 years and calculate the
relative variation.

Figure 4d displays the map of relative change in zero
crossings. We see that there is a qualitative good agree-
ment with the spatial structures seen in Fig. 4c, thus pro-
viding a physical interpretation for the observed variation
in the Hilbert frequency: the areas where the frequency in-
creases (decreases) correspond to areas where the number of
zero crossings increases (decreases). We note that the relative
variations in the Hilbert frequency are more pronounced than
those in the number of crossings, and this specifically holds
in the regions where frequency variations are interpreted in
terms of ITCZ migration.

Figure 5a and b display SAT time series in the dipole re-
gion indicated with the circle in Fig. 4c and also indicate
(in red) the zero crossings. We can understand the difference
that was detected in this region between the variance of the
Hilbert amplitude (Fig. 3a) and the variance of the anomaly
(Fig. 3b). This difference is explained in the following terms:
in the first decade the seasonal cycle is more irregular than in
the last decade, probably a consequence of an El Niño event
in 1982–1983. The anomaly series contains these slow fluc-
tuations as well as the rapid ones, and thus its variance is
affected by both effects. In contrast, the Hilbert amplitude is
less affected by the slow fluctuations as its variance captures
mainly the rapid fluctuations of SAT.

To demonstrate the robustness of our findings, in the Sup-
plement we compare the results obtained from ERA-Interim
with those obtained from another reanalysis dataset, NCEP-
DOE. We find a good qualitative agreement in the spatial
structures in the maps of < ω >, < a >, σ 2

ω, and σ 2
a , but we

also discuss some relevant differences. In addition, to further
understand the relationship between the statistical properties
of SAT and those of the Hilbert amplitude and frequency, in
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the Supplement we apply Hilbert analysis to synthetic data
generated by an autoregressive AR(1) process. We chose an
AR(1) process because it is commonly used in the litera-
ture to model climate data. We find that, when increasing the
noise intensity in the synthetic series, the Hilbert amplitude
decreases while the frequency increases, which shows that
this trend is also observed in real SAT time series.

5 Conclusions

We have used Hilbert analysis to quantify the changes in
SAT dynamics, on a global scale, that have occurred over the
last 3 decades. From the SAT time series with daily resolu-
tion we derived the amplitude and the frequency time series
and then calculated the relative change (between the first and
the last decade) in the average and variance of these series.
Large variations in the Hilbert amplitude (more than 50 %)
in the Arctic and in Amazonia were respectively interpreted
as due to ice melting and precipitation decrease. The anal-
ysis of the Hilbert frequency also uncovered areas of large
changes. In particular, two areas of opposite changes in the
eastern Pacific Ocean and two areas of increase in the west-
ern Pacific Ocean suggest a shift towards the north and a
widening of the ITCZ. While there is evidence that the ITCZ
has moved north–south in the past, to the best of our knowl-
edge our work is the first to confirm this migration in the last
decades. Our findings have important implications because,
as the ITCZ is the ascending branch of the Hadley cell, its
migration affects both the Earth’s radiative balance and the
release of latent heat that drives the tropical atmospheric cir-
culation. Taken together, these effects have not only local but
also far-reaching climatic consequences. Additional analysis
provided in the Supplement confirms the robustness of these
observations.

As the methodology used here can be applied to many
other climatological time series that exhibit well-defined os-
cillatory behaviour, we believe that our work will stimulate
new research to identify and quantify the impacts of climate
change directly from observed data.

Code and data availability. The Hilbert algorithm used is avail-
able in Bilato et al. (2014); the datasets used are the ERA-Interim
Reanalysis provided by the European Centre For Medium-Range
Weather Forecasts (ECMWF), Reading, UK, from their website
(https://www.ecmwf.int, Dee et al., 2011) and the NCEP-DOE Re-
analysis 2 provided by NOAA, Boulder, Colorado, USA, from their
website (http://www.esrl.noaa.gov/psd/, Kanamitsu et al., 2002).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-9-383-2018-supplement.
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