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Abstract. This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom–up
approach which combines expert judgment and statistical information to systematically select transparent, nonre-
dundant indicators for a comprehensive assessment of the state of the Earth system. The methods consists of two
basic steps: (1) the calculation of a correlation matrix among variables relevant for a given research question and
(2) the systematic evaluation of the matrix, to identify clusters of variables with similar behavior and respective
mutually independent indicators. Optional further analysis steps include (3) the interpretation of the identified
clusters, enabling a learning effect from the selection of indicators, (4) testing the robustness of identified clus-
ters with respect to changes in forcing or boundary conditions, (5) enabling a comparative assessment of varying
scenarios by constructing and evaluating a common correlation matrix, and (6) the inclusion of expert judgment,
for example, to prescribe indicators, to allow for considerations other than statistical consistency. The example
application of the SCoMaE method to Earth system model output forced by different CO2 emission scenar-
ios reveals the necessity of reevaluating indicators identified in a historical scenario simulation for an accurate
assessment of an intermediate–high, as well as a business-as-usual, climate change scenario simulation. This
necessity arises from changes in prevailing correlations in the Earth system under varying climate forcing. For a
comparative assessment of the three climate change scenarios, we construct and evaluate a common correlation
matrix, in which we identify robust correlations between variables across the three considered scenarios.

1 Introduction

An indicator is a quantitative value, measured or calculated,
that describes relevant aspects of the state of a defined sys-
tem. A useful indicator should fulfill certain characteristics
that depend on the purpose of the indicator (Gallopín, 1996).
Environmental indicators are developed based on quantita-
tive measurements or statistics of environmental conditions
in order to allow for a comparison of states of the envi-
ronment across time or space (Ebert and Welsch, 2004).

For environmental indicators of climate change Radermacher
(2005) defined statistical measurability, political and soci-
etal relevance, and scientific consistency, i.e., a scientifically
meaningful link between indicator and the state to be de-
scribed, as the three main characteristics that should be con-
sidered as important during the indicator selection process.
Moreover, other characteristics can be defined as desirable
for such indicators, such as a high signal-to-noise ratio of the
measurement, the relevance for ethical considerations, or the
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fact that the indicators chosen should not provide redundant
information.

For the assessment of ongoing climate change, models
representing the physical and biogeochemical processes of
the Earth system and known as Earth system models (ESMs)
are one of the essential tools because the inertia of the cli-
mate system to (carbon) perturbations requires projections
of future climate states. Early climate models applied simple
zero- to two-dimensional calculations to assess the effect of
atmospheric CO2 on the climate by using global mean sur-
face air temperature (SAT) as an indicator (e.g., Arrhenius,
1896; Callendar, 1938; Sellers, 1969). This commonly used
climate change indicator, SAT, fulfills all three abovemen-
tioned characteristics. Several long-term temperature records
as well as proxies for assessing SAT exist, which makes this
indicator well measured (Statistical measurability). SAT is
closely linked to other climate variables, e.g., evaporation,
sea level rise, or biological productivity. Although SAT may
not be the most relevant variable for society, using this in-
dicator as a proxy for climate impacts is scientifically con-
sistent (Seneviratne et al., 2016). Its political, economical,
and ethical relevance evolved over time and is now evident
in discussions concerning, e.g., global warming (Ott et al.,
2004) or the 2◦ temperature increase target, which was en-
dorsed by the Conference of the Parties in 2015 (UNFCCC,
2015). Working group II of the Intergovernmental Panel on
Climate Change (IPCC) (Houghton et al., 2001) used SAT as
the main climate change indicator, due to its predominance
in the existing literature and its large scientific consistency as
such.

But as Earth system models and observational data sets
continuously increase in complexity, there are more and more
variables available that could potentially serve as indicators
of the state of the climate system. Which ones should we
select for a fully comprehensive assessment of changes in
the climate system, ideally, without providing redundant in-
formation? A common bottom–up approach for measuring
complex systems is to start from a broad set of (Earth system)
variables and consecutively select more appropriate ones de-
pending on the research question (e.g., Pintér et al., 2005;
Kopfmüller et al., 2012). For science-led climate change as-
sessments reports, such as published by Working Group I
of the IPCC, in addition to SAT, nowadays more indicators
are selected to evaluate changes in different components of
the Earth system, e.g., precipitation or often precipitation ex-
tremes, Arctic summer sea ice, or the rate of ocean acidi-
fication. Therefore, they are discussed in, e.g., the IPCC’s
summary for policy makers of the recent assessment report
of climate change (Stocker et al., 2013).

The selection of a limited number of indicators that sup-
port scientific or political decision making is a major chal-
lenge for experts, who in this case have to decide on the rel-
ative importance of a variable in relation to others (Ramet-
steiner et al., 2011). There exist no unambiguous rules for
the selection process (Böhringer and Jochem, 2007). Any in-

dicator selection or metrics construction from Earth system
variables implies a value and weighting decision and applies
a weight of 0 to any disregarded variable. While the value
judgment ideally requires the inclusion of potential end users
or stakeholders, the weighting requires a well-informed and
broad participation of scientific disciplines, i.e., expert judg-
ment (Radermacher, 2005). However, selecting one indica-
tor, while disregarding the other is a normative choice (Krel-
lenberg et al., 2010), which can (unknowingly) be biased by,
e.g., technical knowledge (Rametsteiner et al., 2011). Fur-
thermore, Rametsteiner et al. (2011) point out that the ad
hoc defined indicators should be subject to reevaluation over
time.

In this study we want to introduce a bottom–up indicator
selection method that uses statistical information about vari-
ables in addition to expert judgement, thereby attempting to
reduce bias in the selection process. Systematic Correlation
Matrix Evaluation (SCoMaE) uses information on correla-
tions between variables to identify “clusters” of variables that
show similar behavior. We then systematically select scien-
tifically consistent indicators to represent these clusters. The
identified indicators are independent and do not provide re-
dundant information. A set of independent indicators hence
allows for a more comprehensive science-led assessment of
the system under consideration than a set of correlated indi-
cators. Furthermore, SCoMaE allows for a learning process
by providing new information about correlations between the
given variables and hence increases the system understand-
ing.

To illustrate the SCoMaE method, we exemplarily select
indicators to answer the following research question: “How
are changes in the climate system influenced by the sensitiv-
ity of the marine and terrestrial biological system to tempera-
ture and CO2?” This example application enables us to (1) il-
lustrate how a correlation matrix can be constructed given a
specific research question, (2) identify a comprehensive in-
dicator set, (3) show that an indicator set derived from a cer-
tain forcing scenario is not necessarily appropriate to assess
a changed forcing scenario, (4) identify a common indicator
set valid for multiple forcing scenarios, and finally (5) illus-
trate how the method could be used in an iterative process in-
cluding expert judgment or previous knowledge of the given
system. These steps will serve as the guideline of this paper.

2 Defining the research question for the SCoMaE
example case

Before the SCoMaE method can be applied, it is crucial to
identify and formulate the research question. For our ex-
ample we chose to address the following research question:
“How are changes in the climate system influenced by the
sensitivity of the marine and terrestrial biological system to
temperature and CO2?” While for this question we chose to
evaluate perturbed parameter simulations of an intermediate-
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complexity Earth system model (see Sect. 2.1 and 2.3 for de-
tails), it is possible to apply this method to other data sets to
answer different questions. Here are a few examples of alter-
native ways to define research questions and use the SCoMaE
method to investigate them.

1. Our application is comparable with a multi-model en-
semble where each of the perturbed parameters is a
slightly different version of the default model. We
could hence do the very same analysis as described
in Sect. 3, with, e.g., the different models and scenar-
ios simulated in the Coupled Model Intercomparsion
Project 5 (CMIP5). The research question of how sim-
ulated changes in the climate system are influenced
by multi-model model variability under climate change
could be answered by this setting.

2. To select indicators to answer the research question
of which changes in the simulated Earth system are
robust throughout state-of-the-art Earth system mod-
els, we could again use the CMIP5 data sets. Here,
one would probably want to calculate correlations be-
tween time series of different variables. This would
give information about similar frequencies of those vari-
ables, which in turn suggests similar underlying pro-
cesses. One could compare correlation matrices of one
model during different forcing scenarios, as described
in Sect. 3.3 and 3.4, or check the robustness of the cor-
relations in one time period across models.

3. In that sense SCoMaE could also be applied to cal-
culate correlations of observational time series. Since
there is a higher level of noise within this data, it is
possible to concentrate the research question on prede-
fined timescales and filter the time series of the variables
before applying the SCoMaE method. The indicators
would accordingly be selected to answer the following
underlying research question: “Which are the indepen-
dent processes that I need to study for a comprehensive
assessment of changes in the climate system of a given
frequency band?”

Coming back to our example application of the SCoMaE
method, we now want to briefly explain the model setup and
simulations.

2.1 Model description

This paper illustrates the SCoMaE method for the example of
model simulations performed with version 2.9 of the Univer-
sity of Victoria Earth System Climate Model (UVic ESCM),
an Earth system model of intermediate complexity (Eby
et al., 2013). It includes schemes for ocean physics based on
the Modular Ocean Model Version 2 (MOM2) (Pacanowski,
1995), ocean biogeochemistry (Keller et al., 2012), and a ter-
restrial component including soil and vegetation dynamics

(Meissner et al., 2003). It is coupled to a thermodynamic sea
ice model (Bitz et al., 2001) with elastic visco-plastic rhe-
ology (Hunke and Dukowicz, 1997). The atmosphere is rep-
resented by a two-dimensional atmospheric energy moisture
balance model (Fanning and Weaver, 1996). All model com-
ponents have a common horizontal resolution of 3.6◦ lon-
gitude and 1.8◦ latitude and the oceanic component has a
vertical resolution of 19 levels, with vertical thickness vary-
ing from 50 m near the surface to 500 m in the deep ocean.
Wind velocities used to calculate the advection of atmo-
spheric heat and moisture as well as the air–sea-ice fluxes of
surface momentum and heat and water fluxes, are prescribed
as monthly climatological wind fields from NCAR/NCEP re-
analysis data (Eby et al., 2013). Wind anomalies, which are
determined from surface pressure anomalies with respect to
preindustrial surface air temperature, are added to the pre-
scribed wind fields.

A list of the globally aggregated output variables is given
in Table A1.

2.2 Spin-up and scenario forcing

For the default model simulation, the UVic ESCM was spun-
up with preindustrial (year 1765) seasonal forcing for over
10 000 years. All simulations were integrated from 850 un-
til 2005 using historical fossil-fuel emissions and land-use
changes, as well as radiative forcing from solar variability
and volcanic activity following Eby et al. (2013). Following
Keller et al. (2014), continental ice sheets were held constant
to facilitate the experimental setting and analyses. Warming
from black carbon, indirect ozone effects, and cooling from
indirect sulfate aerosol effects were not included. From 2005
onward until 2100 the Representative Concentration Pathway
(RCP) 4.5 and 8.5 scenarios from Meinshausen et al. (2011)
were implemented as an intermediate and high-CO2 emis-
sions driven scenario, respectively.

For the sensitivity analysis performed with the UVic
ESCM, different model input parameters and parameteriza-
tions were perturbed, and for some of them it was necessary
to do a new model spin-up to reach steady-state conditions
again; apart from this the forcing was the same for all simu-
lations.

2.3 Parameter perturbations

In the following sections, the single-parameter perturbation
experiments, which are used in the example and shown in
Fig. 1, are explained in detail. We chose these parameters
to explore the sensitivity of the UVic ESCM to uncertainties
in terrestrial and marine biological productivity with respect
to temperature and CO2, since these processes will influ-
ence the future carbon cycle. In addition, we perturbed ocean
vertical diffusivity, since this is a physical process influenc-
ing marine carbon uptake. All parameters were perturbed
within physically meaningful ranges, which were evaluated
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Figure 1. Illustration of the correlation matrix construction for the example case study, and the model output variables surface air tempera-
ture (SAT) and Northern Hemisphere (NH) sea ice area. In the first step, temporal differences of the simulations are calculated between 2005–
2015 and 2090–2100. Second, changes in the variables induced by the parameter perturbations are correlated. Last, this correlation informa-
tion is used as one of many entries in the correlation matrix.

Table 1. List of perturbed model input parameters.

Abbreviation Short explanation of parameter perturbation

Kv low lower bound of vertical ocean diffusivity
Kv high higher bound of vertical ocean diffusivity
No marine T sens. no marine biological sensitivity to temperature
No terr. T sens. no terrestrial vegetation sensitivity to temperature
Veg. q10 low lower bound of the vegetation Q10 sensitivity
Veg. q10 high higher bound of the vegetation Q10 sensitivity
Soil q10 low lower bound of the soil Q10 sensitivity
Soil q10 high higher bound of the soil Q10 sensitivity
CO2 fert. zero no CO2 fertilization effect
CO2 fert. low lower bound of CO2 fertilization effect
CO2 fert. high higher bound of CO2 fertilization effect
Transp. CO2 sens. zero no CO2 sensitivity of transpiration
Transp. CO2 sens. low lower bound of CO2 sensitivity of transpiration
Transp. CO2 sens. high higher bound of CO2 sensitivity of transpiration
CN CO2 sens. stoichiometric changes in response to changing ocean carbonate chemistry

based on their agreement with the time series of the histori-
cal global mean air temperature (Fig. S5). See Table 1 for a
quick overview of the simulations.

2.3.1 Vertical ocean diffusivity

Small-scale physical mixing (vertical diffusivity or diapyc-
nal mixing) in the ocean is parameterized in all global mod-
els because of their resolution. Thus, this important process,
which plays a key role in determining ocean circulation and
biogeochemical cycles as well as ocean to atmosphere heat

and carbon fluxes, is set by necessity as a single global value
or several regional values that fall within the range of ob-
servational estimates of vertical diffusivity. To test how this
affects all model results, we varied this parameterization by
increasing and decreasing it by 50 % (Kv low and Kv high),
which is within the range of observational estimates (Duteil
and Oschlies, 2011). For this sensitivity analysis, the model
was spun-up with the corresponding setting for 10 000 years
until a new equilibrium climate state was reached.

Earth Syst. Dynam., 9, 15–31, 2018 www.earth-syst-dynam.net/9/15/2018/



N. Mengis et al.: Systematic Correlation Matrix Evaluation 19

2.3.2 Lower bounds of biological temperature sensitivity

Although biological processes are known to be sensitive to
temperature, there is a significant amount of uncertainty in
how biology will respond to warming caused by climate
change (Friedlingstein et al., 2006; Taucher and Oschlies,
2011). Furthermore, there are many different ways to model
the effects of temperature on biology, and it is not know
which is best for Earth system model applications. To inves-
tigate the lower bounds of the sensitivity of biological pro-
cesses to direct temperature effects, we conduct simulations
where direct temperature effects on biology are not included.
In order to ensure that global biogeochemical fluxes are as
close to present-day ones as possible, flux-weighted global
averages for temperature-dependent rates were set for all
temperature-dependent functions (see Taucher and Oschlies,
2011 for details). This approach was applied separately to
marine and terrestrial ecosystems:

a. No marine biological sensitivity to temperature: the re-
sults of this analysis can be used to estimate a lower
boundary for how marine plankton and how their ef-
fect on biogeochemical cycles will respond directly to
global warming (no marine T sens.). For this sensitivity
analysis, the model was spun-up with the corresponding
setting for 10 000 years until a new equilibrium climate
state was reached.

b. No terrestrial vegetation sensitivity to temperature: the
results of this analysis can be used to estimate a lower
boundary for how terrestrial vegetation and its effect on
the carbon cycle will respond directly to global warm-
ing (no terr. T sens.). For this sensitivity analysis, the
model was spun-up with the corresponding setting for
10 000 years until a new equilibrium climate state was
reached.

2.3.3 Vegetation and soil sensitivity to temperature

To further investigate the sensitivity of terrestrial biology to
temperature, we varied the vegetation and soil Q10 values,
which are observationally derived coefficients that are used
to model the biological system rate of change in response to a
10 ◦C temperature increase. Low and high Q10 values of 1.5
and 3.0 (model default is 2.0), which are within the range of
observational estimates (Lloyd and Taylor, 1994), were set to
investigate how different terrestrial biological sensitivities to
temperature affect the model results (veg. q10 low/high and
soil q10 low/high). For this sensitivity analysis, the model
was spun-up with the corresponding setting for 10 000 years
until a new equilibrium climate state was reached.

2.3.4 CO2 fertilization of vegetation

Increasing atmospheric CO2 is thought to stimulate terres-
trial carbon uptake through the process of CO2 fertilization

(Matthews, 2007; Keenan et al., 2013). This negative car-
bon cycle feedback results in reduced atmospheric CO2 con-
centrations and has likely accounted for a substantial por-
tion of the historical terrestrial carbon sink (Friedlingstein
et al., 2006). However, the future strength of CO2 fertiliza-
tion in response to continued carbon emissions is highly un-
certain. In order to test the impact of this uncertainty for fu-
ture climate change simulations, we followed the approach of
Matthews (2007) by scaling the CO2 sensitivity of the terres-
trial photosynthesis model. We performed a simulation with
no CO2 fertilization effect (CO2 fert. zero), as well as two
simulations where we varied the strength of the CO2 fertil-
ization effect by increasing and decreasing it by 50 % (CO2
fert. high/low) relative to the default model. No additional
model spin-up was needed since the simulated CO2 fertiliza-
tion effect only happens when the atmospheric CO2 concen-
tration begins to increase, e.g., from the preindustrial period
onward.

2.3.5 CO2 sensitivity of transpiration

Transpiration by plants is highly sensitive to increases in at-
mospheric CO2, since plants tend to open their stomata less
often in higher-CO2 environments in order to reduce water
loss to the atmosphere. The strength of this effect and its im-
pacts on climate are highly uncertain and have been studied
both through observations and models (Keenan et al., 2013;
Van Der Sleen et al., 2014; Mengis et al., 2015). To test how
strongly this affects simulations of future climate, the amount
of transpiration for all plant functional types was scaled after
Mengis et al. (2015). In this approach the CO2 fertilization
effect is not changed. Three simulations were performed: for
the first simulation, transpiration did not change relative to
the preindustrial level (transp. CO2 sens. zero); for the other
two simulations, the scaled transpiration was increased and
decreased by 50 % of the amount that the model would sim-
ulate with the default setting (transp. CO2 sens. high/low)
as CO2 changes. No additional model spin-up was needed,
since the effect of changing CO2 on transpiration only be-
comes evident when the atmospheric CO2 concentration be-
gins to increase, e.g., from the preindustrial period onward.

2.3.6 Stoichiometric changes in response to changing
ocean carbonate chemistry

Mesocosm studies that artificially increase the amount of
CO2 in seawater (e.g., climate change experiments) have
suggested that the C : N content of marine plankton may be
sensitive to changes in carbonate chemistry. The mesocosm
study of Riebesell et al. (2007) suggested that as CO2 in-
creases, the C : N content of phytoplankton may increase,
which is a change that would affect the amount of carbon
exported to the deep ocean by biological processes and have
an effect on other marine biogeochemical cycles. To test how
this affects all model results, we implemented the mesocosm-
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derived relationship between the atmospheric CO2 concen-
tration and the C : N content of plankton as in Oschlies et al.
(2008) (CN CO2 sens.). No additional model spin-up was
needed, since the effect of changing CO2 on plankton stoi-
chiometry only becomes evident when the atmospheric CO2
concentration begins to increase, e.g., from the preindustrial
period onward.

3 The Systematic Correlation Matrix
Evaluation (SCoMaE) method

3.1 Step 1: calculate the correlation matrix

Throughout this study, a variable is defined as a model out-
put or observational time series, whereas we refer to it as an
indicator if a variable was selected to represent a certain as-
pect of the considered system. To obtain a comprehensive,
nonredundant set of indicators to describe a given system,
the first step is to construct a correlation matrix, i.e., a ma-
trix including the correlation information of all the relevant
Earth system variables to each other. The construction of the
correlation matrix strongly depends on the research ques-
tion and needs to be adjusted accordingly. The selection of
which variables are the relevant variables for the given re-
search question and hence should be included in the matrix,
as well as the choice of how the correlations should be cal-
culated is very important for the outcome of the study. In
the same way, it is important to consider a reasonable signal-
to-noise ratio within the data set chosen. Correlations could
for example be calculated between time series of variables or
their derivatives, absolute temporal changes, or spatial pat-
terns. Alternatively, output from ensemble simulations could
be used to calculate correlations between changes in vari-
ables due to the different ensemble members. The matrix is
then evaluated based on the significance information of these
correlations (see Step 2). Note that for this preselection of
the possibly relevant variables to answer the given question,
as well as for the construction of the correlation information
in the matrix, a certain level of expert judgement is needed.

To illustrate the construction of the matrix based on our
example simulations, we show how the correlation between
changes in global mean “surface air temperature” (A_sat)
and “Northern Hemisphere sea ice area” (O_iceareaN) in the
Representative Concentration Pathway (RCP) 8.5 emission
scenario (Meinshausen et al., 2011) due to the parameter per-
turbations translates to the corresponding correlation matrix
entry (Fig. 1). In our example we want to study the correla-
tions between changes in model output variables, induced by
varying poorly constrained model input parameters concern-
ing the carbon cycle. In the following we will refer to these
as “correlation of variable changes”.

Assuming that the signal of interest is of a similar kind as
the state differences between the start and the end of a climate
change simulation, we start by calculating the temporal dif-
ferences between 2005–2015 and 2090–2100 from a number

of parameter perturbation simulations that serve as our en-
semble in this example (see Sect. 2.3 for explanations of the
parameter perturbations). This enables us to learn whether
the different output variables show a similar behavior for the
respective parameter perturbation. Then the Pearson corre-
lation coefficients between these changes are calculated and
tested by performing a two-sided test at a 5 % significance
level, with N = 16, the number of perturbed parameter sim-
ulations, and accordingly tcrit= 2.145.

In our example, there is a negative correlation of variable
changes evident between “surface air temperature” (A_sat)
and “Northern Hemisphere sea ice area” (O_iceareaN). This
illustrates that these model output variables show consis-
tent opposite reactions towards the parameter perturbations,
i.e., if the perturbation causes surface air temperatures to
increase, it also causes northern hemispheric sea ice to de-
crease. This information is then written into the correlation
matrix. By studying the constructed correlation matrix and
studying single correlations of changes between model out-
put variables, we can learn about basic processes within the
simulated climate system and test whether these agree with
our expectations. To simplify the visual analysis of our ex-
ample we sorted the variables in the matrices according to
their strength in correlation of variable changes relative to
changes in the commonly used climate change indicator, i.e.,
“surface air temperature” (A_sat) in the historical scenario.

3.2 Step 2: cluster identification and indicator selection

To obtain a set of indicators for the assessment of changes in
the system under consideration, we systematically evaluate
the previously constructed correlation matrix (see Fig. 2 for
an illustration of this procedure). To obtain a comprehensive,
nonredundant indicator set, we follow these steps: (1) the first
indicator is the variable with the highest number of signifi-
cant correlations with other variables; (2) all variables with
a significant correlation are clustered under this indicator;
(3) these clustered variables are then excluded from the selec-
tion of the next indicator; (4) the next indicator is again the
variable with the highest number of significant correlations
with all the remaining variables; (5) this indicator selection
procedure is repeated until all variables are clustered and are
represented by an indicator. If a variable is not significantly
correlated to any of the remaining variables, this variable is
considered to be a single indicator. These single indicators
are needed for a fully comprehensive assessment, since they
show different behavior from all previously selected indica-
tors and hence provide additional information.

In our example, we applied the SCoMaE method to the
correlation matrix concerning 46 commonly used variables
for the assessment of climatic changes in the historical forc-
ing scenario, simulated by the UVic ESCM (see Sect. 2.1 for
details on the simulations). We find that the first indicator for
our research question in the historical period is “precipitation
over ocean areas” (F_precipO) (Figs. 3 and S5). By following
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Figure 2. Illustration of the indicator selection process using the example of the correlation matrix for the historical scenario (see Fig. 3
for a more detailed display of the correlation matrix). The correlation matrix, was constructed as explained in Fig. 1 but for the temporal
differences between 1850–1860 and 1995–2005. See Sect. 3.2 for a detailed step-by-step description of the evaluation process. Prefixes A,
O, L, and F stand for atmosphere, ocean, land, and fluxes, respectively; for a detailed description of the model output variables, see Table A1.

the respective column of F_precipO (17th from the right) in
the correlation matrix, we can see that changes in this model
output variable are significantly correlated to changes in all
variables that are also significantly correlated to changes
in “surface air temperature” (A_sat; first from the bottom),
with the exception of “mean ocean temperature” (O_temp,
16th from the bottom) but in addition also link changes
in global and terrestrial precipitation and evapotranspiration
(F_precip, F_precipL and F_evap, F_evapL, respectively;
35th and 37th from the bottom) as well as changes in “surface
net upward longwave radiation” (F_uplwr, 40th from the bot-
tom). The changes in these variables due to parameter pertur-
bations are not significantly correlated to changes in “surface
air temperature” (A_sat). Hence, based on purely statistical
considerations, using “precipitation over ocean” (F_precipO)
as an indicator for the research question in the historical pe-
riod would be preferable to global mean “surface air temper-
ature” (A_sat), the main ad hoc indicator of historical climate
change, since it potentially holds more information.

“Surface albedo on land” (A_albsurL) is identified as the
second indicator. After excluding all variables correlated
to changes in “precipitation over ocean” (F_precipO), its
changes due to the parameter perturbations are significantly
correlated to changes in “net surface downward shortwave
radiation” (F_dnswr), “ocean oxygen” (O_o2), and “sea
surface salinity” (O_salsur). The third indicator is “ocean

surface alkalinity” (O_alksur), which shows the same re-
sponse to the parameter perturbations as “ocean surface
phosphate concentrations” (O_po4sur). When excluding all
variables that are clustered under one of the three abovemen-
tioned indicators, three variables remain unclustered: “mean
ocean temperature” (O_temp), “maximum meridional over-
turning” (O_motmax), and “ocean phytoplankton” (O_phyt).
These variables are hence single indicators, which are needed
for a comprehensive assessment of the system under consid-
eration (Fig. 3b).

See Sect. 1 and Figs. S1 and S2 in the Supplement for the
results of these analyses for the intermediate–high (RCP4.5)
and the business-as-usual (RCP8.5) scenarios, respectively.

3.3 Step 3 (optional): comparison of indicators for the
different forcing scenarios

In order to learn how well the previously identified indicators
for one scenario explain a different scenario with changed
forcing, we prescribe the use of the previously identified in-
dicator set. The SCoMaE accordingly first uses these indica-
tors and then analyses whether and which additional indica-
tors are needed for a fully comprehensive assessment of the
new scenario.

For the example, we prescribed the indicators identi-
fied for the historical scenario to assess the intermediate–
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Figure 3. (a) Correlation matrix for the historical scenario. The correlations are calculated between changes in the 46 model output vari-
ables for temporal differences between 1850–1860 and 1995–2005 from the results of the perturbed parameter simulations (as in Fig. 1).
Correlations significant at a 5 % significance level are marked with crosses. The order of the variables was determined based on their cor-
relation strength to “surface air temperature” (A_sat) in the historical scenario. Prefixes A, O, L, and F stand for atmosphere, ocean, land,
and fluxes, respectively; for a detailed description of the model output variables, see Table A1. (b) Indicators as identified from the SCo-
MaE analysis of the correlation matrix above as illustrated in Fig. 2, ranked by the amount of significant correlations. The indicators are
as follows: “precipitation over ocean” (F_precipO), “land surface albedo” (A_albsurL), “ocean surface alkalinity” (O_alksur), “mean ocean
temperature” (O_temp), “ocean phytoplankton” (O_phyt), and “ocean overturning” (O_motmax).

high (RCP4.5) and the business-as-usual (RCP8.5) emission
scenarios (Fig. 4). The results show that if we were to only
utilize the indicators from the historical scenario for the as-
sessment of the two RCP scenarios, we would not be able
to assess all changes in the climate system as represented by
our model: for the RCP4.5 scenario, we would obtain ad-
ditional information by considering the variables “net top-
of-atmosphere radiation” (F_netrad) and “ocean surface heat
flux” (F_heat), which are clustered together, and “net upward
longwave radiation” (F_uplwr) and “ocean surface salin-
ity” (O_salsur), which form another indicator cluster (Fig. 4).

Note that Earth system variables clustered under the
prescribed indicators differ among the different scenar-

ios (compare Figs. 3 and S1): in the historical scenario
the indicator “precipitation over ocean” (F_precipO) in-
cludes the output variables “net top-of-atmosphere radia-
tion” (F_netrad), “ocean surface heat flux” (F_heat), “ocean
surface nitrate” (O_no3sur), “top-of-atmosphere outgoing
longwave radiation” (F_outlwr), and “net upward long-
wave radiation” (F_uplwr), all of which are not included in
the “precipitation over ocean” (F_precipO) indicator of the
RCP4.5 scenario. Instead, the indicator “precipitation over
ocean” (F_precipO) for the RCP4.5 scenario includes “mean
ocean temperature” (O_temp), which it is not included for
the historical scenario.
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Figure 4. Indicators identified from the analysis of the RCP4.5 (blue) and RCP8.5 (red) correlation matrices with the precondition to use the
historical indicators first. The indicators are as follows: “precipitation over ocean” (F_precipO), “land surface albedo” (A_albsurL), “ocean
surface alkalinity” (O_alksur), “mean ocean temperature” (O_temp), “ocean phytoplankton” (O_phyt), “ocean overturning” (O_motmax),
“net radiation at the top of the atmosphere” (F_netrad), “ocean surface dissolved inorganic carbon” (O_dicsur), and “downward shortwave
radiation” (F_dnswr).

The differences between the correlation matrices for the
RCP8.5 scenario compared to the historical scenario are even
larger (compare Figs. 3 and S2). For the RCP8.5 scenario, 8
out of 46 considered variables would not be included if we
applied the indicators identified for the historical scenario.
Instead we need three additional indicators for the assess-
ment of the system under consideration, namely “net top-of-
atmosphere radiation” (F_netrad), “ocean surface dissolved
inorganic carbon” (O_dicsur), and “net surface downward
shortwave radiation” (F_dnswr) (Fig. 4). Note that six of
the eight remaining variables that were initially included in
the first indicator cluster for the historical scenario, namely
“precipitation over ocean” (F_precipO), are no longer signif-
icantly correlated to it for the RCP8.5 scenario.

These differences in the correlation matrices for the dif-
ferent forcing scenarios indicate changes in prevailing cor-
relations between Earth system variables with the imposed
climate forcing. This illustrates that a reevaluation of the in-
dicators chosen may be needed for a comprehensive assess-
ment of different climate strategies yielding different climate
states.

3.4 Step 4 (optional): evaluation of a common
correlation matrix

To advance this analysis such that changes in correlation ma-
trices from different forcing scenarios can be taken into ac-
count, it is possible to create a correlation matrix representing
only those correlations that are significant in all forcing sce-
narios; this is defined as a common correlation matrix. Ap-
plying the SCoMaE method to such a common correlation
matrix identifies an indicator set that can be used to assess
and also compare multiple scenarios and which hence differs
from the previously identified sets for the individual correla-
tion matrices.

To obtain a common indicator set for the three example
forcing scenarios (historical, RCP4.5, and RCP8.5), we con-
struct a correlation matrix in which only correlations of vari-
able changes that are significant in all these scenarios are
considered (Fig. 5). Furthermore the color shading indicates
in which of the scenarios the correlations between variable
changes were found to be significant.

A first visual evaluation of the common correlation matrix
shows more reddish than bluish shading, which indicates that
the correlation patterns for the historical and RCP4.5 scenar-
ios are more similar than for the historical and RCP8.5 sce-
narios (Fig. 5). This means that for a lower future emission
scenario, the indicators from the historical scenario are more
suitable than for a higher future emission scenario. This is
true with the exception of the terrestrial and oceanic car-
bon fluxes (F_carba2l and F_carba2o, respectively). These
two fluxes are perturbed by the land-use scheme imple-
mented in the RCP4.5 scenario, since this scenario includes a
high amount of afforestation and reforestation. Furthermore,
greenish shading shows correlations of variable changes that
are significant only in the RCP scenarios, indicating that
those correlations of variable changes depend on the increas-
ing anthropogenic (mainly CO2) forcing, included only in
these scenarios.

The first indicator obtained from the common SCoMaE
analysis is “atmospheric CO2” (A_co2), which was also
found to be the first indicator in the RCP8.5 scenario
(Figs. S7 and S8). Its changes are significantly correlated to
changes in 27 other output variables in all three scenarios.
This indicates that these correlations of variable changes are
robust throughout the different strength of CO2 forcing in the
three scenarios. The fact that “atmospheric CO2” (A_co2)
is the first indicator with a large number of correlated vari-
ables suggests its ability to reflect the changes in other Earth
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Figure 5. (a) Correlation matrix for all three scenarios, merging the significance information from all three scenarios. Colors indicate
in which scenario the changes in variables due to parameter perturbations showed a significant correlation; see color bar for an explana-
tion. The crosses mark combinations of variables where the correlation of variable changes is significant at a 5 % significance level in all
three scenarios. For details on the model output variables under consideration, see Table A1. (b) Indicators as identified from the anal-
ysis based on the correlation matrix above against the number of significant correlations (blue) and with the condition that “surface air
temperature” (A_sat) is prescribed as the first indicator (red). The indicators are as follows: “atmospheric carbon content” (A_co2), “precip-
itation over land” (F_precipL), “atmosphere-to-ocean carbon flux” (F_carba2o), “net top-of-atmosphere radiation” (F_netrad), “net surface
downward shortwave radiation” (F_dnswr), “atmosphere-to-land carbon flux” (F_carba2l), “ocean surface nitrate” (O_no3sur), “top-of-
atmosphere outgoing longwave radiation” (F_outlwr), “ocean oxygen” (O_o2), “ocean surface alkalinity” (O_alksur), “ocean phytoplank-
ton” (O_phyt), “ocean surface salinity” (O_salsur), “sea surface phosphate” (O_po4sur), “ocean overturning” (O_motmax), “precipitation
over ocean” (F_precipO), “ocean carbon” (O_totcarb), and “surface net upward longwave radiation” (F_uplwr).

system variables with regard to the parameter perturbations,
such as changes in temperatures, carbon fluxes, and moisture
fluxes over the ocean. This can possibly be explained by the
fact that the changes in these variables are sensitive to the
imposed CO2 forcing, which in turn is reflected in the atmo-
spheric carbon concentration.

The second indicator is “precipitation over
land” (F_precipL), which is clustered with “terrestrial
evapotranspiration” (F_evapL) and “net upward longwave
radiation” (F_uplwr) (Fig. S6). This cluster accordingly
represents changes in terrestrial moisture fluxes and the

resulting surface upward fluxes of longwave radiation. The
latter relates to the surface air temperature, which on land
is strongly influenced by the amount of evapotranspiration,
and the resulting evaporative cooling. Note that the fact that
terrestrial moisture fluxes are clustered under a separate
indicator suggests a different sensitivity of these variables
to the perturbed parameters. Since these three variables
show significant correlations of variable changes to each
other in all three scenarios, one could use any of them as
the indicator for this cluster. The same is true of the next
indicators and their clusters, which are “air-to-sea carbon
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flux” (F_carba2o) and “soil respiration” (L_soilresp); “net
top-of-atmosphere radiation” (F_netrad) and the “ocean
surface heat flux” (F_heat); and “net surface downward
shortwave radiation” (F_dnswr) and the “land surface
albedo” (A_albsurL).

The remaining single indicators are “air-to-land carbon
flux” (F_carba2l), “ocean surface nitrate” (O_no3sur), “top-
of-atmosphere outgoing longwave radiation” (F_outlwr),
“ocean oxygen” (O_o2), “ocean surface alkalin-
ity” (O_alksur), “ocean phytoplankton” (O_phyt), “sea
surface salinity” (O_salsur), “ocean surface phos-
phate” (O_po4sur), and “maximum ocean meridional
overturning” (O_motmax).

3.5 Step 5 (optional): including expert judgment

If stakeholders or experts were to inform the indicator selec-
tion process, it would be possible to prescribe indicators and
then use the SCoMaE analysis to identify additional uncor-
related variables that are needed to obtain a comprehensive
assessment of the system. Also, instead of using global mean
time series, one could look at time series of regions or al-
ready processed variables, such as heat stress or cumulative
emissions. This approach in combination with the SCoMaE
analysis enables us to learn about variables which have pre-
viously been disregarded but potentially provide new infor-
mation about the system or to learn which of the indicators
previously considered actually provide redundant informa-
tion.

How would the common indicator set from our example
change if we were to include the condition that surface air
temperature should be the first indicator, instead of atmo-
spheric CO2?

Prescribing “surface air temperature” (A_sat) as the first
indicator for the common correlation matrix leads to the re-
placement of “precipitation over land” (F_precipL) by “pre-
cipitation over ocean” (F_precipO) as the second indicator
(Fig. 5b); its change with the parameter perturbations is cor-
related with 12 variables that are clustered under this indi-
cator. Almost all of these variables were initially clustered
under “atmospheric CO2” (A_co2) but are not significantly
correlated to changes in “surface air temperature” (A_sat).
These variables mainly describe global and oceanic mois-
ture fluxes, as well as carbon fluxes or reservoirs on land:
“precipitation over the ocean” (F_precipO), “global evapo-
ration” (F_evap), “global precipitation” (F_precip), “vege-
tation net primary productivity” (L_vegnpp), “leaf area in-
dex” (L_veglai), “vegetation carbon” (L_vegcarb), and the
“surface upward sensible heat flux” (F_upsens). The only ex-
ception to this behavior is “total ocean carbon” (O_totcarb),
which in turn becomes a single indicator. In addition the sec-
ond indicator, “precipitation over the ocean” (F_precipO),
now incorporates the previously identified clusters of the
second and third indicators, namely the clusters of “pre-
cipitation over land” (F_precipL) and the “air-to-sea car-

bon flux” (F_carba2o). Only “net upward longwave radia-
tion” (F_uplwr), which was also clustered under “precipita-
tion over land” (F_precipL) becomes a single indicator, re-
maining unclustered when “surface air temperature” (A_sat)
is prescribed as the primary indicator. In turn, “air-to-land
carbon flux” (F_carba2l), which was a single indicator in the
default SCoMaE analysis, is now clustered under “surface air
temperature” (A_sat).

The third and fourth indicators are “net top-of-atmosphere
radiation” (F_netrad) and “net surface downward shortwave
radiation” (F_dnswr), which were found with the same un-
derlying clusters in the default analysis (compare Figs. S8
and S9). Finally, eight of the nine previously identified sin-
gle indicators remain unclustered and hence are still single
indicators.

Although the total number of indicators has not changed,
the identified clusters and their meaning differ: in the default
analysis, the first indicator represented changes in tempera-
tures, carbon fluxes, and global and oceanic moisture fluxes.
If “surface air temperature” (A_sat) is prescribed, the global
and oceanic moisture fluxes are moved to the second cluster,
which in addition incorporates some Earth system variables
from the previously identified second and third indicators.
This is one example showing how the SCoMaE method al-
lows for the inclusion of expert judgment or preconditions,
is able to account for changes in correlation patterns, and
allows one to determine which indicators are needed for a
comprehensive and nonredundant assessment. (For more dis-
cussions, see Sect. 2 and Fig. S3 in the Supplement.)

4 Discussion

4.1 Discussion of the results from the example

4.1.1 What were we able to learn from the example?

As illustrated above, the SCoMaE method statistically eval-
uates the correlations between changes in model output vari-
ables and uses this information to cluster variables, while
selecting a representative indicator for each cluster. The ex-
ample analyses of the individual scenarios illustrates the de-
pendence of the indicator selection on the imposed forcing
scenario. These results demonstrate that for our model, it
is insufficient to apply the historical indicator set to the fu-
ture scenarios with either higher CO2 forcing such as in the
RCP8.5 scenario or more limited CO2 forcing and reduced
anthropogenic land use such as in the RCP4.5 scenario. Al-
though our analysis is too limited to conclusively determine
a best set of climate change indicators in a purely scientific
bottom–up approach, our results do suggest that a compre-
hensive assessment of future climatic states needs a reevalu-
ation of the ad hoc indicators chosen, due to changes in pre-
vailing climate responses.

We demonstrate one possible approach for selecting a
more comprehensive indicator set by constructing a common
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correlation matrix to identify indicators that can be used for
the assessment of all three scenarios. For the clusters of vari-
ables of the common indicator set, the correlations of vari-
able changes remain significant even under different atmo-
spheric carbon or land-use forcing.

However, one should always ask whether the identified
clusters and indicators are scientifically meaningful. For the
common correlation matrix (as well as the RCP8.5 scenario),
the first indicator, “atmospheric CO2” (A_co2), groups to-
gether variables describing changes in carbon fluxes, tem-
peratures, and moisture fluxes over the ocean. This is scien-
tifically meaningful, since changes in carbon fluxes will af-
fect the atmospheric carbon content and hence atmospheric
temperatures, both over land and ocean. These temperature
changes in turn have an effect on the moisture fluxes over the
ocean, such as the evaporation over ocean, which is phys-
ically driven by temperature changes. These categories are
hence physically linked, and it is to be expected that they are
correlated irrespective of the forcing scenario chosen.

The second indicator, “precipitation over
land” (F_precipL), represents the variability of mois-
ture fluxes on land and the associated cooling effect. The
fact that these processes are clustered under an indicator
that is distinct from global and oceanic moisture fluxes
indicates different underlying processes for these moisture
fluxes, namely the influence of biological transpiration. This
process is directly affected by the parameter perturbations
concerning the sensitivity of transpiration to CO2 (Mengis
et al., 2015) and the CO2 fertilization effect (Matthews,
2007). Given the parameter sensitivities of the model
considered, the distinction between terrestrial and marine
moisture fluxes is scientifically meaningful.

Another identified cluster is “net top-of-atmosphere ra-
diation” (F_netrad) and “ocean surface heat flux” (F_heat),
which are directly linked in the model. Furthermore “net sur-
face downward shortwave radiation” (F_dnswr) and “land
surface albedo” (A_albsurL) are clustered, since changes in
vegetation on land induced by the parameter perturbations
influence both the surface albedo on land and the incoming
shortwave radiation at the surface.

The “air-to-sea carbon flux” (F_carba2o) and “soil respi-
ration” (L_soilresp) are clustered together for all three sce-
narios but show a negative correlation of variable changes in
the historical scenario and positive correlations of variable
changes in the two RCP scenarios, indicating a dependency
on the atmospheric carbon concentrations. The predominant
parameterization for those correlations of variable changes is
one that affects the CO2 fertilization (Fig. S7). Since this is
not an intuitive connection, we will briefly discuss this corre-
lation in more detail: the strength of the CO2 fertilization de-
termines the increase in plant net primary production (NPP)
to increasing atmospheric CO2 concentrations. For the his-
torical scenario, in the case when the CO2 fertilization pa-
rameterization is increased, soil respiration increases due to
an increase in vegetation and hence the soil carbon pool. In

the same case, the air-to-sea carbon flux slightly decreases
due to lower atmospheric carbon concentration in the case of
increasing vegetation NPP and consequently land CO2 up-
take. Hence, the negative correlation of variables changes
between the “air-to-sea carbon flux” (F_carba2o) and “soil
respiration” (L_soilresp) for the CO2 fertilization perturba-
tion in the historical scenario (Fig. S7a).

In contrast, in the future, high-CO2 and temperature sce-
narios both Earth system variables show larger changes with
increased CO2 fertilization parameterization. For “soil res-
piration” (L_soilresp), the underlying process remains the
same in this case. However, the terrestrial carbon reservoir
reaches a saturation state during the high-emission scenar-
ios. With increasing CO2 fertilization strength the land car-
bon reservoir reaches this saturation state earlier, causing
more carbon to remain in the atmosphere, which following
Henry’s law results in an overall higher “air-to-sea carbon
flux” (F_carba2o) in the simulations with higher CO2 fer-
tilization, since the ocean equilibrates with the atmosphere.
This explains the positive correlation of variable changes un-
der the two RCP scenarios.

Two clusters are identified in both future emission scenar-
ios, namely “ocean phytoplankton” (O_phyt), which is clus-
tered with “ocean surface phosphate” (O_po4sur) and “ocean
surface nitrate” (O_no3sur), and “ocean oxygen” (O_o2),
which is clustered with “ocean surface alkalinity” (O_alksur)
(compare Figs. S6 and S7). These two clusters are only iden-
tified when atmospheric CO2 concentrations are high but do
not hold for the historical scenario, where other relationships
seem to be of greater importance. As a result, all of these
variables are unclustered for the common indicator selection,
causing the number of selected indicators for a common in-
dicator set to increase.

4.1.2 Limitation of the analyses from the example

For our case study, we chose to assess the uncertainty of the
biological system towards increasing temperature and CO2,
which is reflected in the choice of the considered perturbed
parameters. In addition to directly perturbing biological pa-
rameterizations, we also perturbed some key physical param-
eters that indirectly influence the biological systems. All pa-
rameter perturbations were chosen because the parameteri-
zations are poorly constrained, and under future high-CO2
and temperature forcing, it will be become increasingly im-
portant to take this uncertainty into account. These choices,
however, bias the correlation analysis of the model output
variables towards their sensitivity to the selected perturba-
tions (for a detailed discussion, see Sect. 3 and Fig. S4 in
the Supplement). For a more comprehensive assessment of
uncertainties, experiments with different uncertainties in the
simulated Earth system, such as cloud parameterizations or
the model’s climate sensitivity, would need to be considered.
Such experiments would accordingly change the patterns of
the correlation matrix. Furthermore, to take into account the
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nonlinearity of the Earth system, as a follow-up study, one
could covary the parameters. This would more realistically
reflect the inherent process uncertainty within an Earth sys-
tem model.

It is important to stress the fact that the Earth system
variables used in our example are annual global integrals or
means between two fixed points in time. While our approach
was sufficient to demonstrate the SCoMaE method, it is im-
portant to mention that global integrals and means are not
always positively correlated to regional changes and, there-
fore, may misrepresent regional responses. Furthermore, we
are not assessing the detailed temporal development of the
model variables’ response to changes in the climate state. In-
stead, we investigate changes in the final simulated climate
state imposed by parameter perturbations, which are sensi-
tive to CO2 and temperature, under different climate forcing
scenarios. This approach was chosen since the UVic ESCM
is a model with low internal variability and would, hence,
likely overestimate information if we were to evaluate tem-
poral correlations. Investigating the model’s sensitivity to
the parameter perturbations was therefore deemed a better
choice for illustrating the SCoMaE method. Any more thor-
ough climate change assessment using the SCoMaE method
would also need to investigate how variable correlations and
indicator clusters might change spatially and temporally.

4.2 Discussion of the SCoMaE method

The construction of an individual or a common correlation
matrix can be a useful tool for assessing the state of complex
systems. Individual correlation matrices allow one to obtain
an initial overview of relationships between the different sys-
tem variables, whereas a common correlation matrix shows
how changes in the state of a system, imposed by, e.g., vary-
ing forcing scenarios, influence these relationships. The SCo-
MaE method then allows us to cluster the variables, based on
statistical considerations, to obtain a nonredundant indicator
set to guide more detailed analysis.

However, in order for this to be useful one must carefully
select, what information to include in the correlation matrix,
which in turn strongly depends on the given research ques-
tion. This can be illustrated by the implicit choices made for
our example case study, where we regarded correlations of
variable changes in globally averaged model output variables
given various parameter perturbations. The first choice in this
case study was to use global aggregates of the model out-
put. However, if the research focus were set on, e.g., regional
phenomena, the correlations for the matrix could also be con-
structed either between regional aggregates or based on the
correlation strength for a given spatial pattern.

The second choice for the case study, was to regard cor-
relations between changes in model output variables based
on their reaction to a parameter perturbation under chang-
ing climate forcing. Instead of using model output, it is also
possible to further process the data and calculate derivatives

of the model output variables, such as heat stress or cumula-
tive time series. On another note, using a model with higher
internal variability, it would also be possible to regard tempo-
ral correlations of Earth system variables over a chosen time
period. In contrast to the purely process-based parameter per-
turbations that we regarded in the case study, this would hold
information about the timescales and temporal development
of the model output variables, which, in turn, could indicate
common underlying processes in the model. Additionally, if
the considered time series showed higher internal variabil-
ity, it might be conceivable to apply a specific temporal fil-
ter to the data before calculating the correlation matrix. This
could allow the distinction between important processes on
different timescales, from daily and seasonal to interannual
or decadal.

In the following we want to discuss the contribution
of the SCoMaE method to achieve the three characteris-
tics for indicator selection as introduced by Radermacher
(2005). Constructing a correlation matrix enables scientists
to comprehensively identify correlations in complex sys-
tems, such as the Earth system, both simulated and ob-
served. The application of SCoMaE allows one to identify
scientifically consistent sets of indicators, which are inde-
pendent and hence do not provide redundant information,
to be used in a science-led assessment. This method repre-
sents a bottom–up, natural-science perspective on indicator
selection. It thereby tackles one of the three characteristics
discussed by Radermacher (2005), namely that of scientific
consistency.

In our example the SCoMaE method is based on model
data and hence does not account for information about the
statistical measurability of the identified indicators. This
makes it difficult to directly translate a model-based indica-
tor set to a “real-world” application. This is the case, for ex-
ample, for the first indicator in the historical scenario: “pre-
cipitation over ocean” (F_precipO). The lack of long-term
historical precipitation measurements over the ocean (New
et al., 2001) would prevent this indicator from being used in
a real-world application. It is, however, noteworthy that there
is value in the knowledge that this variable could hold in-
formation about other Earth system variables, and hence it
might be worth improving the observational system.

The third characteristic mentioned by Radermacher (2005)
is the political relevance of indicators. Since SCoMaE is a
bottom–up, science-led approach for indicator selection, it at
first does not take into account political, ethical, and econom-
ical considerations. However, these considerations as well
as measurability constraints can be included in the analy-
sis. Prescribing a certain indicator, e.g., “surface air temper-
ature” (A_sat) in Sect. 3.5, SCoMaE allows us to include ex-
pert judgment and enables us to identify the remaining in-
dicators needed for a fully comprehensive assessment. An
iterative learning process for which indicators are societally
relevant and scientifically consistent as proposed by Oschlies
et al. (2017) and Singh et al. (2015) would hence allow the
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SCoMaE method to identify scientifically meaningful, mea-
surable, and politically relevant indicators sets.

5 Conclusions

In this study we introduced a bottom–up, correlation-based
approach to systematically identifying indicator sets for the
assessment of complex systems. To demonstrate the SCo-
MaE method, we applied it to correlation matrices con-
structed with changes in Earth system variables of an
intermediate-complexity Earth system model, with which we
simulated three forcing scenarios. We were able to identify
indicator sets for an assessment of the historical as well as for
an intermediate–high and a business-as-usual future emission
scenario. The comparison of the three correlation matrices
yielded the opportunity to assess changes in correlations be-
tween changes in Earth system variables introduced by the
imposed forcing. These changes in the correlation patterns
also motivated a reevaluation of the selected indicator sets
for the different scenarios. We show that it is not sufficient
to apply the indicator set identified for the historical scenario
to the intermediate–high nor to the business-as-usual future
emission scenario. This result points to the fact that the clas-
sical procedure of ad hoc indicators, such as surface air tem-
perature, may work well for certain environmental conditions
or scenarios but possibly not as well for others. That is, the
subjective choice of indicators may lead to unintended pref-
erences in the interpretation of different scenarios. By com-
bining the three scenarios into a common correlation matrix,
we could identify correlations between changes in Earth sys-
tem variables that are robust across the three forcing scenar-
ios. Considering these correlations only enabled us to iden-
tify a common indicator set, which was scientifically con-
sistent and would allow us to comparatively assess the three
considered scenarios.

This case study is one example out of many possible ap-
plications of the correlation matrix and SCoMaE method.
The construction of the correlation matrix can be adjusted to
the respective research question, which makes the SCoMaE
method a generic and flexible tool. An iterative application
of the SCoMaE method offers the user the chance to compre-
hensively assess complex systems such as the Earth system,
while including political, ethical and economical considera-
tions, as well as measurability constrains.

Data availability. The model data used to generate the figures will
be made available at http://thredds.geomar.de.
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Appendix A: Explanation of the model output
variables

Table A1. List of globally aggregated model output variables considered in this study.

Model output name Description Unit

A_albsurL land surface albedo 1
A_albsurO sea surface albedo 1
A_co2 atmospheric CO2 ppm
A_sat air surface temperature ◦C
A_satL land air surface temperature ◦C
A_satO ocean air surface temperature ◦C
A_shum surface-specific humidity 1
A_totcarb total atmospheric carbon Pg C
F_carba2l air-to-land carbon flux Pg C yr−1

F_carba2o air-to-sea carbon flux Pg C yr−1

F_dnswr net surface downward shortwave radiation W m−2

F_evap global evaporation kg H2O m−2 s−1

F_evapL evaporation over land kg H2O m−2 s−1

F_evapO evaporation over ocean kg H2O m−2 s−1

F_heat ocean heat flux W m−2

F_netrad net top-of-atmosphere radiation W m−2

F_outlwr top-of-atmosphere outgoing longwave radiation W m−2

F_precip global precipitation kg H2O m−2 s−1

F_precipL precipitation over land kg H2O m−2 s−1

F_precipO precipitation over ocean kg H2O m−2 s−1

F_uplwr surface net upward longwave radiation W m−2

F_upsens surface upward sensible heat flux W m−2

L_soilcarb soil carbon Pg C
L_soilresp soil respiration Pg C yr−1

L_totcarb total land carbon Pg C
L_vegcarb vegetation carbon Pg C
L_veglai leaf area index 1
L_vegnpp vegetation net primary productivity Pg C yr−1

O_alksur sea surface alkalinity mol m−3

O_dicsur sea surface dissolved inorganic carbon mol m−3

O_dsealev change in sea level m
O_iceareaN Northern Hemisphere sea ice area m2

O_iceareaS Southern Hemisphere sea ice area m2

O_motmax maximum meridional overturning stream function m3 s−1

O_no3sur ocean surface nitrate mol m−3

O_o2 ocean oxygen mol m−3

O_oaragsur sea surface omega aragonite 1
O_ocalcsur sea surface omega calcite 1
O_pco2sur sea surface partial CO2 pressure ppmv
O_phsur sea surface pH 1
O_phyt ocean phytoplankton mol N m−3

O_po4sur sea surface phosphate mol m−3

O_salsur sea surface salinity 1
O_temp mean ocean temperature ◦C
O_tempsur sea surface temperature ◦C
O_totcarb total ocean carbon Pg C
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-9-15-2018-supplement.
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